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Abstract: We study the initial value problem for dissipative 2D Quasi-geostrophic equa-
tions proving local existence, global results for small initial data in the super-critical case,
decay of Lp-norms and asymptotic behavior of viscosity solution in the critical case.
Our proofs are based on a maximum principle valid for more general flows.

1. Introduction

The two dimensional quasi-geostrophic equation (QG) is an important character of Geo-
physical Fluid Dynamics, see [9, 17 and 15]. It has the following form

(∂t + u · ∇) θ = −κ(−�) α2 θ, (1.1)

u = ∇⊥ψ, θ = −(−�) 1
2ψ,

whereψ is the stream function. Here θ represents the potential temperature, u the veloc-
ity and κ is the viscosity. In this paper we examine existence, regularity and decay for
solutions of the initial value problem. We will consider initial data θ(x, 0) = θ0(x),
x ∈ R2 or T 2. The parameters α, 0 ≤ α ≤ 2, and κ ≥ 0 will be fixed real numbers.

The inviscid equation (κ=0) was studied analytically and numerically by Constantin,
Majda and Tabak [9]. They showed that there is a physical and mathematical analogy
between the inviscid QG and 3D incompressible Euler equations. For both equations it
is still an open problem to know if there are solutions that blow-up in finite time. For
further analysis see [11, 13 and 3].

If κ > 0, Constantin and Wu [10] showed that viscous solutions remain smooth for
all time when α ∈ (1, 2]. In the critical case α = 1, under the assumption of small L∞
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norm, the global regularity was proven in [8]. Chae and Lee [4] studied the super-criti-
cal case 0 ≤ α ≤ 1 proving global existence for small initial data in the scale invariant
Besov spaces. Many other results on the dissipative 2D Quasi-geostrophic equation can
be found in [18, 2, 22–24, 19 and 14].

Ref. [18] contains a proof of a maximum principle for (1.1):

‖θ(·, t)‖Lp ≤ ‖θ0‖Lp for 1 < p ≤ ∞ for all t ≥ 0.

For κ = 0, the Lp norms (1 ≤ p ≤ ∞) of θ are conserved for all time. In particular,
that implies that energy is also conserved, because the velocity can be written in the
following form

u =
(
−∂x2�

−1θ, ∂x1�
−1θ

)
= (−R2θ, R1θ),

where � represents the operator (−�) 1
2 and Rj are the Riesz transforms (see [20]).

In Sect. 2 we give a different proof of Resnick’s maximum principle (see ref. [8]),
showing a decay of the Lp norms. In Sect. 3 we present several estimates leading to
local existence results. Section 4 contains one of the main results, namely the decay of
the L∞-norm.

The case α = 1 is specially relevant because the viscous term κ�θ models the
so-called Eckmann’s pumping (see ref. [1] and [7]) which has been observed in quasi-
geostrophic flows. On the other hand, several authors (see ref. [18] and [10]), have
emphasized the deep analogy existing between Eq. (1.1) with α = 1 and the 3D incom-
pressible Navier-Stokes equations. In Sect. 5 of this paper we consider the notion of
viscosity solution for the Eq. (1.1) adding an artificial viscosity term ε�θ to the right-
hand side, and taking the limit, as ε → 0, of the corresponding solutions with the same
initial data. We prove that for the critical case (α=1) there exist two times T1 ≤ T2
(depending only upon the initial data θ0 and κ > 0), so that viscosity solutions are
smooth on the time intervals t ≤ T1 or t ≥ T2. Furthermore for t ≥ T2 we have a decay

of the Sobolev norm ‖θ‖Hs = O(t−
1
2 ).

Now we list some notations that will be used in the subsequent sections. As usual, f̂
is the Fourier transform of f , i.e.,

f̂ (ξ) = 1

(2π)2

∫
f (x)e−iξ ·xdx.

And Iα = �−α , Jα denote the Riesz and Bessel potentials, given respectively by

Î αf (ξ) = |ξ |−αf̂ (ξ) Ĵ αf (ξ) = (1 + |ξ |2)− α
2 f̂ (ξ).

Throughout the paper we will make use of Sobolev’s norms ‖f ‖Hs and of the duality
of B.M.O. (bounded mean oscillation) with Hardy’s space H1. We refer again to [20]
for the corresponding definitions and properties. Besides the “≤” symbol which has a
very precise meaning, we will make use of the following standard notation: “a << b”
if there exists a constant C > 0 (independent of all relevant parameters) so that a ≤ Cb.

Finally, it is a pleasure to thank C.Fefferman for his helpful comments and his strong
influence in our work.
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2. Maximum Principle

In this section we present a proof, using fractional integral operators, of the maximum
principle and decay of the Lp norms for the following scalar equation:

(∂t + u · ∇) θ = −κ�αθ.
Throughout this paper it will be assumed that the vector u satisfies either ∇ · u = 0
or ui = Gi(θ), together with the appropriate hypothesis about regularity and decay at
infinity, which will be specified each time, in order to allow the integration by parts
needed in our proofs.

