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Abstract

In many of the possible applications as well as the
theoretical models of computational social choice,
the agents’ preferences are represented as partial
orders. In this paper, we extend the maximum
likelihood approach for defining “optimal” voting
rules to this setting. We consider distributions in
which the pairwise comparisons/incomparabilities
between alternatives are drawn i.i.d. We call such
models pairwise-independent models and show that
they correspond to a class of voting rules that we
call pairwise scoring rules. This generalizes rules
such as Kemeny and Borda. Moreover, we show
that Borda is the only pairwise scoring rule that
satisfies neutrality, when the outcome space is the
set of all alternatives. We then study which voting
rules defined for linear orders can be extended to
partial orders via our MLE model. We show that
any weakly neutral outcome scoring rule (includ-
ing any ranking/candidate scoring rule) based on
the weighted majority graph can be represented as
the MLE of a weakly neutral pairwise-independent
model. Therefore, all such rules admit natural ex-
tensions to profiles of partial orders. Finally, we
propose a specific MLE model πk for generating a
set of k winning alternatives, and study the compu-
tational complexity of winner determination for the
MLE of πk.

1 Introduction

In traditional voting theory, it is usually assumed that each
agent reports her preferences as a linear order. However,
in computational social choice and the associated multiagent
applications, it is often desirable to allow for partial orders.
There are at least two important reasons for this. First, some-
times an agent is simply unable to decide which of two alter-
natives should be ranked higher (that is, the two alternatives
are incomparable [14]). Second, sometimes the number of
alternatives is extremely large, so that it is infeasible from a
computation/communication standpoint for the agents to fully
report their preferences over the whole set of alternatives (that
is, the agents’ preferences are incomplete [14]).

For example, in multi-issue domains, the set of alternatives
is exponentially large. In this context, researchers have inves-
tigated voting methods that are based on the agents represent-
ing their preferences by CP-nets [4; 17; 14; 13; 23]. A CP-net
corresponds to a specific type of partial order over the alterna-
tives. As another example, perhaps only parts of the agents’
preferences have been revealed so far, perhaps through an in-
cremental elicitation process, and in this case the currently
available information can be represented by a partial order for
each agent. In such a situation, it is useful to know whether a
given alternative can still / must certainly win the election at
this point (the possible / necessary winner problem) [12; 20;
3; 2; 21].

Perhaps because these issues have not been central in the
traditional social choice literature, there has not been much re-
search on designing good voting rules that take partial orders
as input. It is not difficult to make up such a rule in an ad-
hoc fashion. For example, Rademaker and De Baets [16] pro-
posed a computationally tractable method to aggregate partial
orders. Their method in some sense extends a common voting
rule called ranked pairs [18]. However, we feel that a more
principled approach is desirable. For example, we may fol-
low the axiomatic approach. This approach reigns supreme
in social choice theory, with for example the celebrated ex-
ample of Arrow’s impossibility theorem [1]. Some desirable
properties (axioms) of a voting rule are specified, and then the
corresponding class of voting rules is characterized. Pini et
al. [15] applied the axiomatic approach to voting with partial
orders and obtained some significant impossibility theorems.

Much older, and arguably more constructive, is the max-
imum likelihood approach, which was first introduced more
than two hundred years ago by Condorcet [7], and has recently
been adopted in economics [8; 19], as well as in the artificial
intelligence and computational social choice literatures [6; 5;
23]. The idea is to imagine that there is a “correct” outcome,
and each voter’s preferences constitute a noisy perception of
this absolute truth. In Condorcet’s model, given the “cor-
rect” ranking V , for each pair of alternatives c and c′ where
c !V c′, with probability p > 1/2 the voter also prefers c to c′

(and with probability 1−p, she prefers c′ to c). This “pairwise
independence” assumption might result in intransitive prefer-
ences, e.g. a ! b, b ! c, and c ! a. However, this does
not cause a problem. We can simply conceptually allow for
the possibility that a voter has a vote that violates transitivity.



This gives us a voting rule that is defined on a larger domain
that allows for intransitivity, which can then still be applied
to the subdomain where transitivity holds. Given a profile,
a winning full ranking is defined to be one that maximizes
the likelihood of the agents’ votes. Condorcet’s original MLE
model results in Kemeny’s rule [26]. It was later shown that
some, but not all, other commonly used voting rules are MLEs
for some noise models [6]. MLE rules have been character-
ized as a class of voting rules called ranking scoring rules [5].
The MLE approach has also been pursued for voting in multi-
issue domains [23].

