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Abstract—Mathematical modeling of composites made of a dielectric
base and randomly oriented metal inclusions is considered. Different
sources of frequency-dependent metal conductivity at optical frequen-
cies are taken into account. These include the skin-effect, dimensional
(length-size) resonance of metal particles, and the Drude model. Also,
the mean free path of electrons in metals can be smaller than the char-
acteristic sizes of nanoparticles, and this leads to the decrease in con-
ductivity of the metal inclusions. These effects are incorporated in the
Maxwell Garnett mixing formulation, and give degrees of freedom for
forming desirable optical frequency characteristics of composite media
containing conducting particles.

1. INTRODUCTION

Engineering composite materials with desirable electromagnetic
properties for different applications from radio frequencies to the
optical range has become one of the most important problems of
modern science and technology.

There are many different effective medium theories used for
modeling electromagnetic properties of composites. One of them is
the Maxwell Garnett model [1], which is simple and convenient for
modeling due to its linearity. The Maxwell Garnett model is valid
for dielectric composites with dilute conductive phases (below the
percolation threshold). This is a model that implies the quasistatic
approximation. Its main features are

• the mixture is electrodynamically isotropic;
• the mixture is linear, that is, none of its constitutive parameters

depends on the intensity of electromagnetic field;
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• the mixture is non-parametric, that is, its parameters do not
change in time according to some law as a result of external forces
— electrical, mechanical, etc.;

• inclusions are separated by distances greater than their character-
istic size;

• the characteristic size of inclusions is small compared to the
wavelength in the effective medium;

• inclusions are arbitrary randomly oriented ellipsoids;
• if there are conducting inclusions, their concentration should be

lower than the percolation threshold.

The Maxwell Garnett mixing rule has been successfully applied to
engineering microwave absorbing materials containing carbon particles
[2], using the formula for the effective relative permittivity,
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1
3
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3∑
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εb + Nik(εi − εb)

1 − 1
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Nik
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, (1)

where εb is the relative permittivity of a base dielectric; εi is the relative
permittivity of the i-th type of inclusions; fi is the volume fraction
occupied by the inclusions of the i-th type; Nik are the depolarization
factors of the i-th type of inclusions, and the index k = 1, 2, 3
corresponds to x, y, and z Cartesian coordinates. Equation (1) is
generalized for a multiphase mixture schematically shown in Figure 1.
The constitutive parameters of the base material and inclusions can be
functions of frequency.

Formulas for calculating depolarization factors of ellipsoids and
the table of depolarization factors for canonical spheroids (spheres,
disks, and cylinders) can be found in [3]. Equation (1) allows
that within the same composite material, particles can have different
depolarization factors. However, in reality it is almost impossible to
have perfect ellipsoidal or spheroidal particles, so, for any arbitrary
shape a reasonable approximation is needed. If the inclusions are
thin rods (cylinders), two of their depolarization factors are close to
Ni1,2 ≈ 1/2, and the third depolarization factor can be calculated
as in [4], Ni3 ≈ (1/a)2 ln(a). Herein, a = l/d is the aspect ratio
of an inclusion of length l and diameter d. The sum of all three
depolarization factors is always unity.

The dielectric properties of the conducting inclusions are described
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by the complex relative permittivity

εi(jω) = ε′i − jε′i
′ = ε′i − j

σi

ωε0
, (2)

the real part of which is much smaller than the imaginary part
(ε′i � σi/(ωε0)). In (2), σi is the bulk conductivity of inclusions.

It has been shown that by varying conductivity, aspect ratio, and
concentration of inclusions it is possible to form the desirable frequency
characteristics, including shielding effectiveness of composites at
microwave frequencies [2]. Application of the genetic algorithms allows
for optimization of the mixture contents to achieve the highest possible
shielding effectiveness [5].

Mixtures of randomly oriented nanosize conducting particles at
concentrations far below the percolation threshold can still be treated
using Maxwell Garnett formalism at optical frequencies, but some
corrections in the model must be introduced. Thus, the model should
take into account peculiarities of the conductive particles’ behavior at
optical frequencies, which may differ considerably from their behavior
at microwave frequencies. Also, dimensional resonance in the inclusion
particles might greatly influence the effective permittivity of the
composite.