Proposition 2.1. Let 0 < α < 2, x ∈ R2 and θ ∈ S, the Schwartz class, then

�αθ(x) = CαPV

∫
[θ(x)− θ(y)]

| x − y |2+α dy, (2.2)

where Cα > 0.

Proof. We write �α as an integral operator (see [20])

�αθ(x) = �α−2(−�θ) = cα

∫ −�yθ(y)
| x − y |α dy

= cα

∫
�y[θ(x)− θ(y)]

| x − y |α dy

= limε→0cα

∫

|x−y|≥ε
�y[θ(x)− θ(y)]

| x − y |α dy

≡ limε→0cα�
α
ε θ,

where cα = �(1− α
2 )

π2α�( α2 )
.

An application of Green’s formula gives us

�αε θ(x) = c̃α

∫

|x−y|≥ε
[θ(x)− θ(y)]

| x − y |2+α dy

+
∫

|x−y|=ε
[θ(x)− θ(y)]

∂ 1
|x−y|α
∂η

dσ(y)

−
∫

|x−y|=ε
1

| x − y |α
∂[θ(x)− θ(y)]

∂η
dσ(y)

≡ I1 + I2 + I3,

where ∂
∂η

is the normal derivative and c̃α > 0 . Furthermore

I2 = 1

εα+1

∫

|x−y|=ε
[θ(x)− θ(y)]dσ(y) = O(ε2−α),

I3 = 1

εα

∫

|x−y|=ε
∂[θ(x)− θ(y)]

∂η
dσ(y) = O(ε2−α),

therefore

limε→0I2 = limε→0I3 = 0

which yields (2.2).
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Proposition 2.2. Let 0 < α < 2, x ∈ T 2 and θ ∈ S, the Schwartz class, then

�αθ(x) = Cα
∑

ν∈Z2

PV

∫

T 2

[θ(x)− θ(y)]

| x − y − ν |2+α dy (2.3)

with Cα > 0

Proof.

�αθ(x) =
∑
|ν|>0

|ν|αθ̂(ν)eiν·x = −
∑
|ν|>0

|ν|α−2�̂θ(ν)eiν·x.

Let �ε(x) = (|x|α−2)ε ∗ ϕε(x), where (|x|α−2)ε = [|x|α−2 · χ( |x|
ε

)]
with χ ∈

C∞(0,∞),

χ(x) =



0 if |x| ≤ 1

1 if |x| ≥ 2

andϕε(x) = ε−2ϕ(x
ε
) is a standard approximation of the identity: 0 ≤ ϕ ∈ C∞, sopϕ ⊂

B1 and
∫
ϕ = 1. Now we can write

�αθ(x) = −limε→0

∑
�ε(ν)�̂θ(ν)e

iν·x

= −limε→0

(∑
�ε(ν)e

iν·x
)

∗
(∑

�̂θ(ν)eiν·x
)
.

Poisson’s summation yields:

�αθ(x) = −limε→0

(∑
�̂ε(x − ν)

)
∗�θ(x)

= limε→0

∑∫

T 2
�̂ε(x − y − ν)�(θ(x)− θ(y))dy

= limε→0

∑∫

T 2
�(�̂ε)(x − y − ν)(θ(x)− θ(y))dy.

Since

�̂ε(η) = ̂(|x|α−2)ε(η) · ϕ̂ε(η) = ̂(|x|α−2)ε(η) · ϕ̂(εη)
��̂ε(η) = �( ̂(|x|α−2)ε)(η) · ϕ̂(εη)+O(ε),

̂(|x|α−2)ε(y) = cα

|y|α −
∫
e−iyx |x|α−2(1 − χ(

|x|
ε
))dx,

�( ̂(|x|α−2)ε)(y) = c̃α

|y|α+2 −
∫
e−iyx |x|α(1 − χ(

|x|
ε
))dx,

We get easily

∑
ν

�(�̂ε)(y − ν) = c̃α
∑
ν

1

| y − ν |2+α +O

(∑
ν

1

| y − ν |2+δ O(ε
δ)

)

for some δ > 0.
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Therefore:

�αθ(x) = limε→0

∑∫

T 2
�(�̂ε)(x − y − ν)(θ(x)− θ(y))dy

= Cα
∑
ν

PV

∫

T 2

[θ(x)− θ(y)]

| x − y − ν |2+α dy.

Proposition 2.3. Let 0 ≤ α ≤ 2, x ∈ R2 and θ ∈ S (the Schwartz class). We have the
pointwise inequality

2θ�αθ(x) ≥ �αθ2(x). (2.4)

Proof. When α = 0, α = 2 the result is well known. For the remainder cases Proposition
2.1 (for the periodic case we use Proposition 2.2) gives us:

�αθ(x) = PV

∫
[θ(x)− θ(y)]

| x − y |2+α dy.

