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Abstract. We formulate and prove a non-local “maximum principle for semi-
continuous functions” in the setting of fully nonlinear and degenerate elliptic
integro-partial differential equations with integro operators of second order.
Similar results have been used implicitly by several researchers to obtain com-
parison/uniqueness results for integro-partial differential equations, but proofs
have so far been lacking.

1. Introduction

The theory of viscosity solutions (existence, uniqueness, stability, regularity
etc.) for fully nonlinear degenerate second order partial differential equations is
now highly developed [4, 5, 13, 15]. In recent years there has been an interest in
extending viscosity solution theory to integro-partial differential equations (integro-
PDEs henceforth) [1, 2, 3, 6, 8, 9, 10, 29, 30, 31, 32, 33, 34]. Such non-local equations
occur in the theory of optimal control of Lévy (jump-diffusion) processes and find
many applications in mathematical finance, see, e.g., [1, 2, 3, 9, 8, 10, 17] and the
references cited therein. We refer to [18, 19] for a deep investigation of integro-PDEs
in the framework of Green functions and regular solutions, see also [20].

In this paper we are interested in comparison/uniqueness results for viscosity so-
lutions of fully nonlinear degenerate elliptic integro-PDEs on a possibly unbounded
domain Ω ⊂ RN . To be as general as possible, we write these equations in the form

F (x, u(x), Du(x), D2u(x), u(·)) = 0 in Ω,(1.1)

where F : Ω× R× RN × SN × C2
p(Ω) → R is a given functional. Here SN denotes

the space of symmetric N ×N real valued matrices, and C2
p(Ω) denotes the space

of C2(Ω) functions with polynomial growth of order p ≥ 0 at infinity. At this stage
we simply assume that the non-local part of F is well defined on Ω.
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These equations are non-local as is indicated by the u(·)-term in (1.1). A simple
example of such an equation is

− ε∆u+ λu

−
∫

RN\{0}

[
u(x+ z)− u(x)− zDu(x)1|z|<1

]
m(dz) = f(x) in RN ,

(1.2)

where λ > 0, ε ≥ 0, f : RN → R is uniformly continuous, and m(dz) is a non-
negative Radon measure on RN \{0} (the so-called Lévy measure) with a singularity
at the origin satisfying

(1.3)
∫

RN\{0}

(
|z|2 1|z|<1 + |z|p 1|z|≥1

)
m(dz) <∞.

Note that the Lévy measure integrates functions with p-th order polynomial growth
at infinity. In view of (1.3), a simple Taylor expansion of the integrand shows that
u has to belong to C2

p(RN ) for the integro operator in (1.2) to be well defined. From
this we also see that the integro operator in (1.2) acts as a non-local second order
term, and for that reason the “order” of the integro operator is said to be two. If
|z|2 in (1.3) is replaced by |z|, this changes the order of the integro operator from
two to one, since then it acts just like a non-local first order term. Finally, if |z|2 in
(1.3) is replaced by 1 (i.e., m(dz) is a bounded measure), then the integro operator
in (1.2) is said to be bounded or of order zero. In the bounded case, the integro
operator acts just like a non-local zero order term.

A significant example of a non-local equation of the form (1.1) is the non-convex
Isaacs equations associated with zero-sum, two-player stochastic differential games
(see, e.g., [16] for the case without jumps)

inf
α∈A

sup
β∈B

{
−Lα,βu(x)− Iα,βu(x) + fα,β(x)

}
= 0 in RN ,(1.4)

where A and B are compact metric spaces and for any sufficiently regular φ,
(1.5)

Lα,βφ(x) = tr
[
aα,β(x)D2φ

]
+ bα,β(x)Dφ+ cα,β(x)φ,

aα,β(x) =
1
2
σα,β(x)σα,β(x)> ≥ 0, σα,β(x) ∈ RN×K , 1 ≤ K ≤ N,

Iα,βφ(x) =
∫

RM\{0}

[
φ(x+ ηα,β(x, z))− φ(x)− ηα,β(x, z)Dφ(x)1|z|<1

]
m(dz).

Here tr and > denote the trace and transpose of matrices. The Lévy measure
m(dz) is a nonnegative Radon measure on RM \ {0}, 1 ≤ M ≤ N , satisfying a
condition similar to (1.3), see (A0) and (A4) in Section 3. Also see Section 3 for
the (standard) regularity assumptions on the coefficients, σα,β(x), bα,β(x), cα,β(x),
and ηα,β(x, z). We remark that if A is a singleton, then equation (1.4) becomes the
convex Bellman equation associated with optimal control of Lévy (jump-diffusion)
processes over an infinite horizon (see, e.g., [29, 30] and the references therein).
Henceforth we call equation (1.4) for the Bellman/Isaacs equation.

Rather general existence and comparison/uniqueness results for viscosity solu-
tions of first order integro-PDEs (no local second order term) can be found in
[33, 34, 31, 32], see also [9] for the Bellman equation associated with a singular
control problem arising in finance.
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Depending on the order of the integro operator (i.e., the assumptions on the
singularity of the Lévy measure m(dz) at the origin), the case of second order de-
generate elliptic (or parabolic) integro-PDEs is more complicated. When the integro
operator is of order zero (bounded), general existence and comparison/uniqueness
results for (semicontinuous and unbounded) viscosity solutions are given in [1, 2, 3].
When the integro operator is of second order (i.e., the Lévy measure m(dz) is un-
bounded near the origin as in (1.3)), the existence and uniqueness of unbounded
viscosity solutions of systems of semilinear degenerate parabolic integro-PDEs is
proved in Barles, Buckdahn, and Pardoux [6]. Pham [30] proved an existence re-
sult and a comparison principle among uniformly continuous (and hence at most
linearly growing) viscosity sub- and supersolutions of parabolic integro-PDEs of the
Bellman type (i.e. (1.4) with singleton A). Motivated by singular stochastic con-
trol applications in finance, the papers [8, 10] provide existence and comparison re-
sults for non-local degenerate elliptic free boundary problems with state-constraint
boundary conditions.

The main contribution of the present paper is to provide “non-local” versions of
Proposition 5.1 in Ishii [22] (see also Proposition II.3 in Ishii and Lions [23]) and
Theorem 1 in Crandall [11], which are properly adapted to integro-PDEs of the
form (1.1). This “non-local maximum principle” is used to obtain comparison prin-
ciples for semicontinuous viscosity sub- and supersolutions of (1.1). Although there
exist already comparison results for some integro-PDEs with a second order integro
operator, see [6, 30, 8, 10], they are all based on the by now standard approach that
uses the maximum principle for semicontinuous functions [12, 13]. As we argue for
in Section 2, it is in general not clear how to implement this approach for non-local
equations. After all the maximum principle for semicontinuous functions [12, 13]
is a local result! This was one of our motivations for writing this paper, which in
contrast to [6, 30, 8, 10] advocates the use of original approach due to Jensen, Ishii,
Lions [27, 22, 23] for proving comparison results for non-local equations. Although
our main result (see Theorem 4.9) is not surprising, and the tools used in the proof
are nowadays standard in the viscosity solution theory, it has not appeared in the
literature before and in our opinion it seem to provide the “natural” framework
for deriving general comparison results for fully nonlinear degenerate second order
integro-PDEs. Moreover, we stress that our Theorem 4.9 cannot be derived directly
from the maximum principle for semicontinuous functions [12, 13] (although it is
well known that this can be done in the pure PDE case).

In addition to the main result mentioned above, our paper complements the
existing literature [6, 30] (see also [8, 10]) on second order PDEs with integro
operators of second order in the following ways: (i) Our formulation is abstract and
more general, (ii) we consider only semicontinuous sub- and supersolutions, and
(iii) we consider (slightly) more general integro operators (see Remark 6.1).

The remaining part of this paper is organized as follows: In Section 2 we discuss
our main result (Theorem 4.9) in the simplest possible context of (1.2) and relate
it to some of the existing literature on integro-PDEs. In Section 3 we first list
our assumptions on the coefficients in the Bellman/Isaacs equation (1.4). Then we
state and discuss a comparison theorem for these equations. In Section 4 we list
the assumptions for the problem (1.1). Then we give two equivalent definitions of
a viscosity solution for (1.1) and illustrate them on the Bellman/Isaacs equation.
Finally we state our main result (Theorem 4.9). In Section 5 we list structure
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conditions on (1.1) implying, via Theorem 4.9, quite general comparison/uniqueness
results for possibly unbounded domains. The structure conditions are illustrated
on the Bellman/Isaacs equation. Section 6 contains the proof of the comparison
theorem for the Bellman/Isaacs equation, and the proof of Theorem 4.9 is given in
Section 7.

Although we only discuss elliptic integro-PDEs, it is not hard to formulate “par-
abolic” versions of our main results (for example Theorem 4.9), see [26].

