A Measure & Conquer Approach for the
Analysis of Exact Algorithms*

Fedor V. Fomin' Fabrizio Grandonit Dieter Kratsch®

February 20, 2009

Contents

1 Introduction 2
1.1 Measure & Conquer e 3
1.2 Previousresults 4
1.3 Related Work 5)

2 Preliminaries 6

3 The Minimum Dominating Set Problem 7
3.1 The Algorithm 8
3.2 The Analysis e 9
3.3 An Exponential Lower Bound 14
3.4 An Exponential Space Algorithm o0 0oL 14

4 The Maximum Independent Set Problem 16
4.1 Folding and Mirroring 16
4.2 The Algorithm 17
4.3 The Analysis e 19
4.4 Refining the Analysis 23
4.5 An Exponential Lower Bound o000 24

5 Conclusions and Future Work 24

*Preliminary parts of this article appeared in Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP 2005), Springer LNCS vol. 3580, 2005, pp. 191-203 and in
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), ACM, New
York, 2006, pp. 18-25.

TDepartment of Informatics, University of Bergen, N-5020 Bergen, Norway, fomin@ii.uib.no. Supported
by the Norwegian Research Council.

tDipartimento di Informatica, Sistemi e Produzione, Universita di Roma Tor Vergata, via del Politecnico
1, 00133 Roma, Italy, grandoni@disp.uniroma2.it.

SLITA, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France, kratsch@univ-metz.fr

Abstract

For more than 40 years Branch & Reduce exponential-time backtracking algorithms have
been among the most common tools used for finding exact solutions of NP-hard problems.
Despite that, the way to analyze such recursive algorithms is still far from producing tight
worst-case running time bounds. Motivated by this we use an approach, that we call
“Measure & Conquer”, as an attempt to step beyond such limitations. The approach is
based on the careful design of a non-standard measure of the subproblem size; this measure
is then used to lower bound the progress made by the algorithm at each branching step.
The idea is that a smarter measure may capture behaviors of the algorithm that a standard
measure might not be able to exploit, and hence lead to a significantly better worst-case
time analysis.

In order to show the potentialities of Measure & Conquer, we consider two well-studied
NP-hard problems: minimum dominating set and maximum independent set. For the first
problem, we consider the current best algorithm, and prove (thanks to a better measure)
a much tighter running time bound for it. For the second problem, we describe a new,
simple algorithm, and show that its running time is competitive with the current best
time bounds, achieved with far more complicated algorithms (and standard analysis).

Our examples show that a good choice of the measure, made in the very first stages
of exact algorithms design, can have a tremendous impact on the running time bounds
achievable.

Keywords: Exact algorithm, dominating set, independent set.

1 Introduction

The aim of exact algorithms is to exactly solve NP-hard problems in the smallest possible
(exponential) worst-case running time. This field dates back to the sixties and seventies
[35, 64], and it has started to attract a growing interest in the last two decades [3, 4, 5, 6, 7,
8, 10, 27, 29, 36, 41, 42, 44, 45, 48, 49, 50, 51, 59, 61, 68]. There are several explanations to
the increasing interest in exact algorithms:

e There are certain applications that require exact solutions of NP-hard problems, al-
though this might only be possible for moderate input sizes.

e Approximation algorithms are not always satisfactory. Various problems are hard to
approximate. For example, maximum independent set is hard to approximate within
O(n'=#), for any constant ¢ > 0, unless P = NP [70].

e A reduction of the base of the exponential running time, say from O(2") to O(2%°"),
increases the size of the instances solvable within a given amount of time by a constant
multiplicative factor; running a given exponential algorithm on a faster computer can
enlarge the mentioned size only by a (small) additive factor.

e The design and analysis of exact algorithms leads to a better understanding of NP-hard
problems and initiates interesting new combinatorial and algorithmic challenges.

One of the major techniques in the design of exact algorithms is Branch & Reduce, which
traces back to the paper of Davis and Putnam [12] (see also [11]). The basic idea is to apply
a proper set of reduction rules, and then branch on two or more subproblems, which are
solved recursively. The solutions to the subproblems are later used to derive a solution for
the original problem. Branch & Reduce algorithms have been used for more than 40 years

to solve NP-hard problems. Despite that, the analytical tools available are still far from
producing tight worst-case running time bounds for that kind of algorithm.

1.1 Measure & Conquer

Motivated by the limits of existing analytical tools for Branch & Reduce algorithms, we
present here a new approach, that we call Measure & Conquer. To describe our method, and
to show its potential, we apply it to the analysis of simple algorithms to solve two classical
NP-hard problems: minimum dominating set and maximum independent set. In both cases
we obtain considerably tighter time bounds with respect to the standard analysis.

The fastest known (Branch & Reduce) exact algorithms to solve NP-hard problems are
often very complicated. Typically, they consist of a long list of non-trivial branching and
reduction rules, and are designed by means of a long and tedious case distinction. However,
their analysis is usually rather simple. A (standard) measure of the size of the subproblems
is defined (e.g., number of vertices or edges of graphs, number of variables or clauses of CNF-
formulas, etc.). This measure is used to lower bound the progress made by the algorithm at
each branching step.

The idea behind Measure & Conquer is to focus on the choice of the measure. In fact,
a more sophisticated measure may capture some phenomena which standard measures are
not able to exploit, and hence lead to a tighter analysis of a given algorithm. We apply
Measure & Conquer to the current best algorithm in [30, 31] for the minimum dominating
set problem (MDS). The standard analysis of this algorithm given in [30, 31] provides an
0O*(208507) bound on its running time'. By using a different measure, we are able to show
that the same algorithm has in fact running time O*(2°-°8™). We also consider the maximum
independent set problem (MIS). For this problem, we present and analyze a very simple
polynomial-space algorithm. Our algorithm, according to the standard analysis, performs
very poorly: its running time is O*(2°4% ™), which is much worse than the first non-trivial
O*(20-3341) algorithm by Tarjan and Trojanowski [64] for the same problem. However, thanks
to a smarter measure, we manage to obtain an impressive refinement of the time analysis:
the new time bound obtained (for the same algorithm) is O*(20-287™). For a comparison,
the current best results, which are obtained with far more complicated algorithms [59], are
0*(20-2% 1) in polynomial space and O*(20-276") in exponential space.

The results above show that a good choice of the measure can have a tremendous impact on
the time bounds achievable, comparable to the impact of improved branching and reduction
rules. Hence, finding a good measure should be at first concern when designing Branch &
Reduce algorithms.

Despite the big improvements in the running time bounds, it might be that our refined
analysis is still far from being tight. Hence, it is natural to ask for (exponential) lower
bounds. (Notice that we are concerned with lower bounds on the complexity of a particular
algorithm, and not with lower bounds on the complexity of an algorithmic problem). A lower
bound may give an idea of how far the analysis is from being tight. We prove Q(20-3%7) and
Q(20-142n) Jower bounds on the worst-case time complexity of our MDS and MIS algorithms,
respectively. The large gap between the upper and lower bounds for both algorithms suggests

!Throughout this paper we use a modified big-Oh notation that suppresses all polynomially bounded factors.
For functions f and g we write f(n) = O*(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.
Also while speaking about graph problems, we use n to denote the number of vertices in a graph.

the possibility that their analysis can be further refined (possibly by measuring the size of
the subproblems in a further refined way).

1.2 Previous results

Non-standard measures. The idea of using non-standard measures is not new, though in
most cases its real potential is not fully exploited. The most remarkable example is probably
the seminal work by Eppstein et al. In a paper on 3-coloring and related problems [3], Beigel
and Eppstein consider a reduction to constraint satisfaction, and measure the size of the
constraint satisfaction problem with a linear combination of the number of variables with three
and four values in their domain, respectively. A more sophisticated measure is introduced by
Eppstein in the context of cubic-TSP [16]: let F' be a given set of forced edges, that is edges
that we assume belong to the optimum solution. For an input cubic graph G = (V, E), the
author measures the size of the problem in terms of |V| — |F| — |C|, where C' is the set of
4-cycles which form connected components of G — F'. Eppstein [17] also provides a general
tool to analyze systems of multi-variate recurrences arising from the analysis of Branch &
Reduce algorithms. He essentially shows that, from an asymptotic point of view and modulo
polynomial factors, every set of multi-variate linear recurrences can be transformed into an
equivalent set of univariate recurrences in terms of a proper linear combination of the original
variables. Moreover, the coefficients of the linear combination can be found by solving a
quasi-convex optimization problem. The last result is extensively used in this paper.

Minimum dominating set. MDS is a well known and well studied NP-hard graph optimiza-
tion problem which fits into the broader class of domination and covering problems on which
hundreds of papers have been written; see e.g. the survey [34] by Haynes, Hedetniemi, and
Slater. The problem is hard to approximate: Unless P = NP there is no polynomial time
algorithm approximating MDS within a factor clogn for n-vertex graphs for some constant
¢ > 0 [56]. The dominating set problem is also one of the basic problems in parameterized
complexity [13]; it is W[2]-complete and thus it is unlikely that the problem is fixed param-
eter tractable. What are the best worst-case time complexities for MDS in n-vertex graphs
G = (V, E) that we can possibly hope for? It has been observed [25, 39] that there is no sub-
exponential time (i.e. of running time ™) for some constant ¢ > 1) algorithm solving MDS
unless the complexity classes SNP and SUBEXP satisfy SNP C SUBEXP which is considered
to be unlikely. There is the trivial O*(2") algorithm that simply searches through all the 2"
subsets of V. Hence, we can only hope for time complexities of the form O*(2°"), for some
small constant ¢ < 1. Although MDS is a natural and very interesting problem concerning the
design and analysis of exponential-time algorithms, no exact algorithm for MDS faster than
the trivial one had been known until very recently. In 2004 three different sets of authors in-
dependently published algorithms breaking the trivial “2”-barrier”. The algorithm of Fomin
et al. [25] uses a deep graph-theoretic result due to Reed [57], providing an upper bound on
the domination number of graphs of minimum degree three. The most time consuming part
of their algorithm is an enumeration of all subsets of vertices of cardinality at most 3n/8, thus
the overall running time is O*(2°95°"). The algorithm of Randerath and Schiermeyer [53] uses
combinatorial ideas (including matching techniques) to restrict the search space. The most
time consuming part of their algorithm enumerates all subsets of vertices of cardinality at
most n/3, thus the overall running time is O*(2°-919"). Finally, the fastest algorithm known
prior to our work is due to Grandoni [30, 31], who described an O*(29-807) algorithm for

MDS. His algorithm is based on the standard reduction to minimum set cover, which will be
adopted also in this paper.

