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1 Introduction !

There are few empirical relations which have the status of “stylized facts” in economics.
One of them is that macroeconomic aggregates comove. This observation has been the
source of speculation of economic theory since its birth. In modern theories of the business
cycle people have asked whether comovements can be explained by large aggregate shocks,
monetary or real, or whether an explanation should be found in non-linear propagation
mechanisms. Every macroeconomic textbook starts by a statement on comovements between
aggregates. However, paradoxically, this is one of the facts that is least well documented
and on what there is more confusion of meaning and terminology. “Comovement” is a
lose term, possibly describing different phenomena and, consequently, with many different
interpretations. What are really the stylized facts and what should macroeconomics be trying
to explain? Appropriate measures of comovement between time series processes should
be developed to provide a meaningful answer to this question. The informal discussion
on comovements usually refers to something close to a notion of correlation. However,
the traditional way with which the time series literature has dealt with measurement of
comovements is based on a notion of rank reduction (see Ahn and Reinsel, 1988) which has
a different meaning. In this category belongs the idea of cointegration (Engle and Granger,
1987): two processes are cointegrated if the spectral density at frequency zero has rank
one, codependence (Gourieroux and Peaucelle, 1992), which refers to linear combinations of
correlated processes which are of lower autoregressive order than others, common features
(Engle and Kozicki, 1993), i.e. linear combinations which are unpredictable with respect to
past information and common cycles (Vahid and Engle 1993) which are defined as common
features in first differences for processes which are cointegrated. This class of concepts
presents several problems. First, high cross-correlation neither implies nor is implied by
cointegration, common cycles or common features (Quah, 1993 and Forni and Reichlin,
1999). Second, these measures are binary. For example, two processes are either cointegrated
or not, but we can’t establish different degrees of association. Finally, in order to test for

rank reduction, we need to estimate the parameters of a VAR, which may be problematic
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when the number of time series is large. For all these reasons, while the notion of rank
reduction is certainly interesting to characterize some aspects of the dynamic properties of
multivariate time series, it is not the appropriate one for the study of comovements.

But what is an appropriate measure of comovement? In this paper we show that exist-
ing textbook quantities like coherence and coherency, which are widely used in time series
literature, are not appropriate as comovement indexes. We propose a related but different
measure, dynamic correlation, which arise quite naturally from basic frequency domain no-
tions. Dynamic correlation can be decomposed by frequency and frequency band and can
then be used to study business cycle as well as long-run questions. Dynamic correlation
between two processes over a band turns out to be identical to static correlation of the same
processes, after suitable pre-filtering. Moreover, long-run dynamic correlation is related in a
simple way to stochastic cointegration.

We use our notion of dynamic correlation to construct a multivariate index of comove-
ment, which we name cohesion. The latter provides a summary measure of the degree of
comovement within a group of variables or between two groups of variables and can be used,
for instance, as a metric to construct dynamic clusters.

To illustrate our proposed measure and to provide further motivation, we estimate cohe-
sion of output data in US states and European nations and study the following questions.
Are output fluctuations within Europe more correlated than output fluctuations within the
US and are results the same for business cycle frequencies and the long run? Are states or
countries which comove more strongly closely located from a geographical point of view?

Does border matters for output synchronization and at what frequency range?

2 Dynamic correlation

2.1 The definition and the basic motivation

Consider two zero-mean real stochastic processes x and y. Let S;(\) and S,(\), —7 < A <,
be the spectral density functions of x and y and C,, () be the co-spectrum. The measure

we propose, dynamic correlation, is
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To motivate this measure we introduce the spectral decomposition of the processes x; and

Y, 1.€.

n= [ eMaz.)  y= [ eMaz,0), (2)
where dZ,(\) and dZ,(\) are (complex) orthogonal increment processes (see e.g. Brockwell
and Davis, Chap. 4). Expression 2 says that x; and y; can be expressed as ‘infinite sums’ of
waves of different frequencies, each having a random amplitude. As is well known, the spec-
tral and cross-spectral density functions of z; and y; are related to the above representation

in the following way:

S.(\) = var(e™MdZ,()\)) = var(dZ,()\))

S,0) = var(dZ(\) 5
SN = cov(dZi(N),dZ,(N)

SN = cor(dZ,(N), dZi (V).

