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Abstract-Many designs for integrated services networks offer

a bounded delay packet delivery service to support real-time

applications. To provide bounded delay service, networks must

use admission control to regulate their load. Previous work

on admission control mainly focused on algorithms that com-

pute the worst case theoretical queueing delay to guarantee

an absolute delay bound for atl packets. In this paper, we

describe a measurement-based admiasion control algorithm (ACA)

for predictive service, which allows occasional delay violations.

We have tested our atgonthm through simulations on a wide

variety of network topologies and driven with various source

models, includlng some that exhibit long-range dependence, both

in themselves and in their aggregation. Our simulation results

suggest that measurement-based approach combined with the

relaxed service commitment of predictive service enables us to

achieve a Klgh level of network utilization wldle still retiably

meeting delay bound.

Index Terms—Quality-of-service guarantee, predictive service,

real-time traffic.

1. BOUNDED DELAY SERVICES AND PREDICTIVE SERVICE

T
HERE HAVE been many proposals for supporting real-

time applications in packet networks by providing some

form of bounded delay packet delivery service. When a flow

requests real-time service, it must characterize its traffic so

that the network can make its admission control decision.

Typically, sources are described by either peak and average

rates [15] or a filter like a token bucket [33]; these descriptions

provide upper bounds on the traffic that can be generated by

the source. The traditional real-time service provides a hard or
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absolute bound on the delay of every packet; in [10] and [15],

this service model is called guaranteed service. Admission

control algorithms (ACA’s) for guaranteed service use the a

priori characterizations of sources to calculate the worst-case

behavior of all the existing flows in addition to the incoming

one. Network utilization under this model is usually acceptable

when flows are smooth; when flows are bursty, however,

guaranteed service inevitably results in low utilization [40].

Higher network utilization can be achieved by weakening

the reliability of the delay bound. For instance, the probabilis-

tic service described in [41] does not provide for the worst-case

scenario, instead it guarantees a bound on the rate of Iost/late

packets based on statistical characterization of traffic. In this

approach, each flow is allotted an effective bandwidth that

is larger than its average rate but less than its peak rate. In

most cases, the equivalent bandwidth is computed based on a

statistical model [23], [37] or on a fluid flow approximation

[16], [27] of traffic. ( If one can precisely characterize traffic

a priori, this approach will increase network utilization. How-

ever, we think it will be quite difficult, if not impossible, to

provide accurate and tight statistical models for each individual

flow. For instance, the average bit rate produced by a given

codec in a teleconference will depend on the participant’s

body movements, which can’t possibly be predicted in advance

with any degree of accuracy. Therefore, the a priori traffic

characterizations handed to admission control will inevitably

be fairly loose upper bounds.

Many real-time applications, such as vat, nv, and vie, have

recently been developed for packet-switched networks. These

applications adapt to actual packet delays and are thus rather

tolerant of occasional delay bound violations; they do not need

an absolutely reliable bound. For these tolerant applications,

[10] and [36] proposed predictive service, which offers a

fairly, but not absolutely, reliable bound on packet delivery

times. The ability to occasionally incur delay violations gives

admission control a great deal more flexibility, and is the

chief advantage of predictive service. The measurement-based

admission control approach advocated in [10] and [26] uses

the u priori source characterizations only for incoming flows

(and those very recently admitted); it uses measurements

to characterize those flows that have been in place for a

reasonable duration. Therefore, network utilization does not

suffer significantly if the traffic descriptions are not tight.

Because it relies on measurements, and source behavior is

iWe refer the interested readers to [24] for a more comprehensive overview

and bibliography of ACA’S.
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not static in general, the measurement-based approach to

admission control can never provide the completely reliable

delay bounds needed for guaranteed. or even probabilistic,

service; thus, measurement-based approaches to admission

control can only be used in the context of predictive service

and other more relaxed service commitments. Furthermore,

when there are only a few flows present, the unpredictability

of individual flow’s behavior dictates that these measurement-

based approaches must be very conservative-by using some

worst-case calculation for example. Thus, a measurement-

based ACA can deliver significant gain in utilization only

when there is a high degree of statistical multiplexing.

In summary. predictive service differs in two important

ways from traditional guaranteed service: 1) the service com-

mitment is somewhat less reliable and 2) while sources are

characterized by token bucket filters at admission time, the

behavior of existing flows is determined by measurement

rather than by (~ priori characterizations. It is important to

keep these two differences distinct because while the first

is commonplace. the second, i.e., the use of mea.wremenf -

based admission control, is more novel. On the reliability of

service commitment, we note that the definition of predictive

service itself does not specify an acceptable level of delay

violations. This is for two reasons. First, it is not particularly

meaningful to specify a failure rate to a flow with a short

duration [32]. Second, reliably ensuring that the failure rate

never exceeds a particular level leads to the same worst-case

calculations that predictive service was designed to avoid.

Instead, the CSZ approach [ 10] proposes that the level of

reliability be a contractual matter between a network provider

and its customers—not something specified on a per-flow

basis. We presume that these contracts would only specify

the level of violations over some macroscopic time scale (e.g.,

days or weeks) rather than over a few hundred packet times.~

In this paper, we describe a measurement-based ACA for

predictive service. We demonstrate affirmative answers to the

following two questions. First, can one provide reliable delay

bounds with a measurement-based ACA’? Second, if one does

indeed achieve reliable delay bounds, does offering predictive

service increase network utilization? Earlier versions of this

work have been published in [25] and [26]. Incidentally.

the work reported in this paper has been extended in [ 12]

to support advance reservations. Degermark er al, [ 12] have

also replicated some of our results on their independently

developed network simulator.

The authors of [ 17] and [20] use measurements to de-

termine admission control, but the admission decisions are

precomputed based on the assumption that all sources are

exactly described by one of a finite set of source models. This

approach is clearly not applicable to a large and heterogeneous

application base, and is very different from our approach to

admission control that is based on ongoing measurements.

