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Abstract. EEG single-trial analysis requires methods that are robust with re-
spect to noise, artifacts and nonstationarity among other problems. This work
contributes by developing a minimax approach to robustify the common spatial
patterns (CSP) algorithm. By optimizing the worst-case objective function within
a prefixed set of the covariance matrices , we can transform the respective com-
plex mathematical program into a simple generalized eigenvalue problem and
thus obtain robust spatial filters very efficiently. We test our minimax CSP method
with real world brain-computer interface (BCI) data sets in which we expect sub-
stantial fluctuations caused by day-to-day or paradigm-to-paradigm variability or
different forms of stimuli. The results clearly show that the proposed method sig-
nificantly improves the classical CSP approach in multiple BCI scenarios.

1 Introduction

Feature extraction is an important prerequisite for analyzing high dimensional real
world data. For single-trial EEG classification tasks, spatial filters have become very
popular feature extractors. Data driven approaches that optimize spatial filters for each
subject individually have been proven useful [1], in particular in Brain-Computer Inter-
faces, which translate the users intent (coded by a small set of mental tasks) into control
actions such as computer applications or neuroprostheses [2–4].

In the past years machine learning methods have led to significant advances in the
analysis and modeling of neural signals. While early EEG-BCI efforts required neuro-
feedback training on the part of the user that lasted on the order of days, in ML-based
systems it suffices to collect examples of EEG signals in a so-called calibration mea-
surement during which the user is cued to perform repeatedly a small set of mental
tasks. This data is then used to adapt the system to the specific brain signals of each
user (machine training). This step of adaption seems to be instrumental for effective
BCI performance despite the large inter-subject variability of the respective brain sig-
nals [5]. After this preparation step, which is very short compared to the complementary
subject training in the operant conditioning approach [6], the feedback application can
start. Here, the users can actually transfer information through their brain activity and
control applications. In this phase, the system is composed of the classifier that discrim-
inates between different mental states and the control logic that translates the classifier
output into control signals, e.g., a cursor position or a selection from an alphabet.
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There are several aspects in which BCI research can profit from improvement,
see the ‘Challenges’ section of [7]. One of them is to make the system more robust
against non task-related fluctuations and/or non-stationarity of the measured EEG sig-
nals. These fluctuations may be caused by changes in the subject’s brain processes, e.g.
change of task involvement, fatigue etc., or by artifacts such as swallowing, blinking or
yawning.

Recently Kim et al. [8] applied a minimax approach to Fisher Discrimant Analysis
(FDA) and proposed a novel robust classification method. From their minimax theorem,
the minimax FDA is guaranteed to have larger Rayleigh coefficients for any fluctuations
within a prefixed tolerance set.

The present paper contributes by investigating a minimax approach in the spirit of
[8] to common spatial patterns (CSP) [9], which is one of the working horses for spatial
filtering in BCI applications. In contrast to the FDA case, we can obtain the worst
case covariance matrices analytically, which leads a modified generalized eigenvalue
problem.

2 Sensorimotor Rhythms and Common Spatial Patterns

Apart from transient components, EEG comprises rhythmic activity located over var-
ious areas. Most of these rhythms are so-called idle rhythms, which are generated by
large populations of neurons in the respective cortex that fire in rhythmical synchrony
when they are not engaged in a specific task. Over motor and sensorimotor areas in
most subjects oscillations with a fundamental frequency between 9 and 13 Hz can be
observed, the so called µ-rhythm. Due to its comb-shape, the µ-rhythm is composed of
several harmonics, i.e., components of double and sometimes also triple the fundamen-
tal frequency with a fixed phase synchronization. These sensorimotor rhythms (SMRs)
are attenuated when engagement with the respective limb takes place. As this effect
is due to loss of synchrony in the neural populations, it is termed event-related desyn-
chronization (ERD), see [10]. The increase of oscillatory EEG (i.e., the reestablishment
of neuronal synchrony) is called event-related synchronization (ERS). The ERD in the
motor and/or sensory cortex can be observed even when a subject is only thinking of a
movement or imagining a sensation in the specific limb. This phenomenon makes the
ERD/ERS feature attractive for BCIs.

For ‘decoding’ of different motor intentions from brain activity, the essential task is
to distinguish different spatial localization of SMR modulations. Due to the topograph-
ical arrangement in the motor and somatosensori cortex, these locations are related to
corresponding parts of the body. For example, left hand and right hand have correspond-
ing areas in the contralateral, i.e., right and left motor cortex, respectively. Thus, spatial
filters are an essential step for a meaningful feature extraction for the classification of
motor intentions, and far from being a black-box methods, learned spatial filters can be
visualized appropriately and checked with neurophysiologcal knowledge.