While the waves appearing in representation (2) are complex, it is easily seen that, if x;

is real, then dZ,(\) = dZ,(—\), so that
eMdZ,(N) + e MdZ, (=) = 2cos(At)dU, (A) — 2sin(At)dV,(N), (4)

where dU, and dV, denote, respectively, the real and the imaginary part of dZ,. Hence we

have the alternative representation
=2 / " cos(A)dU(A) — 2 / " sin(A)dV,(N), (5)
0 0

where the component at frequency A is cos(At)dU, (A)—sin(At)dV;(X), which is real. Similarly,

the real wave decomposition of y; is
ye =2 / " cos(M)dU, () — 2 / " sin(M)dV, (\).
0 0

As is easily obtained from (3) and (4), our proposed measure, p,,(A), is nothing else than
the correlation coefficient between the real waves of frequency A\ appearing in the above
representation, i.e. cos(At)dUy(A) — sin(At)dV,(N) and cos(At)dU,(A) — sin(At)dV,(A). This
is the reason why the measure is defined only for non-negative frequencies, on the interval

[0, 7). Clearly, dynamic correlation can vary between -1 and 1.



2.2 The relation with “coherency” and “coherence”

Dynamic correlation is strictly related to both coherency and coherence—two well known

indeces in time series literature. Coherency is defined as

0o () = — S CaN) +iQn (N
v S:(\)S, () S.(NS,(0)

where )., () the quadrature spectrum. Hence coherency is complex in general and is not
symmetric, i.e. Czy(A) and Cy,(A) are not equal, but conjugate. Dynamic correlation pg, ()
is the real part of coherency and can also be obtained by averaging coherencies at frequency

A and —)\, which also are conjugate:

Cay(N) + Cay (=)
5 .

By using (3) the reader can easily verify that C,,()) is the correlation coefficient of dZ,(\)

pmy(/\) =

and dZ,()\). Hence the interpretation of coherency is quite similar to that of dynamic
correlation, the basic difference being that the former is related to the complex representation
(2) rather than the real wave decomposition (5). Put another way, we simply collect together
frequencies A and —\ so that the imaginary parts cancel out. This is perfectly consistent
with our aim, since the waves of frequencies A and —\ have the same periodicity.
Regarding coherence—or squared-coherency, as is sometimes called—it is defined as the

squared modulus of coherency, that is

OV Q) [ SV P
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Therefore coherence is real and symmetric. However, it does not measure correlation at

different frequencies, because it disregards the phase differences between variables. This can
be easily seen by observing that H,,(\) is invariant with respect to shifting the processes
over time, i.e. the coherence between x; and y;_, is the same as that of x; and y;. This,
besides being an immediate consequence of the definition, is consistent with the well-known
interpretation of coherence as the R? from the regression of y; on the past, present and future
of x;: clearly, in this regression, whether the contemporaneous regressor is z; or x;_; cannot
make any difference.

A different way to see the same point is provided by the polar representation of the
cross-spectrum:

Sey(A) = Ray(N)e"™
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dynamic correlation

Figure 1: DyndPjic correlation between u; and u;_1, u; being~white noise.
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where R,,()\) is the gain while §()) is the phGse:"By taking the moduli on both sides we see
that Sz, (A = Ryy(A)?, so that in H,,()\) the information contained in the phase is lost.

An illustrative example of what this entails, is provided by considering the two unit
variance white noise processes u; and u;_;. Their coherence is equal to one at all frequencies,
despite the fact the contemporaneous correlation of the two processes is zero. By contrast, as
shown in Figure 1, dynamic correlation ranges from 1, at frequency zero, to -1 at frequency
m. The contemporaneous correlation zero is obtained by averaging over frequencies. We
have perfect positive correlation only in the long run, which is quite intuitive. The intuition
for the perfect negative correlation at frequency 7, i.e. at periodicity 2, is also simple: the
waves of periodicity two are perfectly in opposition with themselves lagged one period.