In this paper, we pursue the MLE approach in the context
of voting with partial orders. An illustrative example is as fol-
lows. We have a set of candidates for k ≥ 1 positions (for ex-
ample, Ph.D. applicants), and a committee that evaluates these
candidates. A committee member will generally not give a
linear order of all candidates, being both time-constrained and
not always comfortable comparing a given pair of candidates
(perhaps due to area mismatch). In this context, it is not unrea-
sonable to suppose that some candidates are, in some sense,
truly better than others, but of course there is noise in the pro-
cess. Our goal may be to get an aggregate ranking of all can-
didates, or to designate the top k alternatives.

2 Preliminaries

Let X = {c1, . . . , cm} be a finite set of alternatives (or candi-
dates) and O be a finite set of outcomes. Despite being finite,
the size of X or O is not constrained. In traditional voting
systems, a vote V is a linear order over X , i.e., a transitive,
antisymmetric, and total relation over X . The set of all linear
orders on X is denoted by L(X ). In this paper, we allow a
vote to be a partial order over X , i.e., a transitive and anti-
symmetric relation over X . The set of all partial orders on
X is denoted by PO(X ). For any pair of alternatives c, c′ and
any partial order W , we write c ∼W c′ if c and c′ are not com-
parable in the partial order W . We note that L(X ) ⊆ PO(X ).
An n-voter profile P over L(X ) (respectively, PO(X )) can
be written as P = (V1, . . . , Vn), where Vj ∈ L(X ) (respec-
tively, Vj ∈ PO(X )) for every j ≤ n. The set of all profiles
over L(X ) (respectively, PO(X )) is denoted by FL(X ) (re-
spectively, FPO(X )). In this paper, a (voting) rule r maps any
profile to a subset of outcomes. Two example outcome spaces
are X , the set of all alternatives, and L(X ), the set of all linear
orders.1 A voting rule rPO over profiles of partial orders is an
extension of a voting rule rL over profiles of linear orders, if
for any P ∈ FL(X ), we have rPO(P ) = rL(P ). In this case
rL is called the restriction of rPO on FL(X ). The following
common voting rules over FL(X ) play a role in our paper.
• Positional scoring rules. Here we let O = X . Given a

scoring vector "v = (v1, . . . , vm) of m integers, for any vote
V ∈ L(X ) and any c ∈ X , let PS!v(V, c) = vi, where i is
the rank of c in V . For any profile P = (V1, . . . , Vn), let
PS!v(P, c) =

∑n
j=1 PS!v(Vj , c). The rule will select all alter-

natives c∗ ∈ X so that PS!v(P, c∗) is maximized. One im-

1The former type of mapping is also known as a voting corre-
spondence, and the latter as a preference function. In this paper, we
simply call them voting rules for convenience.

portant positional scoring rule is Borda, for which the scoring
vector is (m − 1, m − 2, . . . , 0).
• Kemeny. Here we let O = L(X ). For any pair of linear

orders V and V ′ and any pair of different alternatives c, c′, let
δc,c′(V, V ′) equal 1 if V and V ′ agree on which of c and c′ is
ranked higher. The Kemeny rule will select all linear orders
V ∗ so that

∑

V ∈P

∑

c $=c′ δc,c′(V, V ∗) is maximized.

For any profile P composed of linear orders, we let
WMG(P ) denote the weighted majority graph of P , defined
as follows. WMG(P ) is a directed graph whose vertices are
the alternatives. For i (= j, let DP (ci, cj) denote the total
number of votes in P where ci ! cj minus the total number
of votes in P where cj ! ci. If DP (ci, cj) > 0, then there
is an edge (ci, cj) with weight wij = DP (ci, cj). Also, for
i < j, if DP (ci, cj) = 0, then there is an edge (ci, cj) with
weight wij = 0.

We say a voting rule r (defined over FL(X )) is based on the
WMG if for any pair of profiles P1, P2 such that WMG(P1) =
WMG(P2), we have r(P1) = r(P2). We say a voting r sat-
isfies non-imposition if for any alternative c and any natural
number n, there exists an n-profile P such that r(P ) = c.
A voting rule r satisfies neutrality if r treats the alternatives
symmetrically. More precisely, for any permutation M over
X and any profile P , we have r(M(P )) = M(r(P )).