We end this introduction by collecting some notations that will be used through-
out this paper. If x belong to U ⊂ Rn and r > 0, then B(x, r) = {x ∈ U : |x| < r}.
We use the notation 1U for the function that is 1 in U and 0 outside. By a modulus
ω, we mean a positive, nondecreasing, continuous, sub-additive function which is
zero at the origin. Let Cn(Ω) n = 0, 1, 2 denote the spaces of n times continuously
differentiable functions on Ω. We let USC(Ω) and LSC(Ω) denote the spaces of
upper and lower semicontinuous functions on Ω, and SC(Ω) = USC(Ω)∪LSC(Ω).
A lower index p denotes the polynomial growth at infinity, so Cn

p (Ω), USCp(Ω),
LSCp(Ω), SCp(Ω) consist of functions f from Cn(Ω), USC(Ω), LSC(Ω), SC(Ω)
satisfying the growth condition

|f(x)| ≤ C(1 + |x|p) for all x ∈ Ω.

Finally, in the space of symmetric matrices SN we denote by ≤ the usual ordering
(i.e. X ∈ SN , 0 ≤ X means that X positive semidefinite) and by | · | the spectral
radius norm (i.e. the maximum of the absolute values of the eigenvalues).

2. Discussion of main result

To explain the contribution of the present paper and put it in a proper perspec-
tive with regards some of the existing literature [6, 30, 8, 10], let us elaborate on
a difficulty related to proving comparison/uniqueness results arising from the very
notion of a viscosity solution. For illustrative purposes, we focus on the simple
equation (1.2). The general case (1.1) will be treated in the sections that follow.

First of all, since the equation is non-local it is necessary to use a global formu-
lation of viscosity solutions: A function u ∈ USC(RN ) is a viscosity subsolution of
(1.2) if

− ε∆φ(x) + λu(x)

−
∫

RM\{0}

[
φ(x+ z)− φ(x)− zDφ(x)1|z|<1

]
m(dz) ≤ f(x) in RN ,

(2.1)

for any x ∈ RN and φ ∈ C2
p(RN ) such that x is a global maximum point for u− φ.

Note that (2.1) makes sense in view of (1.3) and the C2
p regularity of φ. A viscosity

supersolution u ∈ LSC(RN ) is defined similarly.
One can dispense with the growth restrictions on the test functions by replacing

the definition of a viscosity subsolution (2.1) by the following equivalent one: A
function u ∈ USCp(RN ) is a viscosity subsolution of (1.2) if for any κ > 0

−ε∆φ(x) + λu(x)−
∫

0<|z|<κ

[
φ(x+ z)− φ(x)− zDφ(x)1|z|<1

]
m(dz)

−
∫
|z|≥κ

[
u(x+ z)− u(x)− zDφ(x)1|z|<1

]
m(dz) ≤ f(x),

(2.2)
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for any x ∈ RN and φ ∈ C2(RN ) such that x is a global maximum point for u−φ. We
have a similar equivalent formulation of a viscosity supersolution u ∈ LSCp(RN ).
It is this second formulation that is used to prove comparison/uniqueness results
for (1.2).

In the pure PDE setting (m(dz) ≡ 0), nowadays comparison principles are most
effectively proved using the so-called maximum principle for semicontinuous func-
tions [12, 13]. However, this result is not formulated in terms of test functions, but
rather in terms of the second order semijets J 2,+, J 2,−, or more precisely their
closures J 2,+

, J 2,−
(see [13] for definitions of the semijets). Let u be a viscosity

subsolution of (1.2). If (q,X) ∈ J 2,+
u(x), then by definition there exists a sequence

of triples (xk, qk, Xk) such that (qk, Xk) ∈ J 2,+u(xk) for each k and

(2.3) (xk, u(xk)) → (x, u(x)), qk → q, Xk → X, as k →∞,

and u−φ has a global maximum at x = xk for each k. According to a construction
by Evans (see, e.g., [15, Proposition V.4.1]), for each k there is a C2 function
φk : RN → R such that

φk(xk) = u(xk), Dφk(xk) = qk, D2φk(xk) = Xk,

and u− φk has a global maximum at x = xk. Applying (2.2) we thus get

−ε trXk + λu(xk)−
∫

0<|z|<κ

[
φk(xk + z)− φk(xk)− zqk 1|z|<1

]
m(dz)

−
∫
|z|≥κ

[
u(xk + z)− u(xk)− zqk 1|z|<1

]
m(dz) ≤ f(xk),

(2.4)

for each k. In view of (2.3), in the pure PDE setting (m(dz) ≡ 0) one can send
k → ∞ in (2.4), the result being a formulation of the subsolution inequality (2.2)
in terms of the elements (q,X) in J 2,+

u(x). A similar formulation (in terms of
the elements in J 2,−

u(x)) can be given for a supersolution u. Consequently, a
comparison principle in the pure PDE case can then be deduced using the maximum
principle for semicontinuous functions [12, 13].

The situation is less clear in the non-local case. When m(dz) 6= 0, we can easily
send k → ∞ in the second integral term in (2.4) thanks to u ∈ USCp(RN ). To
handle the first integral term, suppose for the moment that the sequence {φk}∞k=1 ⊂
C2(RN ) converges (say, uniformly on compact subsets of RN ) to a limit φ that
belongs to C2(RN ) and Dφ(x) = q. It is then clear that

−ε trX + λu(x)−
∫

0<|z|<κ

[
φ(x+ z)− φ(x)− zDφ(x)1|z|<1

]
m(dz)

−
∫
|z|≥κ

[
u(x+ z)− u(x)− zq 1|z|<1

]
m(dz) ≤ f(x),

(2.5)

where (q,X) ∈ J 2,+
u(x) and with a similar inequality for supersolutions. Now we

could again prove comparison/uniqueness results using the maximum principle for
semicontinuous functions [12, 13]. This approach to proving a comparison principle
for viscosity solutions of integro-PDEs was first suggested by Pham [30], and later
used in [9, 10]. Indeed, converted to our setting, Lemma 2.2 in [30] states that one
can find a C2 function φ such that (2.5) holds and another C2 function such that
the corresponding inequality for a viscosity supersolution holds. However, there
is no proof of this lemma in [30], and neither is it clear to us how to prove (2.5)
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in general. To be more precise, we do not know how to prove that the sequence
{φk}∞k=1 ⊂ C2(RN ) has a limit point φ that in general belongs to C2(RN ). The C2

requirement of such a limit is necessary if we want to make sense to (2.5) when the
integro operator is of second order.

We will take a different approach to proving comparison/uniqueness results for
integro-PDEs. Namely, following the original of Jensen [27], Ishii [22], Ishii and
Lions [23], and Crandall [11], we establish some sort of “non-local” maximum prin-
ciple for semicontinuous viscosity sub- and supersolutions of (1.1) (see Theorem
4.9), and then various comparison principles can be derived from this result. Let
us illustrate our approach on (1.2).

Let u and v be respectively viscosity sub- and supersolutions of (1.2). A standard
trick in viscosity solution theory for dealing with the low regularity of the solutions
is the doubling of variables device. Instead of studying directly a global maximum
point of u(x)− v(x), we consider a global maximum point (x̄, ȳ) of

u(x)− v(y)− φ(x, y),

where φ is a suitable C2 penalization term. Our main result (Theorem 4.9) applied
to (1.2) yields the following: For any γ ∈ (0, 1

2 ) there exists matrices X,Y ∈ SN

satisfying (
X 0
0 −Y

)
≤ 1

1− 2γ
D2φ(x̄, ȳ),

such that the following two inequalities hold:

−ε trX + λu(x̄)−
∫

0<|z|<κ

[
φ(x̄+ z, ȳ)− φ(x̄, ȳ)− zDxφ(x̄, ȳ)1|z|<1

]
m(dz)

−
∫
|z|≥κ

[
u(x̄+ z)− u(x̄)− zDxφ(x̄, ȳ)1|z|<1

]
m(dz) ≤ f(x̄),

−ε trY + λv(ȳ)−
∫

0<|z|<κ

[
φ(x̄, ȳ + z)− φ(x̄, ȳ) + zDyφ(x̄, ȳ)1|z|<1

]
m(dz)

−
∫
|z|≥κ

[
v(ȳ + z)− v(ȳ) + zDyφ(x̄, ȳ)1|z|<1

]
m(dz) ≥ f(ȳ).

The key point is that the C2 penalization function φ(x, y) used in the doubling
of variables device occupies the slots in the integro operator near the origin. In-
deed, equipped with the above result, it is possible to derive comparison/uniqueness
results for (1.2) as in, e.g., Pham [30].