Maximum independent set. MIS is one of the best studied NP-hard problems. By a
recent result of Zuckerman [70] who succeeded in derandomizing the result of Hastad [33], no
polynomial time approximation algorithm for MIS (unless P = N P) can provide an O(n!~¢)
guarantee for n-vertex graphs for any constant € > 0. The problem is W{l]-complete [13],
and thus it is probably not fixed parameter tractable. For reasons analogous to the case of
MDS, it is also unlikely that MIS admits a sub-exponential time algorithm [39]. The design
of exact algorithms for MIS has a long history. The first non-trivial exact algorithm solving
MIS is due to Tarjan and Trojanowski (1977); it has running time O*(29334") [64]. In 1986
Jian published an improved algorithm with running time O*(20-3047) [42]. In the same year
Robson provided an algorithm of running time O*(20-2967) [59]. All these three algorithms
are Branch & Reduce algorithms, and use polynomial space. In [59] Robson also showed how
to speed up Branch & Reduce algorithms using a technique that is now called Memorization,
and he established an O*(2°-277) time algorithm that needs exponential space?. A significant
amount of research was also devoted to solve the maximum independent set problem on sparse
graphs [2, 8, 9, 27, 55].

Lower bounds. There are several results known on lower exponential bounds for different
branching algorithms for SAT (see e.g. [1, 52]) but we are not aware of (non-trivial) lower
bounds for existing exponential-time graph algorithms. One of the reasons to this could be
that for most graph problems the construction of good lower bounds is often difficult even
for very simple algorithms.

1.3 Related Work

The first papers with (non-trivial) exact algorithms appeared in the sixties and seventies.
Classical examples are the O*(2™) time algorithm for the travelling salesman problem with n
cities by Held and Karp of 1962 [35] (see also the work of Kohn et al. [43]), the O*(20-3317)
time algorithm for the maximum independent set problem by Tarjan and Trojanowski of 1977
[64], Lawler’s algorithm computing an optimal coloring of n-vertex graphs in time O*(2.4422™)
[49], and Horowitz-Sahni algorithm for the knapsack problem [38].

In the eighties the topic of exact algorithms was not in the mainstream of algorithmic
research. However, the work of Monien and Speckenmeyer [50] on k-SAT, of Jian and Robson
on the maximum independent set [42, 59], and of Schroeppel and Shamir on XSAT [63],
prepared the ground for a rapid growing of the area which started in the late nineties.

It is impossible even to mention here all the results and problems studied for the last 10
years, so we give only a very short overview of the most important (from our point of view)
recent, results and techniques. A variety of results on k-SAT, and on 3-SAT in particular,
improving on deterministic and probabilistic exact algorithms for the problem can be found
in the literature. Among various techniques developed for k-SAT, let us mention the involved
branching and reduction rules developed by Kullman [48], the randomized techniques of Paturi
et al. [51], Schoning’s approach based on random walks in the Boolean cube [61], and the

2In a technical report [60] Robson claims even better running times, both in polynomial and in exponential
space. The description of his new algorithm, which is partially computer generated, takes almost 18 pages.

deterministic local search algorithm used by Dantsin et al. in [10]. See also [6, 36, 37, 41] for
some other results in the area.

Many graph problems were studied from the viewpoint of exact algorithms. We already
mentioned the work on maximum independent set and minimum dominating set together
with the memorization technique. Another well studied problem is graph coloring [3, 7, 15],
for which Bjorklund-Husfeldt and Koivisto recently obtained O*(2")-time algorithms based
on the inclusion-exclusion principle [4, 44]. There was also work done on treewidth [5, 24, 66],
maximum cut [29, 45, 68], minimum feedback vertex set [18, 54] among many others. For
more information, we refer to the surveys [21, 40, 62, 69].

Organization. The rest of this paper is organized as follows. In Section 2 we introduce
some preliminary notions. In Section 3 and Section 4 we present our results on MDS and MIS,
respectively. Conclusions are given in Section 5.

2 Preliminaries

Let G = (V, E) be an n-vertex undirected, simple graph without loops. (For standard graph
terminology, see e.g. [67]). Sometimes, we also use V(G) for V and E(G) for E. The
(open) neighborhood of a vertex v is denoted by N(v) = {u € V : uwv € E}, and its closed
neighborhood by N[v] = N(v) U {v}. We let d(v) = |N(v)| be the degree of v. By N%(v) we
denote the set of vertices at distance d from v. In particular, N!(v) = N(v). Given a subset
V' of vertices, G[V'] is the graph induced by V’/, and G — V' = G[V \ V’]. Sometimes we will
use E(V') for E(G[V']).

A set D C V is called a dominating set for G if every vertex of G is either in D, or
adjacent to some vertex in D. The domination number v(G) of a graph G is the minimum
cardinality of a dominating set of G. The minimum dominating set problem (MDS) asks to
determine v(G). A problem closely related to MDS is the minimum set cover problem (MSC).
In MSC, we are given a universe U of elements and a collection S of (non-empty) subsets of U.
The aim is to determine the minimum cardinality of a subset &’ C S which covers U, that is
such that Ugcs'R = U. The frequency of u € U is the number of subsets R € S in which «
is contained. We use |u| to denote the frequency of u. For the sake of simplicity, we always
assume in this paper that S covers U, that is U = U(S) := UresR. With this assumption, an
instance of MSC is univocally specified by S. MDS can be naturally reduced to MSC by imposing
U=V and § = {N[v]| v € V}. Note that N[v] is the set of vertices dominated by v, thus
D is a dominating set of G if and only if {N[v]| v € D} is a set cover of {N[v]| v € V}. In
particular, every minimum set cover of {N[v]| v € V'} corresponds to a minimum dominating
set of G.

A set I C V is called an independent set for G if the vertices of I are pairwise non adjacent.
The independence number o(G) of a graph G is the maximum cardinality of an independent
set of G. The mazimum independent set problem (MIS) asks to determine a(G).

A set A C F of edges of G = (V, E) is an edge cover, if every vertex of G is incident to an
edge of A; the edge set A is a matching if no vertex of G is incident to two edges of A.

Branch & Reduce algorithms. A typical Branch & Reduce algorithm for a given problem
P works as follows. If P is a base instance, the problems is solved directly in polynomial

time. Otherwise the algorithm transforms the problem by applying a set of polynomial-
time reduction rules. Then it branches, in polynomial-time, on two or more subproblems
Pi, ..., Py, according to a set of branching rules. Such subproblems are solved recursively,
and the partial solutions obtained are eventually combined, in polynomial time, to get a
solution for P.

Branch & Reduce algorithms are usually analyzed in the following way. (For a more
detailed description, see e.g. [48] and references therein). Suppose we wish to find a time
bound in terms of a given measure k of the input size. Assume that the depth of the search
tree is polynomially bounded (which is trivially true in most cases). It is sufficient to bound
the maximum number P(k) of base instances generated by the algorithm: the running time
will be O*(P(k)). If P is a base instance, trivially P(k) = 1. Otherwise, let k; = k—Ak; <k
be the size of subproblem P; for a given branching. It follows that

P(k) < zp:P(k‘i),
i=1

for every feasible combination of subproblems Py, ..., P,. It turns out that P(k) < ¥ where
A > 1 is the largest root of the set of equations of the kind

obtained by considering every feasible branching vector A = (Aky,...,Aky,). The root r(A)
associated to a given branching vector A is sometimes called branching factor. For a given
A, r(A) can be easily found numerically. We say that a branching vector A dominates a
branching vector A’ if A < A’ i.e. A is component-wise not larger than A’. It is not hard to
see that, when A < A’ r(A) > r(A’). Hence, with respect to the running time analysis, it is
sufficient to consider a dominating set of branching vectors. For a similar reason, each time
we replace the branching vector of a feasible branching with a branching vector dominating
it, we obtain a pessimistic estimate of the running time. These properties will be extensively
used in this paper.

In the standard analysis, k is both the measure used in the analysis and the quantity in
terms of which the final time bound is expressed. However, one is free to use any, possibly
sophisticated, measure £’ in the analysis, provided that &’ < f(k) for some known function f.
This way, one achieves a time bound of the kind O*(A\¥") = O*(Af*)), which is in the desired
form. As we will see, a proper choice of k' can lead to a better balanced set of recurrences,
and hence to an improved running time bound.

3 The Minimum Dominating Set Problem

In [30, 31] Grandoni describes an O*(2°9397) algorithm mds for MDS based on the following
approach. He first reduces the input problem G = (V| F) to an equivalent instance (S,U) =
({N[v] : v € V},V) of MSC. Then he solves (S,U) via a simple MSC algorithm msc. Algorithm
msc is described in Section 3.13. It is shown that msc runs in time O*(20-465(SI+UD) ~ As a

3In fact, for ease of presentation, we consider here a slightly modified version of msc, which has the same
running time from the point of view of the standard analysis.

Figure 1 Algorithm msc for the minimum set cover problem.

int msc(S) {
if(|S| = 0) return 0; /* base case */
if(3S,R € S : S C R) return msc(S\{S});
if(3u € U(S)3 a unique S € S : u € S) return 1+msc(del(S, S));
take S € S of maximum cardinality;
if(|S| = 2) return 2-msc(S)
return min{msc(S\{S}), 1+msc(del(S, S))};

S UL W N

consequence, the running time of mds is O*(20-465(+n)) = O* (209307 " Section 3.2 we show,
thanks to a refined measure, that in fact msc runs in time O*(2%-395(SI+UD) " and hence mds
in time O*(20-619™). This result is complemented by a £(2°-3%") lower bound on the running
time of mds (see Section 3.3). Algorithm mds runs in polynomial space. Grandoni shows how
to reduce the running time of mds to O*(2%-#°°") using exponential space. According to our
refined measure, the exponential-space running time bound can be refined to O*(20-5%7) (see
Section 3.4).

3.1 The Algorithm

Before describing msc, we need some further preliminary notions. Recall that, without loss
of generality, we assume U = U(S) := UresR. Hence, a set cover instance can be specified
by providing S only. We observe that:

Lemma 1 For a given MSC instance S:

1. If there are two distinct sets S and R in S, S C R, then there is a minimum set cover
which does not contain S.

2. If there is an element u € U(S) which belongs to a unique S € S, then S belongs to
every set cover.

Note that each subset of cardinality one satisfies exactly one of the properties of Lemma 1.