Maximum Likelihood Approach to Voting
In the maximum likelihood approach to voting, it is as-

sumed that there is an unobserved correct outcome o+ ∈ O—
for example, a correct ranking V + ∈ L(X ) or a correct win-
ner c+ ∈ X—and each vote V is drawn conditionally in-
dependently given o+, according to a conditional probabil-
ity distribution π(V |o+). The independence structure of the
noise model is illustrated by the Bayesian network in Fig-
ure 1.2

correct outcome

Voter 1 Voter 2 Voter n. . .

Figure 1: The noise model.

Under this independence assumption, the probability of
a profile P = (V1, . . . , Vn) given the correct outcome
o+ is π(P |o+) =

∏n
j=1 π(Vj |o+). Then, the maximum

likelihood estimate of the correct winner is MLEπ(P ) =
arg maxo∈O π(P |o). MLEπ is set-valued, as there may be
several outcomes o∗ that maximize π(P |o∗). In this paper,
we require all the conditional probabilities to be strictly posi-
tive, for technical reasons.

Under the model where outcomes are rankings, it has
been shown that a neutral voting rule is an MLE for some
noise model if and only if it is a neutral ranking scoring
rule [5]. More generally, we define an outcome scoring
rule rs∗ to be a voting rule defined by a scoring function
s∗ : L(X ) × O → R, as follows: for any profile P ,

2The use of this independence structure is standard. Moreover,
if conditional independence among votes is not required, then any
voting rule can be represented by an MLE for some noise model [6],
which trivializes the question.



rs∗(P ) = arg maxo∈O

∑

V ∈P s∗(V, o). If O = L(X ), we
obtain ranking scoring rules, and if O = X , we obtain candi-
date scoring rules. An outcome scoring rule is weakly neutral
if for any pair of outcomes o and o′, there exists a permutation
M over X such that for any linear order V ∈ L(X ), we have
s∗(V, o) = s∗(M(V ), o′).

3 MLEs and Pairwise Scoring Rules

We now move on to the contributions of this paper. We recall
that the objective of this paper is to study noise models and
the associated MLE voting rules for voting with partial orders.
Ideally, in the special case where the profiles consist of linear
orders, the MLE of such a noise model coincides with a com-
monly used voting rule. We will mainly study three types of
outcome space: (1) an outcome is an alternative (O = X ); (2)
an outcome is a linear order (O = L(X )); and (3) an outcome
is a subset of k alternatives (O = {S ⊆ X : |S| = k}).

The model that we are about to introduce is similar to
Condorcet’s noise model, but it is much more general, in
terms of both the input profiles and the outcome space. For
any outcome o ∈ O and any pair of alternatives ci, cj , let
π(ci ! cj|o) denote the probability that ci ! cj in a vote
given correct outcome o, and let π(ci ∼ cj |o) denote the prob-
ability that ci and cj are incomparable given correct outcome
o. We have π(ci ! cj |o) + π(cj ! ci|o) + π(ci ∼ cj |o) = 1
because these events are disjoint and exhaustive.

We assume that conditional on the correct outcome o ∈ O,
for any voter, all the pairwise comparisons are drawn inde-
pendently according to the conditional probability distribution
π(·|o). That is, for any partial order W over X and any pair
of alternatives ci, cj (i (= j), we define:

π(Wci,cj
|o) =

{

π(ci ! cj |o) if ci !W cj

π(cj ! ci|o) if cj !W ci

π(ci ∼ cj |o) if ci ∼W cj

Then, for any partial order W over X and any outcome
o ∈ O, we let π(W |o) =

∏

1≤i<j≤m π(Wci,cj
|o) be the

probability of W given correct outcome o. For any profile
P = (W1, . . . , Wn) of partial orders, we obtain that the prob-
ability of this profile given correct outcome o is π(P |o) =
∏n

j=1 π(Wj |o) (using the standard assumption of indepen-

dence across voters). We call such a noise model π a pairwise-
independent model. For any pairwise-independent model π
and any profile P of partial orders, we let MLEπ(P ) =
arg maxo∈O π(P |o). MLEπ is a voting rule defined over pro-
files of partial orders.

We say that a pairwise-independent model is weakly neutral
if for any pair of outcomes o, o′ ∈ O, there exists a permuta-
tion M over X such that for any ci, cj ∈ X , π(ci ! cj|o) =
π(M(ci) ! M(cj)|o′).

