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A Maximum-Likelihood Estimator for Trial-to-Trial
Variations in Noisy MEG/EEG Data Sets
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Abstract—The standard procedure to determine the brain re-
sponse from a multitrial evoked magnetoencephalography (MEG)
or electroencephalography (EEG) data set is to average the in-
dividual trials of these data, time locked to the stimulus onset.
When the brain responses vary from trial-to-trial this approach
is false. In this paper, a maximum-likelihood estimator is derived
for the case that the recorded data contain amplitude variations.
The estimator accounts for spatially and temporally correlated
background noise that is superimposed on the brain response.

The model is applied to a series of 17 MEG data sets of normal
subjects, obtained during median nerve stimulation. It appears
that the amplitude of late component (30–120 ms) shows a sys-
tematic negative trend indicating a weakening response during
stimulation time. For the early components (20–35 ms) no such a
systematic effect was found. The model is furthermore applied on
a MEG data set consisting of epileptic spikes of constant spatial
distribution but varying polarity. For these data, the advantage
of applying the model is that positive and negative spikes can be
processed with a single model, thereby reducing the number of
degrees of freedom and increasing the signal-to-noise ratio.

Index Terms—Covariance, habituation, maximum-likelihood,
MEG noise.

I. INTRODUCTION

SPONTANEOUS brain activity in magnetoencephalog-
raphy (MEG) and electroencephalography (EEG) signals

is caused by dendritic currents of neurons receiving signals
from connected neurons. Part of this activity, like the alpha
and mu rhythms are enhanced in the absence of visual and
motor input, respectively. When a stimulus is presented to a
subject several parts of the brain that are involved in processing
the stimulus will show increased neuronal activity and will,
therefore, act as the generators of the brain response, which
can be recorded with MEG or EEG. When the same stimulus
is applied repeatedly, the brain response is usually extracted
from the recorded data by a simple averaging technique. The
question is how the averaged response should be interpreted.
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The (most often implicit) assumption underlying response av-
eraging is the “signal plus noise” model

(1)

Here, is the recorded signal at channel , time sample
and trial . Furthermore, is the spatio-temporal pattern of
the brain response, which is assumed to be constant over trials.
Finally, is the background noise, which is assumed to have
a Gaussian distribution and which may be correlated over chan-
nels and samples. It is straightforward to show that the simple
average of the recorded data over trials is the maximum-likeli-
hood (ML) estimator of the constant brain response .

On the other hand, it is known from experiments that the
constant response assumption is false in general. Examples of
trial-to-trial variations in human EEG are habituation effects [1],
[2], P300 effects and event-related synchronization and de-syn-
chronization effects [3], [4]. However, because these effects are
generally small, it is not straightforward to prove that these ef-
fects are really present in the data, and to distinguish them from
the background noise. This problem becomes even more severe
if one realizes that, since the background noise is mainly gen-
erated by spontaneous brain activity, the spatial and temporal
properties of the noise are very similar to those of the brain re-
sponse under study.

In a recent paper [5], Truccolo et al. demonstrate that ne-
glecting trial-to-trial variations results in an estimate of the
background noise of which the variance is nonstationary over
the time interval of interest. However, that paper does not
show how trial-to-trial variations can be estimated from “first
principles.” In [6] and [7], an ML model is formulated yielding
estimators of amplitude and latency jitters of single trials in a
multitrial evoked-potential experiment. A restriction of these
papers is that they are based on the assumption of uncorrelated
background noise, whereas we know that for instance the alpha
rhythm is both correlated in time and over channels (e.g., [8]
and [9]). Furthermore, it should be realized that estimates of
trial-to-trial variations and of background noise are mutually
related because the recorded signals partly belong to the noise,
and partly to the brain response.

In this paper, an ML model is presented to describe and
estimate habituation effects in multichannel multitrial data,
without the restricting assumption of uncorrelated background
noise. This model is applied to a series of standard experiments
wherein the subject was electrically stimulated at the median
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nerve. Since the model is equally well applicable to the si-
multaneous analysis of epileptic spikes of varying polarity, an
example of such data will be discussed in detail.

