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Abstract: We study the initial value problem for dissipative 2D Quasi-geostrophic equa-
tions proving local existence, global results for small initial data in the super-critical case,
decay of LP-norms and asymptotic behavior of viscosity solution in the critical case.
Our proofs are based on a maximum principle valid for more general flows.

1. Introduction

The two dimensional quasi-geostrophic equation (QG) is an important character of Geo-
physical Fluid Dynamics, see [9, 17 and 15]. It has the following form

O +u-V)0 =—k(—A)20, (1.1)
w=Viy, 0=—(-0)y,

where v is the stream function. Here 6 represents the potential temperature, u the veloc-
ity and « is the viscosity. In this paper we examine existence, regularity and decay for
solutions of the initial value problem. We will consider initial data 6(x,0) = 6y(x),
x € R? or T2. The parameters o, 0 < o < 2, and k > 0 will be fixed real numbers.

The inviscid equation (k =0) was studied analytically and numerically by Constantin,
Majda and Tabak [9]. They showed that there is a physical and mathematical analogy
between the inviscid QG and 3D incompressible Euler equations. For both equations it
is still an open problem to know if there are solutions that blow-up in finite time. For
further analysis see [11, 13 and 3].

If « > 0, Constantin and Wu [10] showed that viscous solutions remain smooth for
all time when « € (1, 2]. In the critical case ¢ = 1, under the assumption of small L*>°
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norm, the global regularity was proven in [8]. Chae and Lee [4] studied the super-criti-
cal case 0 < o < 1 proving global existence for small initial data in the scale invariant
Besov spaces. Many other results on the dissipative 2D Quasi-geostrophic equation can
be found in [18, 2, 22-24, 19 and 14].

Ref. [18] contains a proof of a maximum principle for (1.1):

10C¢, DllLr < l6ollLr forl < p <oco forallt > 0.

For k = 0, the L? norms (1 < p < o0) of 8 are conserved for all time. In particular,
that implies that energy is also conserved, because the velocity can be written in the
following form

= (—a,QA—le, BXIA_19> = (—R20. R16).

where A represents the operator (—A)% and R; are the Riesz transforms (see [20]).

In Sect. 2 we give a different proof of Resnick’s maximum principle (see ref. [8]),
showing a decay of the L? norms. In Sect. 3 we present several estimates leading to
local existence results. Section 4 contains one of the main results, namely the decay of
the L°°-norm.

The case @« = 1 is specially relevant because the viscous term k A6 models the
so-called Eckmann’s pumping (see ref. [1] and [7]) which has been observed in quasi-
geostrophic flows. On the other hand, several authors (see ref. [18] and [10]), have
emphasized the deep analogy existing between Eq. (1.1) with « = 1 and the 3D incom-
pressible Navier-Stokes equations. In Sect. 5 of this paper we consider the notion of
viscosity solution for the Eq. (1.1) adding an artificial viscosity term € A8 to the right-
hand side, and taking the limit, as € — 0, of the corresponding solutions with the same
initial data. We prove that for the critical case («=1) there exist two times 771 < T3
(depending only upon the initial data 6y and ¥ > 0), so that viscosity solutions are
smooth on the time intervals ¢ < T7 or t > T5. Furthermore for ¢t > 7> we have a decay

1
of the Sobolev norm |0 gs = O(t™2). .
Now we list some notations that will be used in the subsequent sections. As usual, f
is the Fourier transform of f, i.e.,

1

T® =55

/ Fx)e ¥ dx.
And I* = A™%, J* denote the Riesz and Bessel potentials, given respectively by

ErE) =157 fE)  JrE =0+ 1EH 72 7).

Throughout the paper we will make use of Sobolev’s norms || f|| zs and of the duality
of B.M.O. (bounded mean oscillation) with Hardy’s space H!. We refer again to [20]
for the corresponding definitions and properties. Besides the “<” symbol which has a
very precise meaning, we will make use of the following standard notation: “a << b”
if there exists a constant C > 0 (independent of all relevant parameters) so thata < Cb.

Finally, it is a pleasure to thank C.Fefferman for his helpful comments and his strong
influence in our work.
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2. Maximum Principle

In this section we present a proof, using fractional integral operators, of the maximum
principle and decay of the L” norms for the following scalar equation:
0 +u-V)0 =—kA%0.