We also recall that MSC is solvable in polynomial time and space when all the subsets of S
are of cardinality two, by applying the following standard reduction to maximum matching.
Consider the graph G which has a vertex u for each u € U, and an edge uv for each subset
S = {u,v} in S. Note that a minimum set cover for S corresponds to a minimum edge cover®
of G. To compute a minimum edge cover of G it is sufficient to compute a maximum matching
M in G. Then, for each unmatched vertex u, we add to M an arbitrary edge incident to u (if
no such edge exists, there is no set cover at all). The final set M is the desired edge cover of
G (and set cover of G). In the following, we will call 2-msc the algorithm described above.

Algorithm msc is described in Figure 1. If |S| = 0 (line 1), msc(S) = 0. Otherwise, the
algorithm tries to reduce the size of the problem without branching, by applying one of the
Properties 1 and 2 of Lemma 1. Specifically, if there are two sets S and R, S C R, the
algorithm returns (line 2)

msc(S) =msc(S\ {S}).

“An edge cover of a graph G = (V, E) is a subset E' C E of edges such that each vertex v € V is the
endpoint of at least one edge e € E’.

If there is an element u which is contained in a unique set S, the algorithm returns (line 3)
msc(S) = 1 +msc(del(S,S)),

where

del(S,S) = {Z|Z =R\ S £ 0,R € S}

is the instance of MSC which is obtained from S by removing the elements of S from the
subsets in S, and by eventually removing the empty sets obtained.

If neither of the two properties above applies, the algorithm takes a set S € S of maximum
cardinality (line 4). If |S| = 2, the algorithm directly solves the problem (in polynomial
time and space) via 2-msc (line 5). Otherwise (line 6), it branches on the two subproblems
Sin = del(S,S) (the case where S belongs to the minimum set cover) and Soyr = S\ {S}
(corresponding to the case S is not in the minimum set cover), and returns

msc(S) = min{msc(S \ {S}), 1 + msc(del(S,S))}.

Notice that with simple modifications, the algorithm can also provide one minimum set cover
(besides its cardinality). In fact, at each recursive call of msc some set S is either implicitly
included in (lines 3 and 6) or implicitly excluded from (lines 2 and 6) the minimum set cover
under construction. In the first case, we say that S is selected, and otherwise it is discarded.

The standard analysis. To emphasize the importance of the choice of the measure, we
sketch the analysis of the algorithm with a simple measure (taken from [31]). Let us choose
the following measure k = k(S) of the size of a MSC instance S,

k=S| + US).

Let P(k) be the maximum number of base instances generated by the algorithm to solve
a problem of size k. If one of the conditions of lines 1 and 5 holds, the algorithm directly
solves the problem, and hence P(k) = 1. If one of the conditions of lines 2 and 3 is satisfied,
P(k) < P(k—1) since at least one set is removed from the problem. Otherwise, let S be the set
taken in line 4 (|S| > 3). The algorithm branches on the two subproblems Soyr = S\ {S}
and S;y = del(S,S). The size of Soyr is k — 1 (one set removed from S). The size of
Sry is at most k — 4 (one set removed from S and at least three elements removed from
U). This brings us to P(k) < P(k — 1) + P(k — 4). We conclude that P(k) < A*, where
A = 1.3802... < 1.3803 is the (unique) positive root of the polynomial 2% — x3 — 1. Tt
turns out that the total number of subproblems solved is within a polynomial factor from
P(k). Moreover, solving each subproblem takes polynomial time. Thus the complexity of the
algorithm is O*(P(k)) = O*(\¥) = 0*(1.3803/SIHU1) = O* (20-465(IS|+U))),

In the next section we will show how to refine the running time analysis of msc to
O*(20-305(IS1+1U1)) via a more careful choice of the measure k(S) (without modifying the algo-
rithm!). This will immediately imply a refined running time bound for MDS.

3.2 The Analysis

In this section we present a refined analysis of msc, based on a more sophisticated measure of
the size of the subproblems.

Our refined measure is based on the following observation. Removing a large set has a
different impact on the “progress” of the algorithm than removing a small one. In fact, when
we remove a large set, we decrease the frequency of many elements. Decreasing elements
frequency pays off in the long term, since the elements of frequency one can be filtered out
(without branching). A dual argument holds for the elements. Removing an element of high
frequency is somehow preferable to removing an element of small frequency. In fact, when
we remove an element occurring in many sets, we decrease the cardinality of all such sets by
one. This is good in the long term, since sets of cardinality one can be filtered out. Both
phenomena are not taken into account in the measure used in [31]. With that measure, by
removing one set (element), we decrease the size of the problem by one, no matter what is
the cardinality of the set (frequency of the element) considered.

This suggests the idea of giving a different “weight” to sets of different cardinality and to
elements of different frequency. In particular, let n; denote the number of subsets S € S of
cardinality i. Let moreover m; denote the number of elements u € U of frequency |u| = j.
We will use the following measure k = k(S) of the size of S:

k(S) = Zaini +Zﬂj my,

i>1 j>1

where the weights «;, 8; € (0,1] will be fixed in the following. Note that our choice of the
weights ensures that k& < |S| + |U/|. Thanks to this constraint, we will be able at the end of
the analysis to provide a bound in the desired form O*(ASI+Ul),

In order to simplify the running time analysis, we will make the following extra assump-
tions:

(a) 0 <a; <agprand 0 < f; < Bigq fori > 2;

(b) a1 = p1 = 0;

(¢) a; =i =1fori>6.
The first assumption reflects our intuition that instances with larger sets and with elements
of larger frequency are harder to solve, and hence should have a larger size according to our
measure. In view of that, the second assumption is clear: sets of cardinality one and elements
of frequency one can be removed very “cheaply”, i.e. without branching, and thus should not
contribute to the size of the problem. The last assumption is simply due to the fact that we
are not able to deal with an unbounded number of weights. We experimentally observed that

further increasing the number of distinct weights does not improve the analysis significantly.
The quantities

Aa;=0; —a;—1,1>2 and AB =0 —Bi—1, 1> 2,

turn out to be useful in the analysis. Intuitively, A «; (A ;) is the reduction of the size of
the problem corresponding to the reduction of the cardinality of a set (of the frequency of an
element) from i to i — 1. We make one last simplifying assumption:

(d) AOZZ' > AOZZ'_H, for 4 > 2,

that is the o;’s are increasing at decreasing speed. This last assumption helps to simplify the
analysis, and turns out to be non-restrictive.

10

Theorem 1 Algorithm msc solves MSC in O* (20-305UIHISDY time and polynomial space.

Proof. The correctness of the algorithm is straightforward. Moreover, its space complexity
is trivially polynomial.

Recall that P(k) denotes the maximum number of base instances generated by the algo-
rithm to solve a problem of size k. Clearly, P(0) = 1, since in this case the algorithm never
branches. Consider the case k > 0 (which implies S #)). If one of the conditions of lines 2
and 3 holds, one set S is removed from S. Thus we get P(k) < P(k — o)), where a5 > 0
by Assumptions (a) and (b).

Otherwise, let S be the subset selected in line 4. If |S| = 2, no subproblem is generated
(P(k) = 1). Otherwise (|S| > 3), msc generates two subproblems S;y = del(S,S) and
Sovr =S\ {S}.

We wish to lower bound the difference between the size of S and the size of the two
subproblems Syy and Spyr. Consider the subproblem Spyr. The size of Soyr decreases by
5| because of the removal of S. Let r; be the number of elements of S of frequency i. Note
that there cannot be elements of frequency one. Hence

Zri :Zm =15|.

i>1 i>2

Consider an element u € S of frequency 7 > 2. When we remove S, the frequency of u
decreases by one. As a consequence, the size of Spyr decreases by A §;. Thus the overall
reduction of the size of Spyr due to the reduction of the frequencies is at least

6
ZriAﬂi = ZH’A@»
i>2 =2
where we used the fact that A 5; =0 for ¢ > 7 (Assumption (c)).

Suppose that ro > 0, and let Ry, Ra,...,Rp, 1 < h < rg, be the sets of S distinct from
S, which share at least one element of frequency two with S. When we discard S, we must
select all the sets R; before the next branching (on two subproblems). Suppose R;, 1 <i < h,
shares ry; elements of frequency two with S. Then |R;| > ro; + 1, since otherwise we would
have R C S, which is excluded by line 2. Thus, by Assumption (a), the reduction of the size
of the problem due to the removal of R; is ayg,| > @y, +1. Note that ro; < |R;| —1 < [S],
being S of maximum cardinality by assumption: this is used in the case analysis below. We
also observe that, by selecting the R;’s, we remove at least one element u ¢ S, thus gaining
an extra f3,) > (B2 (here we use Assumption (a) again). By a simple case analysis, which we
present here in a slightly weakened form, the total reduction of the size of the problem due
to the removal of the R;’s is at least

0 if ro = 0;
P2+ o if 1y = 1;
Ak‘/Ser = 52 + min{2a2,a3} = 62 + asg if ro = 27

B2 +min{3az,as + az} = fo + s + g if r2 = 3, (S| = 3;
B2 + min{3as, ag + az, a4} = B2 + ay if rg > 3,|5| > 4.

Above we used the fact that, by Assumptions (b) and (d),

min{2as, ag} = min{Aag + az, Aag + as} = Aag + as = as,

11

and
min{a2 + ag, 044} = min{Aag + a3, Aoy + 043} = Aoy + az = ay.

Consider now the subproblem S;y. The size of Syy decreases by Qs because of the
removal of S. Let r>; = > ;5 7; be the number of elements of S of frequency at least i.
Consider an element u € S of frequency i (i > 2). The size of S;y further decreases by f;
because of the removal of u. Thus the overall reduction due to the removal of the elements u

of Sis
6

S orifi=> rifi+ s,

1>2 =2

where we used the fact that §; = 1 for i« > 7 (Assumption (c)). Let R be a set sharing an
element u with S. Note that |R| < |S|. By removing u, the cardinality of R is reduced by
one. This implies a reduction of the size of S;x by A ajp > A a|g (Assumption (d)). Thus
the overall reduction of Sy due to the reduction of the cardinalities of the sets R is at least:

6
AO&\&Z(Z'— 1)7"i > AOZ‘5| (Z(i—l)ri+6-r27> .

i>2 i=2

Note that this quantity is 0 for |S| > 7.
Putting all together, for any tuple t = (|S|, ro,...,rs, r>7) with |\S| > 3 and 2?22 ritrs7r =
|S|, we obtain the following recurrence

P(k) < P(k — Akour(t)) + P(k — Akin(t)),
where

o Akour(t) = ajs) + Yo i A B + Akl .,

. Ak]N(t) = oyg + Z?:z r Bi + r>7 + AO(\S| (ZZG:2(Z — 1) r; +6- 7’27) .

