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A Maximum Principle for Single–Input

Boolean Control Networks

Dmitriy Laschov and Michael Margaliot

Abstract—Boolean networks are recently attracting consider-
able interest as computational models for genetic and cellular
networks. We consider a Mayer–type optimal control problem
for a single–input Boolean network, and derive a necessary
condition for a control to be optimal. This provides an analog
of Pontryagin’s maximum principle for single–input Boolean
networks.

Index Terms—Semi–tensor product, logical functions, sum of
products representation, systems biology, variational analysis,
necessary condition for optimality.

I. INTRODUCTION

A Boolean network consists of a set of Boolean variables

whose state is determined by other variables in the network.

Cellular automata, with two possible states per cell, are a

particular case of Boolean networks. Here the state of each

variable at time k + 1 is determined by the state of its spatial
neighbors at time k [21].
Boolean networks have been studied extensively as models

for simple artificial neural networks (see, e.g. [13]). More

recently, such networks gained renewed interest as models

for biological systems. S. A. Kauffman pioneered the mod-

eling and analysis of gene regulation networks using random

Boolean networks [14], [15].

A Boolean network with n variables has 2n possible states

and therefore the dynamics for any initial condition must fall

into an attractor. One possible way to enrich the dynamics is

to consider Boolean networks with exogenous (binary) inputs.

This leads to the concept of Boolean control networks (BCNs).

Daizhan Cheng and his colleagues developed an algebraic

state–space representation of BCNs using the semi–tensor

product of matrices. This representation is quite useful for

studying BCNs in a control–theoretic framework. Examples

include the analysis of disturbance decoupling [5], control-

lability and observability [9], realization theory [8], and

more [10], [11], [6].

Here we use this state–space representation to analyze a

Mayer–type optimal control problem for BCNs with a single

input. Our main result is a necessary condition for a control

to be optimal. This provides a kind of Pontryagin maximum

principle (PMP) for BCNs. The proof of our main result is

motivated by the simple proof of a special case of the PMP

used in the variational analysis of switched systems [18] (see

also [19], [23], [20]).

Some related work includes the numerical solution of op-

timal control problems for Probabilistic Boolean Networks

using dynamic programming [24], [25], and the work of

Akutsu et al. [1] demonstrating that control problems for

BCNs are in general NP–hard.
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Fig. 1. Graphical representation of the BCN in Example 1.

The remainder of this note is organized as follows. Sec-

tion II reviews BCNs. Section III describes Cheng’s algebraic

state–space representation of BCNs using the semi–tensor

product of matrices. Section IV details our main result which is

a new maximum principle (MP) for single–input BCNs. It also

provides an analysis of the so–called singular case inwhich the

MP itself does not provide direct information on the optimal

control. The proof is given in Section V. Section VI details

two examples demonstrating the application of the new MP.

II. BOOLEAN CONTROL NETWORKS

A Boolean control network is a discrete–time logical dy-

namic control system in the form

x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k)), (1)

...

xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k)),

where xi, ui ∈ {True, False} and each fi is a Boolean

function.

A BCN may be represented graphically as a network with n
nodes, representing the xis, and m inputs. A directed edge

from node i (input ui) to node j implies that xj(k+1) depends
on xi(k) (ui(k)).

Example 1 Fig. 1 depicts the graphical representation of the

single–input BCN

x1(k + 1) = x1(k) ∨ x2(k), (2)

x2(k + 1) = x2(k) ∧ u1(k).

It is worth noting that a BCN with m inputs may be inter-
preted as a Boolean switched system switching between 2m

possible subsystems, with the value of the control determining

which subsystem is active at every time step. For example, we

may view (2) as a Boolean switched system switching between

the two subsystems:

x1(k + 1) = x1(k) ∨ x2(k),

x2(k + 1) = x2(k) ∧ True = x2(k),

and

x1(k + 1) = x1(k) ∨ x2(k),

x2(k + 1) = x2(k) ∧ False = False.
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III. ALGEBRAIC STATE–SPACE REPRESENTATION OF BCNS

Daizhan Cheng [7] and his colleagues introduced the con-

cept of a semi–tensor product and used it to represent BCNs in

an algebraic state–space form. This representation is useful for

studying BCNs in a control–theoretic framework. We briefly

review this approach.

A. Semi–tensor product

Recall that the Kronecker product (see, e.g. [3, Chapter 7])

of two matrices A ∈ R
m×n and B ∈ R

p×q is

A ⊗ B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






.