The common spatial pattern (CSP) algorithm is successful in calculating spatial
filters for detecting modulations of the SMR or other ERD/ERS effects. Given two dis-
tributions in a high-dimensional space, the (supervised) CSP algorithm finds directions
(i.e., spatial filters) that maximize variance for one class and simultaneously minimize
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variance for the other class. Since band-power can be calculated as the variance of
band-pass filtered signals, this criterion corresponds to ERD/ERS effects.

Technically CSP analysis works as follows. Let Σ+ and Σ− be estimates of the co-
variance matrices of the band-pass filtered EEG signals under the two conditions. These
two matrices are simultaneously diagonalized such that the eigenvalues of Σ+ and Σ−
sum to 1. Practically this can be done by calculating the generalized eigenvectors W :

Σ+W = (Σ+ +Σ−)WD. (1)

Here, the diagonal matrix D contains the (generalized) eigenvalues of Σ+ (defined
such that they are between 0 and 1) and the column vectors of W are the filters for the
CSP projections. By this procedure a full decomposition of the sensor space is deter-
mined. Best contrast is provided by those filters with high eigenvalues (large variance
for condition 1 and small variance for condition 2) and by filters with low eigenvalues
(vice versa). Therefore, the common practice in a classification setting is to use several
eigenvectors from both ends of the eigenvalue spectrum as features for classification.
The solution for the eigenvector with the largest eigenvalue can also be obtained by
maximizing the Rayleigh quotient:

maximize
w∈RC

w>Σ+w

w>(Σ+ +Σ−)w
. (2)

This correspondence is often useful for algorithmic considerations. CSP filters can be
visualized as scalp maps and chosen according to physiological plausibility. For more
details, see the CSP tutorial [1].

3 Robust spatial filters based on minimax framework

The class covariance matrices Σ+ and Σ− used in CSP can vary substantially because
of non task-related fluctuations and/or non-stationarity of the EEG signals. In BCI appli-
cations, it is important to make the features robust against various kinds of fluctuations,
e.g. caused by change of task involvement or by changes in the subject’s brain pro-
cesses. Under such situations, the minimax approach which Kim et al. [8] successfully
applied to Fisher discriminant analysis (FDA) could be one of the promising directions
to construct robust CSP filters. The key idea is that, instead of just two single matri-
ces, we consider convex sets S+ and S− for the class covariance matrices Σ+ and Σ−,
respectively. These sets specify the tolerant regions of fluctuations around the class co-
variance matrices. For simplicity, we assume that the sets S+ and S− are independent
of each other.

Based on the minimax framework, robust CSP can be constructed by maximizing
the worst case Rayleigh quotient within all possible covariance matrices in the tolerant
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regions. That is, the optimization problems for our maxmin CSP can be expressed as

maximize min
Σ+∈S+, Σ−∈S−

w>Σ+w

w> (Σ+ +Σ−)w
subject to w 6= 0

(3)

maximize min
Σ+∈S+, Σ−∈S−

w>Σ−w

w> (Σ+ +Σ−)w
subject to w 6= 0

(4)

For a moment, we will consider only the first optimization problem (3), because the
other (4) can be handled in the same way.

3.1 Derivation of the maxmin filters

We will consider special cases where the subspaces S+ and S− can be defined by balls
in the space of C × C positive definite matrices Pd(C) centered at Σ+ and Σ+

S+ =
{
Σ+

∣∣Σ+ � 0, ‖Σ+ −Σ+‖P+ ≤ δ+
}
,

S− =
{
Σ−

∣∣Σ− � 0, ‖Σ− −Σ−‖P− ≤ δ−
}
,

(5)

where ‖X‖2P = Tr
(
P−1XP−1X

)
is the norm of a symmetric matrix X and the pos-

itive definite matrix P specifies the metric of Pd(C), or in other word, shape of the
balls.

Lemma 1. For the sets S+ and S− defined in Eq. (5), the worst case Rayleigh quotient
becomes

w>
(
Σ+ − δ+P+

)
w

w>
(
Σ+ +Σ− − δ+P+ + δ−P−

)
w
, ∀w, (6)

if Σ+ − δ+P+ � 0.