The relation between dynamic correlation and static correlation is particularly simple
in the case of u; and w;_1: the latter is the simple mean of the former over the interval
[0, 7). This is due to the fact that u; has spectrum 1 at all frequencies. In the general case,
this simple relation does not hold: in order to obtain the static correlation, a more complex
function of the correlations at different frequencies is needed. More generally, the relation
between py, () and corr(x,,y ) for different £ is not simple. These points are better seen
after introducing the concept of dynamic correlation for a frequency band, which we do in

the following subsection.



2.3 Dynamic correlation on a frequency band

Let us begin by considering the processes obtained by summing the waves of z; and
within a given frequency interval. Set Ay = [A,X2), 0 < A < Xy <7, AL = [, —N1),

A=A, UA_ and
Tar = Ja@MdZe(N) = 2 [y, cos(Nt)dUL(N) — 2 [y, sin(At)dV,(N) (©)
yae = JyeMdZy(N) = 2 [y, cos(At)dU,(A) — 2 [y, sin(Xt)dV,(N).

As is well known, we have
var(zy) = JuSA)dA = 2y, S,
var(a) = o Su(NAA = 2y, S,(\)dA (7)
cov(@ar, yar) = [y Sey(A)dA = 2 fA+ Cuy(A)dA.
We can then define the correlation of z; and v, within the frequency band A, as the (static)

correlation coefficient of xx; and yy,, i.e.

pay(As) = fA+ Cay (A)dA fA+pzy(A) S.(N)S, (A)dA
zy \/fA+ A [y, Sy(A)dA \/IA DEYNETE )d/\'

Expression (8) should be used for instance when we are interested in the comovement of

(8)

the cyclical or seasonal components of two economic series: we have simply to select the
frequency band of interest (for the cycle we could chose e.g. a period between 3 and 10
years) and to look at the dynamic correlation within this frequency band.

From (8) we see that, unfortunately, correlation within a frequency band cannot be
consistently defined as a simple average of the values taken on by the dynamic correlation
index within the band: a more complicated function, involving the spectra of both x; and
i, is needed. Note that, in the particular case A\; = 0, Ao = 7, pgy (A4 ) reduces to the static
correlation coefficient between x; and ;. Hence we can recover static correlation starting
from dynamic correlation. However, we have to ‘weight’ correlations at different frequencies
by using information from the spectral densities S, (A) and S, ().

More generally, correlation at different frequencies is not related to correlation at different
leads and lags by a simple relation. Indicating with pf and pY the autocorrelations of x; and

v at lag k and with p;¥ the cross-correlation at lag k, we have

Y2 o € (0 + 014 /2
\/Zk:—oo eilAkpk ZZO:—OO eilAkp%

p:cy()‘) =
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Conversely, by setting

Sz (X)Sy (A
var (z;)var(y;)
we have Y Y
y + p” 4 ;
PPk = 7 pry(N)Day (M)

Hence, in order to obtain p,,(A\) we must use not only the cross-correlations but also the
autocorrelations at different lags. In the other direction, we have to resort to the spectral

densities; moreover, we cannot get the cross-correlations at different lags, but only the sum

P+ %%

2.4 Dynamic correlation and band-pass filtering

As already observed, in the macroeconomic literature stylized facts on comovements are
often presented in terms of correlations of HP filtered or band-pass filtered data. The idea
is that if we want to see whether e.g. the cyclical components of the outputs of two nations
are synchronized, we first have to extract the cycles from the outputs and then look at
correlations.

