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Abstract: This paper presents a conditional mixture, maximum likelihood metho- 
dology for performing clusterwise linear regression. This new methodology simul- 
taneously estimates separate regression functions and membership in K clusters or 
groups. A review of related procedures is discussed with an associated critique. 
The conditional mixture, maximum likelihood methodology is introduced together 
with the E-M algorithm utilized for parameter estimation. A Monte Carlo analysis 
is performed via a fractional factorial design to examine the performance of the 
procedure. Next, a marketing application is presented concerning the evaluations 
of trade show performance by senior marketing executives. Finally, other potential 
applications and directions for future research are identified. 
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1. Introduction 

Ordinary least-squares (OLS), or multiple regression, has been fie- 
quently utilized in social science research to summarize the relationship 
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between a predesignated set of independent variables and a single dependent 

variable. Let: 

i = 1 ..... . /subjects or observations; 

j = 1 ..... . / independent  variables; 

Yi = the value of  the dependent variable for 

subject/observation i; 

Xij = the value of the j- th independent variable 

for subject/observation i; 

bj = the j - th  OLS regression coefficient; 

ei = error for subject/observation i. 

Then, the standard OLS linear regression model can be expressed as: 

J 

Yi = ~., Xij  bj + ei (1) 
j = l  

o r  

y = Xb + e ,  (2) 

where y = ((Yi)), X = ((Xij)), b = ( (b j ) ) ,  a n d  e = ((ei)) .  G i v e n  a n  independent 

sample of  subjects/observations for y and X, one is typically interested in 

estimating by in order to minimize the following error sums of  squares: 

Min  Z = Yi - ~.~ Xijbj  
b~ i=1 y=I 

= E e2 • (3)  

i=1 

Johnston (1984) and others have derived the well known analytical expres- 

sion for  estimating b that minimizes (3): 

fi = (X'X) -1X'y . (4) 

Maddala (1976) and others that show if the assumption is made that the ran- 

dom vector e is multivariate normally distributed, then the likelihood function 

can be written (assuming E(ee ')  = o'2I, where I is an identity matrix) as: 

L(y I b,o~) = (2~:o~) exp [-  (Y- Xb)'(Y- Xb) ] 
2~ 

(5) 



A Maximum Likelihood Methodology 251 

TABLE i 

Synthetic Regression Data 

! xl x2 z 

1 I -3 -5 

2 i -2 -3 

3 1 - i  -1  

4 1 0 i 

5 I i 3 

6 1 2 5 

7 1 3 7 

8 1 -3 5 

9 1 - 2  3 

10 1 -1  1 

11 1 0 - i  

12 1 i -3  

13 i 2 -5 

14 i 3 -7 

GROUP 1 

Yi = 2X2i+i 

GROUP 2 

Yi = -2X2i-1 

and the corresponding maximum likelihood estimates for b that maximize the 

likelihood function in (5) are equivalent to those obtained from least squares 

estimation (i.e., in expression (4)). 

There are many applications that arise in the social and physical sci- 

ences, however, where the estimation of  a single set of  regression coefficients 

may prove to be "misleading." Consider, for example, the small illustrative, 

synthetic data set provided in Table 1, with J = 2 and I = 14. If one were to 

estimate one regression function for all 14 subjects/observations, the resulting 

estimated linear function would be: 

^ 

Yi = OX2i + O,  (6) 

which naturally renders a n  R 2 = 0, a very poor summary of  the structure of  

the data displayed in Table 1. As seen in Table 1, i f  one were initially to clus- 

ter the observations/subjects into two groups, where group one was comprised 

o f  observations/subjects 1-7 and group two contained observations/subjects 
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8-14, and estimate two separate duster regression functions, then the func- 

tions would be: 

Group 1: Yi = 2X2i  + 1 i = 1 . . . . .  7 

Group 2: Yi = - 2 X 2 i -  1 i = 8 . . . . .  14, (7) 

with a combined R 2 = 1.00 indicating a perfect fit. Thus, the single estimated 

regression function in (6) "misrepresents" or "masks" the true structure 

present in the data. While one could legitimately argue for first plotting the 

data prior to estimation to check for such structure, such graphical displays 

cannot easily detect such "clusterings" as the dimensionality of the problem 

(J) increases. In addition, in many types of response surface estimation appli- 

cations via experimental designs involving replications within subjects (e.g., 

conjoint analysis studies in marketing), the independent variable set often 

remains constant from subject to subject making such graphical detection 

extremely difficult. 

This paper presents a new methodology for simultaneously estimating 

clusters and corresponding separate cluster regression functions given X and 

y from a sample of independent observations/subjects. We utilize finite con- 

ditional normal mixture distributions in a maximum likelihood context to esti- 

mate these parameters. We first review existing procedures that attempt to 

derive such simultaneous estimates. Next, the new methodology is presented 

together with the technical details of the E-M algorithm utilized for estima- 

tion. A Monte Carlo analysis is presented to examine the performance of this 

new methodology as a number of data and program options are experimen- 

tally manipulated. A marketing application is presented to examine the 

different evaluative criteria various senior managers utilize to evaluate the 

performance of their participation in trade shows. Finally, other applications 

as well as directions for future research are provided. 

2. Literature Review 

Much of the related psychometric and classification literature concerns 

attempts to rescale simultaneously the input variables and to solve for some 

clustering, all to optimize-(.~common objective function. For example, 

DeSarbo, Carroll, Clark, and Green (1984) have devised the SYNCLUS 

methodology which simultaneously solves for a partitioning and a set of res- 

caling constants for the variables, all to optimize one common objective func- 
tion. DeSarbo and Mahajan (1984) generalize this SYNCLUS methodology 
to accommodate constraints, different types of clustering schemes, and a gen- 

eral linear transformation of the variables. De Soete, DeSarbo, and Carroll 
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(1985) have extended these concepts to an optimal variable weighting 

scheme for hierarchical clustering where both variable weights and 

ultrametric trees are simultaneously estimated• Note, however, that none of 
these approaches are appropriate for a clusterwise regression context with 

dependent and independent variables. 
The term "clusterwise regression" was originally coined by Sp~th 

(1979, 1981, 1982, 1985). Sp~th developed an exchange algorithm to form a 

partition of length K and corresponding sets of parameters bk such that the 
sum of the error sums of squares computed over all clusters is minimized: 

K 
Min Z = ~ II Xkbk-yk II 2 (8) 

k=l 

Here, to guarantee the existence of a solution bk, it is required that the rank 
X k = J. A necessary condition for this is lk > J which implies I >_ K J, where 

lk is the number of observations/subjects in cluster k. Sp~th's methodology 

simultaneously solves for the optimal feasible partition Q(K,Ik) and regres- 

sion weights per cluster bk that (locally) minimize expression (8). For the L2 

norm in expression (8), Sp~th (1982, 1985) has developed up and down- 
dating formulae for the solution of these regression problems when an indivi- 

dual observation is added or removed utilizing QR-decompositions. His 

stepwise-optimal method works sequentially on the observations and is con- 

ceptually similar to K-means (MacQueen 1967). The original procedure can 
be summarized as follows: 

1. Choose some initial partition Q1 . . . . .  OK such that I Qkl >J,  and 
some starting observation; 

2. Set t = t + l  and reset t = l  if t > L  For i e  Qj and 

I Qjl > l*k(l*k > J), examine whether there are clusters Qk with k ;~j 

such that shifting observation i from Qj to Qk reduces the objective 

function (expression (8))• If so, then choose Qk such that the reduc- 
tion becomes maximal and redefine Qj = Qj - {i}, Qk = Qk + {i}. 