In [6, Proof of Theorem 3.5], Barles, Buckdahn, and Pardoux used the maximum
principle for semicontinuous functions [12, 13] and a result very much in the spirit
of the above result (or Theorem 4.9) for proving uniqueness of viscosity solutions for
parabolic integro-PDEs. However, the authors give no proof of such a result. We
also stress that for the first order version of (1.2) (ε = 0), the above two inequalities
come for free from the nature of the point (x̄, ȳ) and the definition of a viscosity so-
lution, see, e.g., [34, 9]. However, in the second order case (ε > 0), the proof of this
result, or more generally Theorem 4.9, is more involved in the sense that it consists
of adapting the chain of arguments developed by Jensen [27], Ishii [22], Ishii and
Lions [23], and Crandall [11] to our non-local situation. The above result (or more
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generally Theorem 4.9) can be viewed as some sort of “non-local”maximum prin-
ciple for semicontinuous viscosity sub- and supersolutions. It should be compared
with the “local” maximum principle for semicontinuous functions [11, 12, 13].

3. The Bellman/Isaacs equation

In this section we will give natural assumptions on the coefficients in the Bell-
man/Isaacs equation (1.4) that leads to comparison results for bounded semicon-
tinuous viscosity sub- and supersolutions in RN . We state the comparison results,
but postpone the proof to Section 6. We remark here that Pham [30] presents a
comparison principle for uniformly continuous sub- and supersolutions of the para-
bolic Bellman equation. The results in this section can be seen as slight extensions
of his result (to more general non-linearities, semicontinuous sub/super solutions
and slightly more general integro operators), but the techniques are essentially the
same. The purpose of this section is simply to provide an example where we may
use our “non-local maximum principle” to obtain comparison results. Further-
more, the Bellman/Isaacs equation, under the assumptions stated below, will serve
as examples in the abstract and more general theory developed in the sections that
follow.

The following conditions are natural and standard for (1.4) in view of the con-
nections to the theory of stochastic control and differential games (see, e.g., [15, 16,
28, 30]):

There are constants K1,Kx ≥ 0, a function ρ ≥ 0, and a modulus of continuity
ω, such that the following statements hold for every x, y ∈ RN , α ∈ A, β ∈ B and
z ∈ RM \ {0}:

σ, b, c, f, η are continuous w.r.t. x, α, β and Borel measurable w.r.t. z;(A0)

A,B are compact metric spaces; and m(dz) is a positive Radon

measure on RM \ {0} satisfying∫
RM\{0}

(
ρ(z)2 1|z|<1 + 1|z|≥1

)
m(dz) <∞.

|σα,β(x)− σα,β(y)|+ |bα,β(x)− bα,β(y)| ≤ K1|x− y|.(A1)

|cα,β(x)− cα,β(y)|+ |fα,β(x)− fα,β(y)| ≤ ω(|x− y|).(A2)

|ηα,β(x, z)− ηα,β(y, z)| ≤ ρ(z)|x− y|.(A3)

|ηα,β(x, z)| ≤ ρ(z)(1 + |x|) and |ηα,β(x, z)|1|z|<1 ≤ Kx.(A4)

− cα,β ≥ λ > 0.(A5)

The Lévy measure m(dz) may have a singularity at z = 0. As an example in
RN , take ρ(z) = |z| and m(dz) = z−(N+1)−δ 1|z|<1dz where δ ∈ (0, 1). According
to our definition, this integro operator has order 2. Furthermore, according to
(A0), the Lévy measure m(dz) integrates bounded functions away from the origin.
Compared to Section 1 this means that p = 0 (see also (C1) in Section 4). Because
of this, (A0), (A4), and a Taylor expansion of the integrand shows that the integro
part of the Bellman/Isaacs equation (1.4) is well defined for C2

0 (RN ) functions, see
[18, 19, 30].

We also remark that (A1) and (A2) imply

|σα,β(x)|+ |bα,β(x)|+ |cα,β(x)|+ |fα,β(x)| ≤ C(1 + |x|),
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for some constant C > 0. It is the growth of f at infinity that determines the
growth of the solutions at infinity, so if f is bounded so are the solutions.

Theorem 3.1. Assume (A0) – (A5) hold, fα,β is bounded uniformly in α and β,
and u,−v ∈ USC0(RN ). If u is a viscosity subsolution and v a viscosity supersolu-
tion of (1.4), then u ≤ v in RN .

As an immediate consequence we have uniqueness of bounded viscosity solutions
of (1.4). The notion of viscosity solutions will be defined in Section 4, and Theorem
3.1 will be proved in Section 6 using the abstract comparison result Theorem 5.2.

Remark 3.2 (Growth at infinity). If the integrability condition in (A0) is replaced
by ∫

RM\{0}

(
ρ(z)2 1|z|<1 + (1 + ρ(z))1|z|≥1

)
m(dz) <∞,

and we drop the assumption that f is bounded, then the above assumptions leads
to problems where the solutions may have linear growth at infinity. This case seems
to be more difficult, and we do not know if (the modified) assumptions (A0) – (A5)
are sufficient to have a comparison result. However, there are two special cases
where we may have comparison results:

• If σ, b, and η are bounded, and c is constant, then a comparison result can
be obtained by adapting the techniques of Ishii in [22] (Theorem 7.1).

• If λ is sufficiently large compared to |Dσ|, |Dη|, and |Db|, then we have
a comparison result because of cancellation effects in the proof, cf. Pham
[30] where this technique is used in the parabolic case.

If the above assumption are modified appropriately and λ is big enough, then we
can have comparison results for solutions with arbitrary polynomial growth. For
parabolic problems (see, e.g., [30]) we are always in this situation since we can have
λ arbitrary large after an exponential-in-time scaling of the solution.

Remark 3.3. It is possible to consider Radon measures m depending on x, α, β
under assumptions similar to those used in Soner [34] for first order integro-PDEs.

Remark 3.4. It is also possible to consider bounded domains Ω, but then we need
a condition on the jumps so that the jump-process does not leave Ω.

4. The main result

In this section we state the general assumptions, give two equivalent definitions
of viscosity solutions, and give our main result (Theorem 4.9). As we go along, we
use the Bellman/Isaacs equation (1.4) for illustrative purposes.

For every x, y ∈ Ω, r, s ∈ R, X, Y ∈ SN , and φ, φk, ψ ∈ C2
p(Ω) we will use the

following assumptions on (1.1):

The function (x, r, q,X) 7→ F (x, r, q,X, φ(·)) is continuous, and(C1)

if xk → x,Dnφk → Dnφ locally uniformly in Ω for n = 0, 1, 2, and

|φk(x)| ≤ C(1 + |x|p) (C independent of k and x), then

F (xk, r, q,X, φk(·)) → F (x, r, q,X, φ(·)).
If X ≤ Y and φ− ψ has a global maximum at x, then(C2)

F (x, r, q,X, φ(·)) ≥ F (x, r, q, Y, ψ(·)).
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If r ≤ s, then F (x, r, q,X, φ(·)) ≤ F (x, s, q,X, φ(·)).(C3)

For every constant C ∈ R, F (x, r, q,X, φ(·) + C) = F (x, r, q,X, φ(·)).(C4)

Example 4.1. The Bellman/Isaacs equation (1.4) satisfies conditions (C1) – (C4)
with Ω = RN and p = 0 when assumptions (A0), (A4), and (A5) hold. For this
equation

F (x, r, q,X, φ(·)) = inf
α∈A

sup
β∈B

{
−tr

[
aα,β(x)X

]
− bα,β(x) q − cα,β(x) r + fα,β(x)

−
∫

RM\{0}

[
φ(x+ ηα,β(x, z))− φ(x)− ηα,β(x, z) q 1|z|<1

]
m(dz)

}
.

Definition 4.2. A locally bounded function u ∈ USC(Ω) (u ∈ LSC(Ω)) is a
viscosity subsolution (viscosity supersolution) of (1.1) if for every x ∈ Ω and φ ∈
C2

p(Ω) such that x is a global maximizer (global minimizer) for u− φ,

F (x, u(x), Dφ(x), D2φ(x), φ(·)) ≤ 0 (≥ 0).

We say that u is a viscosity solution of (1.1) if u is both a sub- and supersolution
of (1.1).

Remark 4.3. Because we allow for singular integro terms (first or second order
integro operators), to have a meaningful definition we use the test function φ (also)
in the non-local argument.

Note that viscosity solutions according to this definition are continuous. Without
changing the solutions, we may change this definition in the following two standard
ways:

Lemma 4.4. (i) If (C4) holds, we may assume that φ(x) = u(x) in Definition 4.2.
(ii) If (C2) holds, we may replace global extremum by global strict extremum in

Definition 4.2.