This procedure is theoretically consistent with our measure, provided that we discard HP

filtering and use instead the well-known two-sided filter

. )\2 — )\1 > sin ]{5)\2 — sin k?Al

Ap(L LF+ L 9
A(L) — k; = (L*+L77) (9)
where L is the lag operator and A = Ay UA_ with Ay = [A,A2), A_ = [- X, —);), and
0< A <X <. 2
To see this, consider that
1 for\eA

Ap(e ™) = {

0 otherwise
(see e.g. Sargent, 1987, Section 11.6, p. 259), so that the spectrum of A,(L)x;, which is
equal to |Ax(e ™)|2S,()), is equal to S,(A\) for A € A and is zero elsewhere. Hence the

filter eliminates all the waves whose frequency is outside the relevant interval and leaves

2The above filter, unlike the HP filter, must be applied to stationary data, so that if we start from trended

data we have first to take the differences.



unchanged the amplitude of the waves within the interval. But this means that Ax(L)x; =

xp¢. Similarly, Ay (L)y, = yae. It follows that

corr(Ap(L)zy, Ax(L)ye) = pay(Ay).

Clearly, the equivalence above is true for theoretical measures. In practice the two esti-
mation procedures will give different results. When estimation is performed by prefiltering
data, truncation of A,(L) is needed in order to apply it to a finite time series. On the
other hand, estimation of p,, (A} ) will raise issues related to the estimation of spectra and

cross-spectra.

2.5 Dynamic correlation and cointegration

Dynamic correlation at frequency zero is related to the notion of ‘stochastic cointegration’.
We recall that the I(1) processes z; and w; are ‘stochastically cointegrated’ if and only if
there is a linear combination z; — aw; which is trend-stationary, i.e. it is the sum of a
stationary variable and a linear deterministic trend b+ ct. Now let z; and w; be I(1) and

set xy = Az, y; = Awy. Then z; and w; are stochastically cointegrated if and only if

pwy(o)z =1,

i.e. dynamic correlation at frequency zero is either 1 or -1.
This is easily seen by observing that C,,(0) = S,,(0), so that if p,,(0)* = 1 then
Sey(0)2 — S,(0)S,(0) = 0, i.e. the determinant of the spectral-density matrix of the vec-

tor (Az; Aw;) vanishes at zero frequency.

3 Cohesion and cross-cohesion

Let us now consider a vector of n > 2 variables z; = (zy; --- @,). Moreover, let us
attach non-normalized positive weights w = (w; -+ w, )' to the variables in z;. Our
proposed measure for the internal cohesion of the variables in x; is motivated in the same
manner as in the bivariate case and equals the weighted average of the dynamic correlations,
as defined in (1), between all possible pairs of series. This weighted average will be called

cohesion and equals

) _ Zz’;éj WiW;Pg;x, ()‘)

coh, (A
2 it Wil;

(10)
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The measure of cohesion within the frequency band A; = [A1, \2] is analogously given by

Zz’#j WiW; Py (A+)
D ity Wil

cohy(Ay) =

A very simple choice for the weights is w; = 1 for all i. While equal weights may work
well in many cases, they appear unsuited when we deal with sectors or regions with very
different importance. For instance, if we want to measure the cohesion of the per-capita
incomes of the European countries, it is reasonable to give Germany a greater weight than
Luxembourg. A natural choice for w; in this case would be the level of income or population
of country 7 at some t¢.

We exclude the diagonal terms in the weighted average (10) for two reasons. First, it
seems reasonable to require that, if the entries in z; are pairwise uncorrelated at all leads
and lags, cohesion is zero at all frequencies. This property hold with the above definition,
whereas it would be violated when including the diagonal terms. Second, the inclusion of the
diagonal terms would render cohesion dependent of n. As an example, assume p;,z,(A) = p
for i # j and at all frequencies A, and set for simplicity w; = 1 for all i. According to
definition (10) we get coh,(A) = p, while the inclusion of the diagonal terms would give
[p(n — 1) + 1]/n, so that a group with two uncorrelated variables would have cohesion 0.5
while a group with ten pairwise uncorrelated variables would have cohesion 0.1.