The structure of the paper is the following. Section 2 contains
the mathematical model of the composite taking the abovementioned
effects into account. The results of calculations based on this model are
presented and discussed in Section 3. The conclusions are summarized
in Section 4.

2. MATHEMATICAL MODEL

2.1. Renormalized Conductivity Taking the Skin Effect into
Account

At microwave frequencies, the skin effect in conducting inclusions can
be neglected. However, at optical frequencies currents induced by the
electromagnetic waves in the conducting particles exist only in very
thin surface layers, while the bulk of the particle is not involved in
interaction. For this reason, the skin effect is substantial and influences
the frequency dependence of the particle.

Skin depth is calculated as

δ(ω) =

√
2

ωµiµ0σi
. (3)
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Figure 1. Schematic of a multiphase mixture.
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Figure 2. Renormalization of conductivity due to the skin-effect.

Lagarkov and Sarychev [6], according to [7, Section 61], introduced
the renormalized conductivity to take the skin effect into account
(see Figure 2). Renormalized conductivity is related to the bulk
conductivity as

σskin = σi · f(∆);
∆ = d/ (2δ(ω)) ;

f(∆) =
1 − j

∆
· J1 ((1 + j)∆)
J0 ((1 + j)∆)

,

(4)

where J0,1 are the Bessel functions of the zero and the first order,
respectively. This renormalized conductivity appears to be a complex
value, and it is dependent on frequency through δ(ω). This is the basic
difference between the microwave and optical behavior of metals: the
conductivity of metals at optical frequencies is not constant, it depends



A Maxwell Garnett model for dielectric mixtures 227

on frequency.
σskin(ω) = σ′

skin(ω) + jσ′′
skin(ω). (5)

The real part of conductivity is responsible for ε′′, while the imaginary
part contributes to ε′.

2.2. Conductivity Taking into Account Small Size of
Nanorods Compared to Mean Free Path of Electrons

Since the inclusions of interest are nanorods, they are so thin that their
diameter could be smaller than the electron mean free path. Then,
instead of the bulk conductivity, the corrected conductivity should be
taken into account,

σfree = Λσi. (6)
where the coefficient Λ is a function of the ratio

Λ = f (bi/Lfree) , (7)

where bi is the inclusion characteristic size (d ≤ bi ≤ l) along the
vector of the electric field acting on the mixture, and Lfree = vF τ0 is
the mean free path for electrons in the conductor [8].

For randomly oriented conducting particles, it can be assumed
that the one-third of all particles have their characteristic dimension
in the direction of the incident electric field close to bi ≈ d, which
leads to the decrease of conductivity up to two times. One-third of
all particles have bi > Lfree, so that their conductivity is close to the
bulk conductivity. And the remainder have an average characteristic
dimension of bi = l+d

2 , which can lead to some decrease of conductivity.
Thus, the coefficient Λ may be even smaller than is given in the tables
in [8], if the surface roughness and grain size of metal inclusion are
taken into account [9–11]. For our computations, we assume that
a reasonable value is Λ = 0.8, corresponding to a 20% decrease in
conductivity. In [11, Fig. 1], it is shown that when the technology node
in modern nanometer scale IC design decreases in size and becomes
comparable to the mean free path of electrons in metals (for the
majority of metals, such as Cu, Ag, Pt, Au, Al, etc., it is in the range of
10–100 nm at room temperature), the resistivity of metal components
substantially increases, since surface, grain boundary, and barrier layer
effects become noticeable.

In such cases, it is reasonable to replace the bulk conductivity σi in
(3) and (4) by σfree, since the actual conductivity of the nanosize metal
inclusion might be lower than the bulk conductivity. Consequently,

σskin = σfree · f(∆); and δ(ω) =

√
2

ωµiµ0σfree
. (8)
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2.3. Drude Model for Metals at Optical Frequencies

It is known that the frequency dependence of metals over the optical
frequency range is described by the Drude model [12–15].