Throughout this paper it will be assumed that the vector u satisfies either V - u = 0
or u; = G;(0), together with the appropriate hypothesis about regularity and decay at
infinity, which will be specified each time, in order to allow the integration by parts
needed in our proofs.

Proposition 2.1. Let 0 <a < 2, x € R% and 0 € S, the Schwartz class, then
[0(x) —0(y)]

o _
A%O(x) = Cy PV =y dy, (2.2)
where Cy > 0.
Proof. We write A* as an integral operator (see [20])
—A,0
AO() = A2 (—A0) = ¢y [ 200y
lx —y|*
Ay[0(x) — 6
. / Ao =001
lx—yI[®

Ay[0(x) — 0
=limHoca/ L) 601
[x—y|>€ [x—y|*
= lime—0ca AZO,

ri-9%)
729 (9)"

where ¢, =

An application of Green’s formula gives us

A% () = @/ [90) = 0]

dy
[x—y|>€ | X =Yy |2+a

0—
+ / 00— 61— do ()
|x—y|=¢ n

/ 1 a0 (x) —G(Y)]d
— o
[x—y|=€ | X =Yy |o¢ 87’
=h+hL+15,

where % is the normal derivative and ¢, > O . Furthermore

»

1 _
L=—+ [0(x) — 0(]do (y) = O(e*™),
ea+l v —y|=e
1 [0 (x) —O(»)] _
I = —a/ ——"Tdo(y) = 0(e*™),
€% Jix—yl=e an
therefore
lime_olh =lime_olz =0
which yields (2.2).
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Proposition 2.2. Let0 <a <2, x € T2 and 0 € S, the Schwartz class, then

A =Co Y PV/ @ =601

— 24«
2 | X vV
veZz? 7 | Y |
with Cy > 0

PI"OO?.

AOIQ(x) = Z |U|a§(]))€iv.x - _ Z |v|(¥—2£\0(v)ei11»x.

[v|>0 [v|>0

(2.3)

Let Oc(x) = (Ix[* e * pc(x), where (Ix|*72)e = [Ix|*72 - x(2])] with x €

C>(0, 00),

0if Ix[=<1

x(x) =
Lif |x|=2

and ¢ (x) = e_zgo(’e—‘) is a standard approximation of the identity: 0 < ¢ € C*, sopp C

Bj and [ ¢ = 1. Now we can write
A%O(x) = —limeo Yy Pe(v)AD(v)e™

—lime_g (Z <I>€(v)ei”'x) * (Z @(u)ei”'x) .

Poisson’s summation yields:

A% (x) = —lime o (Z B(x — v)) « AB(x)
—limeo Y /T Bl -y~ MAGE) — 00y

=limeso ) fT A@) @ —y = v)(OW) = 0(y)dy.

Since
B = (XD () - Ge(n) = (XD () - Glen)

AD (1) = A(IX|7"2)) () - Blen) + O(e),
(X1 (y) = —= — / 21— (X,

[yl €
A D)) = —2 o~ / e (1 - x(Eyar,

|Y| €

We get easily

1

~ 5 1
Z A(P)(y —v) =Co Z m + 0 <Z |)}_WO(@O

for some 6 > 0.
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Therefore:
A%9(x) = lime o E / A(@)(x — y — v)(O(x) — O()dy
T2

=cc,2pv/ 0 =000,
v T

2| x—y—v [FHe

Proposition 2.3. Let 0 <o <2, x € RZand0 € S (the Schwartz class). We have the
pointwise inequality

20A%0(x) > A% (x). (2.4)

Proof. Whena = 0, = 2 the result is well known. For the remainder cases Proposition
2.1 (for the periodic case we use Proposition 2.2) gives us:

[0(x) —0(y)]

A% (x) = PV e dy.
Therefore,
2 —
OA“O(x) = PV / [0G7 —0(0)0)]
|x —y [
_ | [0(y) — 6(x)]? 1 [02(x) — 02(»)]
> lAOZ@Z( )
= X).

For a more general statement of Proposition 2.3 see [12]. The inequality (2.4) also holds
in the periodic case.