Otherwise return to step 2. 

3• Repeat step 2 as long as you get any reduction in the objective func- 

tion; otherwise, stop. 

One selects a solution with K* clusters by choosing the solution with 
minimum value of Z in expression (8). According to Sp~ith (1982), the final 

solution depends on the initial partition, on the starting observation, and on 

the choice of I~,, a minimum number of observations in each cluster• Because 
of problems with locally optimal solutions, Sp~th (1982) recommends run- 
ning multiple analyses for a prespecitied K, altering the initial starting parti- 
tion and I~. 
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The primary goal of  this research is to extend the concept of cluster- 

wise regression to a stochastic context allowing for the possibility of fuzzy 

clusters, as well as mutually exclusive partitions. Given the documented 

problems with locally optimum solutions in Sp~ith's (1985) deterministic pro- 

cedure, we will devise a methodology that is hopefully less prone to such 

problems. In addition, we attempt to provide an AIC basis for selecting the 

most appropriate K*. 

3. Methodology 

3.1. The Model 

In addition to the notation developed prior to equation (1), let: 

k = 1 ......... K clusters; 

bj, = the value of the j-th regression coefficient 

for the k-th cluster; 

ok z = the variance term for the k-th cluster. 

We assume Yi is distributed as a finite sum or mixture of conditional univari- 

ate normal densities: 

K 

Yi - E ~,k fik (Yi I Xij, 0 2, big) (9) 
k=l  

K [--(yi--Xibk) 2 ] 
= k=lZ ~.k (2u(~z) -1/2 exp [ ~ , (10) 

where X i = ((Xj))i and bk = ((bj))k. That is, we assume an independent sam- 

ple of subjects'/observations' dependent variable Yl,Y2 . . . . .  Yl drawn ran- 

domly from a mixture of conditional normal densities of underlying groups or 

clusters in unknown proportions ~,1,~ . . . . .  ~,K. Mixtures of univariate 

unconditional normal distributions have been the focus of many statisticians 

dating back to the seminal work by Pearson (1894) who derived estimators of 

the parameters of  a mixture of two univariate normal distributors by equating 

sample moments to corresponding populations or theoretical moments involv- 

ing the solution of a ninth degree polynomial equation. Charlier and Wicksell 

(1924) and Cohen (1967) simplified these computations considerably using 

method of moments estimators. Hasselblad (1966) was one of the first statis- 

ticians to formulate a maximum likelihood estimation scheme for mixture of 

two or more univariate normals. 

Note that our mixture model is conceptually similar to the uncondi- 

tional mixture approaches to pattern clustering originally proposed by Cooper 
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(1964), Wolfe (1965, 1967, 1970), and Day (1969), where Xibt, in expression 

(12) replaces the population mean/centroid lXk (see also Ganesalingam and 
McLachlan 1981; McLachlan 1982; Sclove 1977; Symons 1981; Scott and 
Symons 1971; Marriott 1975; Hartigan 1975, pp. 113-124; and Basford and 

McLachlan 1985). In fact, expressions (9) and (10) generalize the Quandt 
(1972), Hosmer (1974), and Quandt and Ramsey (1978) stochastic switching 

regression models to more then two "regimes" (see also Veaux 1986). In 
addition, the estimation algorithm employed here differs from typical method 

of moments and moment generating function estimation approaches. 
Given a sample of I independent subjects/observations, one can thus 

form a likelihood expression: 

or 

L = H ]~ ~,k (2~c2) -'/2 exp , ~ (11) 
i=l k=l 

In L = ~ In ~ ~,k (2rcc2) -I/2 exp 
i=1 k=l 

--(Yi- Xibk)2 ]] 
2o2 

(12) 

Given K, y, and X, one wishes to estimate ~,k, a 2, and bjk in order to maxim- 

ize L or In L, where 

0 < ~.k < 1, (13) 

K 
]~ ~,k = 1, (14) 
k=l 

c~ > 0.  (15) 

It is interesting to note several properties of this formulation. First, unlike 

finite mixtures of other types of density functions, the parameters of finite 

mixtures of normal densities are identified (see Yakowitz I970; Yakowitz and 

Spragins 1968; and Teicher 1961, 1963). Second, there exist no sufficient 
estimators for the parameters of a normal mixture (Dynkin 1961). Third, 

unless (15) is imposed, consistent estimators are not possible given that the 
likelihood function is unbounded when c2k = 0. Finally, note that once esti- 

mates of Lk, c 2 and bjk are obtained, one can assign each observation i to 

each cluster k (using Bayes nile) via the estimated posterior probability: 
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^ ^ 2 ^  

~,k fik (Yi I Xi/,c~:,b#) (16) 
--ik = K ^ 

^ 2  ^ 
~.~ ~glcfii (Yi I Xij,t~k,b#) 

k = l  

This result renders a " fuzzy"  clustering of the I subjects/observations. One 

could form partitions by applying the rule: 

Assign i to k iffpik > Pit for all l *: k = l,..K. 

3.2. The Algorithm 

The maximum likelihood estimates of Xk, bk, <~2 and P/k are found by 

initially forming an augmented log likelihood function to reflect the ~,k con- 

straints in expression (14): 

] e~ = E In ~,kfik (Yi I Xij,tJ~,b#) - Ix(E ~,k - 1). (17) 
i = l  k= l  k 

The resulting maximum likelihood stationary equations are obtained by 

equating the first order partial derivatives of the augmented log likelihood 

function in (17) to zero: 

~ .  I 1 
-}, 

k 

~(I) I 1 O3~k( * ) 
- ~ Lk - 0 (19) 

k 

2 .  t 1 ~ f ~ ( * )  
- Z Z ~ , k f i k ( .  ) ~,k Ob# - 0 ,  (20) 

O b j k  i=1 

k 

3~k( * ) - Ix = 0 (18) 

where Ak( * ) is used for3~k(yi i 2 Xij,t~k,b#). To estimate Ix, we multiply both 

sides of equation (18) by ~,k and then sum both sides over k: 

E EXkfik(*)-IXEXk =Ok 

o r  
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[2 = I .  (21) 

To estimate ~,k, we multiply both sides of equation (18) by ~,k and simplify: 

o r  

and 

I ~kC~k(* ) 
,7__, Xk IX = 0 (22 )  
i=l ~ Xkf/~(* ) 

I 

/3ik - ~,kl = 0,  
i=1 

I 

P i k  

~k 
- i = l  

I 

(23) 

(24)  

In order to estimate (~k 2 and b#,  we use the definition of/3/k in (16) and re- 

express (19) and (20) as: 

3 • t 3 log f/k( * ) 
3 a~ - i=IE ~;ik 3 ~  - o (25) 

3 cb t 3 log f/~( * ) 
- 2~ Pik 3 bjk - O. (26) 

3bjk i=1 

Thus, the maximum likelihood equations for estimating the parameters c~k 2 

and bik are weighted averages of the maximum likelihood equations 
3 Iog3~k( * ) 

