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Abstract

Despite significant advances in image segmentation tech-
niques, evaluation of these techniques thus far has been
largely subjective. Typically, the effectiveness of a new al-
gorithm is demonstrated only by the presentation of a few
segmented images and is otherwise left to subjective evalu-
ation by the reader. Little effort has been spent on the design
of perceptually correct measures to compare an automatic
segmentation of an image to a set of hand-segmented ex-
amples of the same image. This paper demonstrates how
a modification of the Rand index, the Normalized Proba-
bilistic Rand (NPR) index, meets the requirements of large-
scale performance evaluation of image segmentation. We
show that the measure has a clear probabilistic interpreta-
tion as the maximum likelihood estimator of an underlying
Gibbs model, can be correctly normalized to account for
the inherent similarity in a set of ground truth images, and
can be computed efficiently for large datasets. Results are
presented on images from the publicly available Berkeley
Segmentation dataset.

1. Introduction

Segmentation is a frequent pre-processing step in many im-
age understanding algorithms and practical vision systems.
In an effort to compare the performance of current segmen-
tation algorithms to human perceptual grouping as well as
understand the cognitive processes that govern grouping of
visual elements in images, much work has gone into amass-
ing hand-labeled segmentations of natural images [10].
Quantifying the performance of a segmentation algo-
rithm, however, remains a challenging task. This is largely
due to image segmentation being an ill-defined problem —
there is no single ground truth segmentation against which
the output of an algorithm may be compared. Rather the
comparison is to be made against the set of all possible per-
ceptually consistent interpretations of the image, of which
only a minuscule fraction is usually available. This paper
proposes a measure that makes this comparison by quanti-
fying the agreement of an output segmentation with the in-
herent variation in a set of available manual segmentations.
It is certainly unreasonable to expect a single measure
to be valid for every problem instance. For example, figure-
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ground segmentation for target tracking may value the prox-
imity of the estimated segment to the true target location
more than the accuracy of the actual shape of the detected
boundary. Measures of similarity that quantify the extent
to which two segmentations agree may also depend on the
type and cardinality of the labels. For example, supervised
segmentations into semantic categories (eg. ‘sky’, ‘road’,
‘grass’, etc.) must be treated differently from unsupervised
clustering of pixels into groups with unordered and per-
mutable labels [2]. This work assumes the labels to be non-
semantic and permutable, and makes no assumptions about
the underlying assignment procedure.

Consider the task where one must choose from among a
set of segmentation algorithms based on their performance
on a database of natural images. The algorithms are to be
evaluated by objective comparison of their segmentation re-
sults with manual segmentations, several of which are avail-
able for each image. In the context of this task, a reasonable
set of requirements for a measure of segmentation correct-
ness are:

I Non-degeneracy: It does not have degenerate cases
where unrealistic input instances give abnormally high
values of similarity.

II No assumptions about data generation: It does not
assume equal cardinality of the labels or region sizes
in the segmentations.

IIT Adaptive accommodation of refinement: We use the
term label refinement to denote differences in the pixel-
level granularity of label assignments in the segmenta-
tion of a given image. Of particular interest are the
differences in granularity that are correlated with dif-
ferences in the level of detail at which the image is per-
ceived. While human segmentations of an image dif-
fer with interpretation, perceptual grouping is arguably
consistent over several large regions. Intuitively, this
demands that a perceptually meaningful measure of
similarity accommodate label refinement only in re-
gions that humans find ambiguous and penalize differ-
ences in refinement elsewhere.

IV Comparable scores: The measure gives scores that
permit meaningful comparison between segmentations



of different images and between different segmenta-
tions of the same image.

In this paper we introduce a new measure for evaluating
segmentations, the Normalized Probabilistic Rand (NPR)
index, which is an extension to the Probabilistic Rand (PR)
index introduced in [14]. We first show how the PR in-
dex meets the first, second, and third requirements listed
above. However, the PR index as given in [14] cannot be
directly applied to the task of evaluating segmentation algo-
rithms. In order to permit meaningful comparison of scores
between images and segmentations (the fourth requirement
above), the index must be adjusted with respect to a base-
line common to all of the images in the test set. Also, it is
necessary to scale the index to reflect the amount of vari-
ance inherent in the test set. Hence we extend the PR index
[14] to the Normalized Probabilistic Rand (NPR) index and
show how it meets all four of the stated requirements for a
useful measure.

2. Related work

In this section, we review measures that have been proposed
in the literature to address variants of the segmentation eval-
uation task, while paying attention to the requirements de-
scribed in the introduction.