Next, we define pairwise scoring rules, which are voting
rules defined by pairwise scoring functions. We introduce
pairwise scoring rules mainly because they are defined in a
similar way as ranking/candidate scoring rules [5], and the re-
lationship between pairwise scoring rules and MLEs of pair-
wise independence models is similar to the relationship be-
tween ranking/candidate scoring rules and MLEs in the linear-
orders setting.

Definition 1 A pairwise scoring function is a function s :
X × X × O → R, where for any c ∈ X and any o ∈ O,
s(c, c, o) = 0. We overload s as follows. For any par-
tial order W ∈ PO(X ) and any outcome o ∈ O, we let
s(W, o) =

∑

(ci,cj)∈W s(ci, cj , o). For any profile P =

(W1, . . . , Wn) of partial orders over X and any outcome
o ∈ O, we let s(P, o) =

∑n
j=1 s(Wj , o). The pairwise

scoring rule rs over profiles of partial orders is defined by
rs(P ) = arg maxo∈O s(P, o).

For notational convenience, we write s(c ! c′, o) instead
of s(c, c′, o).

Definition 2 A pairwise scoring function s is weakly neutral
if for any pair of outcomes o, o′ ∈ O, there exists a permuta-
tion M over X such that for any ci, cj ∈ X , s(ci ! cj , o) =
s(M(ci) ! M(cj), o′).

Theorem 1 A voting rule is a pairwise scoring rule with a
weakly neutral pairwise scoring function if and only if it is
the MLE of a weakly neutral pairwise-independent model.
Proof: For any weakly neutral pairwise-independent model
π, we define a pairwise scoring function s as follows. For
any o ∈ O and any pair of different alternatives (ci, cj),
we let s(ci ! cj , o) = log π(ci ! cj|o) − log π(ci ∼
cj |o). It follows that for any partial order W , s(W, o) =
∑

(ci,cj)∈W log π(ci ! cj |o) −
∑

(ci,cj)∈W log π(ci ∼
cj |o) =

∑

i<j log π(Wci,cj
|o) −

∑

i<j log π(ci ∼ cj |o) =
log π(W |o) −

∑

i<j log π(ci ∼ cj |o). Because π is

weakly neutral, for any pair of outcomes o, o′ ∈ O,
∑

i<j log π(ci ∼ cj|o) =
∑

i<j log π(ci ∼ cj |o′). Hence,

arg maxo∈O π(P |o) = argmaxo∈O

∑

j log π(Wj |o) =
arg maxo∈O

∑

j s(Wj , o) = arg maxo∈O s(P, o). Therefore,

rs is equivalent to MLEπ. It is easy to verify that s is weakly
neutral (using the weak neutrality of π).

Conversely, let rs be a pairwise scoring rule, where s is
weakly neutral. Let O = {o1, . . . , ot}. For any 2 ≤ h ≤ t, let
Mh denote the permutation over X such that for any pair of
different alternatives ci, cj , s(ci ! cj , o1) = s(Mh(ci) !
Mh(cj), oh). For any alternative c, let M1(c) = c. For
any i < j ≤ m, we let bi,j be a constant such that

2s(ci&cj ,o)+bi,j + 2s(cj&ci,o)+bi,j + 2bi,j = 1. The existence
of such a bi,j is guaranteed by the intermediate value theorem
(when bi,j = ∞, the left-hand side is ∞ > 1, and when bi,j =
−∞, the left-hand side is 0 < 1). Now, we define a pairwise-
independent model π as follows: for any h ≤ t and any i <
j, π(Mh(ci) ! Mh(cj)|oh) = 2s(Mh(ci)&Mh(cj),oh)+bi,j ,

π(Mh(cj) ! Mh(ci)|oh) = 2s(Mh(cj)&Mh(ci),oh)+bi,j , and

π(Mh(ci) ∼ Mh(cj)|oh) = 2bi,j . Because s is weakly
neutral, it follows that π is weakly neutral. We note that
for any oh ∈ O and any partial order W , log π(W |oh) =
∑

i<j log π(Wci,cj
|o) = s(W, o) +

∑

i<j bi,j , implying that
MLEπ = rs. !