Note that A ⊗ B ∈ R
(mp)×(nq).

Given two positive integers a, b, let lcm(a, b) denote the
least common multiplier of a and b. For example, lcm(6, 8) =
24. Let In denote the n × n identity matrix.

Definition 2 The semi–tensor product of two matrices A ∈
R

m×n and B ∈ R
p×q is

A ⋉ B = (A ⊗ Iα/n)(B ⊗ Iα/p),

where α = lcm(n, p).

Remark 3 Note that (A ⊗ Iα/n) ∈ R
(mα/n)×α and (B ⊗

Iα/p) ∈ R
α×(qα/p), so (A ⋉ B) ∈ R

(mα/n)×(qα/p).

Remark 4 If n = p, then A ⋉ B = (A ⊗ I1)(B ⊗ I1) =
AB, so we recover the standard matrix product. Thus, we
may view the semi–tensor product as a generalization of the

standard matrix product that allows multiplying two matrices

of arbitrary dimensions.

Example 5 Consider a⋉b where a, b ∈ R
2. Here m = p = 2

and n = q = 1, so α = lcm(n, p) = 2, and

a ⋉ b = (a ⊗ I2)(b ⊗ I1)

=









a1 0
0 a1

a2 0
0 a2









b

=
[

a1b1 a1b2 a2b1 a2b2

]T
.

Example 6 Consider the semi–tensor product of a row–

vector aT =
[

a1 . . . an

]

and a column vector b =
[

b1 . . . bp

]T
. Suppose that s = n/p is an integer.

Then α = lcm(n, p) = n and

aT
⋉ b = (aT ⊗ I1)(b ⊗ Is)

= aT







b1Is

...

bpIs






.

Various properties of the semi–tensor product are analyzed

in [7]. For our purposes, it is sufficient to note that this product

is associative:

A ⋉ (B ⋉ C) = (A ⋉ B) ⋉ C,

and distributive:

(A + B) ⋉ C = (A ⋉ C) + (B ⋉ C).

B. Algebraic representation of Boolean functions

The semi–tensor product allows representing Boolean func-

tions in an algebraic form. Let ei
n denote the ith column of

the identity matrix In. Represent the Boolean values True

and False by e1
2 =

[

1
0

]

and e2
2 =

[

0
1

]

, respectively. Then

any Boolean function of n variables f : {False,True}n →
{False,True} can be equivalently represented as a mapping f̄ :
{e1

2, e
2
2}

n → {e1
2, e

2
2}. With some abuse of notation, we

identify f̄ with f . In other words, from here on a Boolean
variable xi is always a vector in {e

1
2, e

2
2}.

Theorem 7 [10] Let f : {e1
2, e

2
2}

n → {e1
2, e

2
2} be a Boolean

function. There exists a unique binary matrix Mf of dimen-

sions 2 × 2n such that

f(x1, . . . , xn) = Mf ⋉ x1 ⋉ · · · ⋉ xn.

Mf is called the structure matrix of f .

Remark 8 In order to provide some intuition on this rep-

resentation, consider the case n = 2, i.e. f = f(x1, x2).

Recall that xi ∈ {e1
2, e

2
2}, so we may write x1 =

[

v v̄
]T

and x2 =
[

w w̄
]T
, with v, w ∈ {0, 1}. Then

x1 ⋉ x2 =
[

vw vw̄ v̄w v̄w̄
]T

, (3)

i.e. x1 ⋉ x2 contains all the possible minterms of v and w.
Recall that any Boolean function may be represented as a

sum of some minterms of its variables (see, e.g. [16]). This

is known as the sum of products (SOP) representation. The

multiplication Mf ⋉ x1 ⋉ x2 provides such a representation.

Note that (3) implies that x1 ⋉x2 ∈ {e1
4, . . . , e

4
4}. Indeed, one

and only one minterm is equal to 1.

