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In recent years, fuzzy set theory and possibility theory have been widely used to deal with an uncertain decision environment
characterized by vagueness and ambiguity in the financial market. Considering that the expected return rate of investors may not
be a fixed real number but can be an interval number, this paper establishes an interval-valued possibilistic mean-variance
portfolio selection model. In this model, the return rate of assets is regarded as a fuzzy number, and the expected return rate of
assets is measured by the interval-valued possibilistic mean of fuzzy numbers.,erefore, the possibilistic portfolio selectionmodel
is transformed into an interval-valued optimization model. ,e optimal solution of the model is obtained by using the order
relations of interval numbers. Finally, a numerical example is given. ,rough the numerical example, it is shown that, when
compared with the traditional possibilistic model, the proposed model has more constraints and can better reflect investor
psychology. It is an extension of the traditional possibilistic model and offers greater flexibility in reflecting investor expectations.

1. Introduction

Markowitz’s mean-variance model, proposed in 1952,
brought portfolio theory into the quantitative era [1]. Since
then, many portfolio selection models (e.g., [2–5]) have
been established, and there are now several different ways
to characterize the risk of assets such as by using the
semivariance risk measure [6], the mean absolute devia-
tions risk measure [7], the semiabsolute deviation risk
measure [8], and the value-at-risk measure (abbreviated as
VaR) [9–11].

In the mean-variance model, the expected rate of
return of a portfolio is regarded as a random variable, and
the mean and variance of the random variable are taken as
the expected return and risk of the portfolio, respectively.
However, there are many nonprobabilistic factors, such
as social, economic, political, and psychological factors,
in real-world portfolio decision-making. In addition,
investors may also face imprecise information and
therefore need to deal with imprecise, fuzzy, and am-
biguous information [12]. In this case, using probability

theory to solve problems will yield counterintuitive re-
sults [13, 14]. Consequently, researchers find that asset
returns can be estimated by fuzzy set theory [15].

In recent years, many scholars have tried to employ
fuzzy variables to manage portfolio selection problems and
built many fuzzy portfolio models [16–21]. In 2013, Tsaur
[22] constructed a fuzzy portfolio model with the pa-
rameters of fuzzy-input return rates and fuzzy-output
proportions. Zhou et al. [23] proposed the concept of fuzzy
semientropy. ,ey used semientropy to quantify the
downside risk and set up two mean-semientropy portfolio
selection models. To obtain the optimal solution, they used
the genetic algorithm. Based on credibility theory, a class of
mean-variance adjusting models with transaction costs was
proposed in [24].

Possibility theory is an important theory of fuzzy sets
that was first proposed by Zadeh [25] and developed by
Dubois and Prade [26] (see [27, 28] for more detail). In
possibility theory, the relationship between fuzzy variables
and possibility distributions is the same as that between
random variables and probability distributions in
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probability theory. Tanaka et al. [29] first proposed the
possibilistic portfolio selection model. Carlsson and Fullér
[30] then introduced the notions of lower and upper
possibilistic mean values as well as the notations for crisp
possibilistic mean value and variance of continuous
possibility distributions. Based on that, Carlsson et al. [31]
assumed that the returns of securities are trapezoidal
fuzzy variables and found the optimal portfolio model
with the highest utility score. Zhang and Nie [32] ex-
tended the possibilistic mean and variance concepts
proposed by Carlsson and Fullér [30] and presented the
notions of upper and lower possibilistic variances and
covariances of fuzzy numbers. Fullér and Majlender [33]
introduced the notation of weighted interval-valued
possibilistic mean value of fuzzy numbers. Zhang and
Wang [34] proposed a possibilistic mean-variance model.
Zhang [35] proposed lower and upper possibilistic mean-
standard deviation model variance models. Zhang et al.
[36] proposed two kinds of portfolio selection models
based on the upper and lower possibilistic means and
variances introduced by Carlsson and Fullér [30] and
Zhang and Nie [32].

In order to better integrate an uncertain decision en-
vironment characterized by vagueness and ambiguity,
Zhang et al. [37] proposed a possibilistic mean-variance
portfolio selection model based on the definitions of the
possibilistic return and possibilistic risk. In this model, the
return rate of assets is regarded as a fuzzy variable with LR-
type possibility distribution, and the possibilistic mean of
the fuzzy variable is taken as the expected return rate of the
asset. However, the possibilistic portfolio model mentioned
above only considers that investors hope that the return
(rate) of their portfolio will reach an expected value. In real
financial markets, investors hope that the expected return
(rate) of their portfolio will not be an exact value, but a
range of values. In other words, investors want their return
(rate) on assets to be within a certain range. ,us, an in-
terval-valued possibilistic mean-variance portfolio selec-
tion model is proposed. In this model, we will use the
interval-valued possibilistic mean of fuzzy numbers pro-
posed by [30] to measure the expected return of assets, so
the portfolio selection model is transformed into an in-
terval-valued programming model. See Section 3 for a
detailed description of the model.