Therefore,

θ�αθ(x) = PV

∫
[θ(x)2 − θ(y)θ(x)]

| x − y |2+α dy

= 1

2
PV

∫
[θ(y)− θ(x)]2

| x − y |2+α dy + 1

2
PV

∫
[θ2(x)− θ2(y)]

| x − y |2+α dy

≥ 1

2
�αθ2(x).

For a more general statement of Proposition 2.3 see [12]. The inequality (2.4) also holds
in the periodic case.

Lemma 2.4. With 0 ≤ α ≤ 2, x ∈ R2, T 2 and θ,�αθ ∈ Lp with p = 2n we get:

∫
|θ |p−2θ�αθdx ≥ 1

p

∫
| �α

2 θ
p
2 |2 dx. (2.5)

Proof. The cases α = 0 and α = 2 are easy to check. For 0 < α < 2 we apply inequality
(2.4) k times

∫
|θ |p−2θ�αθdx ≥ 1

2

∫
|θ |p−2�αθ2dx =

∫
|θ |p−4θ2�αθ2dx

≥ 1

4

∫
|θ |p−4�αθ4dx ≥ 1

2k

∫
|θ |p−2k�αθ2k dx.

Taking k = n − 1 and using Parseval‘s identity with the Fourier transform we obtain
inequality (2.5).
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Lemma 2.5 (Positivity Lemma). For 0 ≤ α ≤ 2, x ∈ R2, T 2 and θ,�αθ ∈ Lp with
1 ≤ p < ∞ we have:

∫
|θ |p−2θ�αθdx ≥ 0. (2.6)

Proof. Again the cases α = 0 and α = 2 are easy to check directly. For 0 < α < 2 we
have

∫
|θ |p−2θ�αθdx = limε→0

∫
|θ |p−2θ�αε θdx = limε→0

∫
|θ |p−2θI1dx,

where I1 was defined above in (2.4). Then a change of variables yields

∫
|θ |p−2θI1dx = cα

∫ ∫

|x−y|≥ε
|θ |p−2(x)θ(x)

[θ(x)− θ(y)]

| x − y |2+α dydx

= −cα
∫ ∫

|x−y|≥ε
|θ |p−2(y)θ(y)

[θ(x)− θ(y)]

| x − y |2+α dydx.

And we get
∫

|θ |p−2θI1dx

= 1

2
cα

∫ ∫

|x−y|≥ε
(|θ |p−2(x)θ(x)− |θ |p−2(y)θ(y))

[θ(x)− θ(y)]

| x − y |2+α dydx.

≥ 0

Corollary 2.6 (Maximum principle). Let θ and u be smooth functions on either R2 or
T 2 satisfying θt + u · ∇θ + κ�αθ = 0 with κ ≥ 0, 0 ≤ α ≤ 2 and ∇ · u = 0 (or
ui = Gi(θ)). Then for 1 ≤ p ≤ ∞ we have:

‖θ(t)‖Lp ≤ ‖θ(0)‖Lp .
Proof.

d

dt

∫
|θ |pdx = p

∫
|θ |p−2θ [−u · ∇θ − κ�αθ ]dx

= −κp
∫

|θ |p−2θ�αθdx ≤ 0,

where we have use the fact that ∇ · u = 0 (or ui = Gi(θ)) and the positivity lemma.

Remark 2.7. When p = 2n (n ≥ 1) we have by Lemma 2.4 the following improved
estimate:

d

dt
‖θ‖pLp = −κp

∫
|θ |p−2θ�αθdx

≤ −κ
∫

| �α
2 θ

p
2 |2 dx.
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In the periodic case this inequality yields an exponential decay of ‖θ‖Lp , 1 ≤ p < ∞.
For the non-periodic case Sobolev’s embedding and interpolation will give us the fol-
lowing

d

dt
‖θ‖pLp ≤ −κ

(∫
θ

2p
2−α dx

) 2−α
2

≤ −C (‖θ‖pLp
) p−1+ α

2
p−1 ,

where C = C(κ, α, p, ‖θ0‖1) is a positive constant. It then follows

||θ(·, t)||pLp ≤ ||θ0||pLp(
1 + εCt ||θ0||pεLp

) 1
ε

with ε = α
2(p−1) .

Remark 2.8. The decay for other Lp, 1 < p < ∞, follows easily by interpolation.
However, the L∞ decay needs further arguments that will be presented in Sect. 4.

3. Local Existence and Small Data

The local (in time) existence theorem has been known (see refs. [9 and 3] ) for the invis-
cid quasi-geostrophic equation when the initial data belong to the Sobolev space Hs ,
s > 2. Here we will improve slightly those results making use of well known properties
of the space of functions of bounded mean oscillation (B.M.O.), namely the following:

a) Jα , α > 0, maps B.M.O. continuously into �α(R2). Let us recall that when 0 <
α ≤ 1 we have (see [21])

�α(R
2) : ||f ||�α = ||f ||L∞ + supxy

|f (x)− f (y)|
|x − y|α .

b) If R is a Calderon-Zygmund Singular Integral and b ∈ B.M.O., then we have the
“commutator estimate”:

||R(bf )− bR(f )||L2 
 ||f ||L2 ||b||BMO.
It then follows that if R has an odd kernel and f ∈ L2, then fR(f ) belong to the Hardy
space H1 and satisfies (see [5]):

||fRjf ||H 
 ||f ||2
L2 .