3.2 Choice of the parameters of the tolerance sets

The remaining problem is how to determine the sets S+ and S− of the class covari-
ance matrices. We used the average class covariance matrices for the centers Σ+ and
Σ−. There are several choices of the matrix P+ and P− which specify the shape of
the tolerant balls. The standard norms of such forms are ’Frobenius’ (P+ = P− = I)
or Σ+ and Σ− (the centers). However, in the latter case the filters coincide with those
of CSP. Although the identity matrix ignores plausible directions of fluctuation in EEG
signals, the maxmin CSP with this setting still improved the performance in the day-to-
day transfer experiment. We conjecture that this is analogous to the fact that Bayesian
regularization helps even with non-informative priors. If we have extra (prior) informa-
tion about possible fluctuations as is the case with the real world BCI data in [11], the
covariance of the distortions can be used for the matrices P+ and P−. This approach
was called invariant CSP (iCSP). Future work should be done to analyse the scatter of
the short-term covariance matrices in detail and to find a reasonable choice of these
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matrices. The size of the balls δ+ and δ− are assumed to be equal and are selected by
cross-validation on the training set.

Fig. 1 is an illustrative explanation of our method. Although we developed the the-
ory only for the first eigenvectors, in the experiments we will use a few eigenvectors
each. Further work should be done to extend the minimax theorem and the lemma for
multiple eigenvectors.

!! !" # " !

!!

!"$%

!"

!#$%

#

#$%

"

"$%

&'()*+&,-*.(,+/'0,1)'21

3
,
4
2
1
/
+&
,
-
*.
(,
+/
'0
,
1
)
'2
1

+

+

56-))+"+),))$+"

56-))+!+),))$+"

!! !" # " !

!!

!"

#

"

!

$%&'()$*+(,&*)-%.*/'%0/

1
*
2
0
/
-
)$
*
+
(,
&*
)-
%.
*
/
'
%0
/

)

)34+'')")'*''5)!

34+'')!)'*''5)!

(a) (b)

!! !" # " !

!!

!"

#

"

!

$%&'()$*+(,&*)-%.*/'%0/

1
*
2
0
/
-
)$
*
+
(,
&*
)-
%.
*
/
'
%0
/

)

)

34+'')")'*''5)6

34+'')!)'*''5)6

!"#$%&#'!
(

!"#$%&#'!
!

)*%+#',-'.#/0*,.010"#
2#-0301#'/%1$0+#.

)%/*4#'!
!

)%/*4#'!
(

5,$.1'+%.#'/%1$06'03'#78'9:;

5,$.1'+%.#'/%1$06'03'#78'9<;

(c) (d)

Fig. 1. Figs. (a), (b) and (c) represent Σ+ and Σ− at different time points. Mean of the features
is 0, as it is bandpass filtered data. Fig. (d) represents the previous matrices as points in the space
of positive definite matrices. The ellipsoids in Fig. (d) are the tolerant sets S+ and S− centered
at the average matrices Σ+ and Σ−, respectively. From both ellipsoid, a pair of the worst case
covariances is obtained for each optimization problem (3) or (4).

4 Application to EEG data from Brain-Computer Interfacing

In this paper we evaluate the proposed algorithm on off-line data in which substan-
tial fluctuations are expected. First we show that maxmin CSP can work under the
same settings as iCSP, that is robustifying the filters in situations in which a known
and measurable distortion affects the data. Later we also test the algorithm to robustify
the filters against session-to-session (day-to-day) variability which may be caused by
different mental conditions, materials (cap and electrodes) and different preparation of
the measurement devices. In the last example, we test whether classifiers trained with
recordings from multiple paradigms can be transfered to data in yet another paradigm.
The nonstationarity is induced by having different background conditions (presentation
of the cues) for the same primary task (motor imagery). In this paper we use ‘calibration
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measurements’ in which no feedback was provided to avoid bias toward any method.
The trials of these ‘calibration data’ have fixed length of 3.5 seconds in which an im-
agery motor task is performed (right or left hand or foot movement). The cue is given
as auditory (’imag audi’) or visual stimuli. The visual stimuli can be a letter L, R, F
(’imag lett’), a fixed arrow pointing to left, right or down (’imag arrow’) or a randomly
moving small rhomboid (’imag move’) with either its left, right or bottom corner filled
to indicate the task. The movement of the object in ’imag move’ was independent from
the indicated targets with the aim to induce target-uncorrelated eye movements. For the
evaluation, we only considered binary classification. From the three motor imaginary
tasks, the best pair was selected based on separability for each subject. LDA was used
as the classifier and the performance was measured by error rate.