We can broadly categorize previously proposed mea-
sures as follows:

1. Region differencing : Several measures operate by
computing the degree of overlap between clusters or the
cluster associated with each pixel in one segmentation
and its “closest” approximation in the other segmentation.
Some of them are deliberately intolerant of label refinement
[12]. It is widely agreed, however, that humans differ in
the level of detail at which they perceive images. To com-
pensate for the difference in granularity while comparing
segmentations, many measures allow label refinement uni-
formly through the image. D. Martin’s thesis [9] proposed
two measures — Global Consistency Error (GCE) and Local
Consistency Error (LCE) that allowed labeling refinement
in either or both directions, respectively.

Measures based on region differencing suffer from one or
both of the following drawbacks:

(a) Degeneracy: As observed by the authors of [9, 10],
there are two segmentations that give zero error for
GCE and LCE - one pixel per segment, and one seg-
ment for the whole image. This adversely limits the
use of the error functions to comparing segmentations
that have similar cardinality of labels.

(b) Uniform penalty: Region-based measures that the au-
thors are aware of in the literature compare one test
segmentation to only one manually labeled image and
penalize refinement uniformly over the image.

2. Boundary matching: Several measures work by
matching boundaries between the segmentations, and com-
puting some summary statistic of match quality [6, 7]. Work
in [9] proposed solving an approximation to a bipartite
graph matching problem for matching segmentation bound-
aries, computing the percentage of matched edge elements
and using the harmonic mean of precision and recall as the
statistic. However, since these measures are not tolerant of
refinement, it is possible for two segmentations that are per-
fect mutual refinements of each other to have very low pre-
cision and recall scores.

3. Information theory: Work in [11] computes a mea-
sure of information content in each of the segmentations
and how much information one segmentation gives about
the other. The proposed metric measure is termed the varia-
tion of information (V1) and is related to the conditional en-
tropies between the class label distribution of the segmenta-
tions. The measure has several promising properties but its
potential for extension to evaluation on real images where
there is more than one ground truth clustering is unclear.

Several measures work by counting the number of false-
positives and false-negatives [4] and similarly assume ex-
istence of only one ground truth segmentation. Due to the
lack of spatial knowledge in the measure, the label assign-
ments to pixels may be permuted in a combinatorial number
of ways to maintain the same proportion of labels and keep
the score unchanged.

4. Non-parametric tests: Popular non-parametric mea-
sures in statistics literature include Cohen’s Kappa [2], Jac-
card’s index, Fowlkes and Mallow’s index [5] among others.
The latter two are variants of the Rand index [13] and work
by counting pairs of pixels that have compatible label rela-
tionships between the two segmentations to be compared.
More formally, consider two valid label assignments .S and
S’ of N points X = {x1,x2,...2;,..., oy} that assign la-
bels {I;} and {;} respectively to point x; . The Rand index
R can be computed as the ratio of the number of pairs of
points having a compatible label relationship in S and S’.
ie.

1
R(S,8") = = > [I(li=1; Al =1)
17])
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where Iis the identity function, and the denominator is the
number of possible unique pairs among N data points. Note
that the number of unique labels in S and S’ are not re-
stricted to be equal.

Nearly all the relevant measures known to the authors deal
with the case of comparing two segmentations, one of
which is treated as the singular ground truth. Hence they
are not directly applicable for evaluating image segmenta-
tions in our framework. Section 3 outlines a modification
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Figure 1: Example of oversegmentation: (a) Image from the Berkeley segmentation database [10],(b) its mean shift [3] segmentation
(using hs=15 (spatial bandwidth), hr=10 (color bandwidth)), and (c-h) its ground truth hand segmentations. Average LCE = 0.0630,

PR =0.3731, NPR =-0.7349
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Figure 2: Example of undersegmentation: (a) Image from the Berkeley segmentation database [10],(b) its mean shift [3] segmentation
(using hs=15, hr=10), and (c-i) its ground truth hand segmentations. Average LCE = 0.0503, PR = 0.4420, NPR = -0.5932

to the basic Rand index that addresses this concern by soft
non-uniform weighting of pixel pairs as a function of the
variability in the ground truth set.

3. Normalized Probabilistic Rand
(NPR) Index

In this section, we outline the Normalized Probabilistic
Rand (NPR) index, an extension to the Probabilistic Rand
(PR) index proposed in [14]. Section 3.1 describes the PR
index and further discusses its desirable properties. Sec-
tion 3.2 explains a simplification required for further anal-
ysis. Finally, Section 3.3 presents the NPR, describing its
crucial improvements over the PR and other segmentation
measures.