Example 9 Consider the function f(x) = x̄, i.e. f is defined
by f(e1

2) = e2
2 and f(e2

2) = e1
2. It is easy to verify that f(x) =

[

0 1
1 0

]

⋉ x. Consider the function g(x1, x2) = x1 ∧ x2. It is

straightforward to verify that

g(x1, x2) = Mg ⋉ x1 ⋉ x2,

with Mg =

[

1 0 0 0
0 1 1 1

]

. For example,

Mg ⋉ e1
2 ⋉ e2

2 = Mg ⋉
[

0 1 0 0
]T

= Mg

[

0 1 0 0
]T

=
[

0 1
]T

= e2
2,

corresponding to (True ∧ False) = False.
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C. Algebraic representation of BCNs

Since the dynamics of BCNs is described by a set of

Boolean functions, it is clear from the discussion above that

the semi–tensor product can be used to provide an algebraic

state–space representation of BCNs.

Theorem 10 [11] Consider a BCN with state vari-

ables x1, . . . , xn, and inputs u1, . . . , um, with xi, ui ∈
{e1

2, e
2
2}. Let x(k) = x1(k)⋉ · · ·⋉xn(k) and u(k) = u1(k)⋉

· · ·⋉um(k). There exists a unique matrix L ∈ R
2n

×2n+m

such

that

x(k + 1) = L ⋉ u(k) ⋉ x(k). (4)

The matrix L is called the transition matrix of the BCN.

Algorithms for converting a BCN in the form (1) to its

algebraic representation (4), and vice versa, may be found

in [10], [9].

Remark 11 The intuition behind this representation is very

similar to the algebraic representation of a single Boolean

function. To demonstrate this, consider a BCN with n = 2
andm = 1. Then x(k+1) = L⋉u1(k)⋉x1(k)⋉x2(k). To sim-
plify the notation, we omit from here on the dependence on k.

Denote x1 =
[

p p̄
]T
, x2 =

[

q q̄
]T
, and u1 =

[

v v̄
]T
.

Then

u1 ⋉ x1 ⋉ x2 =
[

vpq vpq̄ vp̄q vp̄q̄

v̄pq v̄pq̄ v̄p̄q v̄p̄q̄
]

.

Thus, u⋉x includes all the possible minterms of the input and
state variables. The equation x(k + 1) = L ⋉ u ⋉ x provides
a description of (every minterm of) the next state in terms of

the current state and inputs.

Example 12 Consider the BCN in Example 1. Here n = 2
and m = 1, so x(k) = x1(k) ⋉ x2(k) and u(k) = u1(k).
Applying the algorithm described in [9], we find that the

transition matrix is L =









1 0 1 0 0 0 0 0
0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1









. To

demonstrate the equivalence of the original dynamics and (4),

consider for example the case x1(k) = False, x2(k) = True,
and u(k) = True. Then (2) yields

x1(k + 1) = True, x2(k + 1) = True. (5)

In the algebraic framework, this corresponds to x1(k) = e2
2,

x2(k) = u(k) = e1
2. Then

x(k + 1) = L ⋉ u(k) ⋉ x(k)

= L ⋉

[

1
0

]

⋉

[

0
1

]

⋉

[

1
0

]

= L ⋉
[

0 0 1 0 0 0 0 0
]T

= L
[

0 0 1 0 0 0 0 0
]T

=
[

1 0 0 0
]T

.

Writing x1(k + 1) =
[

v v̄
]T
and x2(k + 1) =

[

w w̄
]T

yields x(k + 1) =
[

vw vw̄ v̄w v̄w̄
]T
, so v = w = 1.

Thus, x1(k +1) = x2(k +1) = e1
2, and this agrees, of course,

with (5).

IV. MAIN RESULT

Consider a BCN in the algebraic state–space representa-

tion (4). From here on we consider the case of a single control

(i.e., m = 1) and fix some (arbitrary) initial condition x(0) =
x0 ∈ {e1

2n , . . . , e2n

2n}.

A. Optimal control problem

A fundamental problem for all dynamical control systems

is to determine a control that is optimal in some sense. In

other words, a control that maximizes (or minimizes) a given

cost–functional.

Fix a final time N > 0. Let U denote the set of admissible
controls, i.e. the set of all the sequences {u(0), . . . , u(N−1)},
with u(i) ∈ {e1

2, e
2
2}. For a control u ∈ U, let x(k; u) denote

the solution of (4), with x(0) = x0, at time k. Fix a vector r ∈
R

2n

, and consider the cost–functional

J(u) = rT x(N ; u). (6)

We now pose a Mayer–type optimal control problem.

Problem 13 Find a control u∗ ∈ U that maximizes J .