Proof. We only prove (ii) and here we only consider maxima. Assume φ ∈ C2
p(Ω)

is such that u−φ has a global maximum at x ∈ Ω. Pick a non-negative ψ ∈ C2(Ω)
with compact support such that ψ|B(x,δ)(y) = |x−y|4 for some 0 < δ < dist(x, ∂Ω).
Now u − (φ + ψ) has a global strict maximum at x, and D(φ + ψ) = Dφ and
D2(φ+ ψ) = D2φ at x. Since φ− (φ+ ψ) = −ψ also has a global maximum at x,
by (C2) and the above considerations we have

F (x, u(x), D(φ+ ψ)(x), D2(φ+ ψ)(x), (φ+ ψ)(·))
≤ F (x, u(x), Dφ(x), D2φ(x), φ(·)) (≤ 0),

and the proof is complete. �

The concept of a solution in Definition 4.2 is an extension of the classical solution
concept.

Lemma 4.5. (i) If (C2) holds, then a classical subsolution u of (1.1) belonging to
C2

p(Ω) is a viscosity subsolution of (1.1).
(ii) A viscosity subsolution u of (1.1) belonging to C2

p(Ω) is a classical subsolution
of (1.1).
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Next we introduce an alternative definition of viscosity solutions that is needed
for proving comparison and uniqueness results. For every κ ∈ (0, 1), assume that
we have a function

Fκ : Ω× R× RN × SN × SCp(Ω)× C2(Ω) → R
satisfying the following list of assumptions for every κ ∈ (0, 1), x, y ∈ Ω, r, s ∈ R, q ∈
RN , X, Y ∈ SN , u,−v ∈ USCp(Ω), w ∈ SCp(Ω), and φ, φk, ψ, ψk ∈ C2

p(Ω):

Fκ(x, r, q,X, φ(·), φ(·)) = F (x, r, q,X, φ(·)).(F0)

The function F in (F0) satisfies (C1).(F1)

If X ≤ Y and both u− v and φ− ψ have global maxima at x, then(F2)

Fκ(x, r, q,X, u(·), φ(·)) ≥ Fκ(x, r, q, Y, v(·), ψ(·)).
The function F in (F0) satisfies (C3).(F3)

For all constants C1, C2 ∈ R,(F4)

Fκ(x, r, q,X,w(·) + C1, φ(·) + C2) = Fκ(x, r, q,X,w(·), φ(·)).
If ψk → w a.e. in Ω and |ψk(x)| ≤ C(1 + |x|p) (C independent of k and x),(F5)
then

Fκ(x, r, q,X, ψk(·), φ(·)) → Fκ(x, r, q,X,w(·), φ(·)).

Remark 4.6. If (F0) – (F4) hold, then (C1) – (C4) hold.

Example 4.7. For the Bellman/Isaacs equation (1.4),

Fκ(x, r, q,X, u(·), φ(·)) = inf
α∈A

sup
β∈B

{
−tr

[
aα,β(x)X

]
− bα,β(x) q − cα,β(x) r

+ fα,β(x)−Bα,β
κ (x, q, φ(·))−Bα,β,κ(x, q, u(·))

}
,

where

Bα,β
κ (x, q, φ(·))

=
∫

B(0,κ)\{0}

[
φ(x+ ηα,β(x, z))− φ(x)− ηα,β(x, z) q

]
m(dz),

Bα,β,κ(x, q, u(·))

=
∫

RM\B(0,κ)

[
u(x+ ηα,β(x, z))− u(x)− ηα,β(x, z) q 1|z|<1

]
m(dz).

If κ < 1 and conditions (A0), (A4), and (A5) hold, then (F0) – (F5) hold for (1.4)
with Ω = RN and p = 0.

Lemma 4.8 (Alternative definition). Assume (F0), (F2), (F4), and (F5) hold.
u ∈ USCp(Ω) (u ∈ LSCp(Ω)) is a viscosity subsolution (viscosity supersolution) of
(1.1) if and only if for every x ∈ Ω and φ ∈ C2(Ω) such that x is a global maximizer
(global minimizer) for u− φ,

Fκ(x, u(x), Dφ(x), D2φ(x), u(·), φ(·)) ≤ 0 (≥ 0) for every κ ∈ (0, 1).

Proof. The proof follows [31], see also [6].
If. Let u−φ have a global maximum at x for some φ ∈ C2

p(Ω). Using (F0), (F2)
and the assumptions of the lemma we have

F (x, u(x), Dφ(x), D2φ(x), φ(·)) = Fκ(x, u(x), Dφ(x), D2φ(x), φ(·), φ(·))
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≤ Fκ(x, u(x), Dφ(x), D2φ(x), u(·), φ(·)) ≤ 0.

Only if. Let φ ∈ C2(Ω) be such that u − φ has a global maximum at x. By an
argument similar to the one in the proof of Lemma 4.4 with (F4) replacing (C4),
we can assume that (u−φ)(x) = 0. Pick a sequence of C2

p(Ω) functions {φε}ε such
that u ≤ φε ≤ φ and φε → u a.e. as ε→ 0. It follows that u− φε and φε − φ also
have global maxima at x. The last maximum implies that at x, D(φε−φ) = 0 and
D2(φε − φ) ≤ 0. By (F2), (F0), and Definition 4.2 we have

Fκ(x, u(x), Dφ(x), D2φ(x), φε(·), φ(·))
≤ Fκ(x, u(x), Dφε(x), D2φε(x), φε(·), φε(·))
= F (x, u(x), Dφε(x), D2φε(x), φε(·)) ≤ 0.

Since φε → u a.e., sending ε→ 0 in the above inequality and using (F5) yields the
“≤” inequality in the lemma, and the only if part is proved. �

We have now come to our main theorem. It is this theorem that should re-
place the maximum principle for semicontinuous functions [12, 13] when proving
comparison results for integro-PDEs with first or second order integro operators.

Theorem 4.9. Let u,−v ∈ USCp(Ω) satisfy u(x),−v(x) ≤ C(1 + |x|2) and solve
in the viscosity solution sense

F (x, u,Du,D2u, u(·)) ≤ 0 and G(x, v,Dv,D2v, v(·)) ≥ 0,

where F and G satisfy (C1) – (C4). Let φ ∈ C2(Ω×Ω) and (x̄, ȳ) ∈ Ω×Ω be such
that

(x, y) 7→ u(x)− v(y)− φ(x, y)
has a global maximum at (x̄, ȳ). Furthermore, assume that in a neighborhood
of (x̄, ȳ) there are continuous functions g0 : R2N → R, g1, g2 : RN → SN with
g0(x̄, ȳ) > 0, satisfying

D2φ ≤ g0(x, y)
(
I −I
−I I

)
+

(
g1(x) 0

0 g2(y)

)
.

If, in addition, for each κ ∈ (0, 1) there exist Fκ and Gκ satisfying (F0) – (F5),
then for any γ ∈ (0, 1

2 ) there are two matrices X,Y ∈ SN satisfying

−g0(x̄, ȳ)
γ

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
−

(
g1(x̄) 0

0 g2(ȳ)

)
≤ g0(x̄, ȳ)

1− 2γ

(
I −I
−I I

)
.(4.1)

such that

Fκ(x̄, u(x̄), Dxφ(x̄, ȳ), X, u(·), φ(·, ȳ)) ≤ 0,(4.2)

Gκ(x̄, v(ȳ),−Dyφ(x̄, ȳ), Y, v(·),−φ(x̄, ·)) ≥ 0.(4.3)

The proof of Theorem 4.9 is given in Section 7. We underline that the key point
in Theorem 4.9 is the validity of the inequalities (4.2) and (4.3). The proof of The-
orem 4.9 shows that (Dxφ(x̄, ȳ), X) ∈ J 2,+

u(x̄) and (−Dyφ(x̄, ȳ), Y ) ∈ J 2,+
v(ȳ).

This information alone would in the pure PDE case, under certain (semi)continuity
assumptions on the equations, imply that the viscosity solution inequalities hold.
In the non-local case, the situation is more delicate and we refer to Section 2 for a
discussion of this point.

The technical assumption u(x),−v(x) ≤ C(1+ |x|2) is an artifact of the method
of proof, and it does not seem so easy to remove. However, in applications this
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condition does not create any difficulties. The assumptions on the test-function is
satisfied in most practical cases. For test-functions like

φ(x, y) =
1
δ
|x− y|q, δ > 0, q > 0,

the assumptions hold for all (x, y) ∈ R2N when q ≥ 2 and for all (x, y) ∈ {x 6= y}
otherwise.

Finally, we remark that it is possible to have a result without the restriction on
D2φ. Such a result (Lemma 7.4) is actually used to prove Theorem 4.9. But this
result is indirect in the sense that it is not the function (x, y) 7→ u(x)−v(y)−φ(x, y)
that is considered directly but rather its “sup-convoluted” version (x, y) 7→ uε(x)−
vε(y) − φ(x, y). In fact, this was the original approach to uniqueness of viscosity
solutions for second order PDEs, cf. Jensen, Ishii, Lions [27, 22, 23].