In [2] and [37], the authors use measurement to learn the

parameters of certain assumed traffic distributions. The authors

7A nelwork provider mtght promise 10 give lt\ customers their money back

if the violatmns exceed some level mcr lhe duration of [heir flow, no matter

how short the flow: however. wc contend that the provider cannot realistically

itssurethal excessive violations wilt never occur.

of [11] and [ 14] use measurement of existing traffic in their

calculation of equivalent bandwidth, providing load, but not

delay, bound. In [8] and [19]. a neural network is used

for dynamic bandwidth allocation. In [29], the authors use

precomputed low frequency of flows to renegotiate band-

width allocation. Hardware implementation of measurement

mechanisms are studied in [7] and [38].

11, MEASUREMENT-BASED ADMISSION Cf)NTRO[. FOR ISPN

Our ACA consists of two logically distinct aspects. The first

aspect is the set of criteria controlling whether to admit a new

flow; these are based on an approximate model of traffic flows

and use measured quantities as inputs. The second aspect is the

measurement process itself, which we will describe in Section

111.In this section, we present the analytical underpinnings of

our admission control criteria.

Sources requesting service must characterize the worst-case

behavior of their flow. In [ 10], this characterization is done

with a token bucket filter. A token bucket filter for a flow

has two parameters: its token generation rate, r, and the depth

of its bucket. b. Each token represents a single bit; sending a

packet consumes as many tokens as there are bits in the packet.

Without loss of generality, in this paper we assume packets are

of fixed size and that each token is worth a packet; sending a

packet consumes one token. A flow is said to conform to its

token bucket filter if no packet arrives when the token bucket

is empty. When the flow is idle or transmitting at a lower rate,

tokens are accumulated up to b tokens. Thus flows that have

been idle for a sufficiently long period of time can dump a

whole bucket full of data back to back. Many nonconstant bit

rate sources do not naturally conform to a token bucket fiIter

with token rate less than their peak rates. It is conceivable that

future real-time applications will have a module that can. over

time, learn a suitable r and 1)to bound their traffic.

We have studied the behavior of our ACA mostly under

the CSZ scheduling discipline [ 10]. Under the CSZ sched-

uling discipline, it switch can support multiple levels of

predictive service, with per-level delay bounds that are order

of magnitude different from each other. The ACA at each

switch enforces the queueing delay bound at that switch. We

leave the satisfaction of end-to-end delay requirements to the

end systems. We also assume the existence of a reservation

protocol which the end systems could use to communicate

their resource requirements to the network.

when admitting a new flow, not only must the ACA decide

whether the flow can get the service requested, but it must

also decide if admitting the flow will prevent the network from

keeping its prior commitments. Let us assume. for the moment,

that admission control cannot allow any delay violations. Then,

tbe ACA must analyze the worst-case impact of tbe newly

arriving flow on existing flows’ queueing delay. However,

with bursty sources, where the token bucket parameters are

very conservative estimates of the average traffic, delays

rarely approach these worst-case bounds. To achieve a fairly

reliable bound that is less conservative, we approximate the

maximal delay of predictive flows by replacing the worst-case

parameters in the analytical models with measured quantities.
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We call this approximation the equivalent token bucket jilter.

This approximation yields a series of expressions for the

expected maximal delay that would result from the admission

of a new flow. In CSZ, switches serve guaranteed traffic with

the weighted fair queueing scheduling discipline (WFQ) and

serve different classes of predictive traffic with priority queue-

ing. Hence, the computation of worst-case queueing delay is

different for guaranteed and predictive services. In this section,

we will first look at the worst-case delay computation of

predictive service, then that of guaranteed service. Following

the worst-case delay computations, we present the equivalent

token bucket filter. We close this section by presenting details

of the ACA based on the equivalent token bucket filter

approximations.

A. Worst-Case Delay: Predictive Service

To compute the effect of a new flow on existing predictive

traffic, we first need a model for the worst-case delay of

priority queues. Cruz, in [9], derived a tight bound for the

worst-case delay, D;, of priority queue level j. Our derivation

follows Parekh’s [34], which is a simpler, but looser, bound

for D; that assumes small packet sizes, i.e., the transmission

time of each packet is sufficiently small (as compared to other

delays) and hence can be ignored. This assumption of small

packet sizes further allows us to ignore delays caused by the

lack of preemption. Furthermore, we assume that the aggregate

rate, aggregated over all traffic classes, is within the link

capacity (.X ~j < p).

Theorem l–Parekh [341: The worst-case class j delay,

with first in first out (FIFO) discipline within the class and

assuming infinite peak rates for the sources, is

for each class j. Further, this delay is achieved for a strict

priority service discipline under which class j has the least

priority.~

The theorem says that the delay bound for class j is the

one-time delay burst that accrues if the aggregate bucket of

all classes 1 through j flows are simultaneously dumped into

the switch and all classes 1 through j – 1 sources continue to

send at their reserved rates.

We now use (1) as the base equation to model the effect of

admitting a new flow a on existing predictive traffic. First we

approximate the traffic from all flows belonging to a predictive

class j as a single flow conforming to a (VJ, bj ) token bucket

filter. A conservative value for Vj would be the aggregate

reserved rate of all flows belonging to class j. Next, we

recognize that there are three instances when the computed

worst-case delay of a predictive class can change: 1) when

a flow of the same class is admitted, 2) when a flow of a

higher priority class is admitted, and 3) when a guaranteed

flow is admitted. The switch priority scheduling isolates higher

3For ~ ~rmf of Theorem ], we refer interested readers ~0 [34, Theorem

2.4], or [24, Theorem 1].

priority (<k) classes from a new flow of class k. so their

worst-case delay need not be re-evaluated when admitting a

flow of class k. In the remainder of this section, we compute

each of the three effects on predictive traffic individually. At

the end of these computations, we will observe that admitting

a higher priority predictive flow “does more harm” to lower

priority predictive traffic than admitting either a guaranteed

flow or a predictive flow of the same priority.

In the equat~ons below, we denote newly computed delay

bound by D* . We denote the sum of guaranteed flows’

reservation by VG. The link bandwidth available for serving

predictive traffic is the nominal link bandwidth minus those

reserved by guaranteed flows: IL– vG,

1) Effect of New Predictive Flow n on Same Priority Traf-

fic: We can model the effect of admitting a new flow o

of predictive class k by changing the class’s token bucket

parameters to (Vk + r:. 6L.+ U~), where (r;. b; ) are the token

bucket parameters of the new flow

A.–1

x
bi

D~’ =
,=1

A.–1

/1 – Ilc; –
x’”
,=]

(2)

We see that the delay of class k grows by a term that is

proportional to flow a’s bucket size.