- 0, where 0 reflects the parameter of interest, arising from 
3 0  

each component separately and the weights are the posterior probabilities of 
membership of the subjects/observations in each cluster. This particular 

structure gainfully lends itself to the development of a two stage E-M algo- 

rithm (Dempster, Laird, and Rubin 1977) for the estimation of these parame- 

ters (see Hosmer 1974; Veaux 1986). In the E-stage, one estimates ~,k and P/k 
via expression (16) and (24). In the M-stage, one estimates bjk and c~k 2 via K 

weighted least squares regressions. In order to show this M-stage, we expand 
(25) and (26): 
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~ ! 1 . ~k(2  ~. ) - - - K O " , - _ I / 2  × 

i=I  

[ - (yi - Xibk)212(Yi - Xibk)Xi 
exp 2o~ " 2o~ 

I 

= ~_, Pik (Yi - Xibk)Xi = O, 
i=l 

=0  

(27) 

which are identical to the stationary equations derived by solving the 
,, 1/2 

weighted least squares problem where y and X are each weighted by Pik. 
Thus, the entire set of bk is derived by performing K separate weighted least- 
squares analyses. Once this is done, the estimates o f o  2 follow: 

~ ¢ p I l [ ~ , k e x p [ . - ( Y i - X i b k ) Z ( _ l / 2 ( 2 r c 0 2 ) - 3 / 2 2 x  ) 
202 - E Z~4d~k( * ) 202 

i=1 k 

+~,k(21CO2)-l/2exp[--(yi--Xibk)2] 1]2(Yi--Xibk) 2 
202 0~ =0  

I [--~alk2 (Yi - X/b~:)2 
= ]~/3ik + = O. (28) 

i =1 204 

Multiplying both sides of (28) by 2o k and simplifying, one obtains: 

1 

~a Pik(Yi -- X i b k )  2 

,,2 i=1 
ck = / (29) 

^ 

Z 
i=1 

,,2 
Thus, ck can be obtained during the K weighted least-squares procedt~res for 

estimating bk. Note, because (17) becomes unbounded as c 2 ---> 0, ok is set 

to a default small positive value (.01) if it becomes small during these itera- 
tions. 

Thus, the computation of the maximum likelihood estimates is facili- 
tated by the use of this E-M algorithm. For given starting values of the 
parameters, the expectation (E phase) and maximization (M phase) steps of 
this algorithm are alternated until convergence of a sequence of log likeli- 
hood values is obtained. Dempster, Laird, and Rubin (1977) prove that: 
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> (30) 

where m is the iteration counter, indicating that the E-M algorithm provides 

monotone increasing values of the objective function. Given the constraint 

c 2 > .01, one can show that • is bounded from above and convergence to at 

least a local maximum can be established (cf. Titterington, Smith, and Makov 

1985). While several authors (e.g., Everitt and Hand 1981 and Redner and 

Walker 1984) have documented the potentially slow convergence rate of E-M 

procedures for estimating the parameters of unconditional mixture distribu- 

tions, we find that our E-M procedure typically converges in 100 or less itera- 

tions. Moreover, the iterations are processed much faster than if a gradient 

based procedure had been used. Acceleration procedures discussed by Peters 

and Walker (1978), Wilson and Sargent (1979), and Louis (1982) are 

currently being investigated. We provide a Monte Carlo analysis in the next 

major section to investigate the performance of this E-M algorithm in a rea- 

sonably rigorous manner. 

Our approach to identify the appropriate number of clusters K* in such 

mixture clustering procedures (cf. ScIove 1977) involves the use of the 

Akaike Information Criteria (Akaike 1974) which is defined as: 

AIC(K) = - 2 In[max L(K)] + 2n(K), (31) 

where n(K) is the effective number of parameters estimated in a K clusterwise 

regression solution: 

n ( K )  = J K  + 2 K  - 1 .  (32) 

This AIC criteria has been previously used in an unconditional 

mixture/clustering context by Sclove (1983). However, as pointed out by 

Bozdogan (1983) and Sclove (1987), one major problem with the use of such 

a criterion is that the theoretical justification for use of AIC relies on the same 

conditions as the usual asymptotic theory of the GLR test. In this context, 

some analytical conditions required for series expansions yielding the AIC 

are not strictly met (see McLachlan and Basford 1988, p. 28; Sclove 1987), 

and the criteria can be thus regarded as "heuristic figures of merit" where 

one selects K* which renders minimum AIC(K). 

Note that the likelihood ratio criterion for testing the hypothesis of K 1 

versus K 2 clusters, where Kt < K2, does not have its usual asymptotic distri- 

bution as mentioned by Hartigan (1977), Binder (1978), and McLachlan and 

Basford (1988, p. 27). Basford and McLachlan (1985) have adapted Wolfe's 
(1971) approach in introducing a constant to improve a X 2 approximation for 

the likelihood ratio test. However, the reliability of such as approximation 
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will natura~y depend on the size of L McLachlan (1987) has recently exam- 

ined the boot-strapping of the log likelihood ratio statistic to assess the null 

distribution o f -  2log L. Further research is required in this area. 

One of the appealing properties of maximum likelihood estimators is 

that, under typical regularity conditions, these estimators are asymptotically 

normal. Define b as a vector of all the (bl,b2 . . . . .  br) estimated coefficients 

in a maximum likelihood context, and B as the corresponding vector of 

unknown population parameters (B1,B2 . . . . .  Br). Then, according to Theft 

(1971), 

where: 

x~" (b - B) ~ N(O,//m(R(B) / ])-I) (33) 

R(B) = - E  /32~ ] (34) 

0BOB" ' 

the information matrix. According to Judge, Griifiths, Hill, Ltitkepohl, and 

Lee (1985), replacing lim(R(B) / I) by a consistent estimator does not change 

the asymptotic distribution of the test statistics or confidence intervals for b. 

Here, the consistent estimator utilized is: 

F = (35) 

and the asymptotic variances of b can be defined as the main diagonal ele- 

ments of F -1, the asymptotic variance covariance matrix. From (33) - (35), it 

follows that an asymptotic (1 - ix) 100% confidence interval for Bn is given 

by 

(bn-Zea2 ~nln , bn + za:2 ~nln ),  (36) 

where Z~2 is the central value of a normal distribution with mean zero and 

variance one and ~ is the asymptotic estimate of the variance ofbn. 