II. MATERIAL AND METHODS

A. The Model

In the data model it is assumed that the recorded brain
signal consists of a constant spatio-temporal pattern
multiplied with a trial dependent amplitude factor , and
a Gaussian noise part , which is statistically independent
from trial-to-trial

(2)

The spatio-temporal covariance of is modeled as a Kro-
necker product (e.g., [10]) of a spatial covariance matrix

and a temporal covariance matrix . In a formula, the fol-
lowing is assumed for the noise covariance:

(3)

In this model, the unknown parameters are contained in ,
, , and and need to be estimated from the data .

The underlying idea of the ML estimator is to express the
probability density distribution of the noise in terms of the a
priori unknown parameters, and to derive those parameters for
which this probability density reaches its maximum. With the
above assumptions it is found that the probability density func-
tion is

(4)
Here, indicates the trace and indicates the determi-
nant of the matrix within brackets. Furthermore, is the number
of channels, is the number of time samples, and is the
number of trials. Finally, indicates the response matrix, with
elements and indicates the single trial data, with ele-
ments .

The ML estimators of , , , and are found by setting
the corresponding derivatives of (4) equal to zero and solving
the estimators from the resulting equations. Doing so for it is
found that is the weighted average of the single trial data

(5)

and the weights appear to be the elements of the eigen-
vector with the largest eigenvalue of the following system:

(6)

For the spatial and temporal covariances a pair of equations can
be derived in which is expressed in terms of and vice versa

(7)

and

(8)

Note that in (5)–(8), as well as in the sequel, the symbols ,
, , and have been used to indicate the estimators of the

true values. Equations (5)–(8) have to be solved iteratively. First,
and are taken, and then (7) and

(8) are solved in iteration [9]. These first estimates of the covari-
ances are substituted into (6) to obtain an update of , which is
substituted back into (5), etc. In practice, it appears that a few
of these iterations are sufficient to obtain a stable solution.

A few remarks may shed some light on the meaning of these
formulas. First, when the assumption is made that there are no
trial-to-trial variations, , and the best esti-
mate of the brain response reduces to the simple average over
trials. Second, when the noises were white ( , ),
and when is considered as a matrix with a spatio-temporal
index and trial index , it can be understood that the solution
of (6) corresponds to the strongest spatio-temporal pattern that
is present in all trials. The effect of premultiplication and post-
multiplication of the matrices and is a prewhitening
of the recorded data. Finally, the iterative solution of (5)–(8)
demonstrates the mutual influence of the trial-to-trial variability
due to brain response and the trial-to-trial variability due to cor-
related noise.

B. The Data

To nine subjects (normal volunteers recruited from the lab)
an electrical median nerve stimulation was applied, for both left
hand and right hand , or only left hand . The
stimulus intensity was individually adjusted such that a twitch of
the thumb appeared. A regular inter-stimulus interval was used,
which was set at 1 s. MEG data [somatosensory evoked fields
(SEF)] were acquired on a whole head 151-channel system of
CTF, Inc. using a sample rate of 2083 Hz. Offline, bad epochs
and bad channels were marked and removed from the data. The
number of remaining good responses varied between 450 and
570. Data were offset corrected using a prestimulus interval of
100 ms, which is optimal to reduce the alpha rhythm noise [11].
No bandpass filtering was used. For each subject two time in-
tervals were chosen to investigate trial-to-trial variations. The
early window extended from 23 to 37 ms after the stimulus,
the late window extended from 30 to 120 ms. These windows
were chosen based on the distribution of the averaged MEG data
power as a function of time.

The MEG data of a patient with epilepsy was used to illustrate
the applicability of the model for the integrated analysis of mul-
tiple spike data of varying polarity. Simple averaging would re-
sult in a vanishing of the signal. The MEG data were collected in
a period of 1 hr, and stored in six data files of 10 min each. First,
the data were motion-corrected [12] and spikes were marked at
the maximum signal amplitude by an experienced MEG tech-
nician. Then, for each spike marker a symmetric data window
was cut, 110 ms left and 110 ms right of the marker. These spikes
were subject to cluster analysis [13], after which 254 spikes re-
mained having a similar topography, but a varying amplitude
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Fig. 1. Selection of maps is shown corresponding to the markers set by a technician on different spikes. The spatial pattern of these spikes are similar, but the
polarity changes from spike to spike.

and polarity. The field maps of a selection of these spikes are
presented in Fig. 1. One observes that most graphs only show
one polarity, the other one false outside the MEG helmet. This
situation often occurs with MEG spikes, in particular with tem-
poral lobe epilepsy.