Clearly |coh,(A)] < 1 and coh,(A) = 1 if and only if all of the variables in z; comove
perfectly at frequency A. In particular, coha,(0) = 1 if and only if the variables in 2, are
pairwise cointegrated with cointegrating vector (1 ~— 1), i.e. they have a common trend
representation and equal long run responses to the permanent shock. Moreover, coh,(A) =1
at each frequency if and only if all of the x;’s are identical upto a linear transformation.

The lower bound of the cohesion index is —1 for n = 2, since, if n = 2, the cohesion of
x; coincides with the dynamic correlation index of z1; and x9; (in dependently of w). For
n > 2 the lower bound is greater, since of course we cannot have perfect pairwise negative
correlation within a group of three variables or more. To illustrate this point, note that
(10) can be rewritten as coh,(A) = (w'Ryw —w'w)/ ¥, .; wyw;, where R, is like a correlation
matrix, but now containing all pairwise dynamic correlations at frequency A. This expression
cannot be less than —w'w/ Y, .; w;w;, which value depends on the particular choice of the
weights. An example is the case of equal weights, with the minimum 1/(n — 1) tending to

zero as n gets larger.



Note that, while pairwise correlation implies zero cohesion, the converse is not true:
when observing a small cohesion index we cannot distinguish whether it originates from
small pairwise comovements or large negative and positive covariances canceling out each

others. This problem could be avoided by using the alternative measure

Zz’;éj Wi Wy |p€tiftj |
Zz’;ﬁj W;W;

On the other hand, coh has the disadvantage that it does not distinguish between nega-

* p—
coh) =

tive and positive comovements. If we want to retain both informations we can do this by

comparing coh and coh*,.

The cohesion index can be easily generalized to an index measuring the cross-cohesion
between the n-vector x; and the m-vector ;. For the sake of simplicity, let us assume for
the moment that x; and y; have no common elements. Let us specify two vectors of weights
w, and w,. Cross-cohesion of z; and y; at frequency A is then given by

?:1 Z;nzl wmiwyjpliyj (/\)
2?21 Z;n::l wxiwyj

Note that if both x; and y; are scalars, cross-cohesion reduces to dynamic correlation.

cohyy(A) =

(11)

In some cases it could be interesting to evaluate the cross-cohesion of two overlapping sets
of variables. In this case we should eliminate from the weighted average the self-comovements
of the variables in the intersection, as we have done in defining the cohesion index (10).
Hence the above definition of cross-cohesion should be generalized in the following way. For
notational simplicity, let us reorder the variables in z; and 1, in such a way that, if z; and y;
have k variables in common, the latter variables occur in the first k places. The generalized
index of cross-cohesion is then

21 Z;'n=1 Wg; Wy; Py (A) — Zf=1 Wg; Wy,

n m k
i1 D1 Wa Wy, — D q Wa, Wy,

(12)

According to this definition, the cross-cohesion of x; with x; is equal to the cohesion of x;.

4 Empirical application: business cycles in Europe and

the US

In this Section we evaluate the issue of comovement of output fluctuations between European

countries and US states and regions. This problem has been analyzed by many authors; a

10



comprehensive review of the literature is provided by Clark and Shin (1999). On the basis
of our measure of cohesion we are able to bring attention to some features of comovement
that have been overlooked in previous studies.

We analyze two panels of data: the personal income of the 51 US states and the GDP
of seventeen West-European nations. Data are yearly, from 1962 to 1997. A European core
composed by the 11 EMU countries and the 8 BEA regions are also analyzed separately. We
look at US regions, in addition to states, since the size the former is larger and comparable
with that of the largest European nations. The series are taken in log-difference to render
them stationary. (More information on the data is found in Appendix I).

Let us articulate our analysis around a few questions.

e Are national cycles within Europe more synchronized than regional and state cycles within

the US?

Figure 2 shows cohesion of US regions, US states, EMU countries and European countries
(including EMU)3. As expected, European countries are less cohesive than EMU countries,
which in turn are less cohesive than US states at all frequencies. Finally, US regions are
more cohesive than US states, since, by aggregating the states, the idiosyncratic sources of
variations are reduced. This corresponds to the consensual view.