2) Effect of Predictive Flow o on Lower Priority Trafjic: We

compute the new delay bound for class j, where j is greater

than the requested class, A, directly from (I), adding in the

bucket depth M; and reserved rate r: of flow n

D;’

where K is the number of predictive classes. The first term re-

flects a squeezing of the pipe, in that the additional bandwidth

required by the new flow reduces the bandwidth available for

lower priority flows. The second term is similar to the delay

calculated above, and reflects the effect of the new flow’s

burstiness.

3) E#ect of Guaranteed Flow a on Predictive Traf-

jic: Again, we compute the new delay bound D*’ for all

predictive classes directly from (1), adding in the reserved
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rate, I“:, 0 f flow (i

Notice how the new guaranteed flow simply squeezes the

pipe, reducing the available bandwidth for predictive flows;

new guaranteed flows do not contribute any delay due to their

buckets because the WFQ scheduling algorithm smooths out

their bursts. Also observe that the first term of (3) is equivalent

to (4): the impact of a new guaranteed flow is like adding a

zero-size bucket, higher priority, predictive flow.

Contrasting these three equations, we see that the exper-i-

enced delay of lower priority predictive traffic increases more

when a higher priority predictive flow is admitted than when a

guaranteed flow or ti same-priority predictive flow is admitted.

The WFQ scheduler isolates predictive flows from attempts

by guaranteed flows to dump their buckets into the network as

bursts. In contrast, lower priority predictive traffic sees both the

rates and buckets of higher priority predictive flows. A higher

priority predictive flow not only squeezes the pipe available

to lower priority traffic. but also preempts it.

B. Worst-Case Delay: Guaran~eed Senice

In [34], the author proves that in a network with arbitrary

topology, the WFQ scheduling discipline provides guaranteed

delay bounds that depend only on flows’ reserved rates and

bucket depths. Under WFQ, each guaranteed flow is isolated

from the others. This isolation means that, as long as the total

reserved rate of guaranteed flows is below the link bandwidth,

new guaranteed flows cannot cause existing ones to miss their

delay bounds. Hence, when accepting a new guaranteed flow,

our ACA only needs to assure that I ) the new flow will not

cause predictive flows to miss rheir delay bound [see (4)1,

and that 2) it will not oversubscribe the link: v(; + rfi 5 t ~11,

where p is the link bandwidth and II is the utilization target

(see Section III-B for a discussion on utilization target). In

addition to protecting guaranteed flows from each other, WFQ

also isolates (protects) guaranteed flows from all predictive

traffic.

C. Equivalent Token Bucket Filter

l%e equations above describe the aggregate traffic of each

predictive class with a single token bucket filter. How do we

determine a class’s token bucket parameters? A completely

conservative approach would be to make them the sum of

the parameters of all the constituent flows: when data sources

are bursty and flows declare conservative parameters that

parameters will result in low link utilization. Our algorithm

is approximate and optimistic: we take advantage of statistical

multiplexing by using measured values, instead of providing

for the worst possible case, to gain higher utilization, risking

that some packets may occasionally miss their delay bounds.

In essence, we describe existing aggregate traffic of each

predictive class with an equivalent token bucker ,filter with

parameters determined from traffic measurement,

The equations above can be equally described in terms of

current delays and usage rates as in bucket depths and usage

rates. Since it is easier to measure delays than to measure

bucket depths, we do the former. Thus. the measured values

for a predictive class ,j are the aggregate bandwidth utilization

of the class, i},. and the experienced packet queueing delay for

that class, D,. For guaranteed service, we count the sum of

all reserved rates, V(J, and we measure the actual bandwidth

utilization, fit;. of all guaranteed flows. Our approximation is

based on substituting, in the above equations. the measured

rates ti~ and tic; for the reserved rates. and substituting the

measured delays f)j. ,j = 1. ., . K for the maximal delays.

We now use the previous computations and these measured

values to formulate an ACA.

D. The Admission Control Algorithm

1) New Predictive Flow: If an incoming flow (t requests

service at predictive class k, the ACA:

1) denies the request if the sum of the flow’s requested

rate, r:, and current usage would exceed the targeted

link utilization level

.Y

2) denies the request if admitting the new flow could violate

the delay bound, [)h., of the same priority level

(6)

or could cause violation of lower priority classes’ delay

bound, D,

)–1

t);

+ ~ <,1 ~ h’. (7)
./–1

ii – i]<; –
x

i), — r;

,=]

2) New Guaranteed Flow: If an incoming flow C! requests

guaranteed service, the ACA:

1) denies the request if either the bandwidth check in (5)

fails or if the reserved bandwidth of all guaranteed flows

exceeds the targeted link utilization level

cover their worst-case bursts, using the sum of declared 1~1(> r:; + u(;: (8)
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2) denies the request if the delay bounds of predictive

classes can be violated when the bandwidth available

for predictive service is decreased by the new request

If the request satisfies all of these inequalities, the new flow

is admitted.

111. A SIMPLE TIME-WINDOW MEASUREMENT MECHANISM

The formulas described in the previous section rely on the

measured values D,, ~G, and fij as inputs. We describe in

this section the time-window measurement mechanism we use

to measure these quantities. While we believe our admission

control equations to have some fundamental principles un-

derlying them, we make no such claim for the measurement

process. Our measurement process uses the constants A. S,

and T; discussion of their roles as performance tuning knobs

follows our description of the measurement process.

A. Measurement Process

We take two measurements: experienced delay and utiliza-

tion. To estimate delays, we measure the queueing delay d

of every packet. To estimate utilization, we sample the usage

rate of guaranteed service, fig, and of each predictive class

j, O?, over a sampling period of length S packet transmission

units. In the following, we describe how these measurements

are used to compute the estimated maximal delay Dj and the

estimated utilization fiG and fij.

J) Measuring Delay: The measurement variable ~, tracks

the estimated maximum queueing delay for class j. We use

a measurement window of T packet transmission units as

our basic measurement block. The value of Dj is updated

on three occasions. At the end of the measurement block, we

update D, to reflect the maximal packet delay seen in the

previous block. Whenever an individual delay measurement

exceeds this estimated maximum queueing delay, we know

our estimate is wrong and immediately update Dj to be A

times this sampled delay. The parameter A allows us to be

more conservative by increasing Dj to a value higher than

the actual sampled delay. Finally, we update b] whenever a

new flow is admitted, to the value of projected delay from

our admission control equations. Algebraically, the updating

Of Dj is as fOllOWS:

{

MAX (d).