εi(jω) = 1 −
ω2

p

ω(ω − jγ)
, (9)

where ωp is the angular plasma frequency for free electrons, and γ is
the angular relaxation frequency. The relaxation frequency is γ = 1/τ ,
where τ is the resonance relaxation parameter. From (9), real and
imaginary parts of complex permittivity are

εi(jω) = ε′i − jε′i
′;

ε′i = 1 −
ω2

p

ω2 + γ2
;

ε′i
′ = 1 −

ω2
pγ

ω(ω2 + γ2)

(10)

The imaginary part in (10) can be represented as usual

ε′i
′ =

σD

ωε0
, (11)

where Drude conductivity is

σD =
ε0ω

2
pγ

(ω2 + γ2)
. (12)

The total conductivity of a metal particle is comprised of “low-
frequency” conductivity and Drude conductivity that is substantial at
the higher optical frequencies. These two conductivities contribute to
the total permittivity independently, because their effects are separated
in frequency.

εi(jω) = ε′i − jε′′i ;

ε′i = ε′D + ε′skin = 1 −
ω2

p

ω2 + γ2
+

σ′′
skin

ωε0
;

ε′′i = ε′′D + ε′′skin =
ω2

pγ

ω(ω2 + γ2)
+

σ′
skin

ωε0
=

σΣ

ωε0
;

σΣ = σD + σ′
skin

(13)

Data for the plasma frequency and Drude relaxation frequency for
metals can be taken from the graphs and tables in papers [14, 15]. In
these papers, the Drude model parameters ωp and γ are given in [cm−1]
units, so that ω[1/cm] = ω[rad/s]·10−2

2π·c[m/s] .
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Figure 3. Analogy of an inclusion particle and a dipole antenna.

2.4. Dimensional Resonance in Metal Particles

Electromagnetic resonance in the particles of inclusions is another
source of frequency-dependent properties of composites. An inclusion
particle in the form of a nanorod can be represented as an electric
dipole antenna (see Figure 3). Suppose that nanorods are non-
interacting, corresponding to a sparse concentration of inclusions in
the base material. Let us calculate the equivalent conductivity of an
inclusion particle. This conductivity then can be used in Maxwell
Garnett formulation for the effective permittivity.

According to [16, 17], any inclusion particle can be described by
its antenna dipole input impedance. This is a series connection of
radiation resistance Rrad, capacitance of the wire Ci and its inductance
Li.

Zin = Rrad + jωLi +
1

jωCi
. (14)

For a dipole antenna these values are approximately calculated as in
[18],

Rrad = 20π2√εef

(
1
λ0

)2

, [Ohms];

Ci =
πε0εef l

2 ln(2a)
, [F];

Li =
µ0l

6π

(
ln(2a) − 11

6

)
, [H].

(15)
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It is known that if the inclusions are small compared with
wavelength, their input impedance is mainly capacitive. Radiation
resistance determines effectiveness of the dipole radiation, and it will
contribute to the real part of the permittivity of the composite.

The rigorous formulation for radiation resistance and reactance of
a dipole antenna of any length can be found in [19, Section 21.2], and
these parameters can be calculated using numerical integration. Thus,
the input impedance can be calculated as

Zin =
jη

4π sin2 kh

h∫
−h

F (z)dz, (16)

where the integrand is

F (z) =

[
e−jkR1

R1
+

e−jkR2

R2
− 2 cosh kh

e−jkR0

R0

]
sin (k(h− |z|)) . (17)

The distances are calculated as

R0 =
√

(d/2)2 + z2;
R1 =

√
(d/2)2 + (z − h)2;

R2 =
√

(d/2)2 + (z + h)2.
(18)

In (16)–(18), η = 120π
√

µef

εef
(for a dielectric composite µef = 1),

h = l/2 is an antenna half-length, and k = 2π
λef

= 2π
λ0

√
εef is the wave

number in the effective medium. It should be mentioned that values of
εef in (15)–(17) are taken from calculating effective permittivity using
the Maxwell Garnett formula (1) before the dipole antenna effect is
taken into account.