However, while at business cycle frequencies (around 1.5, corresponding to a period of
about 4 years) the difference between Europe and US is large, at low frequencies the difference
is much smaller. This asymmetry between long-run and short-run has not been emphasized
in the literature. Figure 3 reports the curves for US states and EMU countries along with
20 bootstrap confidence bands (see Appendix II for details). The bands do not overlap at
cyclical frequencies, whereas there is a very large overlapping in the long-run. The same
result holds when comparing the larger set of the European countries with US regions (the
confidence bands are not reported here). We conclude that, as far as synchronization of long
cycles is concerned, the difference between Europe and the US is small and non-significant,

while the opposite holds for the typical business cycle frequencies.
e Are Furopean nations more correlated with other European nations than with US states?

A first answer is given by Figure 4, which reports again within cohesion of US states and

3To estimate the spectra intervening in the definition of dynamic correlation, periodograms smoothed

with a Bartlett window with lag window size 6 were used.
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EMU countries, along with cross-cohesion between US and Europe. We see that within
cohesion of EMU countries is larger than cross-cohesion, but again differences disappear in
the long-run.

Another way to look at the problem is to use cohesion as a measure of distance in
computing clusters. Our purpose here is to group the 50 US states* and the 17 European
countries (cfr. Appendix I) according to the way that their national incomes comove together
in the short run and the long run.

We proceed as follows. We first compute dynamic correlations p;;(A;) between all pairs
of countries/states for a given frequency band A;.> Then the 67 by 67 matrix of (positive)

“dissimilarities” D(Ay) is computed. This matrix has elements
Dij(Ay) =1 = pi(Ay). (13)

Countries which strongly comove within the given frequency band, have small “dissimilari-

ties”.

4Alaska was excluded from the cluster analysis since it appeared to be, not surprisingly, a huge outlier.
°In practice, the integral appearing in definition (8) of p;;(A) was computed by numerical integration.
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To distinguish between short-run and long-run dynamics, we perform calculations for two
different frequency ranges, corresponding to cycles of period of eight years or longer (long-
run dynamics) and cycles of period less than eight years, representing short-run fluctuations
and business cycle dynamics.

Once the dissimilarity matrix has been computed, standard clustering techniques can be
applied. We chose to apply the metrical multidimensional scaling © technique (Cox and Cox,
1994) which represents the 67 countries and states in a 2 dimensional plane. The Euclidean
distances between the points in the plane are now supposed to mimic the dissimilarities
computed by (13). Countries which have big dissimilarities, have representations in the
plane which are far away from each other. Looking at the objects in the two-dimensional
plane, makes it possible to detect possible clusters and outliers.

In Figure 5 we illustrate results of the application of multidimensional scaling based
on the cohesion indices for long run comovements, and for business cycle and short run
comovements. Kuropean countries are labeled in the standard way while US states are
labeled according to whether they belong to region 1,2, ---,8. The axes in the figure cannot
be interpreted, only the relative distances between pairs of states are important.

The result of Figure 4 are confirmed: once again, dynamics matter. In the short-run,
European countries are clustered on one side of the box and US regions on the other side
with UK and Ireland being the closest to US states (this confirms results found in Forni and
Reichlin, 1999). In the long-run, however, no clear pattern emerges and units belonging to
the US are mixed together with units belonging to Europe. In the long-run, US states are
as correlated with each other than as with European nations, probably reflecting the effect

of a common persistent shock.
e Does border matter?

The question of whether business cycles of states or countries which are close from a ge-
ographical point are more correlated is of crucial interest to understand the nature of the
propagation mechanism of economic shocks. A robust finding in the literature is that ge-
ography matters for trade and recently it has been found that it also matters for output
correlation (Clark and van Wincoop, 1999). Our purpose here is to evaluate the latter claim

for our data set taking into account dynamics. To this purpose, we compute, for each state

6The procedure cmdscale of the statistical software package Splus was used for this.