This problem clearly admits a solution, as U is a finite set. We

refer to a control that maximizes J as an optimal control. In
principle, Problem 13 may be solved numerically by simply

calculating x(N ; u) for any u ∈ U. However, this is clearly

not practical for large values of N .

Remark 14 Recall that x(N) consists of all the minterms of
the Boolean state variables at time N . Hence any Boolean
function f of the state at time N may be represented in the
form (6), i.e. as f = rT

f x(N, u), where rf is a binary vector. In

this particular case, J(u) can attain only two values, namely,
zero and one. This yields a reachability problem that is quite

relevant for BCNs that model biological networks, as here

states can usually be divided into desirable and non–desirable

states. For example, in a model of cell differentiation a non–

desirable state corresponds to uncontrolled cell proliferation

(see, e.g. [12], [17]). For a different approach for analyzing

reachability in BCNs, see [9].

Example 15 Suppose that n = 3, and let x1(N) =
[

v v̄
]T
,

x2(N) =
[

w w̄
]T
, and x3(N) =

[

q q̄
]T
. Then

x(N) = x1(N) ⋉ x2(N) ⋉ x3(N)

=
[

vwq vwq̄ vw̄q vw̄q̄ v̄wq

v̄wq̄ v̄w̄q v̄w̄q̄
]T

.

Suppose that r =
[

1 1 0 0 . . . 0
]T
. Then rT x = vw,

so maximizing (6) corresponds to trying to find a control u
steering the BCN to x1(N) = x2(N) = e1

2, if it exists.
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We are interested in developing an analytical characteriza-

tion of optimal controls. Iterating (4) shows that for any two

integers k ≥ j ≥ 0,

x(k; u) = C(k, j; u) ⋉ x(j; u), (7)

where

C(k, j; u) = L⋉u(k−1)⋉L⋉u(k−2)⋉ · · ·⋉L⋉u(j), (8)

with C(k, k; u) = I2n . We refer to C(k, j; u) as the transition
matrix from time j to time k corresponding to the control u.
Note that (8) implies that for any k ≥ l ≥ j,

C(k, j; u) = C(k, l; u) ⋉ C(l, j; u).

We can now state our main result.

Theorem 16 Consider the BCN (4) with m = 1 and x(0) =
x0. Suppose that u∗ = {u∗(0), . . . , u∗(N − 1)} ∈ U is an

optimal control for Problem 13, and let x∗ denote the corre-

sponding solution. Define the adjoint λ : {1, . . . , N} → R
2n

as the solution of

λ(k) = (L ⋉ u∗(k))T
⋉ λ(k + 1),

λ(N) = r, (9)

and the switching function m : {0, 1, . . . , N − 1} → R by

m(s) = λT (s + 1) ⋉ L ⋉

[

1
−1

]

⋉ x∗(s). (10)

Then for any s ∈ {0, 1, . . . , N − 1},

u∗(s) =

{

e1
2, if m(s) > 0,

e2
2, if m(s) < 0.

(11)

Theorem 16 provides a necessary condition for optimality in

terms of the switching function m. Note that this is somewhat
similar to the PMP for discrete–time dynamical systems (see,

e.g. [22, Ch. 8]). In particular, it leads to a two–point boundary

value problem in terms of (x, λ).

Remark 17 It is instructive to verify that m(·) is indeed a
scalar function. Since the dimensions of λT (·) are 1× 2n and

those of L are 2n × 2n+1 (recall that we consider a BCN

with m = 1 inputs), it follows from Remark 4 that

λT (s + 1) ⋉ L = λT (s + 1)L ∈ R
1×2n+1

.

Since the dimensions of x∗(·) are 2n × 1, Remark 3 implies
that

[

1
−1

]

⋉ x∗(s) ∈ R
2n+1

×1.

Thus,

m(s) = λT (s + 1) ⋉ L ⋉

[

1
−1

]

⋉ x∗(s)

= λT (s + 1)L(

[

1
−1

]

⋉ x∗(s))

is a scalar.

When m(s) = 0, Eq. (11) does not provide any information
on u∗(s). The next result shows that this singular case can be

easily handled.

Theorem 18 Suppose that the conditions of Theorem 16 hold.

Ifm(k) = 0 for some k, then there exists an optimal control u∗

satisfying u∗(k) = e1
2, and there exists an optimal control w

∗

satisfying w∗(k) = e2
2.