Lemma 2.4. With0 <o <2, x € R, T? and 9, A*0 € LP with p =2" we get:

1 «
/|9|p_26A“9dx > —f | A207 |2 dx. (2.5)
p

Proof. The casesa = 0 and o = 2 are easy to check. For0 < o« < 2 we apply inequality
(2.4) k times

1
/ 61720 A%0dx = & / 10172 A% dx = / 61762 A%0%dx

Y%

| 1
> Zf|9|P*4A“94dx > 2—k/|9|P*2"A“92"dx.

Taking k = n — 1 and using Parseval‘s identity with the Fourier transform we obtain
inequality (2.5).
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Lemma 2.5 (Positivity Lemma). For 0 < a < 2, x € R%2, T2 and 6, A%9 € LP with
1 < p < oo we have:

f 1017720 A%0dx > 0. (2.6)

Proof. Again the cases « = 0 and o = 2 are easy to check directly. For 0 < o < 2 we
have

/|9|1’_29A°‘0dx =1imH0/ 101720 A%0dx =1imHO/ 101”20 1dx,

where I} was defined above in (2.4). Then a change of variables yields

/|9|P 2011dx —ca// 01772 (08 (x )%dwx
lx—yl=€

0 0
/f | 16172 (06 (y )[|( 0o |2(sz]
xX—y|=e

And we get

/|0|1’_2911dx
0 0
=—ca//| (872006 — o1 2(y>9<y>)%
X—Yy|=€
>0

dydx.

Corollary 2.6 (Maximum principle). Let 6 and u be smooth functions on either R* or
TzsatisfyingG,+u-V9+KA“9 =0withe >0,0<a <2andV -u =0 (or
u; = Gi(0)). Then for 1 < p < oo we have:
6@ e < 116O)Lr.
Proof.
d -2 o
= 101Pdx = p | 1017 °0[—u - VO —kA*0]dx
- —Kp/ 1617720 A%0dx < 0,
where we have use the fact that V - u = 0 (or u; = G;(0)) and the positivity lemma.

Remark 2.7. When p = 2" (n > 1) we have by Lemma 2.4 the following improved
estimate:

—||9||L,, = —kp f 1017720 A0 dx

< _K/ | AZ07 2 dx.
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In the periodic case this inequality yields an exponential decay of ||0]r, 1 < p < oo.
For the non-periodic case Sobolev’s embedding and interpolation will give us the fol-

lowing
d 2\
S 16lL, < — /ezfadx
r=1+4

—c(lelg,) 7,
where C = C(k, «, p, ||6oll1) is a positive constant. It then follows
1160117 »

(14 €Ctl601175)

IA

O, D7, <

o=

o

with € = -1

Remark 2.8. The decay for other L?, 1 < p < oo, follows easily by interpolation.
However, the L* decay needs further arguments that will be presented in Sect. 4.

3. Local Existence and Small Data

The local (in time) existence theorem has been known (see refs. [9 and 3] ) for the invis-
cid quasi-geostrophic equation when the initial data belong to the Sobolev space H*,
s > 2. Here we will improve slightly those results making use of well known properties
of the space of functions of bounded mean oscillation (B.M.O.), namely the following:

a) J% a > 0, maps B.M.O. continuously into Ay (R?). Let us recall that when 0 <
o < 1 we have (see [21])

Lf ) — fOI

Ao(R?) 1 fllag = I f1lL + supxy P

b) If R is a Calderon-Zygmund Singular Integral and b € B.M.O., then we have the
“commutator estimate’:

[IR(S) — bRz < I fll2l1bllBmo-

It then follows that if R has an odd kernel and f € L?, then f R(f) belong to the Hardy
space H! and satisfies (see [5]):

R flln < 111175

We shall also make use of the following, calculus inequality (see [16]): If s < 0 and
1 < p < oo, then:

W - 8) = FI@le <NV fllzll T gllee + 11gle 1T fllLe.

This inequality follows from the estimate for the bilineal operators considered by
R. Coifman and Y. Meyer [6] (Operateurs multilinearies (Ondelettets et Operateurs I1I),
Theorem 1, p. 427): Define

(b, f) = / / SEED (e B(E) Fndedn,
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where the symbol p satisfies
IDEDEpE. M| < (1 + [€] + )~ 1*I=1A!
for || + |8] <2n+ 1, &, n € R". Then we have the estimate:
T (B, Mgz < 1Bl f1lg2-
In our case, where n=2 (2n + 1 = 5), it implies the following inequality:

[IAS(R(O) - V1) — R(6) - VEA |12 < [|A || j25up|q|<s||RYAB]| Lo,

o~

Eﬁa‘ f (&) are higher Riesz transforms. Therefore

where I@‘(S) =

1A% (R(©) - V+6) = R(®) - VEA%61|2 < 14%6|,2 (116112 + 114376 2)

for every € > 0.