In recent years, many researchers have studied inter-
val-valued programming and obtained fruitful results
[38–41]. Tong [42] reduced interval number linear pro-
gramming into two types of classical linear programming
by introducing a maximum value range and obtained an
interval number optimal solution. Lai et al. [43] defined
the noninferior solutions to a class of linear programming
problems with interval coefficients in both the objective
functions and constraints based on two order relations
between intervals. ,e order relation of interval numbers
plays an important role in solving interval programming.
Ishibuchi and Tanaka [44, 45] gave two order relations of
interval numbers. To obtain a solution for the interval-
valued programming model, we use the order relation of

interval numbers to transform the interval-valued pro-
gramming model into a quadratic programming model. In
the model, the interval number is used to describe the
expected return rate of a portfolio, and the lower limit of
the expected return rate of investors is not limited to a
fixed real number but can be an interval number. ,is can
better describe the psychology of investors and give in-
vestors a more flexible choice and help them make choices
with greater flexibility.

,e rest of this paper is organized as follows. In Section
2, we present some basic concepts regarding possibility
theory and notions of the possibilistic mean and variance of
a fuzzy number. At the same time, in this section, we recall
the notion of interval numbers and their order relations. In
Section 3, we propose an interval-valued possibilistic
portfolio selection model. We suppose that the return rates
of the assets are trapezoidal fuzzy numbers and then use the
interval-valued possibilistic mean to measure the expected
return rate of assets. To obtain the solution for the interval-
valued programming model, the order relation of interval
numbers is used to transform the model into a quadratic
programming model. Section 4 provides a numerical ex-
ample to illustrate the proposed approach. Section 5 dis-
cusses the proposed model and compares it with the
traditional possibilistic model. ,rough this comparison,
the proposed model is found to have more constraints and
is able to better reflect investor psychology. It is an ex-
tension of the traditional possibilistic model and has
greater flexibility in reflecting investor expectations. Sec-
tion 6 provides the conclusion.

2. Preliminaries

In this paper, concepts and operations related to fuzzy sets
and interval numbers will be used. ,is section will briefly
review the relevant concepts.

Definition 1. A fuzzy number A is a fuzzy set of the real line
R with a normal, fuzzy convex and continuous membership
function of bounded support. ,e family of fuzzy numbers
will be denoted by F.

Definition 2. ,e λ-level set of fuzzy numberA is denoted by

Aλ �
x ∈ R μA(x)≥ λ

∣∣∣∣{ }, λ> 0,

cl x ∈ R μA(x)> 0
∣∣∣∣{ }, λ � 0,

 (1)

where cl represents the closure of the support of A. ,e
λ-level set of A is expressed as Aλ � [a(λ), b(λ)](λ> 0) (See
Dubois and Prade [46]).

Definition 3. A fuzzy number A is called the trapezoidal
fuzzy number, denoted by A � (a, b, α, β) if its membership
has the following form:

2 Mathematical Problems in Engineering



μ(x) �

1 − a − x
α
, a − α≤x≤ a,

1, a≤x≤ b,

1 − x − b
β
, b≤x≤ b + β,

0, otherwise,



(2)

where the interval [a, b], the real number α, and the real
number β are called the tolerance interval, the left width, and
the right width, respectively.

Remark 1. If a � b in (2), then A is called a triangular fuzzy
number.

Remark 2. If A � (a, b, α, β), then its λ-level set can easily be
shown like this: Aλ � [a − (1 − λ)α, b + (1 − λ)β], where
λ ∈ [0, 1].

,e definitions of the possibilistic mean, variance, co-
variance, and interval-valued possibilistic mean of a fuzzy
number were given by Carlsson and Fullér [30] as follows.

Definition 4. ,e upper possibilistic mean value of A with
λ-level set Aλ � [a(λ), b(λ)] is defined as

M∗(A) �
∫1

0
Pos[A≥ b(α)]b(α)dα

∫1

0
Pos[A≥ b(α)]dα

� 2∫1

0
αb(α)dα, (3)

where Pos denotes the possibility measure.