For every fixed 8-tuple (ag, as, aq, as, B2, O3, B4, B5) the quantity P(k) is upper bounded
by A*. where X is the largest root of the set of equations

1 = g~ Akour(t) 4 p—Akin(?)

corresponding to different combinations of values of |S| and of the r;’s. Thus the estimation
of P(k) boils down to choosing the weights minimizing A. This optimization problem is
interesting in its own, and we refer to Eppstein’s work [17] on quasi-convex programming for
a general treatment of this kind of problem.

We crucially observe that the bound on A given by the recurrences with |S| > 8 is not larger
than the bound on A given by the recurrences with |S| = 7 (the latter recurrences dominate
the first ones). In fact, consider any tuple t = (|S|,r2,...,rs,r>7) with |[S| > 8 and 2?22 ri+

r>7 = |S|. Let t' = (|S"],7,...,76,75,), with [S'| =7, 0 < 7 <7, 0 < 1rly < 757, and
Z?:z ri+7r5; = 7. Observe that ' is a feasible tuple for sets of cardinality 7. Moreover, og| =
OZ‘S/I = 1, AO[|S‘ = AO&‘S/‘ = 0, and Ak“ls| - > Ak|,s'|ré' Hence A]COUT(t) > A]{?OUT(t,)

and Akrn(t) > Akrn(t'), i.e. the branching vector (A koyr(t'), Akn(t')) dominates the
branching vector (A koyr(t), Akin(t)). Therefore we can restrict our attention to the case

12

Table 1 The worst-case recurrences for msc.

|S| (T‘Q,T3,T4,T5,T‘6,T‘27)
6 (0,0,0,0,0,6)
5 (0,0,0,0,5,0)
4 (0,0,0,4,0,0)
3 (0,0,3,0,0,0)
3 (0,3,0,0,0,0)
3 (3,0,0,0,0,0)

3 < |S| < 7. This way, we have to consider a large but finite number of recurrences only.
(The actual number of recurrences is 1688).

To find the (nearly) optimal weights we used a computer program, which is based on the
following randomized local search strategy. We start from a feasible choice of the weights W,
and we compute the corresponding value A = A\(W). Then we randomly perturb the weights:
if the new weights W’ obtained are feasible, and A\(W') < A(W), we set W equal to W',
The perturbation of the weights is performed in the following way. For a proper value § > 0
and for each weight w’ independently, we add to w’ a random quantity sampled uniformly
at random in the interval [—¢,0]. The value of ¢ is reduced if no improvement of A(W) is
obtained for a long number of steps. The process halts when the value of § drops below a
fixed (small) threshold. Our algorithm turns out to be very fast and sufficiently accurate in
practice even for a large number of weights and recurrences. The outcome of the program in
the case considered was:

0.377443 if i = 2, 0.399418 if i = 2,

0.754886 if i = 3, 0.767579 if i = 3,
Qi = and 3 =

0.909444 if i = 4, 0.929850 if i = 4,

0.976388 if i =5, 0.985614 if i = 5,

which yields A < 1.2352... < 20305 In Table 1 the values of |S| and of the r;’s of the
worst-case recurrences are listed.

Now we observe that at each branching step we remove at least one set. Moreover, the
time spent for each branching is upper bounded by a polynomial in |S| + |U/|. Therefore, the
overall running time of the algorithm is

O*(P(k)) = O*(\F) = O (20-305(UI+IS)y

We remark that, for any feasible choice of the weights, the corresponding value of A gives
a feasible upper bound on the running time of the algorithm (though possibly not the best
possible). Moreover, in order to check that a given \ is feasible for given weights, it is sufficient
to check that \¥ > M—Akovr(t) 4 \k=Akin() (e, 1 > \~Akovr(®) 4 \=Akin(1) for all the
feasible tuples ¢t. In the Appendix (Figure 9) we provide the pseudo-code of a program which
can be used to check the condition above (and hence the correctness of the claim). O

Recall that mds is the MDS algorithm based on the standard reduction to MSC and on msc.

Corollary 1 Algorithm mds solves MDS in time O*(20-3052n)) = O*(20-610%) 4nd polynomial
space.

13

Proof. The claim follows trivially from Theorem 1, observing that the size of the MSC
instance (S,U) obtained satisfies |S| = [U| = n. O

Remark 1 The analysis of msc can be slightly improved by imposing 5; = 0.98232 for
i > 6 (instead of B; = 1). This way, it is possible to show that MSC is solvable in time
O0*(1.23728I81+0-98232UN) - A5 o consequence, MDS can be solved in time O*(1.237281-98232n) —
O*(20:6997) " Since the improvement obtained is small, we do not give the details of the refined
analysis here.

3.3 An Exponential Lower Bound

By carefully measuring the size of the subproblems, we obtained a much tighter running time
bound for mds. However, the bound achieved might still be only a pessimistic estimation of the
worst-case running time of the algorithm. Therefore it is natural to ask for an (exponential)
lower bound on the running time of the algorithm, which may give an idea of how far is our
analysis from being tight.

Theorem 2 The worst-case running time of mds is Q(3"/4) = (20-396n),

Proof. Consider a graph Gy = (V, E) consisting of ¢ > 1 disconnected copies of a cycle
of length 4. Let P, = (S,U) = ({N[v] : v € V},V) be the MSC instance associated to Gy.
We will show that msc can branch two times consecutively on sets related to a given cycle,
generating 3 instances of Py_;. This implies by an easy induction that the overall number
of subpfoblems generated, and hence the running time of the algorithm, is lower bounded by
3t =3n/4,

Consider any given cycle a,b,c,d. We will denote by S, the set associated to vertex v
(initially, S, = N[v]). Note that set S, = {a,b,d} has the largest cardinality in the problem,
i.e. 3. Moreover, the conditions of lines 2 and 3 do not apply. Hence msc can branch at line
6 on set S,. Consider the subproblem where S, is selected: sets S, = {c}, S. = {c} and
Sq = {c} are either discarded at line 2 or selected at line 3 (without branching); the resulting
subproblem is of type Py_1. Consider now the subproblem where S, is discarded. In this
case the conditions of lines 2 and 3 do not apply, and S, = {a,b,c} is a set of maximum
cardinality 3: therefore msc can branch on S, at line 6. By the same argument as before, in
the subproblem where Sy is selected (and S, discarded) the application of lines 2 and 3 gives
a subproblem of type Py_1. On the other hand, in the subproblem where S} is discarded
(together with S,), sets S. = {b, ¢, d} and S; = {a,c,d} are both selected at line 3 (they are
the unique sets covering b and a, respectively): also in this case we obtain a subproblem of
type Py_1. The claim follows. O

3.4 An Exponential Space Algorithm

The time complexity of msc, and hence of mds, can be reduced at the cost of an exponential
space complexity via the memorization technique by Robson [59]. The general idea is the
following: The algorithm keeps the solutions of all the subproblems solved. If the same
subproblem turns up more than once, the algorithm is not to run a second time, but the
already computed result is looked up. Note that the corresponding data structure can be
implemented in such a way that the query time is logarithmic in the number of solutions

14

stored [59]. Every subproblem can be encoded via a subset of (S,U). Hence the number
of distinct subproblems is upper bounded by IS+l which implies that the query time is
polynomial in |S| + [U].

Here we consider a simple variant of the technique above, where we do not store all the
solutions computed, but only the ones corresponding to subproblems where line 6 applies
(that is, the subproblems which branch on two further subproblems). This is not crucial, but
it helps to simplify the analysis.

Theorem 3 Algorithm msc, modified as above, solves MSC in O*(20'299(|S|+‘u|)) time and
exponential space.

Proof. Consider the set P of those subproblems generated during the execution of the
algorithm on which the algorithm branches at line 6. In particular, none of these subproblems
contains a set of cardinality one nor an element of frequency one. Let P, (k) be the maximum
number of such subproblems of size h, 0 < h < k. By basically the same analysis as in
Theorem 1, Py (k) < 1.2353%" < 1.2353% =", where k' := |S| + |U|.

Consider one such subproblem of size h. Observe that it can be encoded via a pair
(8", U"), where &’ C S and U’ C U. Since the problem considered does not contain any set of
cardinality one nor any element of frequency one, we have that

1S'| + [t] < |/ min{as, Bo}] = |h/0.377443] =: .

As a consequence, since no subproblem is solved more than once, P, (k) is also upper bounded

by /
Po(k) <) <l‘;>

i<h
Observe that, the number of different weights being a constant, the number of possible distinct
feasible values of h is a polynomial in k. Putting things together,

: K
< in < 1.2353" "
Pl < Zh:mln 353 Z<Z>

i<h/

’ /e ! " mi k,
— O*(Z 12353k —h mln{a2752} + Z min {12353k —h mln{02752}7 <h/> })

B>k /2 W<k)2

! I k/
— O*(20.248k2 4+ max min 12353k —h ITllIl{ag,ﬁz}7)
h<k'/2 h

Applying Stirling’s formula,

/ [k?l / ’ /

Hence, |P| = O*(29297%). At each branching step the algorithm removes at least one set.
Thus the total number of subproblems is O*(|P|). Moreover, the cost of each query to the

database is polynomial in k. It follows that the running time of the algorithm is O*(20-2% k/)
O*(20.299(\5\+|U\))‘ 0

Corollary 2 There is an algorithm which solves MDS in O*(20-29927)) = 0*(20-5987) time and
exponential space.

15

4 The Maximum Independent Set Problem

In this section we present our maximum independent set algorithm mis. Our algorithm
branches by imposing that some vertices belong or do not belong to the maximum independent
set to be computed: we call the vertices of the first kind selected, and the other ones discarded.

4.1 Folding and Mirroring

Before presenting mis, we describe some simple properties of maximum independent sets.
Recall that a(G) denotes the size of a maximum independent set of a graph G. First of all,
we observe that:

Lemma 2 Let G be a graph.

e (connected components) For every connected component C of G,

a(G) = a(C) + a(G - O).

¢ (dominance) If there are two vertices v and w such that N{w] C N[v] (w dominates
v), then
a(G) = a(G - {v}).

We will use the following folding operation, which is a special case of the struction oper-
ation defined in [14], and which was introduced in the context of exact algorithm for MIS in
2, 8]. A vertex v is foldable if N(v) = {u1,us,...,uq)} contains no anti-triangle®. Folding

a given foldable vertex v of G is the process of transforming G into a new graph G (v) by:
(1) adding a new vertex w;; for each anti-edge w;u; in N(v);

(2)

(3)

(4) removing N[v].

adding edges between each u;; and the vertices in N(u;) U N(uj);

adding one edge between each pair of new vertices;

Note that vertices of degree at most two are always foldable. Examples of folding are given
in Figure 2. The following simple property holds.