Theorem 3.1 (Local existence). Let « > 0 and k > 0 be given and assume that 0y €
H™ m + % > 2. Then there exists a time T = T (k,||A™0||;2) > 0 so that there

is a unique solution to (1.1) in CY([0, T), H™). Furthermore, when k = 0 the same
conclusion holds for m > 2, and in the critical case « = 1 (k > 0), we have local
existence for all initial data 6y such that || Afpl|| 4 < oo.

Proof. If k > 0 we have:

1d o

ﬁHA"’eHiz < ‘f A"O{A" (R(®) - V0) — R(0) - VLA"’G}‘ — K||A"T360]13,
<1861, (116112 + 14240112 ) — llA" 30112,

for every € > 0. Taking € =m + 5 — 2 we get

1d

1
5 77 1A"OIT: < A", + 11011211 A" 6117

which yields the desired results.
In the case k = 0, m > 2, we proceed in a similar manner:

1d
EZ||A’"9||i2 = /A’“Q{Am(R(e)-vie) — R(O) - V*+A"6)

< 187112 (1611, + 1146112

Therefore taking € = m — 2 > 0 one obtains:

1d
MHA’"@H@ K A0, + |IA™0117, 11611 2.
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Finally if « = 1, ¥ > 0, let us consider:

200 d
Z||—||L4—4 Z /( ) S (RO) - VH0) —dc ||A2< >||L2
Xj J

j=1.2
30 n
<4y , (R(—) Vo) —Cie Y ||_||Ls
j=12 j=12
06
<G Y = ||L5 Cik Y ||—||L8,
j=12 j=12

where C1, C» are some universal positive constants.
Since

||89|| < || || ||
ax]' L= 8x,- L* L

one obtains:

d 0 00 5 30
S el = O Y Bl 1P = Cic Y
7 j |IalelL4_ 2 j IIaxj||L4||axj|| 1k ||

j=12
3
2
< — <I| -1I} ) )
K

for some positive constant C3. And from this estimate the results follow easily.
In the supercritical cases, 0 < o < 1, we have the following global existence results
for small data.

Theorem 3.2. Letk > 0,0 < « < 1, and assume that the initial data satisfies ||0p|| gm <
X (where m > 2 and C = C(m) < 00 is a fixed constant). Then there exists a unique
solution to (1.1) which belongs to H™ for all time t > 0.

Proof. We have
1d 2 m 2 g 2 m 2 m 3
5 77 UIB1IZ2 + [1A61122) < —«l|AZ6I7 + CAUBlI 2 [|A™611Z, + [1A761172)
— k]|A" 2013,
Since
IA™012, < [|A26]1%, + [|A™F26]]%,

we obtain the inequality:

2dt(IIGIILz +11A"0117.) < IIA"6117.(CAI6117. + IIA’"@IILz)2 —K)

for some fixed constant C < o0, and the theorem follows.
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In the critical case @ = 1, k¥ > 0, we have the following:

Theorem 3.3 (Global existence for small data). Let 6 be a weak solution of (1.1) with
3

an initial data 6y € H? satisfying ||0p||p < % (where C < o0 is a fixed constant).

Then 6 € C'([0, 00); H%) is a classical solution.

Proof. Using Eq. (1.1) we have
1d 3 5 3.3 1 2
571820 = | A26AZ(R) - V70) — «|[AB]] .

Integration by parts gives us the following:

Rvas
A"YR©®) - V1O)(x) =5/%Vy|9(y)

= C[R1(0 - R2(0)) — R2(6 - R1(0))]

dy

for a suitable constant C. Therefore:

EE”A%OHiZ - fA%GA%(R(e) - VE0)dx — k]| 0] 12,
- C/A@A(Rl(é - Ra(6)) — Ra(0 - Ri(0)))dx — ]| A0]|2,
- C/AH(RI(AQ - Ry(8)) — Rao(A8 - Ry (9)))dx
+ C/ AO(R1(0 - R2(A0)) — R2(8 - R1(A0)))dx

+2C / AG[R1(VO - Ry(VO)) — Ry(VO - R1(VO))]dx — /<||A9||iz
= Cll + I + 23] — «||AG] 2.