Definition 5. ,e lower possibilistic mean value of A is
defined as

M∗(A) �
∫1

0
Pos[A≤ a(α)]a(α)dα

∫1

0
Pos[A≤ a(α)]dα

� 2∫1

0
αa(α)dα. (4)

Definition 6. ,e interval-valued possibilistic mean of A is
defined as

E(A) � M∗(A),M
∗(A)[ ]. (5)

Definition 7. ,e crisp possibilistic mean value of A is
defined as

M(A) �M∗(A) +M
∗(A)

2
� ∫1

0
α(a(α) + b(α))dα. (6)

Definition 8. ,e possibilistic variance of A is defined as

Var(A) � ∫1

0
Pos[A≤ a(α)] a(α) + b(α)

2
− a(α)[ ]2( )dα

+ ∫1

0
Pos[A≥ b(α)] a(α) + b(α)

2
− b(α)[ ]2( )dα

� ∫1

0
α

a(α) + b(α)
2

− a(α)[ ]2( )dα
+ ∫1

0
α

a(α) + b(α)
2

− b(α)[ ]2( )dα
� 1

2
∫1

0
α[b(α) − a(α)]2dα.

(7)

Definition 9. ,e possibilistic covariance between fuzzy
numbers A and B is defined as

Cov(A, B) � 1

2
∫1

0
α b1(α) − a1(α)( ) b2(α) − a2(α)( )dα.

(8)

Lemma 1. Let α, β ∈ R, and let A and B be fuzzy numbers,
and then

Var(αA + βB) � α2Var(A) + β2Var(B) + 2|αβ|Cov(A, B).
(9)

Example 1. Let A � (a, b, α, β) be a trapezoidal fuzzy
number, and then its λ-level set is
Aλ � [a − (1 − λ)α, b + (1 − λ)β].

So, the lower possibilistic mean value of A is

M∗(A) � 2∫1

0
λa(λ)dλ � 2∫1

0
λ[a − (1 − λ)α]dλ � a − α

3
,

(10)
and the upper possibilistic mean value of A is

M∗(A) � 2∫1

0
λb(λ)dλ � 2∫1

0
λ[b +(1 − λ)β]dλ � b + β

3
.

(11)
So, the interval-valued possibilistic mean of A is

E(A) � a − α

3
, b + β

3
[ ],

Var(A) � 1

2
∫1

0
λ[b(λ) − a(λ)]2dλ

� 1

2
∫1

0
λ[b +(1 − λ)β − a +(1 − λ)α]2dλ

� 1

24
6(b − a)2 +(β + α)2 + 4(b − a)(β + α)[ ].

(12)
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Example 2. Given two trapezoidal fuzzy numbers
A � (a1, b1, α1, β1) and B � (a2, b2, α2, β2),

Cov(A, B) � 1

2
∫1

0
λ b1(λ) − a1(λ)( ) b2(λ) − a2(λ)( )dλ

� 1

2
∫1

0
λ b1 +(1 − λ)β1 − a1 +(1 − λ)α1[ ] b2 +(1 − λ)β2 − a2 +(1 − λ)α2[ ]dλ

� 1

24
6 b1 − a1( ) b2 − a2( ) + β1 + α1( ) β2 + α2( ) + 2 b1 − a1( ) β2 + α2( ) + b2 − a2( ) β1 + α1( )[ ][ ].

(13)

Remark 3. For trapezoidal fuzzy number A � (a, b, α, β), if
α � β � 0, then A � [a, b].

,us, the interval number is a special fuzzy number,
which Hansen [47] and Alefeld and Herzberger [48] dis-
cussed in detail. ,e operations related to interval numbers
are as follows.

Definition 10. Let a � [aL, aU], b � [bL, bU] be two intervals,
and then

(i) a ± b � [aL ± bL, aU ± bU].
(ii) ka � [kaL, kaU], for k≥ 0,

[kaU, kaL], for k< 0.{
,e order relation of interval numbers plays an im-

portant role in solving interval programming, so Ishibuchi
and Tanaka [44, 45] gave the following two order relations of
interval numbers.

Definition 11. Let a � [aL, aU] and b � [bL, bU] be two in-
terval numbers. We define the two order relations ≼1 and ≼2
between a and b as

(i) a≼1 b, if and only if aL ≤ bL and
aL + aU

2
≤ bL + bU

2
,

(14)

a≺1 b, if and only if a≼1b and a≠ b, (15)

(ii) a≼2 b, if and only if aU ≤ bU and
aL + aU

2
≤ bL + bU

2
,

(16)

a≺2 b, if and only if a≼2 b and a≠ b. (17)

3. Model Foundation

In this section, we set up an interval-valued possibilistic mean-
variance portfolio selection model. To reflect the investor’s

investment elasticity more flexibly, we use possibility theory to
construct an interval-valued possibilistic portfolio model.

Suppose that there are n risky assets and one risk-free
asset available for investment. Let rk be the return rate of
asset k, k � 1, 2, . . . , n, which is a fuzzy number. Let xk
represent the proportion invested in asset k, k � 1, 2, . . . , n,
and let rf be the return of the risk-free asset.