V. PROOF OF MAIN RESULT

Fix arbitrary time p ∈ {0, . . . , N − 1} and vector v ∈
{e1

2, e
2
2}. Define a new control u ∈ U by

u(j) =

{

v, if j = p,

u∗(j), otherwise.
(12)

In other words, u is identical to the optimal control u∗ except,

perhaps, at a single time step. This provides an analog of the

needle variation used in the proof of the PMP (see, e.g., [4],

[2]).

It follows from the definition of the transition matrix that

x(N ; u∗) = C(N, p + 1; u∗) ⋉ C(p + 1, p; u∗)

⋉ C(p, 0; u∗) ⋉ x0

= C(N, p + 1; u∗) ⋉ L ⋉ u∗(p) ⋉ x∗(p),

and similarly

x(N ; u) = C(N, p + 1; u) ⋉ L ⋉ u(p) ⋉ x(p; u)

= C(N, p + 1; u∗) ⋉ L ⋉ v ⋉ x∗(p),

where the second equation follows from the definition of u.
Thus,

x∗(N) − x(N ; u)

= C(N, p + 1; u∗) ⋉ L ⋉ (u∗(p) − v) ⋉ x∗(p).

Hence,

J(u∗) − J(u) (13)

= rT (C(N, p + 1; u∗) ⋉ L ⋉ (u∗(p) − v) ⋉ x∗(p)).

To simplify this expression, let wT (p + 1) = rT C(N, p +
1; u∗). Then wT (N) = rT C(N, N ; u∗) = rT , and

w(p) = CT (N, p; u∗)r

= (C(N, p + 1; u∗) ⋉ C(p + 1, p; u∗))T r

= (C(N, p + 1; u∗)C(p + 1, p; u∗))T r

= CT (p + 1, p; u∗)CT (N, p + 1; u∗)r

= CT (p + 1, p; u∗) ⋉ CT (N, p + 1; u∗)r

= (L ⋉ u∗(p))T
⋉ w(p + 1).

Comparing this with (9), we find that w(p) = λ(p) for all p,
and thus (13) yields

J(u∗)− J(u) = λT (p + 1) ⋉ L ⋉ (u∗(p)− v) ⋉ x∗(p). (14)

Suppose that u∗(p) = e1
2. Choose v in the definition of u (12)

as v = e2
2. Then

J(u∗) − J(u) = m(p). (15)

If m(p) < 0, then this contradicts the fact that u∗ is

optimal. We conclude that if m(p) < 0, then u∗(p) 6= e1
2,
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so u∗(p) = e2
2. A similar argument shows that if m(p) > 0,

then u∗(p) = e1
2. Since p is arbitrary, this completes the proof

of Theorem 16.

To prove Theorem 18, suppose that m(p) = 0. Define a
new control u by

u(k) =







[

1 1
]T

− u∗(k), k = p,

u∗(k), otherwise.

Note that u ∈ U. Then (15) implies that J(u) = J(u∗), so u
is also an optimal control.

VI. EXAMPLES

To demonstrate the application of the MP, we consider two

simple examples.

Example 19 Consider the BCN

x(k + 1) = x(k) ∧ u(k),

x(0) = True. (16)

Here n = m = 1 and the algebraic state–space form is

x(k + 1) = L ⋉ u(k) ⋉ x(k), (17)

x(0) = e1
2,

with L =

[

1 0 0 0
0 1 1 1

]

. Fix some final time N > 0 and

consider Problem 13 for r =

[

1
0

]

. Letting x∗(N) =
[

w w̄
]T
,

this means that we are trying to maximize w, i.e. to find a
control u∗ steering the system to x∗(N) = e1

2, if it exists.

To analyze this problem using the MP, consider the value

of the switching function at time N − 1:

m(N − 1) = λT (N) ⋉ L ⋉

[

1
−1

]

⋉ x∗(N − 1)

= rT
⋉ L ⋉

[

1
−1

]

⋉ x∗(N − 1)

=
[

1 0
]

⋉

[

1 0 0 0
0 1 1 1

]

⋉

[

1
−1

]

⋉ x∗(N − 1)

=
[

1 0 0 0
]

⋉

[

1
−1

]

⋉ x∗(N − 1)

=
[

1 0
]

⋉ x∗(N − 1). (18)

We consider two cases.