Our estimate will follow from the following observations:

L=— / O[R1(AO)R2(AO) — Ry(AO)R1(AB)] =0

1] <

le(AG)AGRZ(G)‘ + ‘/ R2(AO)AOR; (0)

< Y IR (A0)AOIxI0] Bro < |IAO]172110]] L.
J

This is because for each Riesz transform R; and a given L?-function f, the product
fR;f is in Hardy’s space H! and satisfies || f R; f|l3' < ||f||iz. Therefore

V A6 - R;(AB) - Ry (0)dx

L AR @)l smo < 11AO]12,1160] |0
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Finally /3 is a sum of terms of the following form:
a0 0
/Rj(AO)——Rm(Q)dx, Jokl,m=1,2.
dxy 0x;
Therefore we have the estimates:
I/R (AO) Rm(9)dx < 1011211 AB][7-

Integration by parts yields

176113, = Zf (ax,)
IZ/ oy ((ax,f)dx'

=1y fo(in) G

< ||90||L°°||A9IIL4||A9||L2-
Thus,
|IA9lli4 < 6ollLoe]|AB]] 2,

that is
d 30002 2
E||A29||L2E(C||90||L°°_K)||A9||L2 3.7

for some universal constant c.
A well known approximation argument allows us to conclude the result: Let 6" be
the sequence of solutions to the following problems:

1
0" + R(O"™) - V10" = —k AO" + —AO",
n
2 K K
by € Co~(R), ||90—98||L°c§2—n, 160 — 61 s =om
Then ||A%9” G, t)||2L2 is a decreasing sequence on t, uniformly on n. A compacity argu-
ment, taking limits as n — oo, will give us the desired estimate for 6.
4. Decay of the L°° Norm
Theorem 4.1. If0 and u are smooth functions on R* x [0, T) (or T* x [0, T)) satisfying

O +u-VO+kA =0 withe >0,0 <a <2 0(,1) € H(R?),0<1t < T, (or
H(T%) (s > 1)and V - u = 0, then
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NS
16C. Dl < —W0lle= gy o7, 4.8)

(14 aCrl60]19w)®

where 6y = 0(-,0) and C = C(k,0y) > 0. Furthermore, when o = 0 we have the

exponential decay ||0(-, t)||Lo < ||00||pce ™ ".

Proof. The case o = 0 is straightforward. When 0 < o < 2 let g(t) = |0(-, t)|p for
0 <t < T. By the maximum principle g(¢) is bounded, and since (-, t) € H*,s > 1,
it follows from the Riemann-Lebesgue lemma that 6 (x, ¢) tends to 0 when |x| — oo.
Therefore there always exists a point x; € R> where |0| reaches its maximum, that is

g() =10(xs, 1)].

Assume that 6(x;,t) > 0 (for 8(x;,¢) < 0 a similar argument will work), and let
h > 0, then by the maximum principle

0=<g@)—glt+h) =001 —00p,t+h) <00, 1) =00, t+h) <c-h,

where ¢ = sup0§,<1|%|. Therefore g(¢) is a decreasing Lipschitz function and by
H. Rademacher’s theorem it is differentiable almost everywhere.
Let us consider t such that g’ () exists. For each & > 0 we take x;; € R? such that

gt +h) =0, t + h).

Then we can find a sequence i, — 0 such that x;,, — x with g(t) = 6(x, t). (This
follows by a compacity argument: let R be so that |6 (x, 1)| < % g(®) if |x] > R (observe
that when g(#) = 0 everything trivializes), then for h small enough it happens that
|Xt4n] < 2R).