In [16], the polarizability of dipole particles is introduced as

αee =
l2ef

jωZin
[F · m2], (19)

where lef is the effective dipole antenna length. For small dipoles,
it can be assumed that lef ≈ l/2. For dipoles with l = λ/2,
lef = 0.637(2l) = 1.274l [20, Section 9.2] For longer dipole antennas,
the effective length is lef = 2.558l2/λ. (The effective length of a
dipole antenna is calculated through an equivalent antenna with a
homogeneous current distribution along the dipole, and the same area
under the current distribution function along the dipole length as in
the initial antenna).
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The conductivity of particles due to the dimensional resonance
can be calculated by equating the effective permittivity of a sparse
conglomerate of the identical conductive particles (neglecting the base
material) with polarizability αee and a concentration of n particles per
unit volume,

ε = ε0

(
1 +

n

ε0
αee

)
= ε0

(
ε′ − j

σres

ωε0

)
, (20)

For cylindrical particles,

n = fi/vi =
4fi

πd2l
, [1/m3]. (21)

Then, the conductivity associated with the dimensional resonance is

σres = jωnαee, [S/m]. (22)

Substituting (19) and (20) in (22), one can get the conductivity
associated with the dimensional resonance as

σres =
nl2ef
Zin

=
4fil

2
ef

πd2lZin
. (23)

This is a complex value, σres = σ′
res + jσ′′

res, and it can be added
to the formula (13), describing the total conductivity σΣ. Its real part
contributes to the loss in the material, and the imaginary contributes
to the real part of the composite permittivity, associated with the
phase velocity of electromagnetic wave propagation. This means that
when αee is real (no loss), Zin is imaginary (purely reactive), and
then σres is real and contributes to loss in the material. When αee is
imaginary (only loss), Zin is real (pure radiation resistance), and then
σres is imaginary and contributes to the real part of permittivity of the
composite.

2.5. Frequency Characteristic of the Base Material

The frequency characteristics of the base material also have an impact
on the frequency characteristics of the mixture. Depending on the
base material used for making the composite, and the frequency range
of its application, this base material can be modeled as a lossless
nondispersive medium, as a lossy Debye material, as a resonance
Lorentzian medium, or as their superposition.

The Debye frequency characteristic for a dielectric base material
is

εb = ε∞b +
εsb − ε∞b

1 + jωτD
, (24)
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where εsb and ε∞b are static and high-frequency (“optic”) relative
permittivities of the material, and τD is the Debye relaxation time.
In the case of a Lorentzian material, it is described as

εb = ε∞b +
(εsb − ε∞b)ω2

0b

ω2
0b − ω2 + 2jωδb

, (25)

where ω0b is the angular resonance frequency of the base material, and
(2δb) is the resonance line width at −3 dB level.

If the base material resonance is pronounced and comparatively
narrow in the frequency range of interest (narrowband Lorentzian
material, for which ω0 = ωp > (2δ) [22]), it might have a great impact
on the frequency-selective properties of the composite. If the dielectric
is wideband Lorentzian (ω0 = ωp < (2δ)), then its behavior is very
close to the Debye frequency dependence [22].

3. RESULTS OF COMPUTATIONS

A program in Matlab has been developed to calculate reflection and
transmission coefficients from a slab of a composite material containing
metal particles (nanorods). Below there are the modeled results that
take into account all the abovementioned effects.

Figure 4 shows the reflectance and transmittance for a layer of
the modeled composite material 1µm thick. The input data for
computations are the following: the bulk conductivity of silver particles
is σi = 6.3 · 107 S/m; the coefficient Λ taking the mean free path into
account is assumed to be Λ = 0.8; the mean free path of electrons in
silver is taken as 40 nm; the aspect ratio of the inclusions is a = 50;
the length of the particles l = 1µm; and the diameter of the particles
is assumed to be d = 20 nm. The volume fraction of the inclusions
is fi = 0.7/a, which is below the percolation threshold estimated as
pc = 4.5/a [6]. The parameters for polymethylmethacrylate (PMMA)
base material taken for these computations are the Debye parameters:
εs = 2.2, ε∞ = 1.9, and τD = 10−14 s. It should be mentioned that
PMMA is known to be almost transparent in the visual frequency band
(98% transparency), while in the UV range it is almost non-transparent
(wideband Lorentzian behavior with ω0 ≈ 2 · 1016 Hz). The dispersive
curves for PMMA at optical and UV frequencies can be found in [21].