Figure 2 Folding of a vertex v.
() ()
jo/:\o S S
HWE OOO 00000000

Lemma 3 (folding) Consider a graph G, and let é(v) be the graph obtained by folding a
foldable vertex v. Then

a(G) =14 a(G(v)).

5An anti-triangle is a triple of vertices which are pairwise not adjacent. Similarly, an anti-edge is a pair of
non-adjacent vertices.

16

Proof. Let S be a maximum independent set of G. If v € S, then S\ {v} is an independent
set of G(v). Otherwise, S contains at least one vertex of N(v) (since it is of maximum
cardinality). If N(v)NS = {u}, then S\ {u} is an independent set of G(v). Otherwise, it must
be N(v) NS = {u;,u;}, for two non-adjacent vertices u; and u; (since N(v) does not contain
any anti-triangle by assumption). In this case SU{u;;}\{u;, u;} is an independent set of G(v).
It follows that a(G) < 1+ a(G(v)). A similar argument shows that a(G) > 1+ a(G(v)). O

We eventually introduce the following useful notion of mirror. Given a vertex v, a mirror
of v is a vertex u € N%(v) such that N(v) \ N(u) is a (possibly empty) clique. We denote by
M (v) the set of mirrors of v. Examples of mirrors are given in Figure 3. Intuitively, when

Figure 3 Example of mirrors: « is a mirror of v.

P T g

we discard a vertex v, we can discard its mirrors as well without modifying the maximum
independent set size. This intuition is formalized in the following lemma.

Lemma 4 (mirroring) For any graph G and for any vertex v of G,
a(G) = max{a(G — {v} — M(v)),1+ a(G — N[v])}.

Proof. Vertex v can either belong to a maximum independent set or not, from which we
obtain the trivial equation

a(G) = max{a(G — {v}),1 + a(G — N[v])}.

Thus it is sufficient to show that, if v is not contained in any maximum independent set,
the same holds for its mirrors M (v). Following the proof of Lemma 2, if no maximum
independent set contains v, every maximum independent set contains at least two vertices
in N(v). Consider a mirror u € M (v). Since every independent set contains at most one
vertex in N (v) \ N(u) (which is a clique by assumption), it must contain at least one vertex
in N(v) N N(u) € N(u). It follows that u is not contained in any maximum independent set.

O

4.2 The Algorithm

Our algorithm mis is described in Figure 4. In the base case |V(G)| < 1, the algorithm
returns the optimum solution mis(G) = |V(G)| (line 1). Otherwise, mis tries to reduce the
size of the problem by applying Lemma 2 and Lemma 3. Specifically, if G contains a proper
connected component C' (line 2), the algorithm recursively solves the subproblems induced
by C and G — C separately, and sums the solutions obtained

mis(G) =mis(C) +mis(G — C).
Else, if there are two (adjacent) vertices v and w, with N[w] C N|v] (line 3), mis discards v:

nis(G) = mis(G — {v}).

17

Figure 4 Algorithm mis for the maximum independent set problem.

int mis(G) {
if(|V(G)| < 1) return |V (G)|;
if(3 component C C G) return mis(C)+mis(G — C);
if(3 vertices v and w: N[w] C N[v]) return mis(G — {v});
if(3 a vertex v, with d(v) = 2) return 1+mis(G(v));
select a vertex v of maximum degree, which minimizes |E(N(v))];
return max{mis(G — {v} — M (v)), 1+mis(G — N[v])};

S UL WN -

If none of the conditions above holds, and there is a (foldable) vertex v of degree two, the
algorithm folds it (line 4): N
nmis(G) = 1 +mis(G(v)).
As a last choice, the algorithm selects a vertex v of maximum degree which minimizes the
number |E(N(v))| of edges in its neighborhood, and branches on it according to Lemma 4
(lines 5-6):
mis(G) = max{mis(G — {v} — M(v)),1 + mis(G — N[v])}.

Choosing a vertex of maximum degree for branching (line 5) is a natural “greedy” choice.
The reason for choosing a vertex with few edges in its neighborhood will be clearer from
the analysis. Notice that, with simple modifications, mis can also provide one maximum
independent set (besides its cardinality).

Standard analysis. Also in this case, to underline the importance of a good choice of the
measure, we sketch the analysis of mis according to the standard measure k = k(G) = n.
Let P(k) be the maximum number of base instances generated by the algorithm to solve a
problem of size k. Of course, P(k) = 1 for k < 1. If the condition of line 2 is satisfied,
P(k) < P(k1) + P(k — k1), where k; is the number of vertices of C'. If one of the conditions
of lines 3 and 4 is satisfied, P(k) < P(k — 1) since we decrease the number of vertices in the
graph at least by one. Otherwise, consider the vertex v on which we branch. Note that all
the vertices in the graph must have degree at least three. Moreover v is a vertex of maximum
degree. If d(v) = 3 (and hence the graph is 3-regular), when we discard v, we either discard a
mirror of v or we fold a neighbor w of v in the following step (since d(w) = 2 after removing
v). In both cases, we decrease the number of vertices by at least two. When we select v, we
discard N[v], where |N[v]| = 4. This leads to P(k) < P(k — 2) + P(k —4). Assume now
that d(v) > 4. In the worst case, v has no mirrors (M (v) = (). When we discard or select
v, we remove at least one or five vertices, respectively. Thus P(k) < P(k — 1) + P(k —5).
We can conclude that P(k) = O*(\F), where \ = 1.3247 ... < 20406 i5 the largest root of the
polynomials z® — z* — 1 and 2* — 22 — 1. Since in each step the size of the graphs generated
decreases by at least one, it follows that the depth of the search tree is at most n. Moreover,
solving each subproblem, not considering the possible recursive calls, takes polynomial time.
Thus the time complexity of the algorithm is O*(\") = O*(20-4061),

In the next section we will show how to refine the running time analysis of mis by means
of a more sophisticated measure k(G) (without modifying the algorithm!).

18

4.3 The Analysis

When we measure the size of a maximum independent set instance with the number of vertices,
we do not take into account the fact that decreasing the degree of a vertex v has a positive
impact on the progress of the algorithm (even if we do not immediately remove v from the
graph). In fact, decreasing the degree of a vertex pays off in the long term, since the vertices
of degree at most two can be filtered out without branching.

This suggests the idea of giving different weights to vertices of different degree. In partic-
ular, let n; (n>;) denote the number of vertices of degree i (at least 7) in the graph considered.
We will use the following measure k = k(G) of the size of G:

k‘(G) = Z a; Ny,

i>0

where the weights «; € [0, 1] will be fixed in the following. Note that & = k(G) < n. In order
to simplify the running time analysis, we make the following assumptions:

e First of all, g = a3 = as = 0. The reason for this assumption is that vertices of degree
at most two are removed from the graph without branching in lines 1,3, and 4. Thus
their presence contributes to the running time only with a polynomial (multiplicative)
factor.

e Second, a; =1 for ¢ > 7. This way, we have to compute only a finite (small) number of
weights.

e When the degree of a vertex decreases from ¢ to i — 1, its weight decreases by A «; =
o; — a;_1. We assume that Aag > Aag > Aas > Aag > Aar > 0. In other words,
the weights decrease from a7 to as at increasing speed. The reason for this assumption
will be clearer from the analysis.

e Eventually, we impose
ag + gy + Qdy — Qdypdy—2 = Qdy + Qdy — Ody+dy—2 > 0, Vdi,da € {2,3,...,8}.

This condition ensures that, when we fold a vertex of degree two, the size of the problem
does not increase.

We are now ready to give our refined analysis of mis.

20:2951) time

Theorem 4 Algorithm mis solves the mazimum independent set problem in O*(
and polynomial space.

Proof. The correctness of the algorithm immediately follows from Lemmas 2, 3, and 4. The
algorithm is trivially polynomial-space.

Let P(k) denote the maximum number of base instances generated by mis when solving a
problem of size k. From the discussion above, the running time of the algorithm is O*(P(k)).
When k£ = 0, the maximum degree in the graph is two. In such case, it is easy to see that the
algorithm solves the problem in polynomial time. Hence P(0) = O(n®(") = O*(1). Thus,
let us assume k > 0. We break the running time analysis in different parts, one for each
branching and reduction rule of the algorithm.

19

(1) Connected components. Let k; be the size of the connected component C' selected
by the algorithm. The size of G — C' is trivially ks = k — k1. Thus

P(k) < P(k1) + P(k — k1). (1)

(2) Dominance. When we remove a vertex v by dominance, we generate a unique sub-
problem of size k1 =k — ag(,) — zueN(U) A o). Hence
P(k) < P(ky).

Note that k1 < k by the assumptions on the weights.

(3) Folding. Let v be the vertex that we fold, and N(v) = {uj,us}. Note that, by domi-
nance, u; and uy cannot be adjacent. Thus, by folding v, we remove N[v] and we introduce a
unique vertex ujg of degree d(ui2) < (d(uy) —1) + (d(uz) — 1) = d(u1) 4+ d(ug) — 2. It follows
that

P(k) < P(k1),
where k1 = k — @2 — Qgu;) — Qd(us) T Xd(ur)+d(us)—2- Also in this case, by the assumptions on
the weights, k1 < k.

(4) Branching. Let v the vertex at which the algorithm branches. We let d := d(v) > 3
and N(v) = {uq,us,...,uq}. The following properties hold:

(i) For every vertex w, 3 < d(w) < d. Moreover, if d(w) = d, |E(N(w))| > |E(N(v))|;

(ii) The graph is formed by a unique connected component, and no vertex is dominated nor
dominates any other vertex.

We need some extra notation (see also Figure 5).

Figure 5 Vertex v is on the top. In the example, d = 4, my = 1, mg = 3, po = p3 = 1,
out =5, in = 2, in = 4, and sum = 13.

The number of vertices of degree i in N(v) is m;.
e The number of vertices in N2(v) that have exactly h neighbors in N(v) is py,.
e The number of edges between N(v) and N2(v) is out.
e The number of edges and anti-edges in N (v) is in and in, respectively.
e The sum of the degrees of the vertices in N(v) is sum.
We also let m>; = ijl-mj and p>p, = Zthpj.

For the remainder of the analysis of the branching at vertex v, we distinguish two different
subcases, depending on whether v has at least one mirror or not.