We have:

O Xthy, t +hy) —O0(X, 1)
hy
O (Xithys t +hn) = O0ign, 1) | O(Xign, 1) —O(X, 1)
+
hn hy

g'(t) = limp, 0

=limp,—0 [
. 20 -
< llmh,,—>05(xt+h,,s 1)

with t < f <t + h,. Therefore, we get the following inequality:

dllo(, 1)l e

(1) <li 80( 1) Q(N 1)
= im —(x 1) = —(x,1).
dt 8 = h,—0 a1 t+h, 3t

Equation (1.1) together with the fact that 6(-, #) reaches its maximum at the point X
implies the equality:
a0 _ - o a
E(x, t)y=—u-VO(x,t) —k(—A)20(x,t) = —k(—A)20(x,1)
[0(x,1) —0(y,1)]

=—x-PV
| x —y [2te

dy.
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Thus,

dllo(, )|l e [0G, 1) —0(y, )]
IR o PV
a - oy e

We know that 6(%, 1) —6(y, 1) > 0 forall y € R2. So

0(x,t) —0(y,t
[=py [L&D 2(y )]dyz/-l-/ z/,
| X —y [t e Jryae Ja

where Q = {y : |X — y| < §}. We split Q@ = Q; U2

. N O(x, 1)
yean if  0& =000z ——,

and y € Q; otherwise. Now

I>/ >/ G(X,I)A Q1)
= rea .
= = 1 2§2ta 1

On the other hand we have the energy estimate

E(O)=/ 92(x,0)dxzf Qz(x,t)dxzf 0%(x, t)dx
R2 R2 Qo

02(%, t
> LArea(SZz),
4
therefore
/> 0(x,1) (Area(Q) — Area(Q)) > t9()?,t)(ms2 4E(0) )
————(Area — Area - ).
— 2§82+ 2= 282+« Qz(i’t)
. _ [4E(0)
To finish let us take § = ‘/ez(i,z)’ to get
dallec, e -
TL < —CX(k, E0)) - 0", 1) = —C(k, E(0)) - [0C, DI 5

which yields inequality (4.8).
Corollary 4.2. For solutions of the equation
O+ R©®) - V0 = —k A0 + €O,

k > 0, € > 0, where either 6y € H*(R%)(or H(T?)), s > % or ||ABpl| 4 < oo, we
have:

160!l 2
(1 T Ckt HeonLoo)

[16oll}2

NOC, OllLe <

for some universal constant C > 0.

Proof. Tt follows from the argument of Theorem 4.1 and the observation that A6 (x;, t)
< 0 at the points x; where 6 (-, t) reaches its maximum value.
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5. Viscosity Solutions
A weak solution of
0, + R(®) - VY0 = —k A6

will be called a viscosity solution with initial data 8y € H*(R?)(H*(T?)), s > 1, ifitis
the weak limit of a sequence of solutions, as € — 0, of the problems

0F + R(6°) - V310¢ = —kc AOC + e AG*

with 6€ (x, 0) = 6y. We know that each 6¢, ¢ > 0, is classical and 8¢ (-, r) € H* for each
t > 0 satisfying

JEOES

R
I+ Ct g 2

N0 (. Ol <

uniformly on € > 0, for all time ¢+ > 0. Furthermore, for s > % there is a time 77 =
T1(k, [|00||ms) such that [|[A*6€(2)||;2 < 2[|A%6p||2 for O <t < T7.

Lemma 5.1. Let 6 be a viscosity solution of QG with critical viscosity, i.e.a = 1, k > 0,
then

o0 1
/ IIA20(-, D)][3,dt < oo.
0

Proof. For each € > 0 we have

—||¢9f||L2 = /GGR(GE)-VLQE —2/</9€A9€ —ze/|A9€|2

= —2c|[A26°|, — 26| A6° |, < —2c||A26°1%,
therefore
t
1
1601175 — 1165 ¢, D117 > 2:</ IAZ6¢(, )]]3,dt,
0
i.e.

o0 1 e 2 1 2
A [IA26€(, 1)|];2dr < ﬂlléolle

uniformly on € > 0. Taking the limit we get our result.

We also have the following:

Corollary 5.2. For each § > 0, ¢ > O and n = 0, 1,2, ... there exists a time t;, €
1
[n8=", (n + 1)6™") such that || A20°(-, 111>, < 51160112,
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3 .
Next we assume that 6y € H 2 and let us consider
€ Loent € Lpey €2 _ 3 €2
—||A29 17, = A20°A2(R(O7) - V70°) = 2k ||AO7[| 72 — 2€||A267]|2

AOER(O°) - V1€

— 2k||A6]13,

< CY IAOIIIR 0% Bro — 2| AO°|17,

< CIIAG|[7,110C, )l — 2k || AO |7

||L2
= (Cl16° (-, D)L — 26)|| A6 17,

for some universal constant C.