3.3. Synthetic Data Analysis 

The synthetic data in Table 1 were analyzed by our conditional mixture 

E-M based procedure. Table 2 presents a statistical and computational sum- 
mary for K = 1 to 4 clusters. As dearly delineated in this table, the K = 2 
cluster solution is the "best" one given that the minimum AIC is obtained 

here. The recovered parameters are also shown in the table for this small 
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TABLE 2 

Conditional Mixture Maximum Likelihood 

Procedure Results for Synthetic Data 

Number of Iterations 

Required for Convergenee in L AIC 

1 2 -39.70 85.39 

2 6 -12,86 39.73* 

3 7 -12.86 47,73 

4 8 -12.86 55.73 

*minimum AIC 

Recovered Parameters: 

i 0 

1 0 

= ( . 5  . 5 )  1 0 

- 1 0 

1 0 

1 0 

o = < . 5  , 5 )  P = i o 

- ~ o 1 

o 1 

o 1 

o 1 
1 - i  

b = (2 - 2  ) o i 
~ o i 

o i 

illustrative data set. We performed 20 additional computer runs for the two 

cluster solution, varying the starting estimates of bk using the uniform distri- 

bution U( - 2,2). The starting values produced log likelihoods in the range of 

-39.13 to -61.32. In all 20 cases, the procedure converged within 5-7 itera- 

tions to this same globally optimum solution presented in Table 2. Given that 

the starting values were generated from the same distribution as the actual 

values, we performed an additional 20 computer runs utilizing U ( -  20,20) 

for the starting bk. This generated initial log likelihood values ranging from 

-69.95 to -432.83. Here, we recovered the actual parameter values shown in 

Table 2 in 18 of the 20 cases, showing some deterioration in performance as 

the "quality" of the starting values deteriorated. Note that Sp~ith's (1985) 

procedure was able to recover the actual bk values in 14 of  20 computer runs 

in the version of the computer program we initially purchased from him. 
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TABLE 3 

Independent Factors and Levels Utilized in the Monte Carlo Analysis 

FACTOR 

A. Number of Clusters (K) 

LEVELS CODE 

K=2 2 

K=3 3 

K=4 4 

B. Number of Independent J=2 2 

Variables (J) in X J=5 5 

~ J=8 8 

C. Number of Observations (I) I=50 50 

I=I00 i00 

I=150 150 

D, Difference in Scale of O k 
e.g. , for K=3 a = 1,2,3 1 

0 = 2,4,6 2 

0 = 3,6,9 3 

E. Comparative Range of Mixing 

Proportions (A k) 

Equal A's 1 

Unequal A~s 2 

F. Distribution of each bjk 

G. Estimation Option for O~ 

bj k~N(0 , i) 1 

bj k_N(k , i) 2 

bj k.-N(2k , i) 3 

O~ fixed at true i 

values (i) 

estimate O~ 2 

4. Monte Carlo Analysis 

111 order to examine systematically the performance of the conditional 

mixture E-M algorithm, a Monte Carlo analysis was performed where some 

seven factors were experimentally varied: K,J,I, scale of o~, %,k, the distribu- 

tion of bk, and o 2 estimation options. Table 3 describes these seven indepen- 

dent factors and the various levels tested for each factor. These seven factors 
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TABLE 4 

3522 Asymmetric Fractional Factorial Design 

TRIAL: A B C D E F G 

1 2 2 5O 1 1 1 1 

2 2 2 50 1 2 2 1 

3 2 2 50 1 1 3 2 

4 2 5 i00 3 i i 1 

5 2 5 i00 3 1 2 2 

6 2 5 i00 3 2 3 1 

7 2 8 150 2 2 1 2 

8 2 8 150 2 1 2 1 

9 2 8 150 2 i 3 1 

i0 3 2 i00 2 2 2 2 

II 3 2 i00 2 1 3 1 

12 3 2 i00 2 1 1 1 

13 3 5 150 1 i 2 1 

14 3 5 150 1 2 3 1 

15 3 5 150 1 1 1 2 

16 3 8 50 3 1 2 l 

17 3 8 50 3 1 3 2 

18 3 8 50 3 2 i I 

19 4 2 150 3 1 3 1 

20 4 2 150 3 1 1 2 

21 4 2 150 3 2 2 1 

22 4 5 50 2 2 3 2 

23 4 5 50 2 1 1 1 

24 4 5 50 2 1 2 1 

25 4 8 I00 i 1 3 1 

26 4 8 i00 1 2 1 1 

27 4 8 I00 1 1 2 2 

were combined via an asymmetric fractional factorial design (cf. Addelman 

1962) for main effects only estimation. Twenty-seven experimental trials 

were devised where the seven factors were varied according to the 3522 frac- 

tional factorial design portrayed in Table 4. Such procedures have been pre- 

viously utilized by DeSarbo (1982) and DeSarbo and Carroll (1985) in the 

psychometric literature for preliminary testing of new algorithms. Note that 

each trial (or row) of the experimental design defined a specific level for each 

of the seven factors listed in Table 3. Based on the stipulated levels of J and 

I, X was randomly generated from a uniform distribution. Given designated 

levels of o2, %,, and bk, Y was generated via the mixture specification 

described in equation (9), and the conditional maximum likelihood cluster- 

wise linear regression procedure was executed. 

The dependent/performance measures collected were: 

1. Number of iterations required for convergence. This was to meas- 

ure the computational effort involved in processing given CPU time 

was unavailable. Note, a maximum of 100 iterations was specified. 
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2. AICA-AlCr t .  This is the difference in the Akaike information 

statistic between that obtained for the actual values generated syn- 

thetically for the Monte Carlo analysis (AICA) and that obtained via 

the solution recovered by the methodology (A/CR). Note that this 

difference was taken to eliminate the dependence of such a measure 

on I, J and K. Positive values for this difference would indicate the 

methodology recovered a better solution than compared to the actual 

parameters. 
3. bk parameter ~covery.  A root mean square between the actual bk 

and estimated bk (after appropriate permutation) is calculated to 

measure how well the procedure can recover the clusters' regression 

coefficients. 

4. ok parameter recovery. A root mean square between the actual c ,  

and estimated ~k (after appropriate permutation) is calculated to 

measure how well the procedure can recover these parameters. 

5. Pik recovery. A root mean square between these actual posterior 

probabilities and estimated/3ik is calculated (after appropriate permu- 

tation) to measure how well the procedure can reproduce these clus- 

ter membership probabilities. 
6. ~,k recovery. Finally, a root mean square between the actual mixing 

proportions and estimated ~,k is calculated (after appropriate permuta- 

tion) to measure how well the procedure can recover these mixing 

proportions. 

Thus, these six measures encompass the three major areas of algorithm per- 

formance: computational demands, data reproduction, and parameter 

recovery. 
Table 5 presents the results for these six dependent measures for each 

of the twenty-seven trials designated by the asymmetric fractional factorial 

design presented in Table 4. As can be seen in Table 5, only two of the 

twenty-seven trials (#18, #19) failed to reach convergence within the max- 

imum limit of 100 iterations. Also, note that all twenty-seven trials resulted 

in positive values for the second dependent measure indicating the procedure 
always provided estimates whose resultant AIC statistic was better (lower) 

than that produced by the actual parameters, the difference in the magnitudes 

between the four RMS dependent measures 3, 4, 5, and 6 reflect the 

differences in the scale in the numbers utilized as parameter values rather 

than better/poorer fits. Table 5 also presents the correlations between these 

six measures. Of particular note is the rather large positive correlation 

(0.764) between dependent measures #3 and #4 indicating an association in 
attempting to recover the parameters (hk, c~) of the conditional normal distri- 

butions. Note, in none of the trials were there estimates of c~ near 0.00. 
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TABLE 5 

Dependent Measure Results from the Monte Carlo Analysis 

DEPENDENT MEASURE: 