III. RESULTS

A. SEF Data

The algorithm presented in Section II usually converged in
8–12 iterations. Here, a quite strict stopping rule was used, im-
plying that relative changes were smaller that . For the late
responses (187 samples) this resulted in a computation time of
about 2 h (Pentium IV, 1 GHz) or more. For the early responses
(29 samples) this time amounted typically 15 min. Fig. 2 shows
four typical examples of the trial-to-trial variations in the (late)
SEF response. In this figure, the trial multiplication factor
is plotted as a function of the stimulus time in s. The vertical
scale is such that 1 implies the traditional constant response
model. In all cases, there are relative fast variations from one
trial to the next and also slower variations on scales between
50 and 200 s. To extract systematic behavior from all data sets,
a straight line was fit to the amplitude data, using the stimulus
times of each trial as coordinate and the as coordinate.
The quality of these line fits, were in all cases comparable to
the examples presented in Fig. 2. In all of the cases presented in
Fig. 2, the slope, or trend, of the line fit was negative, showing
that the responses are weaker at the end of the measurement ses-
sion than at the beginning. The other SEF data sets were treated
similarly and for all data sets the linear trend was computed.

Fig. 3 summarizes the trends of the early and late responses for
all acquired SEF data sets. The numbers on top refer to the sub-
ject. The light blocks correspond to the early components, the
darker ones to the late ones. For each subject (except #4) first the
left and then the right hand side response trends are depicted.
The arrows correspond to the series presented in Fig. 2. From
these data it appears that for the early responses the trend varies
strongly over subjects, whereas for the late responses all trends
are negative or slightly positive at most.

B. Spike Data

Fig. 4 shows the results of the same analysis for the spike data.
Since the spikes originate from different data files, the multipli-
cation factor is now plotted as function of spike occurrence
instead of time. It appears that 60 of the 254 spikes have a neg-
ative polarity with respect to the others. Furthermore, it seems
as if the “negative” spikes have slightly smaller amplitude than
the “positive” ones.

When the spikes are simply averaged, which is done in the
first iteration of the estimation of amplitude modulation factors,
it is predicted by Truccolo et al. [5], that the variance changes in
time with a pattern corresponding to the shape of the averaged
event. This effect is demonstrated in Fig. 5(a). After 9 iterations,
when the algorithm converges, the variance has decreased and
becomes much more constant. Fig. 5(b) and (c) shows that not
only the variance, but the whole covariance matrix becomes
much more stationary. The remaining nonstationarity may be
explained by a small misalignment in the spike markers, which
introduce latency jitters.
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Fig. 2. Trial dependence of the SEF response (between 30 and 120 ms) is
shown for four cases (which are indicated by arrows in Fig. 3). The horizontal
scales run from 0 to 600 s. The vertical scales are in arbitrary units, where a
constant value of 1 would indicate the ideal solution for the simple signal plus
noise model, with no trial-to-trial variations. In all cases, there are relative fast
variations from one trial to the next and also slower variations on scales between
50 and 200 s. Also, all these cases show a negative trend indicating that the
response gets weaker over time.

Fig. 3. Overview of the trends in the SEF responses for different data sets. The
numbers on top correspond to different subjects. For each subject (except #4)
both left and right hand stimulation were performed. The left hand side response
trends are given first, then the right hand stimulation. The early response
windows (20–35 ms) are represented first, the late responses (30–120 ms) as
second collumns. The arrows correspond to the cases, shown in Fig. 2.

Fig. 4. Spike amplitude factors are shown for different epileptic MEG spikes.
It appears that 25% of the spikes have a different polarity than the remaining
75%.