3.1. Probabilistic Rand Index

Consider a set of manually segmented (ground truth) im-
ages {S1,953,...,SKk} corresponding to an image X =
{z1,29,...%4...,2 N}, where a subscript indexes one of
N pixels. Let Sis be the segmentation that is to be com-
pared with the manually labeled set. We denote the label of
point x; by [ f “ in segmentation Sies and by [ f * in the man-
ually segmented image Sy. It is assumed that each label lis k
can take values in a discrete set of size Ly, and correspond-
ingly lf st takes one of L values.

We chose to model label relationships for each pixel pair
by an unknown underlying distribution. One may visualize
this as a scenario where each human segmenter provides
information about the segmentation S; of the image in the

form of binary numbers I ( ;9 k= lfk) for each pair of pixels
(@i, ;). The set of all perceptually correct segmentations
defines a Bernoulli distribution over this number, giving a
random variable with expected value denoted p;;. Hence
the set {p;; } for all unordered pairs (i, j) defines a genera-
tive model of correct segmentations for the image X.
Consider the Probabilistic Rand (PR) index [14]:

PR (Siet; {Sk}) = (1N) > | =) v
)

+ H(sz # zf) (1 = pij) }

2

Let ¢;; denote the event of a pair of pixels 7 and j having
the same label in the test image Sieg:

cij — H(l;glesl — l‘;_glesl)

Then the PR index can be written as:

PR(Sia (861) = gy D lewp + (1= )1~ )]
2 i:]j

3)

This measure takes values in [0,1], where 0 means

Stest and {51, .52, ..., Sk} have no similarities (i.e. when

S consists of a single cluster and each segmentation in

{51, 59,...,SK} consists only of clusters containing sin-

gle points, or vice versa) to 1 when all segmentations are
identical.



Since ¢;; € {0,1}, Eqn (3) can be equivalently written
as

1 Cij —Cii
PR (Siest, {Si}) = ] o pi (L=pi) 9] @)
2/ 4,J

1=<7

Note that the quantity in square brackets in Eqn. (4) is
the likelihood that labels of pixels x; and x; take values lf o

and ljs‘“‘ respectively under the pairwise distribution defined
by {pi;}-

Recall that in our segmentation algorithm evaluation en-
vironment, a necessary feature of a good measure is a
lack of degenerate cases. Figures 1 and 2 show (from left
to right) images from the Berkeley segmentation database
[10], segmentations of those images, and the ground truth
hand segmentations of those images. The segmentation
method we use is mean shift segmentation [3], which is a
non-parametric kernel density-based segmentation method.
Mean shift segmentation has two parameters that provide
granularity control: hg, the bandwidth of the kernel for the
spatial features, and h.., the bandwidth of the kernel for the
other features (in our case, color). Now, notice that Fig. 1
is an oversegmentation and Fig. 2 is an undersegmentation.
We compare the PR scores to the LCE scores [9, 10]. Note
that the LCE is an error, with a score of 0 meaning no error
and a score of 1 meaning maximum error. The LCE mea-
sure [9, 10] is tolerant to refinement regardless of the ground
truth, and hence gives low error (high similarity) scores of
0.0630 and 0.0503, respectively. On the other hand, the PR
is a measure of similarity, with a score of 0 meaning no sim-
ilarity (maximum error) and a score of 1 meaning maximum
similarity (no error). The PR does not allow refinement or
coarsening that is not inspired by one of the human segmen-
tations, hence the PR index gives low (low similarity, high
error) scores of 0.3731 and 0.4420, respectively.

Tolerance to refinement is desired, however, as long as
the refinement is inspired by one of the human segmen-
tations. Consider the example in Fig. 3. The image in
Fig. 3(a) is the original image, the two stacked images
in Fig. 3(b) are two possible segmentations generated by
an automatic segmentation algorithm, and the two images
in Fig. 3(c) are the ground truths hand-labeled by people.
Clearly, one of the hand-segmenters has chosen to segment
according to texture, and the other according to color. The
topmost automatic segmentation is finer than either of the
two hand segmentations, however each of the edges can be
found in one of the hand segmentations. Intuitively, it is
still a useful segmentation because it only disagrees with the
human segmentations in the same places that they are them-
selves ambiguous. The Probabilistic Rand index [14] would
give the same score to either the top image in Fig. 3(b), or
either of the hand segmentations. Hence this a permissible
refinement. Now, look at the bottom automatic segmenta-
tion in Fig. 3(b). It is a further refinement, however the
extra boundaries can not be found in either of the hand seg-
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Figure 3: Synthetic example of permissible refinements: (a) Input
image, (b) Segmentations for testing, and (c) ground truth set

mentations. Since it has divided clusters which the hand
segmentations unambiguously stated should not be divided,
its PR index is lower.