20

(A) At least one mirror. Trivially, Z?:g m; = d and sum = d+2in+ out. Observe that,
by dominance, each vertex in N(v) has at least one neighbor in N?(v). Therefore, out > d.
In fact, by a simple parity argument, out > d + (sum (mod 2)). Moreover, by dominance, no
vertex in N (v) can have more than (d—2) neighbors in N (v). It follows that in < [d(d—2)/2].
Summarizing the discussion above, we obtain the following constraint:

d
Zmi =d; sum=d+2in+out; out>d+ (sum (mod?2)); in< |d(d-2)/2]. (2)
=3

Suppose we discard v. The size of the problem decreases by ay4 because of the removal of
v, and by at least 2?23 m; A ; because of the reduction of the degrees of vertices in N (v).
Note that the vertices w € N?(v) with |[N(w) N N(v)| > d — 1 are mirrors of v. The removal
of those mirrors implies a decrease of the size of the problem by pgag + pi—1 max(s, -1}
(where we use the fact that the minimum degree of any vertex is at least 3). Even when
Pd—1 + pa = 0, the assumption that there is at least one mirror implies that the size of the
problem decreases by at least ag. Altogether, we obtain a further decrease of the size of the
problem by

max{pg g + Pd—1 Umax{3, d—1}, @3}-

Consider now the case we select v. The size of the problem decreases by a4 because
of the removal of v, and by 2?23 m; «; because of the removal of N(v). The size of the
problem further decreases because of the reduction of the degrees in N2(v). Consider a
vertex z € N?(v) with h neighbors in N(v). Note that the reduction of the size of z is
Qd(z) = Ad(z)—h- 1 d(z) —h > 3, the minimum reduction of the size of z is achieved when z
has the largest possible degree d(z) = d:

Qd(z) — Qdz)—h = Dage) +Aagey—1+ -+ Aagey—na
> Aad+Aad_1+...+Aad_h+1
= Q&g — Og—p-

Otherwise, the reduction is

Qg(z) = Qd(z)—h = Od(z) = Cmaz{3,h}>

where we used the fact that d(z) > h trivially, and d(z) > 3 from the properties of the
algorithm. Thus, we can pessimistically assume that the total reduction of the size of the
vertices in N2(v) is at least

d

> pn min{max(znys ta — Cd—n}-
h=1

Altogether, we obtain the following set of recurrences for all the m;’s and pp’s satisfying (2):

P(k‘) < P(k‘ — AkOUT) —I—P(k‘ — Ak‘[N),

where
d
Akour = aq+ Y mi Aoy + max{pg aa + Pa—1 Cmax(3, d—1}» @3},
i=3
d d
Akin = aq+ Y miai+ Y ph min{Cmax(s) Od — -} 3)
i=3 h=1

21

(B) No mirror. If v has no mirror, we can use the same analysis as in case (A), but
removing the term max{pg aq + pg—1 Omax{3, d—1}» as} in (3). However, in this case we can
put some extra constraints on the pp’s which are crucial for reducing the final running time
bound.

First of all, we observe that p;_1 = pgq = 0 since there are no mirrors by assumption.
Moreover, in < |d(d — 2)/2] — 1. In fact, assume by contradiction that in = |d(d — 2)/2].
This implies that in = [d/2]. For d = 3, N(v) contains one edge, say ujus, and hence the
two neighbors of u3 in N2(v) are mirrors of v, which is a contradiction. Consider now the
case d > 4. Since there are only [d/2] anti-edges in N(v), and by dominance each vertex of
N (v) must be incident to at least one such anti-edge, there must be two non-adjacent vertices
of N(v), say u; and ug, which are adjacent to all the other vertices of N(v). In particular,
N(v) \ {u1,us} contains at least in — 1 anti-edges. Note that d(u1) = d by dominance, from
which it follows that N(uj) contains at most in anti-edges by the choice of v. Let w be the
unique neighbor of u; in N2(v). Since N(u1) contains the in — 1 anti-edges in {us, ..., uq},
plus the anti-edge vw, w must be adjacent to all the vertices in {uj,us,...,uq}. Hence w is
a mirror of v, which is a contradiction.

In fact, we can go one step further. There must be a vertex in N (v), say uj, incident to at
most |24n/d]| anti-edges of N(v). Suppose |2in/d] < 1. Then, by dominance, u; is incident
to exactly one anti-edge of N(v), say ujus. Hence u; must be adjacent to all the vertices in
{usg,...,uq}. Moreover, it must be d(uj) = d, which implies that N(u1) can contain at most
in anti-edges. Let w be the neighbor of u; in N?(v). Note that N(u;) already contains the
anti-edge wv, and at least one anti-edge in {us, ..., uq} (otherwise {uy,us,...,uqs} would be a
clique, and hence the neighbors of us in N?(v) would be mirrors). There can be at most in — 2
other anti-edges in N (u1). In particular, there can be at most in —2 anti-edges between w and
the vertices in {ug,...,uq}. It follows that there are at least (d—2)— (in—2)+1=d—in+1
edges between w and {u1,us, ..., uq}. Then py, 5., >1for [2in/d] < 1. Summarizing the
discussion above, we obtain the following constraint:

d
Zmi =d; sum=d+2in+out; out>d+ (sum (mod2));
=3

in < [dd—2)/2] =1; pi1=pas=0; [2in/d] <1 = psy i 21 (4)
Altogether we get the following set of recurrences for all the m;’s and pj’s satisfying (4):

P(k) < P(k — Akour) + P(k — Akin),

where
d
Akoyr = Oéd—i-zmiAOzi,
i=3
d d—2
Akiy =aqg+ Y miai+ Y pp min{max(s py Qa — 0an}- (5)
i=3 h=1

Limiting the number of recurrences. Consider any branching node v with d = d(v) > 8.
Let d; be the degree of the i-th neighbor of v. Observe that, in all the recurrences considered,
d d

8
A]COUT 2 a4 + Z m; AO&Z =1 + Z Aamin{di,S} Z 1 + Z A O[min{di’g},
=3 =1 i=1

22

Table 2 The worst-case recurrences in the analysis of mis.

d="T,m; =17, out =14, in = 14, p; = 14, no mirror

d =6, mg =6, out =10, @n = 10, p; = 8, p2 = 1, no mirror
d=15,ms=>5, out =8, in =6, py =6, po = 1, no mirror
d=4,my =4, out =6, in =3, p =4, p2 = 1, no mirror
d=3,m3=3,out=4,in =1, p; =1, p3 =1, one mirror

where we used the fact that, by assumption, A o; = 0 for ¢ > 8. Similarly,

d d 8
AkiN > aq+ Z mio; =1+ Z Qmin{d; 8} = 1 + Z Omin{d; 8}
=3 i=1 i=1

As a consequence, in the case d = d(v) > 8, we can replace the Recurrences (3) and (5) with
the following dominating set of recurrences: for all dy,ds,...,ds € {3,4,...,8},

P(k‘) §P(k,’—Ak‘OUT)—|—P(k7—Ak‘[N),

where

8 8
Ak‘OUT:1+ZAOédi and Ak‘[N:1—|-ZOédi. (6)
i=1 =1

This way, we have to consider a finite (though very large) number of recurrences only. (The
actual number of recurrences is 4793253).

Computing the weights. By solving the set of recurrences above, one obtains P(k) =
O*(\F), where A > 1 is a (quasi-convex) function of the weights. Using the same kind of
approach as in Section 3.2, we numerically found that, for

(a3, o4, 5, 06) = (0.620196,0.853632, 0.954402, 0.993280),

A < 20295 This gives a running time of O*(P(k)) = O*(20-2%n),
The tight (branching) recurrences for this choice of the weights are indicated in Table 2.
In the Appendix (Figure 10) we provide the pseudo-code of a program which can be used to

check the claimed value of A for the set of weights considered.
O

4.4 Refining the Analysis

The running time established in the previous subsection can be refined via a more careful
case analysis. In principle, one might enumerate all the feasible local configurations up to
some small distance h from the branching vertex v, and compute the decrease of the size of
the problem when v is selected and discarded, respectively. The problem is that the number
of feasible configurations is huge already for d(v) = 7 and h = 2. Giving such kind of refined
analysis is out of the scope of this paper. However, in order to show the kind of improvements
which are achievable (without modifying the algorithm and measure), we prove the following
refined time bound on mis.

23

Theorem 5 Algorithm mis solves the maximum independent set problem in O*(20-277) time

and polynomial space.

Since the proof of the theorem above is technical, and does not introduce any substantially
new idea, we give it in the Appendix.

4.5 An Exponential Lower Bound

As in the case of mds, it makes sense to search for a lower bound on the worst-case running
time of mis to see how far we are from a tight analysis.

Theorem 6 The worst-case running time of algorithm mis is Q(2"/7) = Q(20-1427).

Proof. Consider the following connected graph Gy, £ > 1, of n = 7¢ vertices: Gy consists of
£ blocks By, Bs,...,By. Each block B;, 1 <1i¢ </, is a 6-wheel, i.e. it is formed by six nodes
a;, b;, ¢;, d;, e;, and f; which induce a chord-less cycle, and by a vertex u; which is adjacent to
all the vertices in the cycle. For each i = 1,...,¢—1, graph G/ also contains edges {a;, a;+1},
{bi,biv1}, {ci,civ1}, {diydis1}, {eiseit1}, and {fi, fix1}. (See Figure 6 for an example).

Figure 6 On the left, graph G, for £ = 3. On the right, the top part of a feasible search
tree: there is a vertex in the tree for each subproblem; subproblems are labelled with the
corresponding branching vertex; left and right children correspond to selection and discarding
of the branching vertex, respectively.

Let us apply Algorithm mis to graph G;. Note that, there is a unique connected component
and no dominance nor folding can be applied. Hence the algorithm branches at some vertex
of maximum degree, with minimum number of edges in its neighborhood. In particular,
mis might branch at w;. In the subproblems where u; is selected, we remove the vertices
of By arriving at a graph Gy_;. By the same argument as above, in that subproblem mis
might branch at us. Also in the subproblem where wy is discarded, the algorithm cannot
apply dominance nor folding. Thus also in that case us is a feasible candidate for branching.
Therefore, in both subproblems the algorithm might branch at us. By iterating this argument,
one finds that the algorithm might branch on the ordered sequence w1, uo, ..., us. We conclude
that the running time of the algorithm is Q(2%/7) = Q(20-1427), O

5 Conclusions and Future Work

In this paper we investigated the impact of non-standard measures in the analysis of Branch
& Reduce algorithms. Using the minimum dominating set and the maximum independent set
problems as case studies, we showed that the choice of the measure can have a tremendous

24

impact on the running time bounds achievable. This suggests the possibility that finding a
good measure should be at first concern when designing Branch & Reduce algorithms.