IV. DISCUSSION

This paper presents an ML estimation model to extract trial-
to-trial amplitude variations in brain response and to distinguish
these variations from spatially and temporally correlated back-
ground noise. The application of this model to 17 SEF data
sets shows that single trial SEF data show a systematic weak-
ening of the SEF amplitudes. This negative trend in the re-
sponse can be explained as habituation or nerve fatigue effects.
Obrig et al. [2] recently demonstrated that similar effects are
also present during visual stimulation, both in EEG and near
infra red spectroscopy data. To extract these effects from the
EEG data, the responses were averaged over 15 trials (of .33 s),
and trends were computed over 12 of these subsequent averages.
In all subjects, negative trends were found in the
component from 100 to 135 ms, whereas for the earlier com-
ponent (from 75 to 110 ms) no systematic negative trend was
found. This finding is similar to our results for the SEF data,
although the analysis methods are quite different. Pfeiderer et
al. [14] have found strong habituation effects in group-averaged
auditory fMRI data. Both studies [13], [14], as well as other
studies on habituation contain several implicit assumptions that
are avoided with the ML method presented here. The price to be
paid is the relative long computation time.

The application of the model to spike data can be consid-
ered as a validation of the method, because in these data the
trial-to-trial variations are so strong that they are already vis-
ible in the raw data (Fig. 1). However, the model presented in
this paper can be of practical use in the analysis of multispike
data, when the number of spikes is limited, when they have a
low signal to noise ratio or when they appear in different po-
larities. Such a change in polarity without a change of pattern
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Fig. 5. This figure shows the nonstationarity in the background noise due to the (erroneous) assumption that the amplitude factors are constant, which is used to
initialize the algorithm. (A) Variance which is not constant over time in the first iteration, and a much more constant variance function at the end of the iterations.
This variance function is equal to the diagonal of the temporal covariance matrix T , which is presented as bitmap in (B) (first iteration) and (C) (last iteration). (B)
and (C) Show that not only the main diagonal gets more constant during fitting, but also the sub-diagonals, indicating stationary background noise.

could indicate a small shift of the underlying current dipole from
one gyrus to the next. This is not an uncommon situation with
MEG spikes, as was shown in a recent paper [13]. In that paper,
different spike types were automatically grouped by computing
their mutual Euclidean signal distances and applying a clus-
tering algorithm. When in that algorithm instead of Euclidean
distances, a negative correlation measure would be used, spikes
with the same spatial pattern but different polarity would show
up in the same cluster, thereby increasing the number of events
per cluster. Applying this alternative distance measure, in com-
bination with the current model, would increase the signal to
noise ratio, compared to the case of subgroup averaged spikes.

In [11], the same SEF data sets were used to study the
stationarity of the background noise. It was concluded that,
when accounting for nonstationarities caused by the baseline
correction interval, the temporal covariance matrix of the back-
ground noise can be explained for 99% or more by a stationary
noise model. Nevertheless, the present study shows that there
are weak trial-to-trial variations in the data sets. It is apparently
so that the amount of trial-to-trial variations should exceed a
certain threshold in order to become visible in the temporal
covariance of the background noise, as is the case with the
spike data set.

The central idea behind our method is to consider the deter-
mination of brain responses as a parameter estimation problem,
wherein a mathematical model is postulated to describe single
trial data. Therefore, it is, at least in principle, straightforward
to extend our model to physiologically more advanced models,
such as suggested in e.g., [15] and [16]. However, one should
also realize that when for instance simple latency jitters are in-
cluded into the model, this would imply the addition of 300 to
1000 nonlinear parameters (one for each trial), which raises the
question whether the likelihood function has multiple maxima.
In our model, which is also a nonlinear model, the nonlinear am-
plitude parameters can be solved simultaneously, by solving an
eigenvalue problem. Another aspect of more advanced models
is that an increase of the number of parameters is accompanied

with, on the one hand, an improvement of the goodness of fit,
and on the other hand, a larger variance in the estimated param-
eters. We argue that the ML framework is very well suited to
address these questions objectively. However, to perform these
ideas in practice, a nonconventional amount of computer power
has to be put in action. For that purpose a network of parallel
computers could be used. It is our intention to proceed along
these lines in the nearby future.
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