At this point we have successfully addressed require-
ments [ (non-degeneracy), II (no assumptions about data
generation) and III (adaptive accommodation of refinement)
for a useful measure, as stated in the introduction. Sec-
tion 3.3 will expand on requirement II and address require-
ment IV (permitting score comparison between images and
segmentations). Before we can extend the measure, how-
ever, we will need to show how to reduce the PR index to
be computationally tractable.

3.2. Reduction using sample mean estimator

A straightforward choice of estimator for p;;, the probabil-
ity of the pixels ¢ and j having the same label, is the sample
mean of the corresponding Bernoulli distribution as given

by
Bij = %Zﬂ(lfk’ - sz=) o)
k

For this choice, it can be shown that the resulting PR index
assumes a trivial reduction and can be estimated efficiently
in time linear in N.

The PR index can be written as:

1 _ _
PR(Seest; {Sk}) = o D leispis + (1= ci)(1 = pij)]
2) i
i
(6)
Substituting Eqn. (5) in Eqn. (6) and moving the summa-
tion over k outwards yields

PR(Siews {55)) = 3 {(}V) S [t (15 = 154
k

2) i
=<7

(- cij)ﬂ(sz ” sz)H
(7N



which is simply the mean of the Rand index [13] computed
between each pair (Sies, Si). We can compute the terms
within the square parentheses in O(N + Ly L) in the fol-
lowing manner.

Construct a Ly X Ly contingency table with entries
n%(1,1') containing the number of pixels that have label
lin Sieq and label I’ in Sy. This can be done in O(N) steps
for each Sy.

The first term in Eqn. (7) is the number of pairs having
the same label in Sis and Sk, and is given by

nSe (1,1
Sel(if =) =3 < ! )> ®)
] L
1<
which is simply the number of possible pairs of points cho-
sen from sets of points belonging to the same class, and is
computable in O( L Ly ) operations.

The second term in Eqn. (7) is the number of pairs having
different labels in Sy and in Sy,. To derive this, let us define
two more terms for notational convenience. We denote the
number of points having label [ in the test segmentation Sieg
as:

n(l, ) =Y n(10)
7

and similarly, the number of points having label I’ in the
second partition Sy, as:

n(- 1) =Y n(10)
l

The number of pairs of points in the same class in S but
different classes in S, can be written as

()= ()

Similarly, the number of pairs of points in the same class in
S but different classes in S can be written as

5 (n(;l’)) s <nSk (;,zf))

v L

Since all the possible pixel pairs must sum to (g ), the num-
ber of pairs having different labels in Sis and Sy, is given
by

(‘;V ) +3 <n g,w) ) (2 ot ->) . (zl, v;(-m))

(C))
which is computable in O(N + L L) time. Hence the
overall computation for all K images is O(KN + >, Ly).

piy=1
1(itest = [J:.»l) =1
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Figure 4: Tllustration of the notation used in the Normalized Prob-
abilistic Rand index. Each row ¢ has (a) an associated input Image
¢, (b) a candidate segmentation Sf;l and (c) a set of K available
manual segmentations { Sy }.

3.3. Normalization

The significance of a measure of similarity has much to do
with the baseline with respect to which it is expressed. One
may draw an analogy between the baseline and a null hy-
pothesis in significance testing. For image segmentation,
the baseline may be interpreted as the expected value of the
index under some appropriate model of randomness in the
input images. A popular strategy is to use the index normal-
ized with respect to its baseline as

. . Index — Expected index
Normalized index = P

Maximum index — Expected index
(10)
so that the expected value of the normalized index is zero
and it has a larger range and hence is more sensitive.

Hubert and Arabie [8] normalize the Rand index using a
baseline that assumes the segmentations are generated from
a hypergeometric distribution. This implies that a) the seg-
mentations are independent, and b) the number of pixels
having a particular label (the class label probabilities) is
kept constant. The same model is adopted for the measure
proposed in [5] with an unnecessary additional assumption
of equal cardinality of labels. However, as also observed
in [11, 15], the equivalent null model does not represent
anything plausible in terms of realistic images, and both of
the above assumptions are usually violated in practice. We
would like to normalize the PR index in a way that avoids
these pitfalls.