Case 1. Suppose that x∗(N−1) = e2
2. It then follows from (17)

that

x∗(N) = L ⋉ u∗(N − 1) ⋉ e2
2

= L ⋉

[

v
v̄

]

⋉ e2
2

=

[

1 0 0 0
0 1 1 1

]

[

0 v 0 v̄
]T

= e2
2,

so rT x∗(N) = 0.
Case 2. Suppose that x∗(N − 1) = e1

2. Then m(N − 1) = 1,
so (11) implies that u∗(N−1) = e1

2, and (17) yields x
∗(N) =

e1
2. Using (9) yields

λ(N − 1) = (L ⋉ u∗(N − 1))T
⋉ λ(N)

= (L ⋉ e1
2)

T
⋉ e1

2

= e1
2.

Hence,

m(N − 2) = λT (N − 1) ⋉ L ⋉

[

1
−1

]

⋉ x∗(N − 2)

=
[

1 0
]

⋉ x∗(N − 2).

Comparing this with (18), we conclude that there are two

possibilities. Either x∗(N) = e2
2 (and then any control is

optimal) or x∗(N) = e1
2 and then the (unique) optimal control

is u∗(k) = e1
2, for any k ∈ {0, 1 . . . , N − 1}.

An examination of (16) shows that the unique optimal

control is indeed u∗(k) = e1
2 for k ∈ {0, 1, . . . , N − 1}. Thus,

in this example the MP provides a complete characterization

of the optimal control.

The next example demonstrates the application of Theo-

rems 16 and 18.

Example 20 Consider the single–input BCN

x1(k + 1) = u(k)x̄2(k),

x2(k + 1) = u(k) + x̄1(k) + x̄2(k). (19)

Here n = 2 and m = 1. Suppose that the initial condition
is x1(0) = x2(0) = False, and consider Problem 13
with N = 3 and r = e1

4. In other words, the problem is

to determine a control that maximizes J(u) = (e1
4)

T x(3).
Intuitively, this amounts to finding a control steering the state

to x1(3) = x2(3) = True, if it exists.
The algebraic state–space form is

x(k + 1) = L ⋉ u(k) ⋉ x(k) (20)

x(0) = e4
4,

with L =









0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 0 1 1 1
0 0 0 0 1 0 0 0









.

To characterize the optimal control, we begin by calculating

m(2) = λT (3) ⋉ L ⋉

[

1
−1

]

⋉ x∗(2)

= rT
⋉ L ⋉

[

1
−1

]

⋉ x∗(2)

=
[

1 0 0 0
]

⋉ L ⋉

[

1
−1

]

⋉ x∗(2)

=
[

0 1 0 1
]

⋉ x∗(2). (21)

Thus, m(2) ≥ 0. If m(2) > 0, then u∗(2) = e1
2. If m(2) =

0, then by Theorem 18 there exists an optimal control u∗

with u∗(2) = e1
2. Hence,

λ(2) = (L ⋉ u∗(2))T λ(3)

= (L ⋉ e1
2)

T r

=
[

0 1 0 1
]T

, (22)
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and

m(1) = λT (2) ⋉ L ⋉

[

1
−1

]

⋉ x∗(1)

=
[

−1 0 0 0
]

⋉ x∗(1). (23)

Thus, m(1) ≤ 0 and we may assume that u∗(1) = e2
2. Then

λ(1) = (L ⋉ u∗(1))T λ(2)

=
[

1 0 0 0
]T

, (24)

so

m(0) = λT (1) ⋉ L ⋉

[

1
−1

]

⋉ x(0)

=
[

1 0 0 0
]

⋉ L ⋉

[

1
−1

]

⋉ e4
4

= 1. (25)

Since m(0) > 0, u∗(0) = e1
2. Summariz-

ing, {u∗(0), u∗(1), u∗(2)} = {e1
2, e

2
2, e

1
2} is an optimal

control. A calculation shows that the corresponding trajectory

is x∗(1) = e1
4, x

∗(2) = e4
4, x

∗(3) = e1
4, so this control indeed

steers the system to the desired location.

VII. CONCLUSIONS

We considered a Mayer–type optimal control problem for

single–input BCNs. Using the algebraic state–space formula-

tion developed by Cheng, we derived a necessary condition

for optimality in the form of a maximum principle. We

also analyzed the singular case where the switching function

defined in the MP is zero.

We believe that it is possible to extend the MP described

here to the case of a BCN with several inputs. This topic

is currently under study. Another possible topic for further

research is the application of the MP to BCNs that model

biological networks.
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