The frequency dependence of reflectance, transmittance, and
absorbance (magnitude, resonance frequency, and width of the
resonance line) greatly depends on the Drude parameters for silver
−ωp and γ. Skin effect plays an important part for comparatively
low-frequency absorption and frequency selectivity. Resonance of the
inclusions falls into the frequency range of interest and contributes
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Figure 4. Reflectance and transmittance characteristics for a 1-µm-
thick slab of a composite material PMMA-Ag.

to the absorption and radiation by inclusion dipole antennas. This
contribution is affected by the geometry of the inclusions.

Figure 5 shows the influence of the material of inclusions on
the absorbance, defined as A = log10(Pt/Pinc) in bels. The Drude
parameters for different metals-silver, copper, gold, aluminum, and
platinum — are found in [15] and presented here in Table 1. The base
material was PMMA, and the inclusion particles had an aspect ratio
of a = 50, a length of l = 1µm, and a diameter of d = 20 nm. The
volumetric fraction of the inclusions was fi = 0.7/a. The composites
containing metal particles with higher bulk conductivity will absorb
energy more effectively.

Figure 6 shows that the absorbance characteristic can be also
controlled by varying the size of the inclusions. It is important
that the higher aspect ratio of inclusions does not necessarily yield
greater absorbance, as happens with shielding effectiveness in the
microwave range [2]. At optical frequencies, the longer particles of
inclusions radiate more effectively than the shorter ones, and this
radiation contributes to the real part of the effective permittivity of the
composite, rather than its imaginary part responsible for absorption
in the material.

Figure 7 demonstrates the effect of the length of inclusions on
the absorbance. The diameter of inclusions for all the curves is
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Table 1. Conductivity and Drude Model Parameters for Some
Metals.

Metal Bulk conductivity, 10−12 · ωp,1/m 10−12 · γ,1/m

10−6 · σ S/m

Ag 63.05 1.369 27

Cu 57.0 1.122 13

Au 45.55 1.37 40

Al 36.5 2.24 120

Pt 9.59 0.78 105

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Abs orbanceAbs orbanceAbs orbanceAbs orbance

Wavelength, nmWavelength, nmWavelength, nmWavelength, nm

B
el

l
B

el
l

B
el

l
B

el
l

l=1000nm

l=800 nm

l=600 nm
l=400 nm

l=200 mn

Figure 7. Absorbance as a function of wavelength for a 1µm-thick
composite layer PMMA-Ag; parameter l is the length of Ag inclusions;
the concentration of Ag particles constant at 4.45 · 1019 m−3.

20 nm. The dimensional resonance in the particles corresponds to
the peak frequency of absorption. Thus, for particles having length
l = 1000 nm, the resonance frequency corresponds to a wavelength
of about 375 nm. When particles are shorter, this peak shifts to the
shorter wavelengths. The absorbance decreases in the frequency range
of interest for shorter inclusions, since the number of Ag particles per
unit volume (concentration) is kept constant (4.45 · 1019 m−3). Thus,
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Figure 8. PMMA-nondispersive (εsb = 2.2); Ag particles (a = 50; l =
1µm; d = 20 nm); concentration ni = 4.45 · 1019 m−3; (fi = 0.7/a) for
a 1-µm thick slab.

the volumetric fraction of conducting inclusions decreases when they
are shorter.

Figures 8 and 9 show the influence of Ag particles on the frequency
characteristic of a mixture, when the model for PMMA base material
is nondispersive (Figure 8) and is described by the Debye dispersion
law (Figure 9). The base material itself is almost transparent in the
frequency range of interest.