We will normalize the PR Index in Eqn. (2) using
Eqn. (10), so we need to compute the expected value:
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Figure 5: Example of changing scores for different segmentation
granularities: (a) Original image, (b)-(h) mean shift segmentations
[3] using scale bandwidth (hs) 7 and color bandwidths (hr) 3, 7,
11, 15, 19, 23 and 27 respectively. The plot shows the LCE er-
ror, the PR index score and the NPR score for each segmentation.
Note that only the NPR index reflects the intuitive accuracy of each
segmentation of the image. The NPR index correctly shows that
segmentation (f) is the best one, segmentations (d), (e), and (f) are
reasonable, and segmentations (g) and (h) are horrible.

E[PR(Sex {Sk)] Z(}V) Z{E{H(ZS =) p

i<J

+E[1(1 £ 15) | (1 - pij)}
_ 1 / . / .
=7 Z [pijpza + (1 _pij)(l —Dij )}
(2) i
1<7
The question is: what is a meaningful way to compute
pi; = E[I(ij* = 17=)]? We propose that for a baseline
in image segmentation to be useful, it must be representative
of perceptually consistent grouping of random but realistic
images. Pair-wise probabilities provide a convenient way
to model such segmentations of natural images. This trans-
lates to estimating p), ,; from segmentations of all images for
all unordered pairs (¢, j). Let ® be the number of images in
a dataset, and K 4 the number of ground truth hand segmen-
tations of image ¢. Then p) ; can be expressed as:

1 1 X s¢ S¢
/
pij:*q) g de) E ]I(li’c :l]-’“> (11)
¢

k=1
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Figure 6: Example of comparing segmentations of different im-

ages: (a)-(e) Original images, (f)-(j) segmentations. The plot

shows the LCE error, the PR index score and the NPR score for

each segmentation. Note that only the NPR index reflects the in-
tuitive accuracy of each segmentation across images

Note that using this formulation for pgj implies
that E[PR(Siest; {Sk})] is just a (weighted) sum of
PR(S{, {Sk}). Although PR(S{,{S}) can be computed
efficiently, performing this computation for every hand seg-
mentation SZ’ is expensive, so in practice we uniformly
sample 5 x 108 pixel pairs for an image size of 321 x 481
(N = 1.5 x 10°) instead of computing it exhaustively over
all pixel pairs.

The philosophy that the baseline should depend on the
empirical evidence from all of the images in a ground truth
training set differs from the philosophy used to normalize
the Rand Index [13]. In the Adjusted Rand Index [8], the
expected value is computed over all theoretically possible
segmentations with constant cluster proportions, regardless
of how probable those segmentations are in reality. In com-
parison, the approach taken by the Normalized Probabilistic
Rand index (NPR) has two important benefits:

First, since p; ; and p;; are modeled from the ground truth
data, the number and size of the clusters in the images do
not need to be held constant. Thus, the error produced by
two segmentations with differing cluster sizes can be com-
pared. In terms of evaluating a segmentation algorithm, this
allows the comparison of the algorithm’s performance with
different parameters. Figure 5 demonstrates this behavior.
The top two rows show an image from the segmentation
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Figure 7: Examples of “good” segmentations: (a) Images from the Berkeley segmentation database [10], (b) mean shift segmentations [3]
(using hs=15, hr=10), and (c-h) their ground truth hand segmentations. Top image: NPR = 0.8938, Bottom image: NPR = 0.8495
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Figure 8: Examples of “bad” segmentations: (a) Images from the Berkeley segmentation database [10], (b) mean shift segmentations [3]
(using hs=15, hr=10), and (c-g) their ground truth hand segmentations. Top image: NPR = -0.7333, Bottom image: NPR = -0.6207

database [10] and segmentations of different granularity.
Note that the LCE error is low for all of the images since
it is not sensitive to refinement, hence it cannot determine
which segmentation is the most desirable. The PR index
reflects the correct relationship among the segmentations,
however its range is small and the expected value is un-
known, hence it is difficult to judge what a “good” segmen-
tation is. The NPR index fixes these problems. It reflects
the desired relationships among the segmentations with no
degenerate cases, and any segmentation which gives a score
significantly above 0 is known to be useful.