We shall also make use of the following, calculus inequality (see [16]): If s < 0 and
1 < p < ∞, then:

||J s(f · g)− f J s(g)||Lp 
 ||∇f ||L∞||J s−1g||Lp + ||g||L∞||J sf ||Lp .
This inequality follows from the estimate for the bilineal operators considered by
R. Coifman and Y. Meyer [6] (Operateurs multilinearies (Ondelettets et Operateurs III),
Theorem 1, p. 427): Define

T (b, f ) =
∫ ∫

eix(ξ+η)p(ξ, η)̂b(ξ)f̂ (η)dξdη,
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where the symbol p satisfies

|Dαξ Dβη p(ξ, η)| 
 (1 + |ξ | + |η|)−|α|−|β|

for |α| + |β| ≤ 2n+ 1, ξ, η ∈ Rn. Then we have the estimate:

||T (b, f )||L2 
 ||b||L∞||f ||L2 .

In our case, where n=2 (2n + 1 = 5), it implies the following inequality:

||�s(R(θ) · ∇⊥θ)− R(θ) · ∇⊥�sθ ||L2 
 ||�sθ ||L2sup|α|≤5||Rα�θ ||L∞ ,

where R̂αf (ξ) = ξα

|ξ ||α| f̂ (ξ) are higher Riesz transforms. Therefore

||�s(R(θ) · ∇⊥θ)− R(θ) · ∇⊥�sθ ||L2 
 ||�sθ ||L2

(
||θ ||L2 + ||�2+εθ ||L2

)

for every ε > 0.

Theorem 3.1 (Local existence). Let α ≥ 0 and κ > 0 be given and assume that θ0 ∈
Hm, m + α

2 > 2. Then there exists a time T = T (κ, ||�mθ0||L2) > 0 so that there
is a unique solution to (1.1) in C1([0, T ),Hm). Furthermore, when κ = 0 the same
conclusion holds for m > 2, and in the critical case α = 1 (κ > 0), we have local
existence for all initial data θ0 such that ||�θ0||L4 < ∞.

Proof. If κ > 0 we have:

1

2

d

dt
||�mθ ||2

L2 

∣∣∣∣
∫
�mθ{�m(R(θ) · ∇⊥θ)− R(θ) · ∇⊥�mθ}

∣∣∣∣− κ||�m+ α
2 θ0||2L2


 ||�mθ ||2
L2

(
||θ ||L2 + ||�2+εθ ||L2

)
− κ||�m+ α

2 θ ||2
L2

for every ε > 0. Taking ε = m+ α
2 − 2 we get

1

2

d

dt
||�mθ ||2

L2 
 1

κ
||�mθ ||4

L2 + ||θ ||L2 ||�mθ ||2
L2

which yields the desired results.

In the case κ = 0, m > 2, we proceed in a similar manner:

1

2

d

dt
||�mθ ||2

L2 =
∫
�mθ{�m(R(θ) · ∇⊥θ)− R(θ) · ∇⊥�mθ}


 ||�mθ ||2
L2

(
||θ ||L2 + ||�2+εθ ||L2

)
.

Therefore taking ε = m− 2 > 0 one obtains:

1

2

d

dt
||�mθ ||2

L2 
 ||�mθ ||3
L2 + ||�mθ ||2

L2 ||θ ||L2 .
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Finally if α = 1, κ > 0, let us consider:

d

dt

∑
j

|| ∂θ
∂xj

||4
L4 = 4

∑
j=1,2

∫ (
∂θ

∂xj

)3
∂

∂xj
(R(θ) · ∇⊥θ)− 4κ

∑
j=1,2

||� 1
2 (
∂θ

∂xj
)2||2

L2

≤ 4
∑
j=1,2

∫ (
∂θ

∂xj

)3

(R(
∂θ

∂xj
) · ∇⊥θ)− C1κ

∑
j=1,2

|| ∂θ
∂xj

||4
L8

≤ C2

∑
j=1,2

|| ∂θ
∂xj

||5
L5 − C1κ

∑
j=1,2

|| ∂θ
∂xj

||4
L8 ,

where C1, C2 are some universal positive constants.
Since

|| ∂θ
∂xj

||L5 ≤ || ∂θ
∂xj

||
3
5
L4 ||

∂θ

∂xj
||

2
5
L8 ,

one obtains:

d

dt

∑
j

|| ∂θ
∂xj

||4
L4 ≤ C2

∑
j

|| ∂θ
∂xj

||3
L4 || ∂θ

∂xj
||2
L8 − C1κ

∑
j=1,2

|| ∂θ
∂xj

||4
L8

≤ C3

κ

(
|| ∂θ
∂xj

||4
L4

) 3
2

,

for some positive constant C3. And from this estimate the results follow easily.
In the supercritical cases, 0 ≤ α ≤ 1, we have the following global existence results

for small data.