1 38 3.602 1 . 2 4 2  1.000 . 559  .051 

2 i0 5.029 2,361 1.000 .744 .229 

3 14 7.682 .468 .404 .221 .137 

4 33 6.720 ,810 .000 .085 .049 

5 52 7.511 .944 .298 .153 .017 

6 20 6.971 3.069 3.000 .610 .382 

7 41 17.137 ,698 .432 .248 .134 

8 32 15,715 2.489 2.000 ,647 ,051 

9 i0 26.284 3.476 2.000 .761 .051 

i0 37 5.465 1.918 4.031 .328 .235 

Ii 51 10.761 3.161 2.828 .379 .132 

12 37 4.686 1.652 3.266 .346 .078 

13 34 8.910 .900 .816 .266 .023 

14 40 9.826 4.231 1.414 .606 .171 

15 84 2.169 1.662 .604 .425 .259 

16 55 26.423 4.560 4.899 .452 .273 

17 20 34.840 6,917 4.714 .480 .156 

18 i00 30.223 4.892 4.243 .486 .265 

19 i00 10.832 8.497 5.612 .372 .206 

20 57 6.254 2.424 2.655 .247 .171 

21 64 11.633 6.551 3.674 .374 .232 

22 15 40.187 5.806 4.345 .337 .210 

23 29 36.779 7.729 4.000 .399 .170 

24 56 23,237 3.801 2.828 .313 .147 

25 62 14.230 3.978 .707 .412 .094 

26 94 54.187 4.200 1.225 .500 .250 

27 44 95.596 3.173 1.576 .473 .059 

CORRELATIONS: 

I 2 3 4 5 6 

1 1.000 .075 .273 .170 -.165 .273 

2 1.000 .354 .163 .161 -.025 

3 1.000 .764 .241 .395 

4 1.000 .121 .480 

5 1.000 .245 

6 1.000 

Table 6 presents the results of  the six regression analyses performed, 

one for each of the dependent measures. Here, as in conjoint analysis (cf. 

Green and Rao 1971), the design matrix is converted into dummy variables 

p:ior to the regression analysis. Such a methodology has been similarly used 

in De Soete, DeSarbo, Fumas, and Carroll (1984), DeSarbo and Carroll 

(1985), and DeSarbo (1982) in the Monte Carlo testing of new methodolo- 

gies. 

Estimating solutions with larger numbers of  clusters significantly 

increases the number of iterations required for convergence. While not sig- 
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TABLE 6 

Regression Analyses of Monte Carlo Results 

DEPENDENT MEASURE: 

i 2 3 4 5 6 

INTERCEPT 34.06 1.33 0.96 0.38 0.48 0.i0 

K=3 23.11" 4.07 1.59* 1.85,* -0.03 0.05 

K=4 30.Ii* 21.81"* 3,40"* 1.83"* -0.07 0.05 

J=5 -5.00 8.49 0,08 -0.80 -0.04 -0.01 

J=8 5.56 27.63** 0.68 -0.30 0.i0 -0,02 

I=i00 10.33 -0.21 -1.65" -1.17" -0.08 -0.04 

I=150 13.89 -11.03 -0.76 -0.91" -0.01 -0.04 

O of 2 -12,44 -2.33 0.95 1.89"* - 0 . 0 5  -0.01 

0 of 3 9.00 -6.65 1,83" 2.26** -0.11 0.05 

UNEQUAL A k 1.89 1.06 0.53 0.36 0.08 0.12"* 

b~k~N(k,l) -14,33 4,20 0,15 0.41 0.05 -0,02 

bjk-N(2k, l) -20.11 -0.02 1.59" 0.84 0.I0 0.01 

2 
O k ESTIMATED -7.61 7.09 -1.09 -0.36 -0.14 -0.01 

S,E, 22.74 15,21 1.32 0.85 0,15 0.08 

R 2 0.59 0.69 0,81 0.86 0.55 0.59 

adj R 2 0.23 0.43 0,65 0.74 0.16 0.24 

F 1.66 2.65* 4.96** 7,10,* 1.41 1,68 

* p 5 , 0 5  

**p~.O1 

nificant, data with larger J and larger I also tend to increase the number of 

iterations. Thus, larger data sets and solutions estimating larger numbers of 

parameters tend to increase computational demands, although the regression 

equation as a whole is not significant. 

A somewhat surprising finding is seen with respect to the second 

dependent measure conceming the difference in AIC statistics produced by 

the actual parameters vs. recovered ones. Here, as the number of estimated 

parameters increase (K = 4, J = 8), the procedure is somewhat more likely to 

recover parameters with associated lower AIC statistics than compared to that 

produced by the actual parameters. Thus, as the dimensionality of the param- 

eter space increases, all else held equal, there is a greater chance of finding a 

better solution. Note that this regression equation is significant atp < .05. 

Some unanticipated results are found concerning the regression 

analysis conducted with dependent measures #3 involving bk recovery. 
While the result that solutions involving larger number of clusters (and more 

bk parameters) tend to detract from recovery and larger sample sizes enhance 
bk recovery make intuitive sense, the positive and significant impact of the 

larger t~ 2 scale and bit,-N(2K,1) levels are a bit harder to interpret. 
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Presumedly, as o2 gets larger, the variance of bk increases rendering larger 

errors in recovery. Note that this regression equation is quite significant. 
Some similar pattems are also seen with respect to regression analysis 

performed on dependent measure #4, ok recovery. Here, ok recovery is 
reduced as the number of ok terms increases and as the scale and difference of 

the ok increase. All else held equal, however, as the sample size increases, it 
becomes significantly easier to recover the Ok values. This makes consider- 
able sense in light of traditional statistical estimation theory conceming the 

impact of higher degrees of freedom in estimation. Again, this regression 

equation is also significant atp < .01. 

The final two regression equations for dependent measures #5 fPik 

recovery) and #6 (~,k recovery) are not significant. For the Pik RMS equation, 
no factor level is significant. For the ~.1, RMS equation, it appears that 

estimating unequal ~,k tends to detract from ~.k recovery; however, the regres- 

sion equation again is not significant. 
Thus, the Monte Carlo analysis appears to result in several rather 

interesting findings. As the number of parameters to be estimated increases, 

all else held equal, computational time will increase and parameter recovery, 

in general, will suffer as is the case in most nonlinear estimation problems. 

Similarly, increasing the sample size, holding all else equal, may also 

increase computational demands, but will typically improve parameter 
recovery. Finally, increasing the variance of the parameters to be estimated 

will also tend to result in poorer parameter recovery. However, given the 
preliminary nature of these analyses, these results must be subject to further 
testing. 

Some obvious limitations of this Monte Carlo analysis must be noted. 

The use of the fractional factorial design does not allow the flexibility of 

measuring possible interaction effects between these factors studied in the 

analysis. Clearly, assuming computational time/expense was not a limitation, 

a full factorial design would have been a more comprehensive design to use 

in order to estimate possible significant higher order interaction terms. In 
addition, the design should have been replicated in order to improve the 

degrees of freedom for estimation. Finally, more levels for each of the factors 

should be investigated, and other factors (e.g., cluster size and shape) intro- 

duced in the design. We leave these projects for future research. 

5. Application - -  Trade Show Performance 

5.1. Study Description 

Trade shows are promotional events used by marketers to draw a large 

number of prospective buyers to view exhibits of products/services in a few 
concentrated days. Such trade shows have become a very popular medium 
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for promoting products and services, especially in the industrial sector. 