Second, since p ; is modeled using all of the ground truth
data, not just the data for the particular image in question,
it is possible to compare the segmentation errors for differ-
ent images to their respective ground truths. This facilitates
the comparison of an algorithm’s performance on different
images. Figure 6 shows the scores of segmentations of dif-
ferent images. The first row contains the original images
and the second row contains the segmentations. Once again,
note that the NPR is the only index which both shows the
desired relationship among the segmentations and whose
output is easily interpreted.

The images in Fig. 7 and Fig. 8 demonstrate the consis-
tency of the NPR. In Fig. 7(b), both mean shift [3] segmen-
tations are perceptually equally “good” (given the ground
truth segmentations), and correspondingly their NPR in-
dices are high and similar. The segmentations in Fig. 8(b)
are both perceptually “bad” (oversegmented), and corre-
spondingly both of their NPR indices are very low. Note

that the NPR indices of the segmentations in Fig. 2(b) and
Fig. 8(b) are comparable, although the former is an under-
segmentation and the latter are oversegmentations.

The normalization step has addressed requirement IV,
facilitating meaningful comparison of scores between dif-
ferent images and segmentations. Note also that the NPR
still does not make assumptions about data generation (re-
quirement II). Hence we have met all of the requirements
set out at the beginning of the paper.

3.4. Interpretation as a random field

Consider the labels of image X modeled as a Gibbs distri-
bution with the equivalent random field defined on a com-
plete graph with a node for each pixel z;. The joint likeli-
hood of a segmentation assigning label /; to each pixel x;
may then be expressed as:

Ph = yen(SL@N) a2

ceC

where C is the set of cliques in the graph, —I.({l.}) is the
interaction potential as a function of labels at pixels x; € ¢
only, and Z is the (constant) partition function.

We assume only pairwise potentials to be non-zero, em-
ploying a common restriction placed on model complexity
for tractability on k-connected meshes. Taking the loga-



rithm of Eqn. (12) then gives

log P({l;}) o (Z I,ij(zi,zj)> (13)

where —1;;(1;,1;) is now a pairwise potential on pair (4, j).
Comparing the RHS of Eqn. (13) to that of the PR index

1 Cij —Cii
PR(Stest,{Sk})=mZ[pij (1—piy)' =] (14)
2) i

1<

reveals the interaction potential I;;(I;, ;) to be proportional
to the likelihood of pixels ¢ and j having labels /; and [;
given the parameters p;; from the manual segmentations.

4. Extensions

There are several natural extensions that can be made to the
NPR index to take advantage of side-information or priors:

1. Weighted data points: If there are specific regions of
interest in the image being tested, it is straightforward to
weight the contribution of points non-uniformly and main-
tain exact computation, assuming the use of a sample mean
estimator for p;;.

For example, let the points X = {x1,x2,...,2N} be as-
signed weights W ={w1,ws, ..., wy} such that 0 <w; <1
for all 4 and >, w; = N. Then the contingency table in
Sec. 3.2 may be modified by replacing unit counts of pixels
in the table by their weights. The remainder of the compu-
tation proceeds as before in O(K'N + >, Lj;) complexity.

2. Soft segmentation: In a situation where one cannot
commit to a hard segmentation, each pixel x; may be asso-
ciated with a probability pf *(1) of having label [ in the k-th
segmentation, such that 3, p?* (1) = 1. The contingency
table can be modified in a similar manner as for weighted
data points by spreading the contribution of a point across a
row and column of the table. For example, the contribution
of point x; to the entry n(l,!") for segmentation pairs Siegt
and Sy, is pye (1)ps* (I').

3. Priors from ecological statistics: Experiments in [10]
showed that the probability of two pixels belonging to the
same perceptual group in natural imagery seems to follow
an exponential distribution as a function of distance be-
tween the pixels. In presenting the use of the sample mean
estimator for p;;, this work assumed the existence of large
enough number of hand-segmented images to sufficiently
represent the set of valid segmentations of the image. If
this is not feasible, a MAP estimator of the probability
parametrized in terms of distance between pixels would be
a sensible choice. What influence the choice of prior would
have on the measure, particularly with regard to accommo-
dation of label refinement, is the subject of future work.

5. Summary and Conclusions

This paper presented the Normalized Probabilistic Rand
(NPR) index, a new measure for performance evaluation
of image segmentation algorithms. It exhibits several de-
sirable properties not exhibited together in previous mea-
sures. Numbers generated by the NPR index for a variety of
natural images correspond to human intuition of perceptual
grouping. Also, its flexibility gives it potential applications
in related problems where extra domain knowledge is avail-
able. Future work includes application to large-scale per-
formance evaluation as well as investigation of its utility as
an objective function for training segmentation algorithms.
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