Theorem 3.2. Let κ > 0, 0 ≤ α ≤ 1, and assume that the initial data satisfies ||θ0||Hm ≤
κ
C

(where m > 2 and C = C(m) < ∞ is a fixed constant). Then there exists a unique
solution to (1.1) which belongs to Hm for all time t > 0.

Proof. We have

1

2

d

dt
(||θ ||2

L2 + ||�mθ ||2
L2) ≤ −κ||�α

2 θ ||2
L2 + C(||θ ||L2 ||�mθ ||2

L2 + ||�mθ ||3
L2)

− κ||�m+ α
2 θ ||2

L2 .

Since

||�mθ ||2
L2 ≤ ||�α

2 θ ||2
L2 + ||�m+ α

2 θ ||2
L2

we obtain the inequality:

1

2

d

dt
(||θ ||2

L2 + ||�mθ ||2
L2) 
 ||�mθ ||2

L2(C(||θ ||2L2 + ||�mθ ||2
L2)

1
2 − κ)

for some fixed constant C < ∞, and the theorem follows.
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In the critical case α = 1, κ > 0, we have the following:

Theorem 3.3 (Global existence for small data). Let θ be a weak solution of (1.1) with

an initial data θ0 ∈ H
3
2 satisfying ||θ0||L∞ ≤ κ

C
(where C < ∞ is a fixed constant).

Then θ ∈ C1([0,∞);H 3
2 ) is a classical solution.

Proof. Using Eq. (1.1) we have

1

2

d

dt
||� 3

2 θ ||2
L2 =

∫
�

3
2 θ�

3
2 (R(θ) · ∇⊥θ)− κ||�θ ||2

L2 .

Integration by parts gives us the following:

�−1(R(θ) · ∇⊥θ)(x) = c̃

∫
R(θ) · ∇⊥θ(y)

|x − y| dy

= C[R1(θ · R2(θ))− R2(θ · R1(θ))]

for a suitable constant C. Therefore:

1

2

d

dt
||� 3

2 θ ||2
L2 =

∫
�

3
2 θ�

3
2 (R(θ) · ∇⊥θ)dx − κ||�θ ||2

L2

= C

∫
�θ�(R1(θ · R2(θ))− R2(θ · R1(θ)))dx − κ||�θ ||2

L2

= C

∫
�θ(R1(�θ · R2(θ))− R2(�θ · R1(θ)))dx

+C
∫
�θ(R1(θ · R2(�θ))− R2(θ · R1(�θ)))dx

+ 2C
∫
�θ [R1(∇θ · R2(∇θ))− R2(∇θ · R1(∇θ))]dx − κ||�θ ||2

L2

= C[I1 + I2 + 2I3] − κ||�θ ||2
L2 .

Our estimate will follow from the following observations:

I2 = −
∫
θ [R1(�θ)R2(�θ)− R2(�θ)R1(�θ)] = 0

|I1| ≤
∣∣∣∣
∫
R1(�θ)�θR2(θ)

∣∣∣∣+
∣∣∣∣
∫
R2(�θ)�θR1(θ)

∣∣∣∣


∑
j

||Rj (�θ)�θ ||H||θ ||BMO 
 ||�θ ||2
L2 ||θ ||L∞ .

This is because for each Riesz transform Rj and a given L2-function f , the product
fRjf is in Hardy’s space H1 and satisfies ||fRjf ||H1 
 ||f ||2

L2 . Therefore

∣∣∣∣
∫
�θ · Rj (�θ) · Rm(θ)dx

∣∣∣∣ 
 ||�θ ||2
L2 ||Rm(θ)||BMO 
 ||�θ ||2

L2 ||θ0||L∞ .
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Finally I3 is a sum of terms of the following form:

∫
Rj (�θ)

∂θ

∂xk

∂

∂xl
Rm(θ)dx, j, k, l, m = 1, 2.

Therefore we have the estimates:

|
∫
Rj (�θ)

∂θ

∂xk

∂

∂xl
Rm(θ)dx |
 ||�θ ||L2 ||�θ ||2

L4 .

Integration by parts yields

||�θ ||4
L4 =

∑
j

∫ (
∂θ

∂xj

)4

dx

= |
∑
j

∫
θ
∂

∂xj

((
∂θ

∂xj

)3
)
dx |

= 3 |
∑
j

∫
θ

(
∂θ

∂xj

)2
∂2θ

∂x2
j

dx |


 ||θ0||L∞||�θ ||2
L4 ||�θ ||L2 .

Thus,

||�θ ||2
L4 
 ||θ0||L∞||�θ ||L2 ,

that is

d

dt
||� 3

2 θ ||2
L2 ≤ (c||θ0||L∞ − κ)||�θ ||2

L2 (3.7)

for some universal constant c.
A well known approximation argument allows us to conclude the result: Let θn be

the sequence of solutions to the following problems:

θnt + R(θn) · ∇⊥θn = −κ�θn + 1

n
�θn,

θn0 ∈ C∞
0 (R

2), ||θ0 − θn0 ||L∞ ≤ κ

2n
, ||θ0 − θn0 ||

H
3
2

≤ κ

2n
.