We now give some examples of pairwise scoring rules with
weakly neutral scoring functions. The first family of pairwise
scoring rules consists of extensions of Borda, and the second
family consists of extensions of Kemeny.

Proposition 1 (Borda extensions) Let O = X and fix some
a and b, with a > b and a ≥ 0 ≥ b. For any c ∈ O and



any pair of alternatives ci, cj (i (= j), we define the weakly
neutral pairwise scoring function as follows.

s(ci ! cj , c) =

{

a if c = ci

b if c = cj

0 otherwise
For any profile P of linear orders, rs(P ) = Borda(P ).

Proposition 2 (Kemeny extensions) Let O = L(X ) and fix
some a and b, with a > b and a ≥ 0 ≥ b. For any l ∈ O and
any pair of alternatives ci, cj (i (= j), we define the weakly
neutral pairwise scoring function as follows.

s(ci ! cj , l) =

{

a if ci !l cj

b if cj !l ci

0 otherwise
For any profile P of linear orders, rs(P ) = Kemeny(P ).

While the various Borda extensions are indeed different
from each other—for example, a candidate that is compared to
others very often benefits if |a| > |b|—the Kemeny extensions
in fact all correspond to the same rule. This is because the sum
of the number of a’s and the number of b’s that l ∈ L(X ) re-
ceives does not depend on l: it is equal to the total number of
pairwise comparisons made by voters.

4 Properties of Pairwise Scoring Rules

In this section, we study some basic properties of pairwise
scoring rules. A voting rule is anonymous if it treats the vot-
ers symmetrically. A voting rule r is consistent if for any pair
of profiles P1, P2 of partial orders, if r(P1) ∩ r(P2) (= ∅,
then r(P1 ∪ P2) = r(P1) ∩ r(P2). For any profile P of par-
tial orders, we define the generalized weighted majority graph
(GWMG), denoted by GWMG(P ), as follows. GWMG(P )
is a directed graph whose vertices are the alternatives, and
for each ordered pair of different alternatives ci, cj , there is
an edge ci → cj whose weight wi,j is the proportion of
agents voting ci ! cj in P . That is, wi,j = |{W ∈ P :
ci !W cj}|/|P |. We say a voting rule r defined over pro-
files of partial orders is based on the GWMG if for any pair
of profiles P1, P2 of partial orders such that |P1| = |P2|
and GWMG(P1) = GWMG(P2), we have r(P1) = r(P2).
GWMG-based voting rules over profiles of linear orders are
defined similarly by requiring that both P1 and P2 are pro-
files of linear orders in the above definition. We note that any
WMG-based voting rule (defined over profiles over linear or-
ders) is GWMG-based. The following is straightforward to
verify:

Proposition 3 Any pairwise scoring rule rs satisfies
anonymity and consistency, and is based on GWMG.

The next proposition characterizes all pairwise scoring
rules that, when we consider their restriction on profiles of
linear orders, are based on the WMG.

Proposition 4 For any pairwise scoring rule rs, its restric-
tion on profiles of linear orders is based on the WMG if
and only if for any o1, o2 ∈ O,

∑

i$=j s(ci ! cj , o1) =
∑

i$=j s(ci ! cj , o2).

When the set of outcomes is the set of all alternatives, the
next theorem characterizes all pairwise scoring rules whose
restriction on profiles of linear orders is neutral.

Theorem 2 Let O = X . For any pairwise scoring rule rs, its
restriction r′s on profiles of linear orders satisfies neutrality if
and only if r′s is Borda.

Proof: By Proposition 3, rs satisfies anonymity and consis-
tency. Therefore, r′s also satisfies anonymity and consistency.
By Young’s axiomatic characterization of positional scoring
rules [25], a voting rule with O = X satisfies continuity
(which is satisfied by all pairwise scoring rules), anonymity,
neutrality, and consistency if and only if it is a positional
scoring rule. Therefore, r′s is a positional scoring rule. Let
(v1, . . . , vm) denote the scoring vector. It suffices to prove
that for any 2 ≤ i′ ≤ m− 1, v1 − v2 = vi′ − vi′+1 (it should
be noted that shifting the Borda score vector by a constant
does not change the rule).