Because of the L*°-decay we can find a time T = T (k, 6y) so that if r > T then
C||6¢ (-, t)||L> < k uniformly on € > 0.

Choosing z;; to be the smallest element of the time sequence in Corollary 5.2 which
is bigger than T, we obtain:

[e¢]

1A26°C, 19112, = K/ 1A6¢ (., D) 2drt = K/ 146 (., 1)]12.dt.
1€ (n41)5-1
Therefore we have proved the following:
Lemma 5.3. For each § > 0 there exists a time T = T (k, 0y) so that
a) [7711A6€(C, D12,dt < |160]12,
b) ||A%0€(-, t)||i2 is a decreasing function of t, fort > T and ||A%9€(', T)||i2 <

) 2
2160112,
c) There exists a time t;; on each interval [T +cn, T 4 c(n+ 1)) so that (for an adequate
c to be fixed later) || AO€ (-, )12, < &

L2 =¢"

For t > T we may consider

||Aef||L2 = /A@EA(R(GE)-VJ‘GE)—ZKHA%OGHiZ — 2€||A6¢ |2

||L2
- |Z/£R( ) - Vo€
; 0x;

3
K AN 5 < A0S 21| AO|[74 < [|AO|2||AZ6¢]|7,

and observe that

/

Therefore:

d 3
EIIAGGIIiz < (Cl|A6°] 2 —K)IIAZGEIIiz
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Let us observe now that our previous choice of T was made in such a way that

C||A6¢|| 2 < 5. Then fort > T we obtain the decrease of [|A6€|| 2, together with the
sequence of "uniformly spaced" times 7, where [[AO€(-, t)|]12 < 55

We conclude the existence of other time 7 = T (k, 6p) so that
[ [[A26°|[],dt < C(k)
T

uniformly on € > 0.
Assuming now that 6y € H? we get:

%HA%efniz - /A%QEA%(R(eé) L VE0) — 26||A2691 2, — 2e]|A 36|12,
We have:
fA%GEA%(R(ef) - VL69)dx
=C / AGCA(R1(0€ - Ra(6°)) — Ra(6° - R1(09)))dx
- c/ ABE(Ry (6F - Ry(A6)) — Ra(6° - R1(AH9)))dx
+ C/ AG°(R1(ABC - Ra(6°)) — Ra(ABC - R1(6°)))dx
+2C/A96[R1(v96 - Ry (VO)) — Ry(V6 - R (V6%))]dx
= Cl + b +213).
We have that I} = 0, and
|| = ‘/ Ry (A6°) - AOC - R1(P°) — / R1(A6°) - AGC - Ry (6°)
K NAG|[3,116%N Bro < |1AOCI12,110%]| L.

Again this is true because f R;(f) is in Hardy’s space H! for each L?-function f.
To estimate I3 let us observe the following:

|I3] < [|AG| 21| AO€| 13 4.
And we have
90\ * 30\ 2 926¢
AGE||4, = f ) <3 /96
1A6°1174 ; ) = ; 3 |ax%|

L 101121 AOC1I7al1A6€] 12,

which implies

|I3] < [|AOC]13,116¢ Lo
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Therefore we obtain

d 3
EnAzeinz < (Cl16%]| L — K| AG]7,.

In particular one can find a time T = T (k, ) so that fort > T, ||A%9€(~, B)|l2 is
bounded by ||A%95||Lz and decreasing (||0€(-, 1)|[L= < 55). We get

o0
ﬁwmm@m<m
T

uniformly on € > 0. Then one can repeat this process now with A% and A2 and so on.
Therefore we have completed the proof of the following:

Theorem 5.4. Let 0 be a viscosity solution with initial data 0y € H®, s > %, of the equa-

tion 0, + R(0) - VX0 = —k A6 (k > 0). Then there exist two times T; < T» depending
only upon k and the initial data 6y so that:

1)Ift < T then 0(-,t) € CL([0, T}); HY) is a classical solution of the equation
satisfying

HOC. Dllas < 6ol ns-

2)Ift = TrthenO(-,t) e CY([T», 00); HY), isalso a classical solution and HOC, )] s
is monotonically decreasing in t, bounded by |0y || gs, and satisfying

o0
/|m&m<w
T;

2
In particular this implies that

060G, Ollgs = O¢™7) 1 — oo.
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