Ad,

~~ = Right side of

eq. (6). (7), or (9)

of past T measurement window

ifd>~j

when adding a new flow

depending on the service and

class requested by the flow.

(lo)

2) Measuring Rate: The measurement variables OG and fij

track the highest sampled aggregate rate of guaranteed flows

and each predictive class respectively (heretofore, we will use

, ,“ and “tis” for “fi~ andlor“fi” as a shorthand for “CC;andlor O

0$ .“) The value of O is updated on three occasions. At the end

o+ the measurement block, we update O to reflect the maximal

sampled utilization seen in the previous block. Whenever an

individual utilization measurement exceeds fi, we immediately

update O with the new sampled value. Finally, we update L

whenever a new flow is admitted. Algebraically, the updating

of O is as follows:

{

MAX (Ds). of past T measurement window

fis .
u’ =

if tis >0. where Os is the average

rate over S averaging period

ti+ r”. when adding a new flow n.

(11)

The measured rate of guaranteed traffic is capped at the sum

of guaranteed reserved rate (ti~ = MIN (tic, VG) ).

When a flow leaves the network, we do not explicitly

adjust the measured values; instead we allow the measurement

mechanism to adapt to the observed traffic automatically.

We do, however, subtract the reserved rate of a departing

guaranteed flow from the sum of all guaranteed reserved rate,

UG.

B. Performance Tuning Knobs

We now look at the constants used in the algorithm.

1) v: [n a simple A1/A4/ 1 queue, the variance in de-

lay diverges as the system approaches full utilization. A

measurement-based approach is doomed to fail when delay

variations are exceedingly large, which will occur at very high

utilization. It is thus necessary to identify a utilization target

and require that the ACA strive to keep link utilization below

this level.

The appropriate utilization target of any given link depends

on the characteristics of the traffic flowing through it. If each

source’s rate is small compared to link capacity (small grain

size) and bursts are short, the link’s utilization target can be

set higher. Bursty sources with big, long bursts or long idIe

periods will require a lower link utilization target. In this paper,

we set utilization target at 9090 capacity.

2) A: In our simulations, a single instance of packet delay

above the current estimate typically indicates that subsequent

delays are likely to be even Iargen so when a packet’s queueing

delay, d, is higher than its class’s estimated maximal delay Dj,

we back off our delay estimate to a much larger value, ~~. In

this paper, we use J = 2.

3) S: The averaging period S in (11) controls the sensi-

tivity of our rate measurement. The smaller the averaging

period, the more sensitive we are to bursts; the larger the

averaging period, the smoother traffic appears. An S that

captures individual bursts may make the admission control

more conservative than desired. In this paper we use S of at

least 100 packet transmission times.

4) T: Once b or O is increased, their values stay high

until the end of their respective measurement window T.

The size of 2’ controls the adaptability of our measurement
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mechanism to drops in traffic load. Smaller T means more

adaptability, but larger T results in greater stability. The

window size for utilization measurement should allow for

enough utilization samples, i.e.. T should be several times S,

The measurement windows of the load and the delay can be

maintained independently. When we admit a new flow and add

its worst case effect to the measured values, we also restart the

measurement windows to give the measurement mechanism

one whole window to gather information on the new flow.

Of the four performance knobs, I~.A. .9. and T. tuning T

provides the most pronounced effect on experienced delay

and link utilization. Varying T has two related effects on the

ACA. First. since T is the length of the measurement block

used to determine how long we keep the previous maximal

packet delay and sampled utilization, increasing T makes these

estimates more conservative, which in turn makes the ACA

itself more conservative. Thus. larger T means fewer delay

violations and lower link utilization. Second, T also controls

how long we continue to use our calculated estimate of the

delay and utilization induced by a newly admitted flow. Recall

that whenever a new flow is admitted, we artificially increase

the measured values to reflect the worst-case expectations, and

then restart the measurement window, Thus, we are using the

calculated effects of new flows rather than the measured effects

until we survive an entire T period without any new flow

arrival. This means that if F is the average flow reservation

rate, and I( the link bandwidth (and assuming (? = 1 for

convenience), we will admit at most p/7 number of flows

and then not admit anymore flow until the end of a T period.

During its lifetime, l.. a flow will see approximately A = ~L/F

number of flows admitted every T period. Thus at the end

of its average lifetime, ~, an average flow would have seen

approximately 1“ = .4 * ~/T number of flows. If the average

rate of an average flow is ~, ideally we want F * ~, a link’s

stable utilization level, to be near ~~, However, flows also

depart from the network. The expected number of admitted

flow departures during the period T depends on the number

of flows and their duration. lf this number of departures is

significant, a flow will see a much smaller number of flows

during its lifetime, i.e., the stable F’* ~ becomes much smaller

than I(. For the same average reservation rate, T, and a given

T. the size of the stable F is determined by the average

flow duration, ~. A shorter average flow duration means more

departure per T. In the long run, we aim for F’ * ~ = p. or

equivalently, ~/T s F/;. If all flows use exactly what they

reserved. we have ~~ T = 1, meaning that we should not

try to give away the flows’ reservations. We present further

illustrative simulation results on the importance of the ~/T

ratio in Section IV-E. Note that when T is infinite, we only

use our computed values, which are conservative bounds, and

ignore the measurements entirely. That is, we will never suffer

any delay violations at a given hop if we use an infinite value

for T. Thus, the parameter T always provides us with a region

of reliability.