,us, the portfolio’s return R can be written as

R � ∑n
k�1
xkrk + rf 1 − ∑n

k�1
xk . (18)

Obviously, R is a fuzzy number.
To set up a portfolio selection model, the following

values need to be given.
First, the interval-valued possibilistic mean of the

portfolio’s return R is given by

E(R) � E ∑n
k�1
xkrk + rf 1 − ∑n

k�1
xk  

� ∑n
k�1
xkE rk( ) + rf 1 − ∑n

k�1
xk 

� ∑n
k�1
xk M∗ rk( ),M∗ rk( )[ ] + rf 1 − ∑n

k�1
xk .

(19)

Second, the possibilistic variance of R is as follows:

Var(R) � ∑n
k�1
x2kVar rk( ) + 2 ∑n

i>j�1
xixj

∣∣∣∣∣ ∣∣∣∣∣Cov ri, rj( )
� ∑n
k�1
x2kVar rk( ) + 2 ∑n

i>j�1
xixjCov ri, rj( ).

(20)

According to the mean-variance model, we establish the
following portfolio model:
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min Var(R)
s.t. E(R) ≥ μ,

∑n
k�1
xk ≤ 1,

0≤dk ≤ xk ≤gk, k � 1, 2, . . . , n,


(21)

where μ is a minimum threshold at which investors can
tolerate the expected rate of return on their portfolio, set
μ � [μ− , μ+]. dk and gk represent, respectively, the lower and
the upper bounds on investment in asset k, k � 1, 2, . . . , n.

Equations (19)–(21) can be written as

min Var(R) � ∑n
k�1
x2kVar rk( ) + 2 ∑n

i>j�1
xixjCov ri, rj( )

s.t. ∑n
k�1
xk M∗ rk( ),M∗ rk( )[ ] + rf 1 − ∑n

k�1
xk ≥ μ,

∑n
k�1
xk ≤ 1,

0≤dk ≤ xk ≤gk, k � 1, 2, . . . , n.


(22)

Let rk, the return on asset k, be a trapezoidal fuzzy
number rk � (ak, bk, αk, βk). ,en, we have

Var(R) � ∑n
k�1
x2kVar rk( ) + 2 ∑n

i>j�1
xixjCov ri, rj( )

� ∑n
k�1
x2k

1

24
6 bk − ak( )2 + βk + αk( )2 + 4 bk − ak( ) βk + αk( )[ ]

+ 2 ∑n
i>j�1

xixj
1

24
6 bi − ai( ) bj − aj( ) + βi + αi( ) βj + αj( ) + 2 bi − ai( ) βj + αj( ) + bj − aj( ) βi + αi( )[ ][ ],

(23)

∑n
k�1
xk M∗ rk( ),M∗ rk( )[ ] + rf 1 − ∑n

k�1
xk  � ∑n

k�1
xk ak −

αk
3
, bk +

βk
3

[ ] + rf 1 − ∑n
k�1
xk . (24)

Zhang [35] proposed the lower possibilistic mean-
standard deviation model

min

�
2

√

6
∑n
k�1

αkxk 

s.t. ∑n
k�1

ak −
αk
3

( )xk + rf 1 − ∑n
k�1
xk ≥ μ,

∑n
k�1
xk ≤ 1,

0≤dk ≤xk ≤gk, k � 1, 2, . . . , n.



(25)

,e optimal solution to (25) is called a lower possibilistic
efficient portfolio. All the lower possibilistic efficient port-
folios construct the lower possibilistic efficient frontier.

In this paper, we will assume that the expected return
rate of the portfolio is an interval, so as to establish an
interval-valued possibilistic mean-variance portfolio model.

From (23) and (24), (22) can be transformed into

min∑n
k�1
x2k 6 bk − ak( )2 + βk + αk( )2 + 4 bk − ak( ) βk + αk( )[ ]

+2 ∑n
i>j�1

xixj 6 bi − ai( ) bj − aj( ) + βi + αi( ) βj + αj( ) + 2 bi − ai( ) βj + αj( ) + bj − aj( ) βi + αi( )[ ][ ]

s.t.∑n
k�1
xk ak −

αk
3
, bk +

βk
3

[ ] + rf 1 − ∑n
k�1
xk ≥ μ− , μ+[ ],

∑n
k�1
xk ≤ 1,

0≤ dk ≤ xk ≤gk, k � 1, 2, . . . , n.



(26)
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According to Definition 11, (26) can be transformed into

min∑n
k�1
x2k 6 bk − ak( )2 + βk + αk( )2 + 4 bk − ak( ) βk + αk( )[ ]

+2 ∑n
i>j�1

xixj 6 bi − ai( ) bj − aj( ) + βi + αi( ) βj + αj( ) + 2 bi − ai( ) βj + αj( ) + bj − aj( ) βi + αi( )[ ][ ]

s.t. ∑n
k�1
xk ak −

αk
3

( ) + rf 1 − ∑n
k�1
xk ,∑n

k�1
xk bk +

βk
3

( ) + rf 1 − ∑n
k�1
xk  ≥ μ− , μ+[ ],

∑n
k�1
xk ≤ 1,

0≤ dk ≤ xk ≤gk, k � 1, 2, . . . , n.