For the sake of contradiction, suppose that 2 ≤ i′ ≤ m is
such that v1−v2 (= vi′−vi′+1. We next derive a contradiction
for the case where v1 − v2 > vi′ − vi′+1; the case where v1 −
v2 < vi′ − vi′+1 can be handled similarly. Let Mm−2 denote
the cyclic permutation among {c3, . . . , cm}. That is, Mm−2 :
c3 → c4 → · · · → cm → c3. For any permutation M and
any natural number k, we let Mk denote the permutation such
that Mk(x) = M(Mk−1(x)) (where M1 = M ). Let M2 de-
note the cyclic permutation among {c1, c2}. Let V = [c1 !
c2 ! · · · ! cm]. We define a profile P1 as follows. P1 =
(V, M2(V ), Mm−2(V ), Mm−2(M2(V )), . . . , Mm−3

m−2 (V ),

Mm−3
m−2 (M2(V ))). It follows that for any c ∈ X \ {c1, c2},

PS(P1, c1) = PS(P1, c2) > PS(P1, c), which means that
r′s(P1) = {c1, c2} and s(P1, c1) = s(P1, c2) > s(P1, c).

Let V ′ be an arbitrary linear order where c1 is ranked in
the i′th position and c2 is ranked in the (i′ + 1)th position.
Let P2 = (V, M2(V ), V ′, M2(V ′)). We have PS(P2, c1) =
PS(P2, c2). Hence, there exists a natural number k such
that r′s(kP1 ∪ P2) = {c1, c2}, where kP1 represents a pro-
file that is composed of k copies of the votes in P1. Let
P ′

2 = (V, V, M2(V ′), M2(V ′)). Because v1 − v2 > vi′ −
vi′+1, PS(kP1 ∪ P ′

2, c1) > PS(kP1 ∪ P2, c1) = PS(kP1 ∪
P2, c2) > PS(kP1 ∪ P ′

2, c2). Moreover, for any alternative
c ∈ X \ {c1, c2}, we have PS(kP1 ∪ P ′

2, c1) > PS(kP1 ∪
P2, c1) > PS(kP1 ∪ P2, c) = PS(kP1 ∪ P ′

2, c). Hence,
r′s(kP1 ∪ P ′

2) = {c1}. However, because GWMG(kP1 ∪
P ′

2) = GWMG(kP1∪P2) and rs is based on GWMG (Propo-
sition 3), r′s(kP1∪P ′

2) = r′s(kP1∪P2), which is a contradic-
tion. !

We recall that Borda can indeed be represented as a pair-
wise scoring rule with a weakly neutral pairwise scoring func-
tion (Proposition 1), which means that it can be naturally ex-
tended to profiles of partial orders by our MLE approach.
On the other hand, Theorem 2 suggests that, when O = X ,
no other neutral voting rules can be extended to profiles of
partial orders by our MLE approach. (In Section 5, we will
see an example where O (= X .) We note that there is other
work on desirable and axiomatizing properties of Borda [10;
24].

We now investigate the relationship between pairwise scor-
ing rules and outcome scoring rules (incl. ranking/candidate
scoring rules).

Proposition 5 For any pairwise scoring rule rs, there exists
a GWMG-based outcome scoring rule rs∗ such that for any



profile P of linear orders, rs(P ) = rs∗(P ). Moreover, if s is
weakly neutral, then s∗ is also weakly neutral.

The next theorem states that any WMG-based outcome
scoring rule rs∗ can be extended to a pairwise scoring rule
rs. This is more difficult to prove.

Theorem 3 For any WMG-based outcome scoring rule rs∗

that satisfies non-imposition, there exists a pairwise scoring
rule rs that is an extension of rs∗ . Moreover, if s∗ is weakly
neutral, then s is also weakly neutral.

Proof: Let O = {o1, . . . , ot}. For any linear order V ,
we let f(V ) = (0, s∗(V, o2) − s∗(V, o1), . . . , s∗(V, ot) −
s∗(V, o1)). For any profile P of linear orders, we let f(P ) =
∑

V ∈P f(V ). We first show the following claim whose proof
is omitted.

Claim 1 For any profile P of linear orders, if the weight of

every edge in WMG(P ) is zero, then f(P ) = "0.

Next, for any pair of alternatives ci, cj (i (= j), we define
the following two votes.

Vi,j = ci ! cj ! X \ {ci, cj}
V ′

i,j = rev(X \ {ci, cj}) ! ci ! cj

Here the alternatives in X \ {ci, cj} are ranked in an ar-
bitrary way, and in rev(X \ {ci, cj}), the alternatives in
X \ {ci, cj} are ranked in the reversed order. Let M−{i,j}

denote the set of all permutations over X \ {ci, cj}. We note
that |M−{i,j}| = (m − 2)!. Let Pi,j = {M(Vi,j), M(V ′

i,j) :
M ∈ M−{i,j}}.

