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We present a maximum principle in integral form for optimal 
control problems whose system equations involve delays in the state 
and delays in the derivative of the state. The results are obtained 
for a very general class of neutral functional differential equations 
which includes as a special case the systems 

x(t) + Ax(t - h) = Bx(t) + Cx(t - h) + Du(t), 

which have been studied extensively (as in [4]) and arise in many 
applications. The class of control problems considered include prob
lems for which one wishes to minimize Jl x2(t) at while requiring 
that u(t)EUCRn, *G[0, T], and either x\ [T-h,T] He in a manifold 
in AC([T-h, T], Rn) or x(t) =f(*) on [T-h, T], f a fixed absolutely 
continuous function. These functional boundary conditions arise 
naturally since the "state" in neutral systems of the above type is a 
point in AC([-h, 0], Rn). 

Letao, toy and a be fixed in R with — <*> <ao<to<a< <*>, 1 = [ao, a), 
I' — [/o, a)> For x continuous on I and t in ƒ', the notation F(x(-), t) 
will mean F is a functional in x, depending on any or all of the values 
tf(r),ao^T^. Fo r*G/ ' , l e t 

P n t 
D(x(-), t) = x(t) - X oi(t)x(hi(t)) - I de[v(t, 0)]x(6). 

z=i ^ «o 

Assume ai : If-^Rn2 is continuous and of bounded variation, / = 1, • • - , 
p; hiiI'—>R is continuous and strictly increasing, and there exists 
A > 0 such that a0ûhi(t)<t—A, 1 = 1, - - -, p. Let v(s, -):[a0, <») 
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-*Rn be continuous and of bounded variation for all sÇzI', v(s, 0) = 0 
for 5—A^Ö, and z>(-, 6) be of bounded variation dver [/0, a) for all 
0 £ [«o, #)• Assume there exists L > 0 such that f™0 de\v(t, d) —vis, d) \ 
^L\t — s\ for s, t G I , and there is a continuous nondecreasing func
tion 8:R->Rf with 5(A) = 0 , such that for all tEI', all eG[0, / - a 0 ] , 

var *(*, s) + E | a i ( 0 | ^ 5(e). 

Let °lLCi?ri U:/'-^subsets of cll. Define ti= {u:u measurable on I', 
u(t) G U(t) for / G / ' } . Let g be an open, convex set in Rn and assume 
/ :C ( J , gJX'UXI'—>i?n is C1 in xt Borel-measurable in (w, /). Given 
compact X C 8 , wGQ, suppose there exists m(t) ÇzLl(If) so that for all 

ter,xec(i,x), 
! /(*(•) , « ( 0 , 0 1 ^*»(0 and | #[*(• ) , « ( 0 , * ; * ] | a w ( 0 | W | 

if ^GC([«o, j ] , -Rw), where df is the Fréchet differential of ƒ with re
spect to x. Given <pGC([ao, Jo]> 9)» ^ G ^ , we define a solution on 
[a0jr] of 

(1) x(6)=<p(6) on [a0, ^o], 
( 2 ) r f ( Z ? ( x ( . ) , 0 ) / * = / ( * ( - ) , « ( 0 , Ö , 

to be a continuous function x satisfying (1) such that D(x(-), t) is 
absolutely continuous on [to, r ] and (2) is satisfied a.e. on [to, r ] . 

To simplify expressions, assume /iG(Jo, #) is fixed. Choose A 
G[0 , h— to] and let L_M, • • • , L0» • • • , i m be given C1 functions 
from C([a0l J0], Q)XC([h-h, hi S) into R. 

Problem 1. Minimize /[«p, w]=Lo(#*0> #*i-Mi) subject to <pG 
C([ao, Jo], 9)» ^ G Œ, # the solution to (1), (2) on [a0t h], and 
Li(xt0, xtl^hltl)=09 i = l, • • • , m, Li(xto, xh-httd ^ 0 , i=—/x» # • * » 
— 1, where x*0 is the restriction of # to [c*o, Jo], and xh-h,h is the re
striction of x to [h — h, h]. 

If (<p*, w*) is a solution of the problem with response z, let rj*(t, 6) 
be the wXw matrix function guaranteed by the Riesz representation 
theorem such that rj*(t, t) = 0, rç*(/, •) is left-continuous except at /, 
and 

#[*(•) , «*(0, J; *] = f *[?*(', 0) ]*(*), J G [Jo, Ji]. 

Then it can be shown (see [8]) that there is a well-defined Borel-
measurable function Y(s, t) on [a0, °°)X [Jo, h] given by F(s, /) =0 , 
s>t, and F(/, /) = E , the # X # identity matrix 
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Y(s, 0 = £ - É f . da[Y(a, t)]oi(a) 
i = l ^ Utt+à}ïïhi U.oo) 

da[Y(a, t)]v(a, s) - I F (a , /)??*(>, 0 <te, 5 < /, 

and Y(-, t) : [a0, °°) —»i£n is left-continuous and of bounded variation 
for each / £ [t0, h]. 