Then ||� 3
2 θn(·, t)||2

L2 is a decreasing sequence on t, uniformly on n. A compacity argu-
ment, taking limits as n → ∞, will give us the desired estimate for θ .

4. Decay of the L∞ Norm

Theorem 4.1. If θ and u are smooth functions onR2 × [0, T ) (or T 2 × [0, T )) satisfying
θt + u · ∇θ + κ�αθ = 0 with κ > 0, 0 < α ≤ 2, θ(·, t) ∈ Hs(R2), 0 ≤ t < T , (or
Hs(T 2)) (s > 1) and ∇ · u = 0, then
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||θ(·, t)||L∞ ≤ ||θ0||L∞
(
1 + αCt ||θ0||αL∞

) 1
α

0 ≤ t < T , (4.8)

where θ0 = θ(·, 0) and C = C(κ, θ0) > 0. Furthermore, when α = 0 we have the
exponential decay ||θ(·, t)||L∞ ≤ ||θ0||L∞e−κt .

Proof. The case α = 0 is straightforward. When 0 < α ≤ 2 let g(t) = |θ(·, t)|L∞ for
0 ≤ t < T . By the maximum principle g(t) is bounded, and since θ(·, t) ∈ Hs , s > 1,
it follows from the Riemann-Lebesgue lemma that θ(x, t) tends to 0 when |x| → ∞.
Therefore there always exists a point xt ∈ R2 where |θ | reaches its maximum, that is

g(t) = |θ(xt , t)|.
Assume that θ(xt , t) ≥ 0 (for θ(xt , t) ≤ 0 a similar argument will work), and let

h ≥ 0, then by the maximum principle

0 ≤ g(t)− g(t + h) = θ(xt , t)− θ(xt+h, t + h) ≤ θ(xt , t)− θ(xt , t + h) ≤ c · h,
where c = sup0≤t<T | ∂θ

∂t
|. Therefore g(t) is a decreasing Lipschitz function and by

H. Rademacher’s theorem it is differentiable almost everywhere.
Let us consider t such that g′(t) exists. For each h > 0 we take xt+h ∈ R2 such that

g(t + h) = θ(xt+h, t + h).

Then we can find a sequence hn → 0 such that xt+hn → x̃ with g(t) = θ(x̃, t). (This
follows by a compacity argument: let R be so that |θ(x, t)| ≤ 1

2g(t) if |x| ≥ R (observe
that when g(t) = 0 everything trivializes), then for h small enough it happens that
|xt+h| ≤ 2R).

We have:

g′(t) = limhn→0
θ(xt+hn, t + hn)− θ(x̃, t)

hn

= limhn→0

[
θ(xt+hn, t + hn)− θ(xt+hn, t)

hn
+ θ(xt+hn, t)− θ(x̃, t)

hn

]

≤ limhn→0
∂θ

∂t
(xt+hn, t̃)

with t ≤ t̃ ≤ t + hn. Therefore, we get the following inequality:

d‖θ(·, t)‖L∞

dt
= g′(t) ≤ limhn→0

∂θ

∂t
(xt+hn, t̃) = ∂θ

∂t
(x̃, t).

Equation (1.1) together with the fact that θ(·, t) reaches its maximum at the point x̃
implies the equality:

∂θ

∂t
(x̃, t) = −u · ∇θ(x̃, t)− κ(−�)α2 θ(x̃, t) = −κ(−�)α2 θ(x̃, t)

= −κ · PV
∫

[θ(x̃, t)− θ(y, t)]

| x − y |2+α dy.
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Thus,

d‖θ(·, t)‖L∞

dt
≤ −κPV

∫
[θ(x̃, t)− θ(y, t)]

| x̃ − y |2+α dy ≤ 0.

We know that θ(x̃, t)− θ(y, t) ≥ 0 for all y ∈ R2. So

I ≡ PV

∫
[θ(x̃, t)− θ(y, t)]

| x̃ − y |2+α dy =
∫

�

+
∫

R2/�

≥
∫

�

,

where � ≡ {y : |x̃ − y| ≤ δ}. We split � = �1 ∪�2

y ∈ �1 if θ(x̃, t)− θ(y, t) ≥ θ(x̃, t)

2
,

and y ∈ �2 otherwise. Now

I ≥
∫

�

≥
∫

�1

= θ(x̃, t)

2δ2+α Area(�1).

On the other hand we have the energy estimate

E(0) =
∫

R2
θ2(x, 0)dx ≥

∫

R2
θ2(x, t)dx ≥

∫

�2

θ2(x, t)dx

≥ θ2(x̃, t)

4
Area(�2),

therefore

I ≥ θ(x̃, t)

2δ2+α (Area(�)− Area(�2)) ≥ θ(x̃, t)

2δ2+α (πδ
2 − 4E(0)

θ2(x̃, t)
).