Next, we prove that for any linear order V , f(V ) =
∑

ci&V cj
f(Pi,j)/(2(m − 2)!). Let P1 =

⋃

ci&V cj
Pi,j . Let

P2 = rev(P1). We note that the WMG of 2(m − 2)!V is
the same as the WMG of P1, and the weight of each edge
in the WMG of P1 ∪ P2 is 0. Using Claim 1, we ob-

tain f(P1 ∪ P2) = f(P1) + f(P2) = "0 and f({2(m −
2)!V } ∪ P2) = 2(m − 2)!f(V ) + f(P2) = "0. Therefore,
f(P1) = 2(m − 2)!f(V ).

For any h ≤ t, we let s(ci ! cj , oh) = s∗(Pi,j , oh).
It follows that f(V ) =

∑

ci&V cj
f(Pi,j)/(2(m − 2)!) =

∑

ci&V cj
[(s(ci ! cj , o1), s(ci ! cj , o2), . . . , s(ci !

cj , ot)) − s(ci ! cj , o1) · "1]/(2(m − 2)!) =
[(s(V, o1), s(V, o2), . . . , s(V, ot))−s(V, o1) ·"1]/(2(m−2)!).
Therefore, for any h ≤ t and any linear order V ,
s∗(V, oh) − s∗(V, o1) = (s(V, oh) − s(V, o1))/(2(m − 2)!).
Hence, for any profile P of linear orders and any h1, h2 ≤ t,
s∗(P, oh1

) ≥ s∗(P, oh2
) if and only if s(P, oh1

) ≥ s(P, oh2
).

It follows that rs is an extension of rs∗ .
Suppose s∗ is weakly neutral. Let M1, . . . , Mt

denote the permutations for the pairs of outcomes
(o1, o1), (o1, o2), . . . , (o1, ot), respectively. For any i (= j and
any h ≤ t, Mh(Pi,j) = {Mh(M(Vi,j)), Mh(M(V ′

i,j)) : M ∈
M−{i,j}} = {M ′(VMh(i),Mh(j)), M

′(V ′
Mh(i),Mh(j)) : M ′ ∈

M−{Mh(i),Mh(j)}}= PMh(i),Mh(j). Therefore, s(Mh(ci) !
Mh(cj), oh) = 2(m − 2)!s∗(PMh(i),Mh(j), oh) = 2(m −
2)!s∗(Mh(Pi,j), oh) = 2(m − 2)!s∗(Pi,j , o1) = s(Pi,j , o1),
which means that s is also weakly neutral. !

Putting Proposition 5 and Theorem 3 together, we obtain an
almost complete characterization of the voting rules that can

be extended to pairwise scoring rules. The necessary condi-
tion (Proposition 5) states that it must be an outcome scoring
rule r that is based on the GWMG, and the sufficient condi-
tion (Theorem 3) states that if r is based on the WMG (and
to satisfy non-imposition), then r can be extended to a pair-
wise scoring rule. How to close the gap between the GWMG
condition and the WGM condition is left as an open question.

5 Selecting a Set of k Winning Alternatives

In this section, we propose a pairwise-independent probabil-
ity model πk for the case where the outcome space is com-
posed of all sets of k alternatives (for a given natural number
k). For instance, perhaps our goal is to select k candidates to
admit/hire based on partial orders given by a committee. We
now present the MLE model πk formally. For any k ≤ m, let
Ok = {S ⊆ X : |S| = k} denote the outcome space. The
main idea behind this model is that, given one of the winners
and one of the losers in the correct outcome, a voter is more
likely to rank the former above the latter than vice versa.

Definition 3 Let 0 < p̄, p1, p2 < 1 and (1 − p̄)/2 < p <
1− p̄. For any o ∈ Ok, the conditional probabilities in πk are
defined as follows.

(a) For any pair of alternatives ci, cj such that ci, cj ∈ o,
πk(ci ∼ cj |o) = p1 and πk(ci ! cj|o) = πk(cj ! ci|o) =
(1 − p1)/2.