Cleaver (1982) published figures indicating that over 91,000 firms display 

such exhibits at some 8,000 trade shows to over 31 million prospective buyers 

at a total cost of $7 billion annually. Many firms will allocate up to 25% of 
their total promotion budget for trade shows (Mee 1983a). Historically, trade 

show participation has been viewed as an extension of a firm's personal sel- 

ling effort. However, Bonoma (1983) revealed that trade shows have a much 

broader role than merely generating sales. Many firms consider such non- 
selling factors as image enhancement, gathering competitive information, and 

improving corporate morale as equal to, if not more important, than identify- 

ing leads on making sales. 
Recently, Kerin and Cron (1987) conducted a survey of trade show 

exhibit managers and senior marketing executives in 129 firms that were 
heavy participants in trade shows. One of their objectives was to investigate 
the selling vs. non-selling role of trade shows. A self-administered question- 

naire was separately mailed to the trade show exhibit manager and the senior 

marketing executive in each finn. We will purposely focus on the latter ques- 

tionnaire sent to the senior marketing executive since it focused on percep- 
tions of trade show performance and various marketing-related variables 

identified in the literature as affecting such perceptions. These marketing 

executives were asked to rate the firm's trade show performance on some 

eight functions documented in the literature (see Haas 1982; Bonoma 1983; 

Hurt and Speh 1985; Dunn and Barban 1986): 

1. Identifying New Prospects 

2. Servicing Current Customers 
3. Introducing New Products 

4. Selling at the Trade Show 
5. Enhancing Corporate Image 

6. Testing of New Products 

7. Enhancing Corporate Morale 

8. Gathering Competitive Information 

Overall trade show performance was rated also. Each of these performance 
aspects was rated on a 7-point Likert type scale (l=very poor; 7=very good) 
which we shall treat as metric scales (cf. Guilford 1954, pp. 15-16; and Green 
and Tull 1978). In addition, data on a number of individual difference items 
were collected (we will describe these later). Kerin and Cron (1987) had per- 
formed a factor analysis on the eight performance functions listed above and 
uncovered two dimensions accounting for 59.1% of the variance, roughly 
corresponding to the selling and non-selling roles of trade shows conceptually 
identified by Bonoma (1983). Our investigation will examine a multiattribute 
analysis of the performance function data where we shall use overall trade 
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TABLE 7 

Total Sample Regression Results on Trade Show Performance Data 

INTERCEPT 3.03 

X 1 0.15,** 

X 2 -0.02 

X 3 0.09 

X 4 -0.04 

X 5 O. 09 

X 6 0.18"** 

X 7 0 .07  

X 8 0,04 

S.E. 0,85 

R 2 0.37 

adj R 2 0,33 

S.S.E. 87.67 

F 8.87"** 

I 129 

* p_<. I0 

** pi. 05 

*** p<_. 01 

show performance as the dependent variable and the data on the eight perfor- 

mance functions listed above as the independent variables. Our goal is to 

examine whether groups of firms evaluate overall trade show performance 

differently in terms of these eight aspects, and if so, estimate their different 

regression coeffmients and group membership probabilities via the new 

clusterwise-linear regression methodology discussed. 

5.2. Preliminary Analyses 

We will analyze the data for overall performance (y) and the eight per- 

formance functions (X1 . . . . .  Xs) for these 129 firms. Treating all 129 execu- 

tives as members of one large cluster or group, Table 7 presents the resulting 

regression analysis of regressing overall performance on the eight perfor- 

mance functions. As can be seen, identifying new prospects (X0 and new 

product testing (X6) appears to be most significantly related to evaluations of 

overall trade show performance. Thus, for the entire sample, it appears that 

these two selling-related aspects dominate the analysis for the entire sample. 

The issue remaining is whether there exist distinct groups of firms which 

exhibit different regression coeffmients. 

In order to address this research issue of group regression coefficients, 

we initially applied Sp~ith's (1982, 1985) clusterwise linear regression pro- 

cedure. We ran 20 trials for each solution from K = 2 to 5 and utilized 
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Sp,~fth's minimum objective function rule to select both the number of clusters 
and the particular solution. The K = 2 cluster solution was selected using 

Spath's minimum objective function rule. Table 8 contains the best K = 2 

cluster solution obtained from these analyses. This table presents multiple 
regression analyses and corresponding asymptotic significance tests or each 

of the two derived groups. The bk coefficients are identical to those obtained 

from Sp~ith's procedure, but significance tests are missing from Sp~ith's pro- 

cedure since it is deterministic. While it is not good practice to consider 

these significance tests appropriate (since the data were initially utilized to 

form the groups), we merely present them as "heuristic figures of merit" in 

order to gain some insight into the structure of the data as derived from this 

alternative methodology. The first cluster of some 72 executives appear to 

derive their overall performance evaluation on primarily non-selling func- 

tions such as enhancing corporate image and morale (X5 and X7) and new 

product introduction and testing (X3 and X6). Note the significant negative 

coefficient on selling at trade shows (X4). This is a cluster of marketing exe- 

cutives who appear to stress particular non-selling and new products aspects 

of their trade shows. The second cluster, however, is not as clearly interpret- 

able. Here, identifying prospects (X1) and new product testing (X6) are the 

most significant functions impacting on overall trade show performance 

evaluation, although these relationships are not as strong as those reported in 
the previous duster. As such, this second duster of 57 marketing executives 

appears to resemble the total group structure as reported in Table 6. 

5.3. Conditional Mixture Maximum Likelihood Procedure Results 

Our conditional normal mixture maximum likelihood methodology was 

applied to these data for K = 1 to 4 clusters. Table 9 presents the number of 

iterations required for convergence, In L, and AIC statistics for each solution. 

According to the minimum AIC rule, the K = 2 cluster solution appears to be 

the best one and will thus be reported here. Table 10 presents a summary of 

the various parameter values and statistics for this two cluster solution. Clus- 

ter one, composed of 59 marketing executives, evaluates trade shows pri- 
marily in terms of evaluations on non-selling dimensions including servicing 

new customers (X2) and enhancing corporate image and morale (X5 and XT). 

Note the significant negative coefficients for introducing new products (X3) 

and selling at trade shows (X4) which also substantiates this non-selling 

orientation. The second cluster of 70 marketing executives appears quite 

different than this first cluster. Here, identifying new prospects (X l), intro- 
ducing new products (X3), selling at trade shows (X4), and new product test- 

ing (X6) are highly significant. The significant negative coefficient on servic- 
ing current customers (X2) also helps substantiate this "selling" orientation. 
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TABLE 8 

Sp~th's Clusterwise Linear Regression Two Cluster Solution - 

Multiple Regression Analyses 

CLUSTER i CLUSTER 2 

INTERCEPT 2.27 3.72 
X I 0.09 0.18" 

X 2 -0.00 -0.02 

X 3 0.15"* -0.06 

X 4 -0.17"** 0.04 

X 5 0.21"** 0.04 

X 6 0.27*** 0.15 ** 

X 7 0.09* 0.00 

X 8 0.04 0.ii 

S.E. 0.73 0.94 

R 2 0.56 0.31 

adj.R 2 0.51 0.20 

S . S . E .  33.91 41.99 

F 10.07"** 2.75** 

I 72 57 

* p!.10 

** p!.05 

*** p!.01 

TABLE 9 

Conditional Mixture Maximum Likelihood Procedure Results for K=l~4 Clusters 

Number of Iterations 

Required for Convergence in L AIC 

1 2 -158.1 336.3 

2 32 -141.6 325.2* 

3 62 -132.7 329.4 

4 46 -130,9 347.8 

* Minimum AIC Solution K=2 
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This solution appears to be more congruent with previous literature (cf. 