To finish let us take δ =
√

4E(0)
θ2(x̃,t)

, to get

d‖θ(·, t)‖L∞

dt
≤ −C2(κ, E(0)) · θ1+α(x̃, t) = −C2(κ, E(0)) · ‖θ(·, t)‖1+α

L∞

which yields inequality (4.8).

Corollary 4.2. For solutions of the equation

θt + R(θ) · ∇⊥θ = −κ�θ + ε�θ,

κ > 0, ε > 0, where either θ0 ∈ Hs(R2)(orHs(T 2)), s > 3
2 , or ||�θ0||L4 < ∞, we

have:

||θ(·, t)||L∞ ≤ ||θ0||L∞(
1 + Cκt

||θ0||L∞
||θ0||L2

)

for some universal constant C > 0.

Proof. It follows from the argument of Theorem 4.1 and the observation that �θ(xt , t)
≤ 0 at the points xt where θ(·, t) reaches its maximum value.
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5. Viscosity Solutions

A weak solution of

θt + R(θ) · ∇⊥θ = −κ�θ

will be called a viscosity solution with initial data θ0 ∈ Hs(R2)(Hs(T 2)), s > 1, if it is
the weak limit of a sequence of solutions, as ε → 0, of the problems

θεt + R(θε) · ∇⊥θε = −κ�θε + ε�θε

with θε(x, 0) = θ0. We know that each θε , ε > 0, is classical and θε(·, t) ∈ Hs for each
t > 0 satisfying

||θε(·, t)||L∞ ≤ ||θ0||L∞

1 + Ct
κ||θ0||L∞
||θ0||L2

,

uniformly on ε > 0, for all time t ≥ 0. Furthermore, for s > 3
2 there is a time T1 =

T1(κ, ||θ0||Hs ) such that ||�sθε(t)||L2 ≤ 2||�sθ0||L2 for 0 ≤ t < T1.

Lemma 5.1. Let θ be a viscosity solution of QG with critical viscosity, i.e. α = 1, κ > 0,
then

∫ ∞

0
||� 1

2 θ(·, t)||2
L2dt < ∞.

Proof. For each ε > 0 we have

d

dt
||θε ||2

L2 = 2
∫
θεR(θε) · ∇⊥θε − 2κ

∫
θε�θε − 2ε

∫
|�θε |2

= −2κ||� 1
2 θε ||2

L2 − 2ε||�θε ||2
L2 ≤ −2κ||� 1

2 θε ||2
L2 ,

therefore

||θ0||2L2 − ||θε0 (·, t)||2L2 ≥ 2κ
∫ t

0
||� 1

2 θε(·, t)||2
L2dt,

i.e.
∫ ∞

0
||� 1

2 θε(·, t)||2
L2dt ≤ 1

2κ
||θ0||2L2

uniformly on ε > 0. Taking the limit we get our result.

We also have the following:

Corollary 5.2. For each δ > 0, ε ≥ 0 and n = 0, 1, 2, ... there exists a time tεn ∈
[nδ−1, (n+ 1)δ−1) such that ||� 1

2 θε(·, tεn)||2L2 ≤ δ
2κ ||θ0||2L2 .
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Next we assume that θ0 ∈ H 3
2 and let us consider

d

dt
||� 1

2 θε ||2
L2 = 2

∫
�

1
2 θε�

1
2 (R(θε) · ∇⊥θε)− 2κ||�θε ||2

L2 − 2ε||� 3
2 θε ||2

L2

≤
∣∣∣∣
∫
�θεR(θε) · ∇⊥θε

∣∣∣∣− 2κ||�θε ||2
L2

≤ C
∑
j

||�θε ||2
L2 ||Rjθε ||BMO − 2κ||�θε ||2

L2

≤ C||�θε ||2
L2 ||θ(·, t)||L∞ − 2κ||�θε ||2

L2

= (C||θε(·, t)||L∞ − 2κ)||�θε ||2
L2

for some universal constant C.
Because of the L∞-decay we can find a time T = T (κ, θ0) so that if t ≥ T then

C||θε(·, t)||L∞ < κ uniformly on ε > 0.
Choosing tεn to be the smallest element of the time sequence in Corollary 5.2 which

is bigger than T, we obtain:

||� 1
2 θε(·, tεn)||2L2 ≥ κ

∫ ∞

tεn

||�θε(·, t)||2
L2dt ≥ κ

∫ ∞

(n+1)δ−1
||�θε(·, t)||2

L2dt.

Therefore we have proved the following:

Lemma 5.3. For each δ > 0 there exists a time T = T (κ, θ0) so that

a)
∫∞
T

||�θε(·, t)||2
L2dt ≤ δ

κ2 ||θ0||2L2 .

b) ||� 1
2 θε(·, t)||2

L2 is a decreasing function of t, for t ≥ T and ||� 1
2 θε(·, T )||2

L2 ≤
δ

2κ ||θ0||2L2 .
c) There exists a time tεn on each interval [T +cn, T +c(n+1)) so that (for an adequate

c to be fixed later) ||�θε(·, tεn)||2L2 ≤ κ
c

.