(27)

According to the order relations ≼1 and ≼2 between two
interval numbers, we can get

min∑n
k�1
x2k 6 bk − ak( )2 + βk + αk( )2 + 4 bk − ak( ) βk + αk( )[ ]

+2 ∑n
i>j�1

xixj 6 bi − ai( ) bj − aj( ) + βi + αi( ) βj + αj( ) + 2 bi − ai( ) βj + αj( ) + bj − aj( ) βi + αi( )[ ][ ]

s.t.
1

2
∑n
k�1
xk ak −

αk
3

( ) + rf 1 − ∑n
k�1
xk  +∑n

k�1
xk bk +

βk
3

( ) + rf 1 − ∑n
k�1
xk  ≥ 1

2
μ− + μ+[ ],

∑n
k�1
xk ak −

αk
3

( ) + rf 1 − ∑n
k�1
xk ≥ μ− ,

∑n
k�1
xk ≤ 1,

0≤ dk ≤ xk ≤gk, k � 1, 2, . . . , n,



(28)

min∑n
k�1
x2k 6 bk − ak( )2 + βk + αk( )2 + 4 bk − ak( ) βk + αk( )[ ]

+2 ∑n
i>j�1

xixj 6 bi − ai( ) bj − aj( ) + βi + αi( ) βj + αj( ) + 2 bi − ai( ) βj + αj( ) + bj − aj( ) βi + αi( )[ ][ ]

s.t.
1

2
∑n
k�1
xk ak −

αk
3

( ) + rf 1 − ∑n
k�1
xk  +∑n

k�1
xk bk +

βk
3

( ) + rf 1 − ∑n
k�1
xk  ≥ 1

2
μ− + μ+[ ],

∑n
k�1
xk bk +

βk
3

( ) + rf 1 − ∑n
k�1
xk ≥ μ+,

∑n
k�1
xk ≤ 1,

0≤ dk ≤ xk ≤gk, k � 1, 2, . . . , n.



(29)
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,en, (28) and (29) are quadratic programming
problems that can be solved using Matlab, Lingo, and
other software to obtain the possibilistic efficient
portfolios.

Definition 12. ,e optimal solution to (28) or (29) is called
an interval-valued possibilistic efficient portfolio.

,e lower bounds of all the interval-valued possibilistic
efficient portfolios construct the interval-valued lower
possibilistic efficient frontier. ,e upper bounds of all the
interval-valued possibilistic efficient portfolios construct the
interval-valued upper possibilistic efficient frontier.

4. Numerical Example

To illustrate the proposed method, the daily data of six bonds
listed on China’s Shanghai and Shenzhen bond markets are
selected as the original data for analysis. We collect the daily
returns of more than 400 trading days from April 2018 to
November 2019 as the expected return of bonds. Since the
bond price fluctuates, triangular fuzzy numbers are selected as
the daily return of the bond. okt, ckt, hkt, and lkt are used to
represent the opening, closing, high, and low price of the bond
k on the trading day t, respectively. rkt is used to represent the
return of the bond k on the trading day t, set
rkt � (akt, αkt, βkt), where akt, αkt, βkt are calculated as follows:

akt �
ckt − ok(t− 1)
ok(t− 1)

, (30)

αkt � akt − Lkt, (31)

βkt � Rkt − akt, (32)

Lkt �
lkt − ok(t− 1)
ok(t− 1)

, (33)

Rkt �
hkt − ok(t− 1)
ok(t− 1)

. (34)

,erefore, the expected return of the bond k is

rk �
1

Tk − 1
∑Tk
t�2
rkt, (35)

where Tk represents the total number of trading days for the
bond k.

So, formulas (30)–(35) can be used to obtain the tri-
angular fuzzy numbers of the expected returns of the six
bonds, as shown in Table 1.

Let the risk-free asset be a Treasury bond. We use the
one-year Treasury bond rate as the return rate of the riskless
asset. So, we get the return on risk-free asset rf � 2.8% if the
lower bound of investment ratio xk must be
d � 0.01, 0.03, 0.01, 0.01, 0, 0.03{ } and the upper bound
g � 0.07, 0.2, 0.3, 0.1, 0.3, 0.35{ }. By solving models (28) and
(29), the interval-valued possibilistic efficient portfolios for
the different μs are obtained as shown in Tables 2 and 3.

Figures 1 and 2 give some interval-valued possibilistic ef-
ficient portfolios for models (28) and (29), respectively.

From Table 2, we can find the following.