Figure 10 contains the absorbance characteristics for a Lorentzian-
type base material, for a conglomerate comprised solely of Ag particles
of the same size and volumetric fraction as in Figures 8 and 9, and the
mixture of the base and the Ag inclusions. The frequency dependence
for a composite is a superposition of the frequency characteristics of its
phases. In reality, PMMA behaves more like a Lorentzian material in
the UV range, where it becomes nontransparent. In the visual band, it
is still appropriate to describe it as non-dispersive or slightly-dispersive
with the Debye-like frequency dependence.

Figure 11 contains absorbance characteristics for composites with
different Debye characteristics of the base material. In the graphs
shown in the figure, the static permittivity is a varying parameter. It
is seen that an increase of εsb leads not only to the higher absorption
in a wider band, but also to a shift of the peak absorption to shorter
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Figure 11. Ag particles (a = 50; l = 1µm; d = 20 nm); concentration
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τD = 1 · 10−14 1/s are the same for all the five cases.

wavelengths. However, it can be seen that a substantial increase
in εsb (from 2.2 to 8.2) does not significantly change the absorption
characteristic.

Figure 12 shows the frequency dependence of absorbance, when
different models of base materials are taken into account. There is
almost no difference in the curves for PMMA model taken as the Debye
(curve 1) and the wideband Lorentzian frequency dependence (curve
3). The size of the Ag particles was the same as in Figure 4 (aspect
ratio a = 50, the length l = 1µm, and the diameter d = 20 nm).
The narrow absorption peak (curves 3 and 6) can be obtained using
narrowband Lorentzian base material. This can be achieved at ω0b =
ωpb > (2δ). If it is possible to find a dielectric with a Lorentzian peak
at visible frequencies, then it would enhance the absorption by the
silver particles. This problem might be solved, for example, by adding
Ag particles in colored optical glass base [23].
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Figure 12. Ag particles (a = 50; l = 1µ,; d = 20 nm); concentration
ni = 4.45·1019 m−3 (fi = 0.7/a) for a 1-µm thick slab with five different
base materials: 1-PMMMA-Debye; 2-Lorentzian 1: εsb = 2.2, ε∞b =
1.9, ω0b = ωpb = 2.05 · 1016 rad/s; δ = 1.67 · 1016 rads; 3-Lorentzian 2:
εsb = 2.2, ε∞b = 1.9, ω0b = ωpb = 2.05 ·1015 rad/s; δ = 1.67 ·1016 rads;
4-Lorentzian 3: εsb = 2.2, ε∞b = 1.9, ω0b = ωpb = 5.0 · 1015 rad/s;
δ = 1.67 · 1015 rads; 5-Lorentzian 4: εsb = 2.2, ε∞b = 1.9, ω0b = ωpb =
2.05 · 1015 rad/s; δ = 1.67 · 1015 rads; 6-Lorentzian 5: εsb = 2.2, ε∞b =
1.9, ω0b = ωpb = 2.05 · 1015 rad/s; δ = 1.67 · 1015 rads.

4. CONCLUSION

Frequency-dependent parameters of composites containing 3D ran-
domly oriented conducting inclusions (nanorods) at optical frequen-
cies can be modeled using Maxwell Garnett formulation, if the con-
centration of inclusions is smaller than the percolation threshold. The
frequency-dependent permittivity of a mixture mainly depends on the
conductivity of the metal inclusions. Behavior of metal inclusions at
optical frequencies greatly differs from that at microwave frequencies.
Nanosize metal inclusions exhibit frequency dependence because of the
skin-effect and free electron plasma resonance phenomena described
by the Drude model. Also, an inclusion particle behaves as a resonant
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scatterer, so its dipole antenna model should be taken into account. In
addition, the mean free path of electrons in metals may be smaller than
the characteristic size of metal inclusions, and this will substantially
decrease the conductivity of the metals. All these effects are incor-
porated in the Maxwell Garnett mixing formulation, and give degrees
of freedom for forming frequency characteristics of composite media
containing conducting particles.
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