For t ≥ T we may consider

d

dt
||�θε ||2

L2 = 2
∫
�θε�(R(θε) · ∇⊥θε)− 2κ||� 3

2 θε ||2
L2 − 2ε||�θε ||2

L2

and observe that
∣∣∣∣
∫
�θε�(R(θε) · ∇⊥θε)

∣∣∣∣ =
∣∣∣∣
∫
�θε(R(θε) · ∇⊥θε)

∣∣∣∣

=
∣∣∣∣∣∣
∑
j

∫
∂θε

∂xj
R(
∂θε

∂xj
) · ∇⊥θε

∣∣∣∣∣∣

 ||�θε ||3

L3 ≤ ||�θε ||L2 ||�θε ||2
L4 ≤ ||�θε ||L2 ||� 3

2 θε ||2
L4 .

Therefore:

d

dt
||�θε ||2

L2 ≤ (C||�θε ||L2 − κ)||� 3
2 θε ||2

L2 .
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Let us observe now that our previous choice of T was made in such a way that
C||�θε ||L2 ≤ κ

2 . Then for t ≥ T we obtain the decrease of ||�θε ||L2 , together with the
sequence of "uniformly spaced" times tεn , where ||�θε(·, tεn)||L2 ≤ κ

2C .

We conclude the existence of other time T̃ = T̃ (κ, θ0) so that
∫ ∞

T̃

||� 3
2 θε ||2

L2dt ≤ C(κ)

uniformly on ε > 0.
Assuming now that θ0 ∈ H 2 we get:

d

dt
||� 3

2 θε ||2
L2 = 2

∫
�

3
2 θε�

3
2 (R(θε) · ∇⊥θε)− 2κ||�2θε ||2

L2 − 2ε||� 5
2 θε ||2

L2 .

We have:
∫
�

3
2 θε�

3
2 (R(θε) · ∇⊥θε)dx

= C

∫
�θε�(R1(θ

ε · R2(θ
ε))− R2(θ

ε · R1(θ
ε)))dx

= C

∫
�θε(R1(θ

ε · R2(�θ
ε))− R2(θ

ε · R1(�θ
ε)))dx

+C
∫
�θε(R1(�θ

ε · R2(θ
ε))− R2(�θ

ε · R1(θ
ε)))dx

+ 2C
∫
�θε[R1(∇θε · R2(∇θε))− R2(∇θε · R1(∇θε))]dx

= C[I1 + I2 + 2I3].

We have that I1 = 0, and

|I2| =
∣∣∣∣
∫
R2(�θ

ε) ·�θε · R1(θ
ε)−

∫
R1(�θ

ε) ·�θε · R2(θ
ε)

∣∣∣∣

 ||�θε ||2

L2 ||θε ||BMO ≤ ||�θε ||2
L2 ||θε ||L∞ .

Again this is true because fRj (f ) is in Hardy’s space H1 for each L2-function f .
To estimate I3 let us observe the following:

|I3| 
 ||�θε ||L2 ||�θε ||2
L4 .

And we have

||�θε ||4
L4

∼=
∑
j

∫ (
∂θε

∂xj

)4

≤ 3
∑
j

∫
θε
(
∂θε

∂xj

)2

|∂
2θε

∂x2
j

|


 ||θε ||L∞||�θε ||2
L4 ||�θε ||L2 ,

which implies

|I3| 
 ||�θε ||2
L2 ||θε ||L∞ .
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Therefore we obtain

d

dt
||� 3

2 θε ||2
L2 ≤ (C||θε ||L∞ − κ)||�θε ||2

L2 .

In particular one can find a time T = T (κ, θ0) so that for t ≥ T , ||� 3
2 θε(·, t)||L2 is

bounded by ||� 3
2 θε0 ||L2 and decreasing (||θε(·, t)||L∞ ≤ κ

2C ). We get
∫ ∞

T

||�θε ||2
L2dt < ∞

uniformly on ε > 0. Then one can repeat this process now with �2 and �
5
2 and so on.

Therefore we have completed the proof of the following:

Theorem 5.4. Let θ be a viscosity solution with initial data θ0 ∈ Hs , s > 3
2 , of the equa-

tion θt + R(θ) · ∇⊥θ = −κ�θ (κ > 0). Then there exist two times T1 ≤ T2 depending
only upon κ and the initial data θ0 so that:

1) If t ≤ T1 then θ(·, t) ∈ C1([0, T1);Hs) is a classical solution of the equation
satisfying

||θ(·, t)||Hs 
 ||θ0||Hs .

2) If t ≥ T2 then θ(·, t)∈C1([T2,∞);Hs), is also a classical solution and ||θ(·, t)||Hs

is monotonically decreasing in t, bounded by ||θ0||Hs , and satisfying
∫ ∞

T2

||θ ||2Hsdt < ∞.

In particular this implies that

||θ(·, t)||Hs = O(t−
1
2 ) t → ∞.
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