5. A general comparison theorem

In this section we use Theorem 4.9 to prove a general comparison result for non-
local equations of the form (1.1) where Ω ⊂ RN is a possibly unbounded domain.
We need two additional assumptions on the equation, and we state them for the
Fκ functions.

For every κ ∈ (0, 1), x, y ∈ Ω, r ∈ R, p ∈ RN , X, Y ∈ SN , u,−v ∈ USCp(Ω), and
φ ∈ C2(Ω) the following statements hold:

There is a λ > 0 such that if s ≤ r, then

(F6)

Fκ(x, r, p,X, u(·), φ(·))− Fκ(x, s, p,X, u(·), φ(·)) ≥ λ(r − s).

For any δ, ε > 0, define
(F7)

φ(x, y) =
1
δ
|x− y|2 − ε(|x|2 + |y|2).

If u(x),−v(x) ≤ C(1 + |x|2) in Ω, and (x̄, ȳ) ∈ Ω× Ω is such that

(x, y) 7→ u(x)− v(y)− φ(x, y)

has a global maximum at (x̄, ȳ), then for any κ > 0 there are numbers mκ,δ,ε

satisfying lim
ε→0

lim
δ→0

lim
κ→0

mκ,δ,ε = 0 and a modulus ω such that

Fκ

(
ȳ, r,

1
δ
(x̄− ȳ)− εȳ, Y, v(·),−φ(x̄, ·)

)
− Fκ

(
x̄, r,

1
δ
(x̄− ȳ) + εx̄,X, u(·), φ(·, ȳ)

)
≤ ω

(
|x̄− ȳ|+ 1

δ
|x̄− ȳ|2 + ε(1 + |x̄|2 + |ȳ|2)

)
+mκ,δ,ε,

for every X,Y satisfying

(
X 0
0 −Y

)
≤ 4
δ

(
I −I
−I I

)
+ 2ε

(
I 0
0 I

)
.

(5.1)

Condition (F7) is a version for non-local equations (in an unbounded domain)
of the standard condition (3.14) in [13]. The inequality (5.1) corresponds to the
second inequality in (4.1) with γ = 1/4.
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Example 5.1. If (A0) – (A5) are satisfied, then (F6) and (F7) are satisfied for the
Bellman/Isaacs equation (1.4) when Fκ is defined as in Example 4.7. We will show
this in the next section.

Theorem 5.2. Assume that for every κ ∈ (0, 1) there exists Fκ satisfying (F0)
– (F7), that u,−v ∈ USCp(Ω) are bounded from above, and that for every z ∈
∂Ω, x ∈ Ω,

(5.2) u(z) ≥ u(x)− ω0(|x− z|) and v(z) ≤ v(x) + ω0(|x− z|),
where ω0 is a modulus.

If u and v are respectively sub- and supersolutions of (1.1), and u ≤ v on ∂Ω,
then u ≤ v in Ω.

Remark 5.3. The above result implies uniqueness of bounded viscosity solutions on
a possibly unbounded domain Ω. The “ω0 condition” means that the semicontinu-
ous viscosity sub- and supersolutions u and v are uniformly semicontinuous up to
the boundary. Any viscosity solution satisfying this condition attains its boundary
values uniformly continuously.

Proof. Define Ψ(x, y) = u(x) − v(y) − φ(x, y), where φ is defined in (F7). By
standard arguments there is a point (x̄, ȳ) ∈ Ω × Ω (depending on δ and ε) such
that Ψ attains its supremum over Ω × Ω here. Define σ := supΩ×Ω Ψ = Ψ(x̄, ȳ).
Note that for any x ∈ Ω, (u− v)(x)− 2ε|x|2 ≤ σ. So, obviously we are done if we
can prove that limε→0 limδ→0 limκ→0 σ ≤ 0.

To prove this, we will first derive a positive upper bound for σ. We may assume
σ > 0 since otherwise any positive upper bound trivially holds. Since u and −v are
bounded from above, we have the following bounds

ε(|x̄|2 + |ȳ|2) ≤ ω1(ε) and
1
δ
|x̄− ȳ|2 ≤ ω2(δ),(5.3)

where ωi, i = 1, 2, are moduli not depending on any of the parameters κ, ε, δ.
These are standard results, see, e.g., [13, Lemma 3.1] for the proofs. Now, either
(i) (x̄, ȳ) ∈ ∂(Ω × Ω), or (ii) (x̄, ȳ) ∈ Ω × Ω. In case (i), (5.2) and u ≤ v on ∂Ω
implies that u(x̄)− v(ȳ) ≤ ω0(|x̄− ȳ|), and hence

σ ≤ ω0(|x̄− ȳ|)− 1
δ
|x̄− ȳ|2 − ε(|x̄|2 + |ȳ|2) ≤ ω0(|x̄− ȳ|) =: I.

In case (ii), we apply Theorem 4.9 to find matrices X,Y ∈ SN , satisfying (4.1),
such that (4.2) and (4.3) hold. Since σ > 0 implies that u(x̄) ≤ v(ȳ), subtracting
the above inequalities and using (F6) and (F7) yield

λ(u(x̄)− v(ȳ)) ≤ Fκ(ȳ, v(ȳ),−Dyφ(x̄, ȳ), Y, vε(·),−φ(x̄, ·))
− Fκ(x̄, v(ȳ), Dxφ(x̄, ȳ), X, uε(·), φ(·, ȳ))

≤ ω

(
(|x̄− ȳ|+ 1

δ
|x̄− ȳ|2) + ε(1 + |x̄|2 + |ȳ|2)

)
+mκ,δ,ε =: II.

So we have σ ≤ u(x̄) − v(ȳ) ≤ II/λ. To complete the proof, we combine cases (i)
and (ii) to obtain the following upper bound on σ,

σ ≤ max(I, II/λ),

where by (5.3) I and II only depends on κ, ε, δ, and

lim
ε→0

lim
δ→0

lim
κ→0

σ ≤ 0.
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�

Remark 5.4. The case when the solutions have linear growth at infinity seems to be
more difficult, and we do not know the optimal conditions for having a comparison
result in this case. However, there are two special cases where we may have a
comparison result:

• If Fκ, F are uniformly continuous in all variables, then a comparison result
can be obtained by adapting the techniques of Ishii in [22, Theorem 7.1].

• If λ is sufficiently large, then we have a comparison result due to “cancel-
lation effects” in the proof.

If λ is big enough, then we can handle arbitrary polynomial growth in the solu-
tions by slightly changing assumption (F7). For parabolic problems we are always
in this situation since we can have λ arbitrary large after an “exponential-in-time”
scaling of the solution.

6. Proof of comparison for Bellman/Isaacs equation, Theorem 3.1

As an application of the general results presented in the previous sections, we
prove in this section a comparison result for semicontinuous sub- and supersolutions
of the elliptic Bellman/Isaacs equation (Theorem 3.1).

In view of Examples 4.1 and 4.7 and the abstract comparison result in the pre-
vious section (Theorem 5.2), Theorem 3.1 follows if we can verify that (F0) – (F7)
hold for the functions Fκ defined in Example 4.7. The only difficult part is to
show that (F7) holds, so we restrict our discussion to this condition. In the pure
PDE case this is proved by Ishii [22]. Although not stated as such, in the integro-
PDE case this is essentially proved in [30] for uniformly continuous u, v (see also
[34, 8, 10]). To give the reader some ideas how this is done (for semicontinuous u,
v), we consider briefly the integro operator of the Bellman/Isaacs equation (1.4).
According to Example 4.7, it can be decomposed into Bα,β

κ and Bα,β,κ, and thanks
to (A0) and (A4), the Bα,β

κ term goes to zero as κ → 0. Let us now consider the
other term. For (F7) to be satisfied, it is necessary that

−Bα,β,κ

(
ȳ,

1
δ
(x̄− ȳ)− εȳ, v(·)

)
+Bα,β,κ

(
x̄,

1
δ
(x̄− ȳ) + εx̄, u(·)

)
≤ ω

(
|x̄− ȳ|+ 1

δ
|x̄− ȳ|2 + ε(1 + |x̄|2 + |ȳ|2)

)
+mκ,δ,ε.

(6.1)

Let us write Bα,β,κ = Bα,β,κ
1 +Bα,β

2 , where Bα,β,κ
1 is the part where z is integrated

over the set κ ≤ |z| ≤ 1 and Bα,β
2 is the part where z is integrated over the set

|z| ≥ 1. The part of (6.1) corresponding to Bα,β,κ
1 can be handled as follows. If

we let ψ(x, y) = u(x) − v(y) − φ(x, y), then a simple calculation shows that the
integrand of this part equals

ψ(x̄+ ηα,β(x̄, z), ȳ + ηα,β(ȳ, z))− ψ(x̄, ȳ)

+
1
δ
|ηα,β(x̄, z)− ηα,β(ȳ, z)|2 + ε(|ηα,β(x̄, z)|2 + |ηα,β(ȳ, z)|2).