(1) When the lower limit of the minimum threshold of
the expected rate of return μ− remains unchanged,
the investment proportion of B6 will increase first as
the upper limit μ+ increases. When the investment
proportion of B6 reaches its ceiling at 0.350, in-
vestors will increase the investment proportion of B3
and B5, which in turn is the investment proportion
of B2. As μ+ continues to increase, investors will
reduce the investment proportion of B6. Meanwhile,

Table 1: Parameter values of the triangular fuzzy number of the six
bond returns.

Code ak αk βk

B1 − 0.018 0.421 0.500
B2 0.237 0.646 0.524
B3 0.295 0.694 0.632
B4 0.021 0.260 0.254
B5 0.302 0.732 0.810
B6 0.197 0.315 0.107

Table 2: ,e investment proportion and risk for different μs in
(28).

μ B1 B2 B3 B4 B5 B6 Risk ∑6
k�1 xk

[0.04,
0.06]

0.010 0.030 0.010 0.010 0 0.229 0.018 0.289

[0.04,
0.08]

0.010 0.030 0.010 0.010 0 0.229 0.018 0.289

[0.04,
0.10]

0.010 0.030 0.010 0.010 0 0.255 0.021 0.315

[0.04,
0.15]

0.010 0.030 0.034 0.010 0.021 0.350 0.051 0.455

[0.04,
0.20]

0.010 0.030 0.087 0.010 0.062 0.350 0.106 0.549

[0.04,
0.30]

0.010 0.069 0.177 0.010 0.130 0.350 0.292 0.746

[0.04,
0.40]

0.010 0.113 0.266 0.010 0.196 0.350 0.578 0.945

[0.04,
0.454]

0.010 0.106 0.300 0.010 0.300 0.274 0.822 1

[0.05,
0.06]

0.010 0.030 0.075 0.010 0 0.350 0.060 0.475

[0.05,
0.08]

0.010 0.030 0.075 0.010 0 0.350 0.060 0.475

[0.05,
0.10]

0.010 0.030 0.075 0.010 0 0.350 0.060 0.475

[0.05,
0.15]

0.010 0.030 0.065 0.010 0.012 0.350 0.061 0.477

[0.05,
0.20]

0.010 0.030 0.097 0.010 0.069 0.350 0.120 0.566

[0.05,
0.30]

0.010 0.074 0.186 0.010 0.136 0.350 0.316 0.766

[0.05,
0.40]

0.010 0.118 0.275 0.010 0.203 0.350 0.612 0.966

[0.05,
0.454]

0.010 0.199 0.300 0.010 0.300 0.181 0.917 1
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the investment proportions of B3 and B5 will be in-
creased to their respective investment caps. ,e in-
vestment proportion of B2 also increases alongwith the
increase of μ+. Finally, the total investment proportion
of the six risky assets is 100%.At this point, the risk-free
asset investment ratio is 0. During the investment
process, the investment ratios of B1 and B4 are kept at
their respective minimum investment ratios.

(2) When the lower limit of the minimum expected rate
of return μ− is unchanged, the investment risk will
increase alongside the increase of the upper limit μ+,
which just confirms that a high return is accom-
panied by a high risk, and conversely, that a high risk
requires a corresponding high return as
compensation.

(3) By relation ≼1 know that, for the same μ+, with the
increase of μ− , the increase in the risk of a portfolio
and the investment proportion of risky assets.

(4) According to (14) and the historical rate of return of
various assets in the portfolio, when μ− or μ+ in-
creases to a certain extent, there will be no feasible
solution for model (28).

Formodel (29), the law shown in Table 3 is similar to that
in Table 2, but it differs slightly as follows.

When μ− is unchanged, with the increase of μ+, investors
first increase the investment proportion of B6. Different
from model (28), in (29), before the investment proportion
of B6 reaches its investment limit of 0.350, the investment
proportions of B5 and B3 start to increase.

Besides, by comparing Tables 2 and 3, we can find that
for the same μ, model (29) invests less in risky assets and
takes less risk. In other words, we allocate assets according to
the proportion of investment obtained by model (29) and
can obtain the same return as model (28) by taking less risk.

Figures 1 and 2 show the relationship between the in-
terval-valued expected return rate and risk. For example, in

Table 3: ,e investment proportion and risk for different μs in (29).