14



Lx

o

ol 1 o ) 523?3%33%% Aid 5

22
111 11Dl1:5

04 02 00 02 04 06

Dk
" WG UK 1 4

B
o | S PR T

Au Be i 2 B@

06 04 {2 00 02 04

Figure 5: Representation of the 50 US-states (Alaska is excluded) and the 17 West-European
countries in a plane according to their long run comovements (upper figure) and short run

comovement (lower figure). The US-states are labeled by the regions to which they belong.

15



(and country), the ratio between average cohesion with neighbors states (and countries) and
average cohesion with all states (and countries). This can be taken as a measure of the
extent to which “border matters”.

For each US state and European nation we compute the following measure

average;c, pij (M)

BMZ A - )
( +) average ., Pi; (A+)

(14)

where NV; is the set of indices of all neighbor states of state ¢ and p;;(Ay) is the dynamic
correlation between states ¢ and j at the selected frequency band A, .

Figure 6 show results for US states. The ratio (14) has been computed for every state
(with the exception of Alaska and Hawaii, which have no neighbors) and for long run frequen-
cies (A} = [0,7/4]) and short run frequencies (A} = [7/4,7]), as was done in the clustering
example. The maps tell us that in the short-run most states are as correlated with the
neighbors as with all other states, since their BM; is close to 1. This is not surprising,
given the large cohesion between US states that we had found at business cycle frequencies
(Figure 2). The result confirms, in a different way, that there is a lot of common dynamics
at business cycle frequencies. In the long-run, however, there are states which comove more
strongly with the neighbors (this does not imply that those states comove strongly with their
neighbors, it just says that they are comoving more strongly with their neighbors than with
the other states). Notice that, in general, the ratios are above one, indicating that border
matters.” How much border matters, however, depends in the first place on the size of the
state, which is quite natural .

Table 1 illustrates results for Europe. These results should be interpreted with caution
since, due to the small number of neighboring nations, p-values from the non-parametric
Wilcoxon-rank test indicate that the difference of correlation with neighbors and correlation
with all nations is generally statistically not significant. Qualitatively, we can observe,
however, that border in Europe matters a little (the ratios are generally larger than one),
but less than in the US. Moreover, no difference in patterns emerges between short-run and
long-run ratios. The weak effect of the border for nations contrasts with what found at the

regional level (Quah, 1996). An interpretation, also suggested by what found by Forni and

"The non-parametric Wilcoxon-rank test indicated that average long-run comovements with neighbors
are significantly different (at the 5% level) from the average long-run comovements with all states for more

than 60% of the states. Results are available upon request.
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long run

1.2-14

14-16
16-1.8
18-2.0

short run

0.9-1.2
12-1.4

14-1.6
Figure 6: The 50 V.ltalelg:lmlaska and Hawii are excluded) colored according to the value

of their border-correlation-measure BM; for the long run (upper figure) and the short run

(lower figure).
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Country | Long run BM | Short run BM | Neighbors
Au | 1.15 (0.93) | 1.31 (0.05) 3
Be | 1.00 (0.50) | 1.16 (0.05) 4
Dk | 0.87 - 1.67 - 1
Fi| 1.07 (0.76) |0.99 (0.91) 2
Fr [ 1.00 (0.73) | 1.17 (0.01) 6
WG | 1.17 (0.13) | 1.22 (0.00) 7
It | 1.24 (0.16) | 1.26 (0.07) 3
Lx | 214 (0.21) |1.33 (0.05) 3
Nl|1.26 (0.15) |1.35 (0.01) 2
Po| 1.25 - 1.15 - 1
E|126 (0.15) |1.33 (0.23) 2
Sw | 0.87 (0.76) | 1.15 (0.63) 2
CH |1.19 (0.26) | 1.23 (0.05) 4
No | 1.60 (0.63) | 0.45 (0.41) 2

Table 1: Borders Measure BM; for the long run and the short run computed for 14 European
countries. P-values are given between parenthesis and the number of neighbors is in the last

column.