IV. SIMULATIONS

Admission control algorithms for guaranteed service can be

verified by formal proof. Measurement-based ACAS can only

(a) One-Link

d@+*
(b) Two-Link

I-lk

(HostE] (HostD) “~

(c) Four-Link

Fig. 1. The em-link, two-link. and t’our-llnk [opo]ogms

be verified through experiments on either real networks or a

simulator. We have tested our algorithm through simulations

on a wide variety of network topologies and driven with

various source models; we describe a few of these simulations

in this paper. In each case, we were able to achieve a

reasonable degree of utilization (when compared to guaranteed

service) and a low delay bound violation rate (we try to be very

conservative here and always aim for no delay bound violation

over the course of all our simulations). Before we present the

results from our simulations, we first present the topologies

and source models used in these simulations,

A. Simulated Topologies

For this paper, we ran our simulations on four topologies:

the ONE-LINK. TWO-LINK, FOUR-LINK, and TBONE topologies

depicted in Fig. l(a)--(c) and Fig. 2, respectively. In the first

three topologies, each host is connected to a switch by an

infinite bandwidth link. The connection between switches in

these three topologies are all 10 Mb/s links, with infinite

buffers. In the ONE-LINK topology, traffic flows from HostA

to HostB. In the TWO-LINK case, traffic flows between

three host pairs (in source~estination order): HostA–HostB,

HostB–HostC, HostA–HostC, Ffows are assigned to one

of these three host pairs with uniform probability. [n the

FOUR-LINK topologies, traffic flows between six host pairs:

HostA–HostC, HostB–HostD, HostC–HostE, HostA-HostD,

HostB–HostE, HostD–HostE; again, flows are distributed

among the six host pairs with uniform probability. In Fig. 1.

these host pairs and the paths their packets traverse are

indicated by the directed curve lines.

The TBONE topology consists of 10,45, and 100 Mb/s links,

as depicted in Fig. 2(a). Traffic flows between 45 host-pairs

following four major “currents” as shown in Fig. 2(b): tbe

numbers 1, 2, 3, 4 next to each directed edge in the figure

denote the “current” present on that edge. The 45 host-pairs are

listed in Table I. Flows between these host-pairs ride on only

one current, for example flows from host H 1 to H26 rides on

current 4. In Fig. 2(a), a checkered box on a switch indicates

that we have instrumented the switch to study traffic flowing

out of that switch onto the link adjacent to the checkered box.
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(a)

Fig 2. The TBONE topology. (a) TBONE topology. (b) Four traffic “cur-

rents” on TBONE.

TABLE I

FORTY-FIVEHOST PAIRS oh TBONE

Source Destination(s) Source Destination(s)

HI HI H5, H7, Hll, H14 H23 and H25

H12, H14, and

H26

H2 H 10 and H25 H15 Hll and H17

H3 H4 and H19 H16 H5 and H9

H4 H18 H17 H12

H5 H 14 and H25 H19 H5

H6 H18 H20 H5

H7 H17 H21 H9

H8 H4, H5, H26 H22 H6

H9 H3 and H19 H24 H12 and H17

HIO H3and H18 H25 H6 and H14

H12 H4 H26 H9 and H14

H13 H17 H27 H4

B. Source Models

We currently use three kinds of source model in our sim-

ulations. All of them are ONIOFF processes. They differ in

the distribution of their ON time and call holding time (CHT,

which we will also call “flow duration” or “flow lifetime”).

One of these is the two-state Markov process used widely

in the literature. Recent studies ([6], [13], [18], [28], [30],

[35]) have shown that network traffic often exhibits long-

range dependence (LRD), with the implications that congested

periods can be quite long and a slight increase in number of

active connections can result in large increase in packet 10SS

rate [35]. Paxson and Floyd [35] further called attention to the

possibly damaging effect long-range dependent traffic might

have on measurement-based ACA’S. To investigate this and

other LRD-related questions, we augmented our simulation

study with two LRD source models.

1) EXP Model: Our first model is an ON1OFF model with

exponentially distributed ON and OFF times. During each

ON period, an exponentially distributed random number of

packets, with average N, are generated at fixed rate p packet.k.

Let 1 ms be the average of the exponentially distributed OFF

times, then the average packet generation rate a is given by

1/a = l/lV + I/p. The EXP1 model described in the next

section is a model for packetized voice encoded using ADPCM

at 32 Kb/s.

2) ~D—Parefo-ON/OFF: Our next model is an oNloFF

process with Pareto distributed ON and OFF times (for ease of

reference, we call this the Pareto-ON/OFF model). During each

ON period, a Pareto distributed number of packets, with mean

N and Pareto shape parameter [?, are generated at peak rate p

packet/s. The OFF times are also Pareto distributed with mean

1 ms and shape parameter -y. Pareto shape parameter less than

1 gives data with infinite mean; shape parameter less than

two results in data with infinite variance. The Pareto location

parameter is mean* (shape – 1)/shapr. Each Pareto-ON/OFF

source by itself does not generate LRD series. However, the

aggregation of them does [39].

3) LRD-Fractional ARIMA: We use each number generated

by the fractional auioregressive integrated moving average

(fARIMA) process [22] as the number of fixed-size packets

to be sent back to back in each ON period. Interarrivals of

ON periods are of fixed length. For practical programming

reasons, we generate a series of 15000 fARIMA data points

at the beginning of each simulation. Each fARIMA source then

picks a uniformly distributed number between 1 and 15000

to be used as its index into that series. On reaching the end

of the series, the source wraps around to the beginning. This

method is similar to the one used by the authors of [18] to

simulate data from several sources using one variable bit rate

(VBR) video trace.

The fractional ARIMA model generates long-range dependent

series. However, the marginal distribution of fARIMA generated

series is Gaussian, whereas VBR video traces exhibit low

average with high peaks; thus we can not use the fARIMA

output to model traffic from a single VBR video source.

Nevertheless, simulation results in [18] indicated that aggre-

gation of fARIMA generated series may well model aggregate

VBR video traffic-such as that coming from a subnetwork.

The fARIMA model takes three parameters: the autoregressive

process order with the corresponding set of weights, the degree

of integration, and the moving average process order with the

corresponding set of weights, it also requires an innovation

with a Gaussian marginal distribution (see, e.g., [4], [21]).

We first generate a normally distributed innovation with mean

N and standard deviation s packets. If the minimum of the

fARIMA output is less than zero, we shift the whole series by
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adding the absolute value of its minimum to every number

in the series. This way of obtaining nonnegative series is

also used in [ 1]. Note that this shifting process constrains

the maximum value of the generated series to be always

twice its average. The Whittle maximum likelihood estimator

[3] confirms that our shifting, cropping. and overlaying of

the fARIMA generated series does not destroy its long-range

dependence.