Bonoma 1983; Haas 1982; Hurt and Speh 1985; Durra and Barban 1986) and 

the empirical results reported in Kerin and Cron (1987) than does the Sp~th 

two-cluster solution. In addition, the effects are stronger here than in Sp~th's 

solution producing higher adjusted R2's when placed in a deterministic 

regression context. In fact, this conditional normal mixture maximum likeli- 

hood solution obtains a lower Sp~ith objective function (expression 8) value 

than the Sp~th K = 2 solution! Table 11 presents a cross classification of 

membership for the Sp~tth and conditional mixture E-M based procedure. As 
shown, only 68 of the 129 executives are classified similarly. The resulting 

phi coefficient calculated from this table is only 0.065 indicating little associ- 

ation between the two classifications. The Sp~ith solution produced a log 

likelihood value of-156.99 when substituted in the conditional mixture E-M 

based procedure as compared to -141.58 for the solution reported earlier in 

Table 10. Using the Sp~th solution as an initial starting solution for the con- 

ditional mixture based E-M procedure produced (after 11 iterations) a solu- 

tion with a log likelihood value of-142.53, whose bk values had correlations 

with those in Table 10 of .996 and .983, and whose ~. and a 2 values differed 

by .01 and .02 respectively. At any rate, it is interesting to see how running a 

total group analysis such as reported in Table 7 can mask the true structure in 

a set of data. 

Having identified two schemes used by marketing managers to evaluate 

their overall trade show performance, the usefulness of our classification was 

evaluated by attempting to describe the factors distinguishing between the 

two groups. Much of what has been written concerning trade show manage- 

ment is descriptive of the experiences of managers involved in aspects of 

trade show management (e.g., Cavanaugh 1976; Hatch 1981; Konikow 1983; 

Rich 1985). A number of studies that are descriptive of trade show manage- 

ment have been supported by the National Trade Show Bureau (Mee 1983a, 

1983b, 1984). Perhaps the first effort to systematically analyze trade show 

management was Lilien's (1983) research on trade show budgeting and parti- 

cipation. This study identified factors related to how' much an individual firm 

spent on trade shows and to which shows the firm participated. The research 

by Kerin and Cron (1987) on the determinants of high trade show perfor- 

mance evaluations also provides a good framework for identifying factors 

related to trade show performance. 

Based on this review of the literature and interviews with marketing 

and exhibit managers, a list of factors were derived which are potentially 

related to whether marketing managers evaluate their trade show performance 
primarily on selling or non-selling dimensions. A complete list of the indivi- 

dual difference items collected in the Kerin and Cron (1987) study along with 
a description of their measurement are provided in Table 12. The variables 
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TABLE I0 

Conditional Mixture Maximum Likelihood K=2 Cluster Solution 

CLUSTER 1 CLUSTER 2 

INTERCEPT 4.093*** 2.218"** 

X 1 0,126 0,242**e 

X 2 0.287*** -0.164"** 

X 3 -0.157"* 0.206** 

X 4 -0.133"** 0,074** 

X 5 0.128. 0.072 

X 6 0.107 0.282*** 

X 7 0.155"* -0.026 

X~ -0.124 0.023 

R 0.73 0.76 

adj.R 2 0,69 0,73 

S.S.E. 20.37 12.98 

I 59 70 

%k 0.489 0.511 

O k 0.589 0.504 

* p£.10 

** p!.05 

*** p£.01 

TABLE Ii 

Membership Comparisons for Trade Show Data Analyses 

Conditional 

Mixture, E-M 

Procedure's 

Cluster: 

Sp~th's Cluster: 

1 2 

35 24 

37 33 

Totals 

59 

70 

Totals 72 57 129 
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TABLE 12 

Independent Variables for Profiling Evaluation Groups 

Variable 

INDUSTRY INFLUENCES: 

Stage of industry life cycle 

Degree of product customization 

Major industry group 

COMPANY INFLUENCES: 

Annual sales volume 

Number of direct customers 

Sales concentration 

Technical complexity 

Trade show budgeting 

Importance to top management 

Sales growth 

Description 

Five point scale: introduction, growth, 

early maturity, maturity, and decline. 

Percent of sales in customized products. 

Percent of sales in each of the following: 

raw materials, component parts, major 

capital equipment, operating supplies, 

consumer durables, consumer nondurables, 

ad services 

Dollar figure 

Number 

Percent of sales to top ten customers 

Five point Likert scale (l = technically 

simple to 5 = technically complex). 

Percent of sales promotion budget spent on 

trade shows 

Five point Likert scale (i = Not important~ 

5 = Very important) 

Last year's percent 

TRADE SHOW INFLUENCES: 

Written objectives a Existence of formal written objectives for 

overall trade show effort 

MARKETING MANAGER INFLUENCES: 

Length of time in position Years in present position 

Involvement in show decisions A summative index including involvement 

in budgeting, policies, evaluation, setting 

objectives, participation, and working with 

exhibit manager on a five point Likert 

scale (i = minimally involved to 5 = 

extensively involved), b 

aExhibit manager is the key informant for this variable, while the marketing 

manager provided information on the remaining variables. 

bThe Cronbaek alpha for this measure was .87. 

are organized into a framework similar to that used by Kerin and Cron (1987), 

which consis~s of (a) industry influences, Co) company influences, and (c) 

trade show strategy influences. In addition, a fourth set of influencing factors 

were considered in this study and are referred to as the marketing manager's 

influences. This was considered to be appropriate because the marketing 

manager's historical and current involvement with trade shows may influence 

his/her performance evaluations. 
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Given the posterior probabilities of membership in the two derived 

clusters, i.e., the/3ik's, a logit transformation was performed on the probability 

that a marketing manager evaluated trade show performance primarily on a 
selling dimension. Specifically, the log was taken of the ratio of the selling 

cluster membership probability divided by one minus the selling cluster 

membership probability (adjustments of adding/subtracting a small positive 

constant were made for/3ik = 0 or 1). Multiple regression analysis was per- 

formed using the 20 independent variables listed in Table 12. Because of 

missing data for some of the independent variables, 102 firms were included 
in this analysis. The results of this analysis are presented in Table 13. (Step- 

wise multiple regression analysis was also performed for more parsimonious 
results. The results were congruent with those in Table 13.) Five variables 
were significant in the equation: high technology products, new product intro- 

ductions, sales concentration, importance to top management, and percent of 

promotion budget. Specifically, marketing managers who are most likely to 

emphasize selling results from trade show participation are with firms that 

sell high tech products with frequent new product introductions, have low 

customer sales concentrations, allocate a low percent of the sales promotion 

budget devoted to trade shows, and have top management who consider trade 
shows very important to the organization's success in meeting its marketing 
objectives. 