μ B1 B2 B3 B4 B5 B6 Risk ∑6
k�1 xk

[0.04, 0.06] 0.010 0.030 0.010 0.010 0 0.106 0.008 0.166
[0.04, 0.08] 0.010 0.030 0.010 0.010 0 0.181 0.013 0.241
[0.04, 0.10] 0.010 0.030 0.016 0.010 0.011 0.221 0.022 0.298
[0.04, 0.15] 0.010 0.030 0.042 0.010 0.031 0.350 0.060 0.473
[0.04, 0.20] 0.010 0.054 0.087 0.010 0.067 0.350 0.123 0.578
[0.04, 0.30] 0.010 0.118 0.170 0.010 0.133 0.350 0.334 0.791
[0.04, 0.40] 0.010 0.168 0.255 0.010 0.207 0.350 0.655 1
[0.05, 0.06] 0.010 0.030 0.010 0.010 0 0.143 0.010 0.203
[0.05, 0.08] 0.010 0.030 0.010 0.010 0 0.218 0.017 0.278
[0.05, 0.10] 0.010 0.030 0.010 0.010 0 0.293 0.026 0.353
[0.05, 0.15] 0.010 0.030 0.045 0.010 0.029 0.350 0.060 0.474
[0.05, 0.20] 0.010 0.054 0.087 0.010 0.067 0.350 0.123 0.578
[0.05, 0.30] 0.010 0.118 0.170 0.010 0.133 0.350 0.334 0.791
[0.05, 0.40] 0.010 0.168 0.255 0.010 0.207 0.350 0.655 1
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Figure 1: Some interval-valued possibilistic efficient portfolios for
model (28).
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Figure 2: Some interval-valued possibilistic efficient portfolios for
model (29).
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Figure 1, when μ � [0.04, 0.10], the interval of expected
return rate is [0.042, 0.098], and the risk of the portfolio is
0.1449; that is, the risk assumed by the investor is 0.1449.

From Figures 1 and 2, we can see the following:

(1) As the expected return rate of the portfolio increases,
the risk also increases correspondingly.

(2) When the lower limit of the interval of expected
return rate remains unchanged, the risk of the
portfolio will increase with the increase of the upper
limit. By contrast, when the upper limit of the in-
terval of expected return rate remains unchanged,
the risk of the portfolio will increase with the in-
crease of the lower limit.

5. Model Discussion

In this paper, the interval-valued possibilistic mean (see
Definition 6) is used to measure the expected return rate of
the portfolio. ,e portfolio selection model (21) is converted
into an interval-valued portfolio model (22), and Definition
11 is used to convert model (22) into the following:

min Var(R) � ∑n
k�1
x2kVar rk( ) + 2 ∑n

i>j�1
xixjCov ri, rj( )

s.t. ∑n
k�1

M∗ rk( ) +M∗ rk( )
2

xk + rf 1 − ∑n
k�1
xk ≥ μ− + μ+

2
,

M∗ rk( ) + rf 1 − ∑n
k�1
xk ≥ μ− ,

∑n
k�1
xk ≤ 1,

0≤ dk ≤xk ≤gk, k � 1, 2, . . . , n,


(36)

min Var(R) � ∑n
k�1
x2kVar rk( ) + 2 ∑n

i>j�1
xixjCov ri, rj( )

s.t. ∑n
k�1

M∗ rk( ) +M∗ rk( )
2

xk + rf 1 − ∑n
k�1
xk ≥ μ− + μ+

2
,

M∗ rk( ) + rf 1 − ∑n
k�1
xk ≥ μ+,

∑n
k�1
xk ≤ 1,

0≤ dk ≤xk ≤gk, k � 1, 2, . . . , n.


(37)

If we use the crisp possibilistic mean value (see Defi-
nition 7) when measuring the expected return rate of a
portfolio, the portfolio selection model (21) is transformed
into

min Var(R) � ∑n
k�1
x2kVar rk( ) + 2 ∑n

i>j�1
xixjCov ri, rj( )

s.t. ∑n
k�1

M∗ rk( ) +M∗ rk( )
2

xk + rf 1 − ∑n
k�1
xk ≥ μ,

∑n
k�1
xk ≤ 1,

0≤dk ≤ xk ≤gk, k � 1, 2, . . . , n,


(38)

where μ− � μ+ � μ. ,is is the possibilistic mean-variance
model proposed by Zhang and Wang [34].

From (36)–(38), we can find that (36) and (37) have
more constraints. And while the optimal solution to (36) or
(37) must be a feasible solution to (38), it does not neces-
sarily have to be the reverse. In addition, compared with
(38), models (36) and (37) are more flexible in describing the
minimum expected return expected by investors.

In Table 4, the numerical example in Section 4 is solved
by using model (38), and the optimal investment ratio is
obtained.

As can be seen in Table 4, with the increase of μ, the
investment proportion of B6 will increase first, followed by
B5, B3, and B2; and finally, the investment proportion of risk
assets will reach 100%. At this time, the investment pro-
portion of risk-free assets will be 0. With the increase of μ,
the investment risk also increases, which is consistent with
the high return accompanied by high risk.