Fig. 3 shows a packet-arrival depiction of an ON/OFFsource

in the context of a host with token-bucket filter. To make a

given traffic generation source conform to a particular token

bucket filter, a host can queue packets arriving at an empty

bucket until more tokens are available. If the data queue length

(B) is zero, puckets that arrive at an empty token bucket are

immediate y dropped.

In addition to each source’s burstiness, network traffic

dynamics is also effected by the arrival pattern and duration

of flows. Our simulator allows us to drive each simulation

with a number of flow generators; for each generator, we can

specify its start and stop times, the average flow interarnval

time, the maximum number of concurrently active flows, and

the mix of transport protocol, source model, token bucket

filter, and service request ascribed to each flow. We ascribe

exponentially distributed lifetimes to the EXP model, following

[31 ]. The duration of for LRD sources, however, are taken

from a Iognorrnal distribution, following 15] and [13]. The

interamival times of all flows are exponentially distributed

[35].

C. Parameter Choices

We chose six instantiation of the above three source

models, as summarized in Table II. In the table, p = x

means that after each CSFFtime, packets for the next ON period

are tmnsmitted back to back. (On real networks, packets are

sent back to back when the applications generate traffic Faster

than the network can transmit it. ) [n the same table, we also

list the settings of the token bucket parameters assigned to

each source. Column 8. labeled cuf rate, indicates the average

number of packets that would have been dropped by each

flow’s token bucket filter over the total number of packets sent

by the flow, had the data queue length been zero (i.e., packets

are immediately dropped upon arriving at an empty token

bucket). Column 9, labeled mm qlen, shows the maximum

data queue length a flow can expect to see if the data queue

has infinite length. We assign each flow a data queue with

infinite length in all our simulations (i.e., packets that arrive

at an empty token bucket are always queued, and the queue

never overflows). Recall that in this paper we use fixed packet

size and each of our token is worth I Kb of data, which is

also our packet size.

The shape parameter of the Pareto distributed ON time

(~~) of the Pareto-oN/om sources are selected following the

observations in [39]. According to the same reference, the

shape parameter of the Pareto distributed Om time (v) stays

mostly below 1.5; in this paper, we use A,of 1.1 for all PO()

sources. For the POO1 model, we use a token bucket rate equals

to the source’s peak rate such that the token bucket filter

does not reshape the traffic. For the P002 model, some of

the generated packets were queued; this means during some

of the source’s alleged “OW” times, it may actually still be

draining its data queue onto the network. Thus for the PO02

model, the traffic seen on the wire may not be pareto-oNfOFl-.

When a flow with token bucket parameters (r. b) requests

guaranteed service, the maximal queueing delay (ignoring

terms proportional to a single packet time) is given by tj/ r [34].

Column If), labeled ~1”, lists the guaranteed delay bound for
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each source given its assigned token bucket filter. Column 11,

labeled Dj, lists the predictive delay bound assigned to each

source. We simulate only two classes of predictive service.

A predictive bound of 16 ms means first class predictive

service, 160-ms second class. We have chosen the token bucket

parameters so that, in most cases, the delay bounds given to a

flow by predictive and guaranteed services are the same. This

facilitates comparison between the utilization levels achieved

with predictive and guaranteed services. In the few cases where

the delays are not the same, such as in the PO02 and fARIMA

cases, the utilization comparison is less meaningful. In the

PO02 case, for example, the predictive delay bound is smaller

than the guaranteed bound, so the utilization gain we find here

understates the true gain.

For the fARIMA source, we use an autoregressive process

of order 1 (with weight 0.75) and degree of integration 0.15

(resulting in a generated series with Hurst parameter 0.65).

The first order autoregressive process with weight 0.75 means

our fARIMA traffic also has strong short-range dependence,

while maintaining stationarity [4, p. 53]. The interarrival

time between ON periods is 1/8th of a second. The Gaussian

innovation fed to the fARIMA process has a mean of 8 packets

with standard deviation 13.

Except for simulations on the TBONE topology, flow interar-

rival times are exponentially distributed with an average of 400

ms. Because of system memory limitation, we set the average

flow interarrivals of simulations on the TBONE topology to 5

s. The average holding time of all EXP sources is 300 s. The

POO and fARIMA sources have lognormal distributed holding

times with median 300 s and shape parameter 2.5.

We ran most of our simulations for 3000 s simulated time.

The data presented are obtained from the later half of each

simulation. By visual inspection, we determined that 1500

simulated seconds is sufficient time for the simulation to

warm up. However, simulations with long-range dependent

sources requesting predictive service requires a longer warmup

period. We ran all simulation involving such sources for 5.5 h

simulation time, with reported data taken from the later 2.7 h.

We divide the remainder of this section up into three sub-

sections. First, we show that predictive service indeed yields

higher level of link utilization than guaranteed service does.

We provide supporting evidence from results of simulations

with both homogeneous and heterogeneous traffic sources, on

both single-hop and multihop networks. Depending on traffic

burstiness, the utilization gain ranges from twice to order of

magnitude. This is the basic conclusion of this paper.

Second, we provide some simulation results to illustrate the

effect of the ~/T ratio on network performance, as discussed

in Section III-B. We show that a larger ~/T ratio yields higher

utilization but less reliable delay bound, while a smaller one

provides more stable delay estimate at lower utilization. We

also present a few sample path snapshots illustrating the effect

of T.

Finally, we close this section with a discussion of some

general allocation properties of ACA’s when flows are not

equivalent; we believe these properties to be inherent in all

ACA’S whose only admission criterion is to avoid service

commitment violations.

TABLE 111

SINGLE-HOP HOMmENEOUS SOURCESSIMLILATIONRESULTS

Model Guaranteed Predictive

Name %Util #Actv 9$Uti1 #Actv ((fJl El T
EXPI 46 144 so 250 3 60

EXP2 28 2s 76 75 42 300

EXP3 2 18 62 466 33 600

Pool 7 144 74 1637 5 60

PO02 3 38 64 951 8 60

fARIMA 55 9 81 13 71 60

D. On the Uability of Predictive Service

We considered six different source models, four different

network topologies (one single hop and three multihop), and

several different traffic mixes. In particular, some of our

traffic loads consisted of identical source models requesting

the same service (the homogeneous case), and others had

either different source models and/or different levels of service

(the heterogeneous case). The organization of our presentation

in this section is: 1) homogeneous sources, single hop, 2)

homogeneous sources, multihop, 3) heterogeneous sources,

single hop, and 4) heterogeneous sources, multihop.