Reichlin (1999), is that European nations contain clusters of regions with different degree of

synchronization and that geographical effects are not defined by political boundaries.

5 Summary and conclusion

This paper has proposed a measure of dynamic comovement between (possibly many) time
series and named it cohesion. The measure is defined in the frequency domain and it is
appropriate for costationary processes or, as it is often the case with macroeconomic time
series, processes which are costationary in first differences. In the bivariate case, the mea-
sure is shown to correspond to dynamic correlation and it is related, but not equal, to the
well known quantities “coherence” and “coherency”. The multivariate measure is the corre-
sponding weighted average. We show that cohesion relates in a simple way to cointegration.

Cohesion is useful to study problems of business cycle synchronization, to investigate
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short-run and long-run dynamic properties of multiple time series, to identify dynamic clus-
ters. It is also the appropriate tool to establish stylized facts on comovements of macroeco-
nomic variables at specific frequency bands of interest.

Our empirical analysis on cohesion of output fluctuations within the US, within Europe
and between US and Europe illustrates the importance of the dynamic decomposition of
comovements. Results show that, in the long run (cycles longer than four years), cohesion of
output fluctuations within the US is not significantly different than cohesion within Europe
and that US states are as correlated with each other than as with European nations, probably
reflecting the effect of a common persistent shock. In addition, we provide results on the
geographical structure of cohesion. We show that, in general, states (or nations) are more
strongly cohesive with neighbors states than with other states (or nations). In the US, this

effect is stronger in the long-run than in the short-run.
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APPENDIX 1:

Data sources and data treatment

A. US states personal income: The data are ”Personal income (USD)” from REIS, database
provided by the Bureau of Economic Analysis, Economics and Statistics Administration of
the US department of Commerce. The data were deflated by a current price index (annual,
all urban consumers). The BEA-regions are labeled as New England (1), Mideast (2), Great
Lakes (3), Plains (4), Southeast (5), Southwest (6), Rocky Mountain (7), and the Far West

(8).

B. European nations GDP: The data are GDP at 1990 market prices deflated by the GDP
deflator (Mrd USD 1990). The source is Eurostat. Countries considered are Austria (Au),
Belgium (Be), West Germany (WG), Spain (E), France (Fr), Ireland (Ir), Italy (It), Luxem-
bourg (Lx), Netherlands (N1), Portugal (Po), Finland (Fi) which form the 11 EMU-members.
Furthermore, 6 other countries were added to constitute the set of 17 “West-European” coun-

tries: Switzerland (Ch), Norway (No), Sweden (Sw), Greece (Gr), Denmark (Dk).

APPENDIX 2:
Bootstrapping technique

Confidence limits around the estimated cohesion coefficients were computed using bootstrap
techniques. An overview of methods for bootstrapping time series is given in Berkowitz
and Kilian (1996). We applied a standard block bootstrap for the cohesion of real personal
income within US and GDP within the EMU-countries, respectively (cfr. Section 4). The
number of replicates was 200 and the length of the blocks was chosen to be equal to 7, large
enough to retain the cyclical information in the series.

The distribution of the bootstrap replicates was relatively close to a normal one. To get
even more close to a normal distribution, the Fisher z-transformation has been applied to the
simulated dynamic correlations. The Fisher z-transformations tranfers correlations p into
2In((1+4 p)/(1 — p)), where the latter may take on values on the whole real line. Confidence
limits were then computed on the transformed data by the 2 o-rule, and retransformed, by
applying the inverse of the Fisher z-transformation, into a confidence interval for the actual

cohesion Coh(\).
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Since cohesion is defined in the frequency domain, it is very appealing to use the spectral
approach of Berkowitz and Diebold (1998). By bootstrapping the (multivariate) spectrum
instead of the time series itself, we can save computation time, since the spectrum does
not need to be recomputed for each bootstrap replicate. Preliminary experiments in this
direction were not so successful, probably due to the fact that the time span in the treated

examples is rather small. Research on this topic is ongoing.
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