Since ψ has a global maximum at (x̄, ȳ) the two first terms are non-positive, so by
(A0), (A3), and (A4), we get

−Bα,β,κ
1

(
ȳ,

1
δ
(x̄− ȳ)− εȳ, v(·)

)
+Bα,β,κ

1

(
x̄,

1
δ
(x̄− ȳ) + εx̄, u(·)

)
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≤ C

(
1
δ
|x̄− ȳ|2 + ε(|x̄|2 + |ȳ|2)

)
,

for some constant C. To handle the part of (6.1) corresponding to Bα,β,κ
2 , we

introduce
Mδ,ε := sup

x,y∈R
ψ(x, y) and M := sup

x∈R
(u− v),

and remark that lim
ε→0

lim
δ→0

Mδ,ε = M . Then it follows that

−Bα,β,κ
2

(
ȳ,

1
δ
(x̄− ȳ)− εȳ, v(·)

)
+Bα,β,κ

2

(
x̄,

1
δ
(x̄− ȳ) + εx̄, u(·)

)
=

∫
|z|≥1

[(
u(x̄+ ηα,β(x̄, z))− u(x̄)

)
−

(
v(ȳ + ηα,β(ȳ, z))− v(ȳ)

)]
m(dz)

=
∫
|z|≥1

[
u(x̄+ ηα,β(x̄, z))− v(ȳ + ηα,β(ȳ, z))︸ ︷︷ ︸−Mδ,ε + φ(x̄, ȳ)

]
m(dz).

g(x̄, ȳ, z)

The last equality follows from the definition of Mδ,ε since (x̄, ȳ) is a maximum point
of ψ by assumption. As we have seen before (see (5.3)), |x̄− ȳ| → 0 as δ → 0 and
|x̄|, |ȳ| are bounded as long as ε > 0 is kept fixed, and since g(x̄, ȳ, z) is upper
semicontinuous in x and y this leads to

lim sup
δ→0

g(x̄, ȳ, z) ≤M.

An other application of (5.3) shows that lim
ε→0

lim
δ→0

φ(x̄, ȳ) = 0. So sending first δ → 0

(taking limit superior) and then ε→ 0, we see that the above integrand and hence
also the integral (by Lebesgue dominated convergence theorem), is upper bounded
by 0. We can conclude that there is an upper bound mδ,ε of the difference in the
Bα,β,κ

2 terms such that lim
ε→0

lim
δ→0

mδ,ε = 0, and the proof of (6.1) is complete.

Remark 6.1. The trick of dividing Bα,β,κ into two terms [10] allows one to consider
more general Lévy measures than in [30]. In [30] it is required that∫

RM\{0}
ρ(z)2m(dz)

is finite, while we assume the weaker condition (A0).

7. Proof of the main result, Theorem 4.9

The outline of the proof of Theorem 4.9 is as follows. First we regularize the sub-
and supersolutions using the ε-sup and ε-inf convolutions, thereby yielding approx-
imate sub- and supersolutions of the original equations that are twice differentiable
a.e. Using the classical maximum principle, we derive for these approximate sub-
and supersolutions an analogous result to Theorem 4.9. In this result (Lemma 7.4)
the lower bounds in the matrix inequality corresponding to (4.1) depends on the
regularization parameter ε. A transformation of these matrices (Lemma 7.7) leads
to new matrices satisfying (4.1) independently of ε. Furthermore, the viscosity
solution inequalities for the approximate sub- and supersolutions are still satisfied
with these new matrices. We can then go to the limit along a subsequence of ε→ 0
and obtain Theorem 4.9.
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The first part of this approach corresponds to the original approach of Jensen
[27], giving the first general uniqueness results for viscosity solutions of second
order PDEs. Actually, we follow the more refined approach of Ishii [22] and Ishii
and Lions [23]. In the second part, the key ingredient is a matrix lemma of Crandall
[11]. We remark that our approach deviates from the by now standard approach
based on the maximum principle for semicontinuous functions [12, 13]. As explained
in Section 2, it appears that a “local” approach based on the maximum principle
for semicontinuous functions is not straightforward to implement for the non-local
equation (1.1).

We start by defining the sup and inf convolutions and stating some of their
properties.

Definition 7.1. Let f ∈ USC(Ω) satisfy f(x) ≤ C(1 + |x|2) in Ω and 0 < ε <
(2C)−1. The sup convolution fε is defined as

fε(x) = sup
y∈Ω

(
f(y)− |x− y|2

ε

)
.

Let f ∈ LSC(Ω) satisfy f(x) ≥ −C(1 + |x|2) in Ω and 0 < ε < (2C)−1. The inf
convolution fε is defined as

fε(x) = inf
y∈Ω

(
f(y) +

|x− y|2

ε

)
.

Lemma 7.2. Let f ∈ USC(Ω) satisfy f(x) ≤ C(1+|x|2) in Ω and 0 < ε < (2C)−1.
(i) fε(x) ≤ 2C(1 + |x|2) and fε(x) + 1

ε |x|
2 is convex and locally Lipschitz in Ω.

(ii) f ≤ fε ≤ f ε̄ for 0 < ε ≤ ε̄ < (2C)−1 and fε → f pointwise as ε→ 0.
(iii) Let ε < (4C)−1 and define Cf (x) :=

(
4C(1 + |x|2)− 2f(x)

)1/2. If x ∈ Ω
is such that dist(x, ∂Ω) > ε1/2Cf (x), then there exists x̄ ∈ Ω such that |x − x̄| ≤
ε1/2C(x) and

fε(x) = f(x̄)− 1
ε
|x− x̄|2.

Since fε = −(−f)ε, we immediately get the corresponding properties for the
inf-convolution. We refer to [4, 15] for proofs of results like those in Lemma 7.2.
Now if f is a function satisfying the assumptions of Lemma 7.2, we define

Ωf
ε =

{
x ∈ Ω : dist(x, ∂Ω) > ε1/2Cf (x)

}
,

where Cf (x) is defined in Lemma 7.2. Moreover, let τh denote the shift operator
defined by

(τhφ)(x) = φ(x+ h)

for any function φ and x, x+ h in the domain of definition of φ.

Lemma 7.3. Assume that (C3) holds, u,−v ∈ USCp(Ω) satisfy u(x),−v(x) ≤
C(1 + |x|2), and 0 < ε < (4C)−1.

(a) If u is a viscosity subsolution of (1.1), then uε solves

Fε(x, uε(x), Duε(x), D2uε(x), uε(·)) ≤ 0 in Ωu
ε ,

in the viscosity solution sense, where

Fε(x, r, p,X, φ(·)) = inf
|x−y|≤Cu(x)ε1/2

F (y, r, p,X, τx−yφ(·)).
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(b) If v is a viscosity supersolution of (1.1), then vε solves

F ε(x, vε(x), Dvε(x), D2vε(x), vε(·)) ≥ 0 in Ω−v
ε ,

in the viscosity solution sense, where

F ε(x, r, p,X, φ(·)) = sup
|x−y|≤C−v(x)ε1/2

F (y, r, p,X, τx−yφ(·)).

Proof. We only prove (a), the proof of (b) is similar. Let φ ∈ C2
p(Ω) and x̄ ∈ Ωu

ε be
such that uε − φ has a global maximum at x̄. According to Lemma 7.2 (iii) there
is a ȳ ∈ Ω such that |x̄ − ȳ| ≤ Cu(x̄)ε1/2 and uε(x̄) = u(ȳ) − 1

ε |x̄ − ȳ|2. Now it is
not so difficult to see that y 7→ (u− τx̄−ȳφ) (y) has a global maximum at ȳ (cf. [22,
Proof of Proposition 4.2]). Since u is a viscosity subsolution of (1.1),

F (ȳ, u(ȳ), D(τx̄−ȳφ)(ȳ), D2(τx̄−ȳφ)(ȳ), (τx̄−ȳφ)(·)) ≤ 0.

Since |x̄− ȳ| ≤ Cu(x̄)ε1/2, Dn(τx̄−ȳφ)(ȳ) = Dnφ(x̄) for n = 1, 2, and uε(x̄) ≤ u(ȳ),
it follows using (C3) and the above inequality that

Fε(x̄, uε(x̄), Dφ(x̄), D2φ(x̄), φ(·)) ≤ 0,

and the proof is complete �

Now we have come to one of the main technical results in this paper. It is a
version for integro-PDEs of Proposition 5.1 in Ishii [22] (see also Proposition II.3
in Ishii and Lions [23]).