1) Homogeneous Sources—The Single-Hop Case: By homo-

geneous sources, we mean sources that not only employ just

one kind of traffic model, but also ask for only one kind of

service. For this and all subsequent single-hop simulations,

we use the topology depicted in Fig. 1(a). For each source,

we ran two kinds of simulation. The first has all sources

requesting guaranteed service. The second has all sources

requesting predictive service. The results of the simulations

are shown in Table III. The column labeled “%Util” contains

the link utilization of the bottleneck link, L3. The “#Actv”

column contains a snapshot of the average number of active

flows concurrently running on that bottleneck link. The “ [d,]”

column contains the maximum experienced delay of predictive

class j packets. The “~/T” column lists the ratio of average

flow duration to measurement window used with each source

model.

We repeated the predictive service simulations nine times,

each time with a different random seed, to obtain confidence

intervals. We found the confidence interval for the all the

numbers to be very tight. For example, the utilization level of

POO 1 sources under predictive service has a !)9Y0 confidence

interval of (74.01, 74.19); the 99% confidence interval for

the maximum experience delay is (4.41, 4.84) (the number

reported in the table is the ceiling of the observed maximum).

As mentioned in Section IV-B, we consider the performance

of our ACA “good” if there is no delay bound violation during

a simulation run. Even with this very restrictive requirement,

one can see from Table 111that predictive service consistently

allows the network to achieve higher level of utilization than

guaranteed service does. The utilization gain is not large when

sources are smooth. For instance, the source model EXP] has

a peak rate that is only twice its average rate. Consequently,

the data only shows an increase in utilization from 46%

to 80Y0. (One can argue that the theoretical upper bound

in the utilization increase is the peak to average ratio.) In

contrast, bursty sources allow predictive service to achieve
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several orders of’ magnitude higher utilization compared to

that achievable under guaranteed service. Source model EXP3,

for example, is a very bursty source; it has an infinite peak

rate (i.e. sends out packets back to back) and has a token

bucket of size 80. The !xP.? flows request reservations of512

Kb/s, corresponding to the token bucket rate at the sources.

Under guaranteed service. only 18 flows can be admitted to

the 10 Mb/s bottleneck link (with 90Yc utilization target). The

actual link utilization is only 270.4 Under predictive service,

466 flows are served on the average, resulting in actual link

utilization of 62%,

In this homogeneous scenario with only one class of

predictive service and constantly oversubscribed link, our

measurement-based ACA easily adapts to LRD traffic between

the coming and going of flows. The utilization increased from

7% to 74’% and from 3% to 64% for the POO 1 and Poo2

sources, respectively, The utilization gain for the fARIMA

sources was more modest. from 55’7c to 8 I %. This is most

probably because the source’s maximum (m time is at most

twice its average (an artifact of the shifting we do, as discussed

in Section IV-B, to obtain nonnegative values from the fARIMA

generated series ). In all cases, we were able to achieve high

levels of utilization without incurring delay violations. To

further test the effect of hmg CWPtimes on our measurement-

based algorithm. we simulated PO() I sources with infinite

duration. With utilization target of 90% link capacity, we

did see a rather high percentage of packets missing their

delay bound. Lowering the utilization target to 7(Y?c,however,

provided us enough room to accommodate traffic bursts. Thus

for these scenarios, we see no reason to conclude that LRD

traffic poses special challenges to our measurement-based

approach.

2) Homogeneous Source.r-The Multihop Case: Next, we

ran simulations on multihop topologies depicted in Fig. I (b)

and I(c). The top half of Table IV shows results from

simulations on the TWOLINK topology. The utilization

numbers are those of the two links connecting the switches in

the topology. The source models employed here are the EXP1,

EXP3, and PO02 models, one per simulation. The bottom half

of Table IV shows the results from simulating source models

~xP2, POO 1, and fARIMA on the FOtJR-LINK topology, For

each source model, we again ran one simulation where all

sources request guaranteed service, and another one where all

sources request one class of predictive service,

The most important result to note is that, once again, pre-

dictive service yielded reasonable levels of utilization without

incurnng any delay violations, The utilization levels, and the

utilization gains compared to guaranteed service, are roughly

comparable to those achieved in the single hop case.

3) Heterogeneous Source.r-The Single-hop Case: We now

look at simulations with heterogeneous sources. For each of the

simulation, we used two of our six source model instantiations.

Each source was given the same token bucket as listed in Table

11 and, when requesting predictive service, requests the same

delay bound as listed in the said table, We ran three kinds of

TABLE lV
MIII.TIHOPHOW(X;F.NEINs So( RC’F.$LINK UTII.I/ATI()\

Topology
Link Model Guaranteed Predicli\e

name name ‘kUtil ‘7I_Jtit (/,

HP) 45 67 I ~

TWO-LINK
Iwo? 3 59 7

F.XPI 46 78 3

L5 F.XP3 2 58 30

] fARISIA 55 77 40
F()(R-LINK

F:XP2 28 7? 2-I

I L8 IWX)I 1X17517

TABLE V

SINGLE-HOP,SINGI.ESm R(-E Mom., MLI.TIPIF.

PREDHTIW SERVICE’SLINK UTII.IZATION.

Model PP GP GPP

t.xPl 77 77 —-

F.XP2 71 70

kxP3 31 31 —

Pm) 1 7[) 69 69

P(n)? 60 57

L4RI~A 79 79 78

simulation with heterogeneous sources: 1) single source model

requesting multiple levels of predictive service, 2) multiple

source models requesting a single class of predictive service,

and 3) multiple source models requesting multiple levels of

predictive service. In all cases, we compared the achieved

utilization with those achieved under guaranteed service. For

the first and third cases, we also experimented with sources

that request both guaranteed and predictive services. When

multiple source and/or service models were involved, each

model was given an equal probability of being assigned to the

next new flow. In all these simulations, the experienced delays

were all within their respective bounds.