Maxmin CSP working as iCSP. First we want to show that maxmin CSP can work under
the same conditions of iCSP obtaining similar results. Therefore we realized two exper-
iments. The first one is a replica of that presented in [11]. As in [11], we investigated
whether it is possible to robustify CSP against different demands in visual processing,
which cause substantial differences in the background brain activity [11]. We trained
CSP using ’imag move’. Additional data (’sham feedback’) with task uncorrelated eye
movements and visual actitivity was recorded to create a disturbance matrix (for more
information of the paradigm please refer to [11]). Fig. 2(a) depicts the results of 4 sub-
jects in which we see that iCSP and maxmin CSP exhibit very similar performance.

The second experiment was done with 5 subjects to test maxmin CSPs invariance
properties in another setting. We used ’imag move’ data for training CSP and some data
recorded while subjects were told to keep their eyes closed, was used to characterize the
expected disturbance (matrices P+ = P−). Maxmin CSP was then tested in ’imag lett’,
in which the visual activity is supposed to be less intense (more similar to an ‘eyes-
closed’ condition). Results are depicted in Fig. 2(b). Again iCSP and maxmin CSP
perform very similarily, however, better than the original CSP.

Session-to-session transfer. For this test we used data from four subjects for whom we
had recorded several sessions in different days (even with more than one year apart).
For subject zq there were 6 datasets available, 5 datasets for cm and zp and finally 4
for subject zk. All files except one were used for training the maxmin filters. Matrices
P+ and P− were the identity matrix. The last file was used to test the performance of
each subject. All datasets correspond to ‘calibration measurements’ of type ’imag lett’.
The performance of the subjects is described using error rate and the trials are classi-
fied using LDA. Fig. 2(c) shows this error rate when using CSP or maxmin CSP for
preprocessing the data. Again the new maxmin CSP method outperforms CSP in all
cases.

Paradigm-to-paradigm transfer. To test whether it is possible to use ’calibration mea-
surements’ recorded using different paradigms we performed an experiment in which
’imag move’ and ’imag audi’ data were used to train maxmin CSP, whereas the per-
formance test was done in ’imag arrow’, in which the visual task is less demanding
than ’imag move’. The number of trials used from ’imag audi’ was found subject-
specifically by cross validation on the training set. Note that no additional and specific
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recording is necessary to estimate maxmin CSP. In this setting, we had data from five
subjects and their performance using CSP and maxmin CSP is depicted in Fig. 2(d).
Again, matrices P+ and P− were the identity matrix. We see that the performance of
all five subjects could be improved by maxmin CSP.

All parameters of the experiments were fixed on the training set using 10 fold cross-
validation before testing in unseen data: δ for maxmin CSP, ξ for iCSP and the number
of trials from ’imag audi’ in the paradigm-to-paradigm transfer experiment.
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Fig. 2. Test errors of our maxmin CSP compared with CSP and iCSP. The legend provides subject
codes (two letter codes) and the selected parameters in square brackets. (a) maxmin CSP working
as iCSP (with sham feedback), (b) maxmin CSP working as iCSP (with ‘eyes closed’ measure-
ment), (c) session-to-session transfer, only possible with maxmin CSP, (d) paradigm transfer,
only possible with maxmin CSP.

5 Conclusions

BCI data is contaminated by a variety of noise sources, artifacts, nonstationarities and
outliers that make it indispensable to strive for more robust learning methods. In this
paper we proposed a novel classification algorithm that is inspired by the work of Kim
et al. [8].

In particular, we analyze the worst case performance among possible class covari-
ance matrices and optimize the respective CSP-like filters based on such a criterion.
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When we take hyperspheres in the matrix space for the sets of the covariances, the al-
gorithm can be elegantly reduced to a generalized eigenvalue problem similar to the
original CSP, but with modified covariance matrices. Extensive simulations show that
our new CSP framework is indeed more robust as it allows to transfer BCI classifier
knowledge from session to session. This is again a further step towards a BCI system
that is more stable with respect to nonstationarities and non-task related fluctuations.

In future studies we will continue working towards more robust BCIs and also eval-
uate the present approach in feedback experiments. Since the minimax approach is an
extreme case, we will furthermore pursue Bayesian approaches which may bridge the
gap between this extreme method and classical CSP.
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