At the same time, by comparing models (36)–(38), it can
be found that the optimal solutions of (36) and (37) must be
the feasible solution of (38). ,erefore, the optimal solution
of (38) should not be greater than the optimal solutions of
(36) and (37). Table 5 shows the risk comparison of different
expected return thresholds in models (36) and (38). Some
interval-valued possibilistic efficient portfolios of model (36)
as well as the lower possibilistic effective portfolios proposed
by Zhang [35] are shown in Figure 3. Figure 4 shows some
interval-valued possibilistic efficient portfolios of model (36)
as well as the possibilistic effective portfolios of model (38).

When μ� [0.04, 0.06], (1/2)(μ− + μ+) � 0.05. So,
(1/2)(μ− + μ+) � μ. By comparing the value of the objective
function inmodel (36), theminimum risk borne by investors
is obviously greater than the minimum risk borne by in-
vestors determined by model (38). ,is rule still holds for
other values of μ, which just verifies that the optimal solution
of model (36) mentioned above is the feasible solution of
model (38). Similarly, the objective function values of
models (37) and (38) have the same relationship.

As shown in Figures 3 and 4, the (lower) possibilistic
efficient frontier lies exactly between the interval-valued
lower and upper possibilistic efficient frontiers. Since the
expected return rate of assets in our model is not a fixed
number but an interval, the expected return rate of the
portfolio is also an interval. ,erefore, this model is
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applicable to a wider range of application and conforms to
the investment behaviour and psychology of investors in the
financial market.

6. Conclusions

In this paper, we treat the return rates of assets as fuzzy
numbers and measure the expected return rates using the
interval-valued possibilistic mean of fuzzy numbers. ,us,
an interval-valued possibilistic mean-variance portfolio
selection model is constructed. In this model, the expected
return rate and the lower bound of the expected return rate
of the portfolio are regarded as intervals using possibility
theory. Doing so, one can more accurately measure in-
vestors’ expected returns. In the real process of making
decisions, an investor’s expected return rate on a portfolio
is often not a fixed value but spans a certain range of
numbers. ,erefore, the expected return rate and the lower
bound of the expected return rate are regarded as more
realistic intervals. An application of the portfolio diversi-
fication problem is provided where the available assets
include six bonds. ,e results show that the lower limit of
the expected return rate is more flexible in this method.
,rough comparison with the models proposed by Zhang
and Wang [34] and Zhang [35], it can be found that this
model can be more widely applied and can more flexibly
describe the expected return rate of an investment
portfolio.
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Table 4: ,e investment proportion and risk for different μs in
(38).

μ B1 B2 B3 B4 B5 B6 Risk ∑6
k�1 xk

0.050 0.010 0.030 0.010 0.010 0 0.106 0.008 0.166
0.055 0.010 0.030 0.010 0.010 0 0.143 0.010 0.203
0.060 0.010 0.030 0.010 0.010 0 0.181 0.013 0.241
0.065 0.010 0.030 0.010 0.010 0 0.218 0.017 0.278
0.070 0.010 0.030 0.010 0.010 0 0.255 0.021 0.315
0.075 0.010 0.030 0.010 0.010 0 0.293 0.026 0.353
0.083 0.010 0.030 0.010 0.010 0.001 0.350 0.034 0.411
0.095 0.010 0.030 0.034 0.010 0.021 0.350 0.051 0.455
0.100 0.010 0.030 0.045 0.010 0.029 0.350 0.060 0.474
0.120 0.010 0.030 0.087 0.010 0.062 0.350 0.106 0.549
0.125 0.010 0.030 0.097 0.010 0.070 0.350 0.120 0.567
0.170 0.010 0.069 0.177 0.010 0.130 0.350 0.292 0.746
0.175 0.010 0.074 0.186 0.010 0.136 0.350 0.316 0.766
0.220 0.010 0.113 0.266 0.010 0.196 0.350 0.578 0.945
0.225 0.010 0.118 0.275 0.010 0.203 0.350 0.612 0.966
0.085 0.010 0.126 0.291 0.010 0.213 0.350 0.684 1

Table 5: ,e risk comparison between model (36) and model (38)
for different μs and μs.

μ Risk in (38) μ Risk in (36)

0.050 0.004 [0.04, 0.06] 0.018
0.065 0.004 [0.05, 0.08] 0.060
0.070 0.004 [0.04, 0.10] 0.021
0.095 0.006 [0.04, 0.15] 0.051
0.100 0.008 [0.05, 0.15] 0.061
0.120 0.013 [0.04, 0.20] 0.106
0.125 0.015 [0.05, 0.20] 0.120
0.170 0.037 [0.04, 0.30] 0.292
0.175 0.040 [0.05, 0.30] 0.316
0.220 0.081 [0.04, 0.40] 0.578
0.225 0.087 [0.05, 0.40] 0.612
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Figure 3: Some interval-valued possibilistic efficient portfolios and
lower possibilistic efficient portfolios.
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