THEOREM 1. L^/ (<p*, w*) &£ a solution to Problem 1 with response z. 
In addition, assume that 72?--* OL^L^Z^, ztl-h,h] •, • ] = 0 and a*^*0 
for i £ { — M, • • • , 0} implies that a* = 0, i = —/z, • • • , * » . TA^w tóere 
exwtó a row n-vector function $(s) defined for all s^to, cmd real 
numbers a*, i— —\x, • • • , ra, s^cA /&a£ 

(i) a*^0 /or i^O, a*' = 0 /or a// i £ { — /*, • • • , — l} such that 
Li(zh, z i r M l )<0 , 72t-, |«*| >0. 

m 

f(0 = 72 a ^ k » «*!-*.*!; °> *V_Ml($, •)]> 
(ll) 

m 

#('o) = — 72 a'dLilzt» Ztr-h.ti', YtQ(t0, - ) , 0 ] , 

#(s) w nonzero on a subset of [t0, h] of positive measure. 

(m) f V(o/«o, uw, s)ds^ f Vw/wo, «*w, *) & 
/or all # £ Q . 

The proof uses the abstract maximum principle of Neustadt [10], 
and the idea of a quasi-convex family as developed by Gamkrelidze 
[6], Neustadt [9], and Banks [ l ] . The development of the required 
theory of neutral equations is essentially contained in Hale and Cruz 
[7]-

Let LQ be as before, and let f be a specified nonzero function in 
C([h-h, h], 9). 

Problem 2. Minimize J[<f>, u] = L0(xtQ, XtQttj) subject to <j> 
£ C ( k to], 9)» uESl,x the solution to (1), (2) on [a0, / i] ,and 

sup {**(/) ~f 2 ( / )} Û0. 
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Again, let (<£*, u*) be a solution with response z. Note that the last 
two conditions imply that z(t)=Ç(t) on \t\ — h, h]. Define Y(s, t) as 
before. 

THEOREM 2. Let (<£*, u*) be a solution to Problem 2, with response z. 
In addition, assume 

(a) for all r £ [ceo, k], all e>0 , there exists p(r, e) > 0 so that \ t—T\ 
<p(r, e) implies \ v(s, t) —v(s, r ) | <efor all sG Do, *i]. 

(b) hi(t)^t-Oh 1 = 1, • • • ,p. 

f(x(-),u(t),t) 

(c) 
ƒ (*(0> <gi(t))> • • •, *(gfl(0), ƒ *[*?(', *) ]<?(*(*)), «(0, A 

where gi is continuous and strictly increasing on [to, ti], ao^gi(t)<t, 
1 = 1, • • • , q; GGCl(Rn, Rn); rj: [t0, h]X[ao, h]-+Rn* is measurable, 
rj(t, d)=0 for d^t, rj(t, -): [aQ, t]—>Rn is continuous and of bounded 
variation, varse[a0,*J niP, s)^k(t)for alltÇz [to, h], kÇzLl([t0, h], R). 

Then there exist row n-vector f unctions \{/(s) and \[/i(s, i) defined for all 
s^to,tÇz [h —h, h], and real numbers a0, a"1, or2 such that 

(i) a ' ^ 0 , , = 0 , - 1 , - 2 , Z | a ' | > 0, 

(ii) Ms) = a°dL0[zh, zh,h;0, Yh,h(s, •)] - a"1 f ' M)Y(s, t) it, 

Us,t) =2[(t)Y(s,t), 

t(s) = 0, for s > h, 

fais, 0 = 0, for s> t, 

a°dLo[zt0, Zt0ttl; Y(t0, '),0]+\l/(t0) isin 

c5[{-d-Yi( 'o , t):t G [h - h, h]} U {-a-Vi( 'o, r ) : / G [*i - A, / J}] 

where, for SQRn, co(S) denotes the closed convex hull of S. 

f W)/(s(o, «M, s)ds s f Vw/(*(o, «*w, *) ^ 

(iii) + I a"2 | sup i f Vi(*, *)[ƒ(*('), « t o , *) 
l e i ^ - M j ] \J tQ 

~M'),u*(s),s)]dsj 

for all wGO. 
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The proof uses the same methods as the proof of Theorem 1. 
Similar results can be obtained for problems which include additional 
restraints Li as in Problem 1; these may be utilized to define an 
initial manifold in C([a0, t0], 9)-

Both Theorem 1 and Theorem 2 hold for variable final time 
problems, although the statements of the results are more compli
cated due to the explicit dependence on t\. In this case there is an 
additional transversality condition, and, in Problem 2, f(J — h) de
fined for / £ [h~h, h] must be piecewise C1. In either theorem, if <f> 
is fixed, then the condition at t0 in (ii) need not hold. 

These results can be obtained, using the same methods, in cases 
where the dependence of ƒ on the control is more complicated, as 
long as {ƒ(#(•), u(-), t)luÇEti} is a quasi-convex family of functions. 
Examples of such types of dependence are found in [2] and [3]. The 
results can also be derived under weaker differentiability assump
tions on the restraint functionals (see [9], [10]). In some cases in 
Problem 1 the integral maximum principle is equivalent to a point-
wise maximum principle (see [6], [9]). 

This formulation includes the type of dependence F(x(-), t) 
= F(xh t) where xtEC([-h, 0] , R»), xt(6)=x(t+d). Then a^h-h, 
and the choice of h for the "length" of the terminal manifold is quite 
natural. The results clearly include necessary conditions for problems 
involving retarded functional differential systems with terminal 
function-manifold or fixed terminal function. 

An important application of these results concerns linear hyper
bolic partial differential equations with boundary conditions con
taining the controls. Using the method of characteristics, as ex
plained in [5], one obtains a neutral functional differential equation 
with control. Solutions to the problem in this form may then be 
transformed into solutions of the original problem in terms of weak 
solutions to the partial differential equations. 
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