Lemma 7.4. Let u,−v ∈ USCp(Ω) satisfy u(x),−v(x) ≤ C(1+ |x|2), and solve in
the viscosity solution sense

F (x, u(x), Du(x), D2u(x), u(·)) ≤ 0 and G(x, v(x), Dv(x), D2v(x), v(·)) ≥ 0,

where F,G satisfy (C1) – (C4). For 0 < ε < (4C)−1, let φ ∈ C2
p(Ω × Ω) and

(x̄, ȳ) ∈ Ωu
ε × Ω−v

ε be such that

(x, y) 7→ uε(x)− vε(y)− φ(x, y)

has a global maximum over Ωu
ε × Ω−v

ε at (x̄, ȳ). Then there exist two matrices
X,Y ∈ SN satisfying

−2
ε

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ D2φ(x̄, ȳ),(7.1)

such that

Fε(x̄, uε(x̄), Dxφ(x̄, ȳ), X, φ(·, ȳ)) ≤ 0,(7.2)

Gε(ȳ, vε(ȳ),−Dyφ(x̄, ȳ), Y,−φ(x̄, ·)) ≥ 0.(7.3)

Remark 7.5. Compared with Ishii [22, Proposition 5.1], the main feature of Lemma
7.4 is the inclusion of the penalization function φ(·, ·) in the non-local slots in (7.2)
and (7.3).

Remark 7.6. The condition u(x),−v(x) ≤ C(1 + |x|2) in Lemma 7.4 is necessary
for uε and vε to be well-defined according to Definition 7.1.

Proof. 1. Let w(x, y) = uε(x)− vε(y). By Lemma 7.2 w is locally Lipschitz contin-
uous and semi-convex in Ω×Ω. By Alexandroff’s theorem, w is twice differentiable
a.e. in Ω× Ω (cf. [13, 15]).



18 JAKOBSEN AND KARLSEN

2. By the assumptions, w−φ has a global maximum over Ωu
ε ×Ω−v

ε at (x̄, ȳ). By
(C4), we may assume that w = φ at (x̄, ȳ) by adding a constant to φ if necessary.
Furthermore, (x, y) 7→ w(x, y) − φ(x, y) − δ|(x, y) − (x̄, ȳ)|4 has a strict maximum
over Ωu

ε × Ω−v
ε at (x̄, ȳ) for every δ > 0, and this maximum takes the value 0.

3. The crucial step in this proof is the application of Jensen’s lemma, see Lemmas
3.10 and 3.15 in Jensen [27] or Lemma 5.3 in Ishii [22]. Pick a r > 0 such that
B((x̄, ȳ), r) ⊂ Ωu

ε ×Ω−v
ε , then by 1 and 2 we may apply Jensen’s lemma to w−φ−

δ|(x, y)− (x̄, ȳ)|4 on B((x̄, ȳ), r). By this Lemma there are sequences {(xk, yk)}k ⊂
B((x̄, ȳ), r) and {(pk, qk)}k ⊂ RN×RN such that (i) (xk, yk) → (x̄, ȳ) and (pk, qk) →
(0, 0) as k →∞, (ii) w is twice differentiable at (xk, yk), and (iii) the function

(x, y) 7→ w(x, y)− φ(x, y)− δ|(x, y)− (x̄, ȳ)|4 − (pk, qk) · (x, y)

attains its maximum over B((x̄, ȳ), r) at (xk, yk). Note that for notational reasons,
we suppress the dependence on δ in xk, yk, pk, qk.

4. Now, let φ̄k,δ(x, y) = φ(x, y)+δ|(x, y)−(x̄, ȳ)|4+(pk, qk)·(x, y)+Ck,δ for some
constant Ck,δ, and note that by 3, w − φ̄k,δ attains its maximum over B((x̄, ȳ), r)
at (xk, yk). Hence the differentiability of w implies that at (xk, yk), Dw = Dφ̄k,δ

and D2w ≤ D2φ̄k,δ. Finally, choose Ck,δ such that (w − φ̄k,δ)(xk, yk) = 0.
5. Pick a non-negative function θ ∈ C∞(Ωu

ε × Ω−v
ε ) which is 1 in B((x̄, ȳ), r/2)

and 0 outside of B((x̄, ȳ), r). Now define

φk,δ = θ φ̄k,δ + (1− θ)φ.

Obviously φk,δ ∈ C2
p(Ωu

ε ×Ω−v
ε ), and we claim that w−φk,δ has a global maximum

at (xk, yk). This follows since by 2, w ≤ φ in Ωu
ε × Ω−v

ε , and by 4, w ≤ φ̄k,δ in
B((x̄, ȳ), r) and w = φ̄k,δ at (xk, yk).

6. There exists a function ψk,δ ∈ C2
p(Ωu

ε × Ω−v
ε ) such that Dnψk,δ(xk, yk) =

Dnw(xk, yk) for n = 0, 1, 2 and w ≤ ψk,δ ≤ φk,δ in Ωu
ε × Ω−v

ε . In particular,
ψk,δ − φk,δ (also) attains its maximum over Ωu

ε × Ω−v
ε at (xk, yk).

To prove the above claim we consider separately the following cases: (i) D2w =
D2φk,δ at (xk, yk) and (ii) D2w < D2φk,δ at (xk, yk) (note that trivially D2w ≤
D2φk,δ at (xk, yk)). In case (i) we simply set ψk,δ = φk,δ. In case (ii) we pick a
φ̄ ∈ C2(Ωu

ε ×Ω−v
ε ) such that Dnφ̄ = Dnw at (xk, yk) for n = 0, 1, 2, and w− φ̄ ≤ 0

in Ωu
ε ×Ω−v

ε . This can be done by a construction of Evans, see e.g. [15, Proposition
V.4.1]. It follows that at (xk, yk), φ̄ = φk,δ, Dφ̄ = Dφk,δ, and D2φ̄ < D2φk,δ. This
means that we can find a δ̄ > 0 such that φ̄ < φk,δ in the ball B((xk, yk), δ̄). Now
we define ψk,δ in the following way:

ψk,δ = θ φ̄+ (1− θ)φk,δ,

where θ ∈ C∞(Ωu
ε × Ω−v

ε ) is non-negative, 1 in B((xk, yk), δ̄/2), and 0 outside of
B((xk, yk), δ̄). This function θ is not to be confused with the θ in 5.

7. By 6, (w − ψk,δ)(x, yk) has a maximum over Ωu
ε at xk, and (w − ψk,δ)(xk, y)

has a minimum over Ω−v
ε at yk. Hence Lemma 7.3 yields

Fε(xk, u
ε(xk), Dxψk,δ(xk, yk), D2

xψk,δ(xk, yk), ψk,δ(·, yk)) ≤ 0,

Gε(yk, vε(yk),−Dyψk,δ(xk, yk),−D2
yψk,δ(xk, yk),−ψk,δ(xk, ·)) ≥ 0.

By the properties of ψk,δ, (C2), and since ψk,δ − φk,δ has its global maximum at
(xk, yk), we get

Fε(xk, u
ε(xk), Duε(xk), Xk,δ, φk,δ(·, yk)) ≤ 0,
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Gε(yk, vε(yk), Dvε(yk), Yk,δ,−φk,δ(xk, ·)) ≥ 0,

where Xk,δ = D2uε(xk) and Yk,δ = D2vε(yk).
8. Since w − φk,δ has a maximum at (xk, yk) and by the semi-convexity of w,

see Lemma 7.2 (i), the following inequality holds

−2
ε

(
I 0
0 I

)
≤

(
Xk,δ 0

0 −Yk,δ

)
≤ D2φk,δ(xk, yk).

Furthermore, if 0 < δ < 1 and ε fixed then this inequality implies that −CI ≤
Xk,δ, Yk,δ ≤ CI for some constant C > 0. The set of such matrices is compact by
Lemma 5.3 in Ishii [22], so we may pick a convergent subsequence, also denoted by
{Xk,δ, Yk,δ}k, converging to some Xδ, Yδ ∈ SN . By the above inequality and since
D2φk,δ(xk, yk) → D2φ(x̄, ȳ) as k →∞, we see that the limits Xδ, Yδ satisfy (7.1).

9. The next step of the proof is to send k →∞ (along the subsequence in 8) in
the inequalities at the end of 7, and conclude by continuity of all arguments and
(C1) that

Fε(x̄, uε(x̄), Dxφ(x̄, ȳ), Xδ, φ(·, ȳ) + δθ(·, ȳ)|(·, ȳ)− (x̄, ȳ)|4) ≤ 0,

Gε(ȳ, vε(ȳ),−Dyφ(x̄, ȳ), Yδ,−φ(x̄, ·)− δθ(x̄, ·)|(x̄, ·)− (x̄, ȳ)|4) ≥ 0.