The measures considered in this paper are still reasonably simple, though they already
involve a quite large number of variables. However, there is no limit to the kind of measures
that can be exploited. For example, the authors of this paper applied Measure & Conquer
to design the first algorithm for the connected dominating set problem faster than trivial
enumeration [22]. That result is based on a new measure, that considers, besides cardinalities
and frequencies, also the local connectivity properties of the original graph. The already
mentioned measure by Eppstein for cubic-TSP [16] is another good example of how non-
trivial measures can help in the analysis. In fact, we believe that the design of new measures
can have an impact comparable to (and sometimes larger than) the design of better branching
and reduction rules.

Since the appearance of the preliminary versions of this article [19, 20|, the Measure
& Conquer technique has been turned into a common tool used in the analysis of exact
graph algorithms and it was used for a variety of problems. For example, Gupta et al. [32]
used the technique while analyzing exact algorithms for finding maximal induced subgraphs
of fixed vertex degrees. Razgon [54], using a non-standard measure, derived the first non-
trivial algorithm breaking the O*(2") barrier for the feedback vertex set problem (see also
[18]). Kowalik [46] used Measure & Conquer in his branching algorithm for the edge coloring
problem. The analysis of Gasper-Liedloff’s algorithm for the independent dominating set
problem in [28] is based on Measure & Conquer. Another example is the paper by Kratsch
and Liedloff on the minimum dominating clique problem [47]. We are also aware of a number
of other (still unpublished) papers using the same kind of approach.

Measure & Conquer can be used also as a tool to prove tighter combinatorial bounds. For
example, using this kind of approach and the same measure which is used here for MDS, Fomin
et al. [23] proved that the number of minimal dominating sets in a graph is O*(20-783"). Based
on this result, they also derived the first non-trivial exact algorithms for the domatic number
problem and for the minimum-weight dominating set problem (see also [4, 26, 44, 58]). The
bounds on the number of minimal feedback vertex sets (or maximal induced forests) obtained
in [18] are also based on Measure & Conquer.

Of course, a non-standard measure can be used to design better algorithms in the standard
way: one considers the tight recurrences for a given algorithm (and measure), and tries to
design better branching and reduction rules for the corresponding cases. A very recent work
by van Rooij and Bodlaender goes in this direction [65].

For the reasons above, we think Measure & Conquer might have a growing impact in the
field of exact algorithms in the next few years.

Acknowledgements. We are grateful to Jianer Chen, Johan van Rooij, Saket Saurabh,
Magnus Wahlstrom, and Philipp Zumstein for discussions, comments and remarks on the
preliminary versions of this paper.

References

[1] M. Alekhnovich, E. Hirsch, and D. Itsykon. Exponential lower bounds for the running
time of DPLL algorithms on satisfiable formulas. Journal of Automated Reasoning, 35(1-
3):51-72, 2005.

25

[2]

[3]

R. Beigel. Finding maximum independent sets in sparse and general graphs. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 856-857, 1999.

R. Beigel and D. Eppstein. 3-coloring in time O(1.3289"). Journal of Algorithms,
54(2):168-204, 2005.

A. Bjorklund and T. Husfeldt. Inclusion-exclusion algorithms for counting set partitions.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages 575-582, 2006.

H. Bodlaender, F. V. Fomin, A. Koster, D. Kratsch, and D. Thilikos. Exact algorithms
for treewidth. In Furopean Symposium on Algorithms (ESA), pages 672-683, 2006.

T. Brueggemann and W. Kern. An improved deterministic local search algorithm for
3-SAT. Theoretical Computer Science, 329:303-313, 2004.

J. M. Byskov. Enumerating maximal independent sets with applications to graph colour-
ing. Operations Research Letters, 32(6):547-556, 2004.

J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and further improve-
ments. Journal of Algorithms, 41:280-301, 2001.

J. Chen, I. A. Kanj, and G. Xia. Labeled search trees and amortized analysis: improved
upper bounds for NP-hard problems. Algorithmica, 43(4):245-273, 2005.

E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schning. A deterministic (2 — 2/(k + 1))" algorithm for k-SAT
based on local search. Theoretical Computer Science, 289(1):69-83, 2002.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the Association for Computing Machinery, 5:394-397, 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of
the Association for Computing Machinery, 7:201-215, 1960.

R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer
Science. Springer-Verlag, 1999.

C. Ebenegger, P. L. Hammer, and D. de Werra. Pseudo-boolean functions and stability
of graphs. Annals of Discrete Mathematics, 19:83-98, 1984.

D. Eppstein. Small maximal independent sets and faster exact graph coloring. Journal
of Graph Algorithms and Applications, 7(2):131-140, 2003.

D. Eppstein. The Traveling Salesman Problem for Cubic Graphs. Journal of Graph
Algorithms and Applications, 11(1):61-81, 2007.

D. Eppstein. Quasiconvex analysis of backtracking algorithms. ACM Transactions on
Algorithms, 2(4):492-509, 2006.

F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon. On the Minimum Feedback
Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica, 52(2):293-307,
2008.

26

[19]

[20]

[21]

[24]

[25]

F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination - a case
study. In International Colloquium on Automata, Languages and Programming (ICALP),
pages 191-203, 2005.

F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple O(2%-2387)

independent set algorithm. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 18-25, 2006.

F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and analysis
of exact (exponential) algorithms. Bulletin of the European Association for Theoretical
Computer Science, 87:47-77, 2005.

F. V. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set faster than
2", Algorithmica, 52(2):153-166, 2008.

F. V. Fomin, F. Grandoni, A. Pyatkin, and A. Stepanov. Combinatorial bounds via
measure and conquer: Bounding minimal dominating sets and applications. ACM Trans-
actions on Algorithms, 5(1): 2008.

F. V. Fomin, D. Kratsch, I. Todinca, and Y. Villanger. Exact algorithms for treewidth
and minimum fill-in. STAM Journal Computing, 38(3):1058-1079, 2008.

F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms for the
dominating set problem. In International Workshop on Graph-Theoretic Concepts in
Computer Science (WG), pages 199-210, 2004.

F. V. Fomin and A. Stepanov. Counting minimum weighted dominating sets. In Inter-
national Computing and Combinatorics Conference (COCOON), pages 65-74. 2007.

M. Fiirer. A faster algorithm for finding maximum independent sets in sparse graphs.
In Latin American Theoretical Informatics Symposium (LATIN), pages 491-501, 2006.

S. Gaspers and M. Liedloff. A branch-and-reduce algorithm for finding a minimum
independent dominating set in graphs. In Graph-Theoretic Concepts in Computer Science
(WG), pages 78-89, 2006.

R. N. J. Gramm, E. A. Hirsch and P. Rossmanith. Worst-case upper bounds for MAX-2-
SAT with an application to MAX-CUT. Discrete Applied Mathematics, 130(2):139-155,
2003.

F. Grandoni. Ezact Algorithms for Hard Graph Problems. PhD thesis, Universita di
Roma “Tor Vergata”, Roma, Italy, Mar. 2004.

F. Grandoni. A note on the complexity of minimum dominating set. Journal of Discrete
Algorithms, 4(2):209-214, 2006.

S. Gupta, V. Raman, and S. Saurabh. Fast exponential algorithms for maximum -regular
induced subgraph problems. In Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 139-151. 2006.

J. Hastad. Clique is hard to approximate within n'=¢. Acta Mathematica, 182(1):105-
142, 1999.

27

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in graphs.
Marcel Dekker Inc., New York, 1998.

M. Held and R. M. Karp. A dynamic programming approach to sequencing problems.
Journal of SIAM, 10:196-210, 1962.

E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Reasoning,
24(4):397-420, 2000.

E. A. Hirsch. SAT local search algorithms: worst-case study. Journal of Automated
Reasoning, 24(1-2):127-143, 2000.

E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack
problem. Journal of the Association for Computing Machinery, 21:277-292, 1974.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponetial com-
plexity? Journal of Computer and System Sciences, 63:512-530, 2001.

K. Iwama. Worst-case upper bounds for k-SAT. Bulletin of the Furopean Association
for Theoretical Computer Science, 82:61-71, 2004.

K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 328-329, 2004.

T. Jian. An O(2%-3%4") algorithm for solving maximum independent set problem. I[EEE
Transactions on Computers, 35(9):847-851, 1986.

S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the traveling
salesman problem. In Proceedings of the annual ACM conference, pages 294-300, 1977.

M. Koivisto. An O(2") algorithm for graph coloring and other partitioning problems via
inclusion-exclusion. In IEEE Symposium on Foundations of Computer Science (FOCS),
pages 583-590, 2006.

A. Kojevnikov and A. S. Kulikov. A new approach to proving upper bounds for MAX-
2-SAT. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 11-17, 2006.

L. Kowalik. Improved edge-coloring with three colors. In Graph-Theoretic Concepts in
Computer Science (WG), pages 90-101. 2006.

D. Kratsch and M. Liedloff. An exact algorithm for the minimum dominating clique
problem. Theoretical Computer Science, 385(1-3):226-240, 2007.

O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1-2):1-72, 1999.

E. L. Lawler. A note on the complexity of the chromatic number problem. Information
Processing Letters, 5(3):66-67, 1976.

B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2" steps. Discrete
Applied Mathematics, 10(3):287-295, 1985.

28

[51]

[52]

[53]

[54]

[55]

[56]

[66]

[67]

R. Paturi, P. Pudlék, M. E. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. Journal of the Association for Computing Machinery, 52(3):337-364, 2005.

P. Pudlak and R. Impagliazzo. A lower bound for DLL algorithms for k-SAT. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 128-136, 2000.

B. Randerath and I. Schiermeyer. Exact algorithms for MINIMUM DOMINATING SET.
Technical Report zaik-469, Zentrum fiir Angewandte Informatik, Koln, Germany, 2004.

I. Razgon. Exact computation of maximum induced forest. In Scandinavian Workshop
on Algorithm Theory (SWAT), pages 160-171, 2006.

I. Razgon. A faster solving of the maximum independent set problem for graphs with
maximal degree 3. In Algorithms and Complezity in Durham Workshop (ACiD), pages
131-142, 2006.

R. Raz and S. Safra. A sub-constant error-probability low-degree test, and sub-constant
error-probability PCP characterization of NP. In ACM Symposium on the Theory of
Computing (STOC), pages 475-484, 1997.

B. Reed. Paths, stars and the number three. Combinatorics, Probability and Computing,
5(3):277-295, 1996.

T. Riege, J. Rothe, H. Spakowski, and M. Yamamoto. An improved exact algorithm for
the domatic number problem. Information Processing Letters, 101(3):101-106, 2007.

J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7(3):425-440, 1986.

J. M. Robson. Finding a maximum independent set in time O(2"/4). Technical Report
1251-01, LaBRI, Université Bordeaux I, 2001.

U. Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages 410-414, 1999.

U. Schoéning. Algorithmics in exponential time. In Symposium on Theoretical Aspects of
Computer Science (STACS), pages 3643, 2005.

R. Schroeppel and A. Shamir. A T = O(2%?), S = O(2"/*) algorithm for certain
NP-complete problems. SIAM Journal on Computing, 10(3):456-464, 1981.

R. Tarjan and A. Trojanowski. Finding a maximum independent set. SIAM Journal on
Computing, 6(3):537-546, 1977.

J. van Rooij and H. L. Bodlaender. Design by Measure and Conquer, A Faster Exact Al-
gorithm for Dominating Set. In Symposium on Theoretical Aspects of Computer Science,
pages 657—668, 2008.

Y. Villanger. Improved exponential-time algorithms for treewidth and minimum fill-in.
In Latin American Theoretical Informatics Symposium (LATIN), pages 800811, 2006.

D. B. West. Introduction to Graph Theory. Prentice Hall, 1996.

29

[68] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348:2-3, 2005.

[69] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In M. Jinger,
G. Reinelt, and G. Rinaldi, editors, International Workshop on Combinatorial Opti-
mization — Fureka, You Shrink, number 2570 in Lecture Notes in Computer Science,
pages 185-207. Springer-Verlag, 2003.

[70] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In ACM Symposium on the Theory of Computing (STOC), pages
681-690, 2006.

Appendix

Proof. (Theorem 5) We refine the analysis of Theorem 4. Consider a branching step,
and let v be the corresponding branching vertex. Recall that, when we branch, the graph is
formed by a unique connected component. We observe the following facts:

(a) d =d(v) = 3. If the number n of vertices in the graph is small, say n < 6, the algorithm
trivially solves the problem in polynomial time. Hence P(k) = O*(1) in that case. As a
consequence, without loss of generality, we can assume that the graph contains at least seven
vertices. Observe that all the vertices of the graph have degree three. Thus by dominance
in < 1. Suppose N (v) contains one edge (that is, in = 1), say ujue. If this is the case, let wy
and wy be the two neighbors of u3 in N?(v) (which are mirrors). By dominance, u; and ug
cannot be adjacent to the same vertex in N?(v). In particular, it must be the case that p3 = 0.
Moreover, wy and we cannot be adjacent when p, = 2 (otherwise the graph would contain six
vertices). Consider now the case in = 0. Note that, by the same argument as above, it cannot
be p3 = 2. The feasible remaining local configurations around v are represented in Figure 7.
Note that, when we discard v (and its mirrors), or we select it, some vertices in N (v) U N?(v)

Figure 7 Feasible local configurations for d = 3. Vertex v is on the top.

$X S
1 @3 SR AR A AR

might be selected or discarded by dominance. In turn, this can determine the removal or the
decrease of the degree of some other vertices. By considering the different cases one by one,
it is not hard to obtain the following set of recurrences:

P(k) < P(k—4a3) + P(k—10as),
P(k) <P(k—6as) + P(k—8as), (7)
P(k) < Plk—Taz) + P(k—Tas).

30

Recurrences (7) can replace the less accurate Recurrences (3) and (5) for d = 3:

(b)d=d(v) =4, in=3, and M(v) = 0. The edges in N(v) cannot induce a triangle, say
{u1,us,us}, since otherwise the neighbors of u4 in N2(v) would be mirrors of v. Hence, N (v)
must induce a path, say ui, ug, us, us. Observe that it must be the case that d(u2) = d(ug) = 4
by dominance. Let w; be the neighbor of us in N2(v). Note that, by the way v is chosen,
N(ug) can contain at most three anti-edges. Since N(ugz) contains the anti-edges vw; and
ujug, we have that w; must be adjacent to one between u; and ug. In fact, wy must be
adjacent to ug and not adjacent to wuq, since otherwise wy would be a mirror of v. Assume
by contradiction that d(u;) = 4, and hence N(up) contains at most three anti-edges. Let w’
and w” be the two neighbors of u; in N?(v) (distinct from w;). Then N(uy) = {v, ug,w’,w"}
contains the anti-edges vw’, vw”, ugw’, and ugw”, which is a contradiction. Thus d(u;) = 3. A
symmetric argument shows that d(uy) = 3. If u; and u4 had a common neighbor w’ € N?(v),
w’ would be a mirror of v, contradicting the assumption. Hence we can assume that u; and
uy have two distinct neighbors wo and w3, respectively, in N2(v). (See Figure 8). Now we

Figure 8 The unique feasible local configuration for d = 4, in = 3, and M (v) = (.

4

distinguish two subcases, depending on the degree of wo and ws. If they have both degree
three, we obtain the following recurrence:

P(k) <Plk—as—2Aa3—2Aay)+ Plk—ay4 —2a3 —2ay — (g — ag) — 2A aig)
:P(k:—3a4)+P(/<;—4a4—4a3). (8)

Observe that the decrease of the degree of wy and w3 when v is selected contributes with a term
—2A ag. According to Recurrence (5), the corresponding term is —2min{as, Aoy} = —2A ay
only. Suppose now that one among wy and ws, say ws, has degree four. It follows by the way
v is chosen that N(wsq) contains at most three anti-edges. Let z1, 2o, and z3 be the remaining
neighbors of wy, besides u;. Note that the z;’s must belong to N2(v) U N3(v). By the local
structure of the graph, no z; can be adjacent to uq, that is z;u1, zouq, and z3u; are anti-edges.
It follows that the z;’s induce a clique. By dominance with ws, this also implies that they
have degree four. In the case v is selected, and hence u; is discarded, by dominance with wo
one of the z; is discarded. This gives the following recurrence

P(k‘) < P(k‘—()é4—2AOz3 —2AO¢4)—|—P(1{7—O&4—20¢3 —20&4— (044 —012) —2AO&4—O¢4)
= P(k—30u) + Pk — Towy). (9)

Recurrences (8) and (9) can replace the less accurate Recurrence (5) in the case considered.

Recomputing the weights. Recomputing the weights according to the refined recurrences
above, we get

(a3, g, a5, i) = (0.545340,0.811103,0.933335, 0.985228),

31

Table 3 The worst-case recurrences in the refined analysis of mis.

d="T,m; =17, out =14, in = 14, p; = 14, no mirror

d =6, mg =6, out =10, @n = 10, p; = 8, p2 = 1, no mirror
d=15,ms=>5, out =8, in =6, py =6, po = 1, no mirror
d=4, m3 =4, out =4, in = 2, p1 = 4, no mirror
d=4,my =4, out =4, in =4, p =1, ps = 1, one mirror

20.287 n)

and hence a running time of O*(. The new tight recurrences are given in Table 3.

O

Figure 9 C-like pseudo-code to check a value of A for given (feasible) values of the weights
a;’s and §;’s for Algorithm msc: the function returns true if 1 > A~Akour(t) 4 \=AkiN () for
every feasible tuple t, and false otherwise.

boolean checkMDS(ag, ag, g, as, B2, B3, B4, b5, M){
a1=01=0; ag=ar=Fs=F7=1;
compute Acq; and AS; for 2 < i < 7;
for(|S|=3,4,..., 7)
for(r,=0,1,..., |S|)
for(r3=0,1,..., |S| —r2)
for(ry=0,1,..., |S| —re — r3)

fOI'(T5:O,1,. ey |S| — 7o — T3 — T4)
for(rg=0,1,..., |S| —re —rg —rqg —rb)
r>7 = |S| =712 —r3 — 14 — 75 — T}

compute A k|’5| v}
Akour = a5 + ;6:2 rA B+ Aklg 6
Akin =g+ oTi Bi + 17+ Aoyg| (Do (i — 1)y +6757);
if(\"Akour L \=AKRIN > 1) return false;
return true; //All the inequalities satisfied

32

Figure 10 C-like pseudo-code to check a value of A for given (feasible) values of the weights
a;’s for Algorithm mis: the function returns true if 1 > \=2kour 4 \=AkIN where A koyr
and A kjy are given by Recurrences (3), (5), and (6), and false otherwise. We recall that
continue is used to skip the remaining part of the block considered.

boolean checkMIS(as, ay, as, g, A){
as=0; a7 = ag = 1;
compute Aq; for 3 < i <8;
for(d=3,4,...,7) //Case d< 7
for(i =3,4,...,7) //z:’s used to set some variables to 0
if(i <d) z; = 1; else z; = 0;
for(m7=0,1,..., 27d)
fOI‘(mGZO,l,. .. 26 (d - m7))
for(ms=0,1,..., 25 (d — m7 — msg))
for(m4:(),1,. ..y R4 (d — my7 —Mme — m5))
msg =d —m7 —mg — ms — mé;
for(in=0,1,..., |d(d — 2)/2])
sum =Y. _sm;; in =d(d —1)/2 —in; out = sum —d — 2in;
if(out < d 4 (sum (mod 2))) continue;
for(p7=0,1,. .., z7|out/7])
for(pe=0,1,.. ., zg| (out — 7p7)/6])
for(ps=0,1,..., z5| (out — 7p7 — 6ps)/5])
for(p,=0,1,..., z4|(out — 7Tp7 — 6 ps — 5ps5)/4])
for(ps=0,1,..., z3|(out — Tp7 —6ps —5p5s — 4p4s)/3])
for(p2=0,1,..., |(out — Tp7 —6ps — 5ps —4ps — 3p3)/2])
p1=out —Tp7 —6pg —dps —4ps — 3ps — 2p;
//Case of at least one mirror
Akovr = ag+ X" g mi Aoy +max{pgag + pa_1 Qmax{3,d—1}» O3};
Akiv=caa+ Y amici + Y0, pn Min{ Oax(3,n} Od — Xd—n};
if(\"Akour L \=AKIN > 1) return false;
//Case of no mirror
if(in>|d(d —2)/2]—1 or pg # 0 or pg—1 # 0
or (|2in/d]<1 and p-, 7;,,=0)) continue;
Akour = aq + X0 gmi Aa;
A kin = aq + Z?:3 m; o + Ei;? Ph min{amax{&h}v Qg — Oéd,h};
if(\"Akour L \=AKIN > 1) return false;
for(d,=34,....8) //Case d> 8
for(d,=34,...,8)
for(ds=34,...,8)
for(dys=34,...,8)
for(ds=34,...,8)
for(ds=34,...,8)
for(d;=34,...,8)
for(ds=34,...,8)
Akoyr =1+ 2?21 Aadi;
Akiy=1+ Zle Qag,;
if(\"Akour L \=AKIN > 1) return false;
return true; //All the inequalities are satisfied

}

33