An alternative approach for evaluating the practical usefulness of these 

20 independent variables is to determine how well they can predict whether a 

marketing manager evaluates trade shows primarily on a selling or non- 

selling basis. Marketing managers were placed in either a selling or non- 
selling group based on which probability was higher. This procedure resulted 
in 48 managers being placed in the selling group and the remaining 54 

managers categorized as non-selling (given the missing data). Two group 
multiple stepwise discriminant analysis was used to distinguish statistically 

between the two groups. The resulting discriminant function contained ten 

significant variables and produced a Wilks' lambda of .388 with chi-square of 

63.312 (p < .0001). The ten variables in order of significance are (see Table 

14) product technology, frequency of new product introduction, sales concen- 

tration, importance to top management, percent of promotion budget, selling 
information processing equipment, sales growth, marketing management's 

involvement, selling raw materials, and written trade show objectives. The 
results are quite similar to those presented in Table 13 conceming the logit 

regression analysis. These results indicate, in comparison with marketing 
managers who evaluate trade shows primarily on non-selling dimensions, 
those evaluating on selling dimensions: (1) sell more highly technical pro- 

ducts, (2) frequently introduce new products, (3) do not concentrate their 
sales to a few large firms, (4) have their top management consider trade 



276 W.S. DeSarbo and W. L. Cron 

TABLE 13 

Legit Transformed Regression Results for Selling Evaluations 

Variable Beta t 

High tech products 

New product introduction 

Sales concentration (%) 

Importance to top management 

Percent of promotion budget 

Sales growth 

Marketing manager's involvement 

Written show objectives 

Industry life cycle 

Product modification (%) 

Marketing manager's experience 

Number of customers 

Size 

Selling raw materials 

Selling component parts 

Selling major capital equipment 

Selling operating supplies 

Selling consumer durables 

Selling consumer nondurables 

Selling information processing equipment 

F = 2,217"* 

32 2.794"* 

.34 2.862** 

-.20 1.958" 

.23 1.920" 

-.22 1.928" 

.02 .169 

.05 .441 

,19 1.676 

-.08 .656 

-,12 .974 

- . 0 2  .177 

- . 1 7  1 . 3 4 5  

. 0 5  . 3 5 6  

.15 1.377 

-.18 1.584 

-.09 .742 

-,01 ,i06 

-.05 . 4 4 8  

• 0 7  . 5 4 2  

-.14 1.181 

*p < .05 

**p < .01 

shows to be more important for achieving the finn's marketing objectives, (5) 

spend less on trade shows as a percent of total promotion budget, (6) are not 

likely to be selling information processing equipment, (7) experience higher 

s:des growth, (8) are finns in which the marketing manager is more intimately 

ilwolved in trade show related decisions, (9) are more likely to be selling raw 

materials, and (10) are more likely to have written objectives for their overall 

t;ade show program. 
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TABLE 14 

Diseriminant Analysis of Performance Evaluation Groups 

Variable 

Mean Values 

Selling Non-Selling 

Evaluation Evaluation 

Standardized 

Discriminant 

Function 

Coefficient a 

High tech products 4.&2 

Frequent new product introduction 2.42 

High sales concentration (%) 24.42 

Important to top management 3.92 

Percent of promotion budget (%) 14,06 

Selling information processing 

equipment (%) 9.21 

Sales growth (%) 20.95 

Marketing manager's involvement 25.11 

Selling of raw materials (%) 12.71 

Written show objectives 1.27 

Canonical Correlation .781 

Wilks Lambda 0.388 

Chl square 63.312 

Significance .001 

Correct classification rate (%) 81.37 

3 . 3 3  . 7215  

1 . 6 7  . 6 4 3 9  

3 9 . 4 7  - . 6 4 2 6  

3 . 3 1  . 6329  

2 0 . 6 9  - . 5 8 4 4  

11.94 .4746 

14.47 .3309 

22.86 .3047 

6.13 .2867 

1.58 .1880 

aAll variables are significant at the .01 level or higher. 

The above results conceming the profile of firms in which trade shows 

are primarily evaluated for their selling effectiveness appears to be consistent 

and logical. In general, selling oriented firms have a story to tell (e.g., new 

and high tech products), have a wide audience to reach, have written objec- 

tives because trade shows produce results that are quantifiable and central to 

the success of the organization, display intense marketing involvement, and 

have the support of top management. Discussion of these results with indus- 

try experts indicate that the industry results are also consistent in that 

manufacturers of information processing equipment, especially the larger 

organizations, do not actively sell on the trade show floor, while selling is 

quite common for marketers of raw materials. The most surprising result is 

that selling oriented organizations spend less as a percent of total sales pro- 

motion budget on trade show participation. This may reflect the cost 

efficiency of trade shows versus traditional field sales force selling (Mee 

1982). 
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Here, 81.3% of the organizations were correctly classified as evaluating 

their trade show programs on a selling versus non-selling basis. This percen- 

tage of correct classifications was compared to a proportional chance cri- 

teflon of .466 (Morrison 1969). Using a test of the difference between two 

proportions, Z = 7.857 which is extremely significant (p < .001). As a test of 

the upward bias in the classification results caused by reuse of the sample 

data, the Lachenbruch (1967, 1975) holdout procedure was used to classify 

individual organizations. The validated classification rate was 76.84%. This 

further indicates the predictor variables are important discriminators in this 

application. 

6. Discussion 

The conditional mixture maximum likelihood methodology for cluster- 

wise linear regression has been technically described as well as the E-M algo- 

rithm for estimation. A Monte Carlo analysis investigating the performance 

of the methodology as a number of data and model factors were experimen- 

tally varied was presented. Finally, an application to trade show performance 

evaluations collected from senior marketing managers illustrated how two 

different groups of managers utilized very different criteria to evaluate their 

promotional expenditures in trade shows. 

There are clearly other potential applications for this new methodology. 

For example, this clusterwise linear regression methodology could be utilized 

in the general context of multiattfibute models for attitude measurement. In a 

similar vein, the E-M based procedure could be adapted for use in conjoint 

analysis studies (Green and Rao 1971) to investigate the basis of preference 

or choice. More substantive applications exist in virtually all the social sci- 

ences. In psychological testing, for example, this methodology could be util- 

ized to identify groups of respondents that perform particularly poorly/well 

on specific items of a test. Conceming management research, the methodol- 

ogy could be utilized to relate firm strategy to resulting corporate perfor- 

mance and identify "strategic groups" (Porter 1980) or clusters of firms that 

utilize profiles of strategy to attain similar performance. Finally, in the area 

of political science, the procedure could be used to group countries with 
respect to common factors producing political risk levels (cf. Krayenbuehl 

1985). 

In addition, the methodology can be extended in a number of direc- 

tions. For example, this conditional mixture approach could be modified to 

accommodate a binary choice or a rate dependent variable involving mixtures 
of other distributions from the exponential family. Like Basford and 
McLachlan (1985), the procedure can be generalized to accommodate three- 

way analyses where, for example, y and X could be given for various different 
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time periods or over various experimental manipulations. Another area of 

potential research involves modifying the procedure so user stipulated con- 

straints as discussed in DeSarbo and Mahajan (1984) can be enforced (cf. 

DeSarbo, Oliver and Rangaswamy 1988). Finally an interesting generaliza- 

tion would be to accommodate the estimation of multiple (by cluster) 

ultrametric or path length tree(s) from such data. 
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