Let us verify the assumptions of (C1). First note that |φk,δ(x, y)| ≤ C(1+|x|p+|y|p)
with C independent of δ, k. This bound follows from the definition of φk,δ (see 4 and
5) since φ ∈ C2

p . Then we claim that Dnφk,δ(·, ȳ) → Dn(φ(·, ȳ) + δ|(·, ȳ)− (x̄, ȳ)|4)
locally uniformly for n = 0, 1, 2 as k → ∞ (and similarly for φk,δ(x̄, ·)). By its
definition (see 5) it is enough to check this for φ̄k,δ in B((x̄, ȳ), r). But by the
definition of φ̄k,δ (see 4) this easily follows since by 6, pk, qk → 0, and by 2, Ck,δ =
sup(w − φ̄k,δ) → sup(w − φ− δ|(x, y)− (x̄, ȳ)|4) = 0.

10. The final step is to send δ → 0. Because Xδ, Yδ satisfy (7.1), we have
compactness as in 8, so we pick a subsequence δ → 0 such that the matrices
converge to some X,Y ∈ SN . Of course X,Y still satisfy (7.1). Furthermore, by
continuity of all arguments and (C1) we conclude that the inequalities in 9 become
(7.2) and (7.3) as δ → 0 along this subsequence. �

The next result is a matrix lemma due to Crandall [11].

Lemma 7.7. Let X,Y ∈ SN satisfy(
X 0
0 −Y

)
≤

(
I −I
−I I

)
.(7.4)

Then for γ ∈ (0, 1
2 ), (I − γX) and (I + γY ) are invertible, and if

Xγ = X(I − γX)−1 and Yγ = Y (I + γY )−1

then

X ≤ Xγ ≤ Yγ ≤ Y(7.5)

and

− 1
γ

(
I 0
0 I

)
≤

(
Xγ 0
0 −Yγ

)
≤ 1

1− 2γ

(
I −I
−I I

)
.(7.6)

Using Lemmas 7.4 and 7.7, we now prove a version of Theorem 4.9 where the
F/G-formulation is used instead of the Fκ/Gκ-formulation. Theorem 4.9 is an easy
consequence of this result (see below).



20 JAKOBSEN AND KARLSEN

Lemma 7.8. Let u,−v ∈ USCp(Ω) satisfy u(x),−v(x) ≤ C(1 + |x|2) and solve in
the viscosity solution sense

F (x, u,Du,D2u, u(·)) ≤ 0 and G(x, v,Dv,D2v, v(·)) ≥ 0,

where F,G satisfies (C1) – (C4). Let φ ∈ C2
p(Ω × Ω) and (x̄, ȳ) ∈ Ω × Ω be such

that
(x, y) 7→ u(x)− v(y)− φ(x, y)

has a global strict maximum at (x̄, ȳ). Furthermore, assume that in a neighborhood
of (x̄, ȳ) there are continuous functions g0 : R2N → R, g1, g2 : RN → SN with
g0(x̄, ȳ) > 0, satisfying

D2φ ≤ g0(x, y)
(
I −I
−I I

)
+

(
g1(x) 0

0 g2(y)

)
.

Then for each γ ∈ (0, 1
2 ) there exist matrices X,Y ∈ SN satisfying

−g0(x̄, ȳ)
γ

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
−

(
g1(x̄) 0

0 g2(ȳ)

)
≤ g0(x̄, ȳ)

1− 2γ

(
I −I
−I I

)
.(7.7)

such that

F (x̄, u(x̄), Dxφ(x̄, ȳ), X, φ(·, ȳ)) ≤ 0,(7.8)

G(x̄, v(ȳ),−Dyφ(x̄, ȳ), Y,−φ(x̄, ·)) ≥ 0.(7.9)

Remark 7.9. Compared with Crandall [11, Theorem 1], the main feature in Lemma
7.8 is the inclusion of the inequalities (7.8) and (7.9). In the pure PDE case, un-
der certain (semi)continuity assumptions on the equation (1.1), the corresponding
inequalities come for free. We refer to Section 2 for a discussion of this point.

Proof. For all sufficiently small ε > 0, (x, y) 7→ uε(x) − vε(y) − φ(x, y) has a
global maximum at some point (xε, yε) ∈ Ω × Ω, and as ε → 0, (xε, yε) → (x̄, ȳ),
uε(xε) → u(x̄), vε(yε) → v(ȳ). Moreover, we may find a ε′ > 0 and a r > 0 such
that for all ε < ε′, (i) (xε, yε) ∈ B((x̄, ȳ), r), (ii) B((x̄, ȳ), r) ⊂ Ωu

ε × Ω−v
ε , and (iii)

g0 > 0 in B((x̄, ȳ), r).
By Lemma 7.4 there exist two matrices X,Y ∈ SN satisfying

−2
ε
I ≤

(
X 0
0 −Y

)
≤ D2φ(xε, yε),

and furthermore

Fε(xε, u
ε(xε), Dxφ(xε, yε), X, φ(·, yε)) ≤ 0,

Gε(yε, vε(yε),−Dyφ(xε, yε), Y,−φ(xε, ·)) ≥ 0.

By the assumptions, we may rewrite the left hand side of the above matrix inequality
as follows, (

X̃ 0
0 −Ỹ

)
≤

(
I −I
−I I

)
,

where

X̃ =
1

g0(xε, yε)
(X − g1(xε)) and Ỹ =

1
g0(xε, yε)

(Y + g2(yε)) .
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These two matrices satisfies the assumptions of Lemma 7.7, so we can conclude
that inequalities corresponding to (7.5) and (7.6) hold. Now define

X̄ = g0(xε, yε)X̃γ + g1(xε) and Ȳ = g0(xε, yε)Ỹγ − g2(yε).

The conclusions of Lemma 7.7 can then be written as follows,

X ≤ X̄, Ȳ ≤ Y,

and
(7.10)

−g0(xε, yε)
γ

(
I 0
0 I

)
≤

(
X̄ 0
0 −Ȳ

)
−

(
g1(xε) 0

0 g2(yε)

)
≤ g0(xε, yε)

1− 2γ

(
I −I
−I I

)
.

By degenerate ellipticity (C2),

Fε(xε, u
ε(xε), Dxφ(xε, yε), X̄, φ(·, yε)) ≤ 0,(7.11)

Gε(yε, vε(yε),−Dyφ(xε, yε), Ȳ ,−φ(xε, ·)) ≥ 0.(7.12)

By continuity of g0, g1, g2 on B((x̄, ȳ), r), we see from (7.10) that {X̄}ε>0 and
{Ȳ }ε>0 are compact in S(RN ). Hence we may pick subsequences converging as
ε → 0 to limit matrices (still) called X̄ and Ȳ . Moreover, sending ε → 0 in (7.10)
along such a subsequence gives the matrix inequality (7.7). Passing to the limit
ε → 0 along the same subsequence in (7.11) and (7.12) we obtain (7.8) and (7.9)
using (C1) and continuity. The proof is complete. �

We are will now prove Theorem 4.9.

Proof of Theorem 4.9. After an application of Lemma 4.9, this proof is similar to
the proof of Lemma 4.8. First note that we may assume that the maximum is strict
and that the maximal value is 0. Then pick a sequence of C2

p(Ω × Ω) functions
{φε}ε>0 such that u(x) − v(y) ≤ φε(x, y) ≤ φ(x, y) and φε(x, y) → u(x) − v(y)
(pointwise) in Ω × Ω. Note that φε − φ has a global maximum at (x̄, ȳ), and
hence D(φε − φ)(x̄, ȳ) = 0 and D2(φε − φ)(x̄, ȳ) ≤ 0. In particular, it follows that
(x, y) 7→ u(x)− v(y)− φε(x, y) satisfies the assumptions in Lemma 7.8, so we have
matrices X,Y ∈ SN satisfying (7.7) (which equals (4.1)) and

F (x̄, u(x̄), Dxφε(x̄, ȳ), X, φε(·, ȳ)) ≤ 0,

G(ȳ, v(ȳ),−Dyφε(x̄, ȳ), Y,−φε(x̄, ·)) ≥ 0.

Applying (F0) and then (F2) to the above inequalities for F and G yield

Fκ(x̄, u(x̄), Dxφ(x̄, ȳ), X, φε(·, ȳ), φ(·, ȳ)) ≤ 0,

Gκ(ȳ, v(ȳ),−Dyφ(x̄, ȳ), Y,−φε(x̄, ·),−φ(x̄, ·)) ≥ 0.

Using (F5), (F4), and sending ε→ 0, yield (4.2) and (4.3). The proof is complete.
�
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[2] A. L. Amadori. The obstacle problem for nonlinear integro-differential operators arising in
option pricing. Quaderno IAC Q21-000, 2000.

[3] A. L. Amadori. Nonlinear integro-differential evolution problems arising in option pricing: a
viscosity solutions approach. Journal of Differential and Integral Equations, 16(7):787–811,
2003.



22 JAKOBSEN AND KARLSEN

[4] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations. Birkhäuser, Boston 1997.
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