(b) For any pair of alternatives ci, cj such that ci, cj ∈ X \
o, πk(ci ∼ cj |o) = p2 and πk(ci ! cj |o) = πk(cj ! ci|o) =
(1 − p2)/2.

(c) For any ci ∈ o and cj ∈ X \ o, πk(ci ∼ cj |o) = p̄,
πk(ci ! cj |o) = p, and πk(cj ! ci|o) = 1 − p − p̄.

By Theorem 1, MLEπk
is a pairwise scoring rule rs whose

scoring function is defined as follows. The base of all loga-
rithms is 2.

s(ci ! cj , o) =











log(p/p̄) if ci ∈ o and cj (∈ o
log((1 − p − p̄)/p̄) if cj ∈ o and ci (∈ o
log((1 − p1)/p1) if ci, cj ∈ o
log((1 − p2)/p2) if ci, cj ∈ X \ o

We now define (the decision variant of) the problem of
maximizing the likelihood under πk. In the LIKELIHOOD-
EVALUATION problem (L-EVALUATION for short), we are
given a natural number k, a positive number t, and a profile P
consisting of partial orders; we are asked whether there exists
o ∈ Ok such that πk(P |o) ≥ t.

Theorem 4 The L-EVALUATION problem is NP-complete.

Proof sketch: Given an outcome o and a profile P , it is
straightforward to check that it takes polynomial time to com-
pute πk(P |o). Therefore, L-EVALUATION is in NP. We prove
NP-hardness by a reduction from the decision variant of MAX-
CUT, which is known to be NP-complete [11]. We are given
an undirected graph G = (V , E) and a natural number t′. We
are asked whether there exists a partition of V into two sets,
V1 and V2, such that the number of edges across V1 and V2 is
at least t′.

We construct an instance of L-EVALUATION as follows. Let
V ′ be a set of dummy alternatives with |V ′| = |V|. Let X =
V ∪ V ′ and k = |V|. None of the dummy alternatives will



ever be compared by a voter to another alternative; the point
of these dummy alternatives is merely to make sure that any
partition S1 ∪ S2 = V corresponds to a partition S′

1 ∪ S′
2 =

V ∪ V ′ such that |S′
1| = |S′

2| = |V| = k. In πk, let p1 = p2 =
1/3, p̄ = 1/4, and p = 1/2.

For each undirected edge {ci, cj} ∈ E, we define two
votes: Wi,j , which contains only one pairwise compari-
son, ci ! cj ; and Wj,i, which contains only one pair-
wise comparison, cj ! ci. Let P be the profile that con-
sists of all these votes Wi,j , Wj,i for all {ci, cj} ∈ E. Let
C = (log 1/3)|P |(k(k − 1) + (m − k)(m − k − 1))/2 +
(log 1/4)|P |k(m − k), that is, C =

∑

ci $=cj
log π(ci ∼ cj |o)

for any o ∈ Ok; let t = 2t′+C .
For any o ∈ Ok, let CUT(o) denote the number of edges

in E across o and V \ o. We can show that the likelihood of

o is 2 CUT(o)+C , which is at least t = 2t′+C if and only if
CUT(o) ≥ t′—that is, if and only if (o ∩ V ,V \ o) is a cut of
V whose size is at least t′. !

We can also show that choosing an outcome to maximize
the log-likelihood is APX-hard and MAXSNP-hard, by a
PTAS-reduction and an L-reduction, both from the MAX-CUT

problem. The reductions are similar to the reduction in the
proof of Theorem 4. It is also possible to give a simple inte-
ger program with binary variables for computing outcomes of
MLEπk

. We omit all this due to the space constraint.

6 Future Work

One direction for future research is to use these techniques
in applications. The example from the introduction of com-
mittee members giving partial orders of Ph.D. applicants was
not fictitious: with the help of an integer program solver, we
have already used the extension of the Kemeny rule to par-
tial orders (Proposition 2) to help us rank Ph.D. applicants to
our department. There are also open technical questions. For
example, what is the exact complexity of computing an arbi-
trary winning outcome under MLEπk

? (We conjecture it is
ΘP

2 -complete.) Can we close the gap between the WMG and
GWMG conditions described at the end of Section 4? Do the
voting rules proposed in this paper satisfy other properties for
voting with partial orders [15]? Can we extend other classes
of voting rules to partial orders, for example generalized scor-
ing rules [22] or distance rationalizable models [9]?
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