Table V shows the utilization achieved when flows with the

same source model requested: two classes of predictive service

(PP), guaranteed and one predictive class (GP), and guaranteed

and two predictive classes (GPP). [n the GP case, flows request

the predictive class “assigned’ to the source model under study

(see Table II). In the other cases, both predictive classes, of

bounds 16 and 160 ms were requested. Compare the numbers

in each column of Table V with those in the “70Util” column of

Table 111under guaranteed service. The presence of predictive

traffic invariably increases network utilization.

Next, we look at the simulation results of multiple source

models requesting a single service model. Table VI shows

the utilization achieved for selected pairings of the models.

The column headings name the source model pairs. The first

row shows the utilization achieved with guaranteed service,

the second predictive service. We let the numbers speak for

themselves.
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TABLE VI

SINGLE-HOP,MULTIPLESOLIRCEMODELS,SINGLESERVICELINK UTILIZATION

TABLE VIII

SINGLE-ANDMULTIHOP,ALL SOURCEMODELS,ALL SERVICESLINK UTILIZATION

Service
EXP]– EXP2– EXP2– EXP2– EXP3– m2–

Poo 1 EXP3 PO02 fARIMA fARIMA fARIMA

Guaranteed 15 21 5 38 18 32

Predictive 75 70 63 79 81 69

TABLE VII

SINGLE-HOP,MULTIPLE SOURCEMODELS,

MULTIPLEPREDICTIVESERVICESLINK UTILIZATION

Service
EXPl- EXPl– EXP[– EXP2– EXP3– Fool–

EXP2 fARIMA PD02 PooI Pool fARIMA

Guaranteed 43 50 29 10 7 23

Guw./Pred. 73 74 65 61 51 65

Predictive 75 78 65 62 60 65

Finally, in Table VII we show utilization numbers for

flows with multiple source models requesting multiple service

models. The first row shows the utilization achieved when

all flows asked only for guaranteed service. The second

row shows the utilization when half of the flows requests

guaranteed service and the other half requests the predictive

service suitable for its characteristics (see Table II). And the

last row shows the utilization achieved when each source

requests a predictive service suitable for its characteristics.

4) Heterogeneous Sources—The Multihop Case: We next

ran simulations with all six source models on all our

topologies. In Table VIII we show the utilization level of the

bottleneck links of the different topologies. Again, contrast the

utilization achieved under guaranteed service alone with those

under both guaranteed and predictive services. The observed

low predictive service utilization on link L6 is not due to

any constraint enforced by its own admission decisions, but

rather is due to lack of traffic flows caused by rejection of

multihop flows by later hops, as we will explain in Section

IV-F. Utilization gains on the TBONE topology are not so

pronounced as on the other topologies. This is partly because

we are limited by our simulation resources and cannot drive

the simulations with higher offered load. Recall that flow

interarnvals on simulations using the TBONE topology have

an average of 5 s, which is an order of magnitude larger than

the 400 ms used on the other topologies.

Our results so far indicate that a measurement-based ACA

can provide reasonable reliability at significant utilization

gains. These conclusions appear to hold not just for single hop

topologies and smooth traffic sources, but also for multihop

configurations and long-range dependent traffic as we have

tested. We cannot, within reasonable time, verify our approach

in an exhaustive and comprehensive way, but our simulation

results are encouraging.

E. On the Appropriate Value of T

In Section III-B, we showed that T has two related effects on

the ACA: 1) too small a T results in more delay violations and

lower link utilization and 2) too long a T depresses utilization

by keeping the artificially heightened measured values for

longer than necessary. While the first effect is linked to flow

Topology Link Guarantee~

name name 91Util

ONE-LINK L3 24

L4 15

TWO-LINK L5 21

L6 19

L7 24

FOUR-LINK L8 20
L9 18

L2 9

LIO 17

Lll 27

TBONE L12 22

L20 8

L30 32

Guaranteed and PI

T

+

66 ‘3.

72 ?

72 2. ‘“

T-l-7
7? 2.

75 1.

T
14 0.02

31 0.15

32 0.37

23 0.1

21 0,22

52 0.49

TABLE IX

EFFECTOF T AND ~

ictive

~

45.

54.

41.

36.

46,

49,

53.

0,15
5.35
21.9
5.84
16.6
34.7

5e4 81 22

1e5 77 15

2e5 75 13

5e5 68 5

(a)

T

E 1e4 Ie5

%Util d , $6Util d ,

3000 86 48 82 24

900 84 3? 80 16

300 82 25 77 15

100 81 21 76 11

30 78 15 69 7

(b)

duration only if the flow exhibits long-range dependence, the

second effect is closely linked to the average flow duration in

general. The results in this section are meant to be canonical

illustrations on the effect of T on the ACA, thus we do not

provide the full details of the simulations from which they are

obtained.

In Table IX(a), we show the average link utilization and

maximum experienced delay from simulations of flows with

average duration of 300 s. We varied the measurement win-

dow, T. from le4 packet times to 5e5 packet times. Notice

how smaller T yields higher utilization at higher experienced

delay and larger T keeps more reliable delay bounds at the

expense of utilization level. Next, we fixed T and varied

the average flow duration. Table IX(b) shows the average

link utilization and maximum experienced delay for different

values of average flow duration with T fixed at le4 and le5.

We varied the average flow duration from 3000 s (practically

infinite, given our simulation duration of the same length) to

30 s. Notice how longer lasting flows allow higher achieved

link utilization while larger measurement periods yield lower
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link utilization. Link utilization is at its highest when the ~/T

ratio is the largest and at its lowest when this ratio is the

smallest. On the other hand, the smaller ~/T ratio means lower

experienced delay and larger ~/T means the opposite—thus

lowering the ~/T ratio is one way to decrease delay violation

rat e.

In Figs. 4 and 5, we provide sample path snapshots showing

the effect of T on delay and link utilization. We note, however,

a T that yields artificially low utilization when used in

conjunction with one source model may yield appropriate

utilization when used with burstier sources or sources with

longer burst time.

F, On Unequal Flow Rejection Rates

Almost all ACA’s in the literature are based on the violation

prevention paradigm: each switch decides to admit a flow

if and only if the switch can still meet all of its service

commitments. In other words, the ordy criteria considered by

ACA’s based on the violation prevention paradigm are whether

any service commitments will be violated as a result of a

new admission. In this section we discuss some policy or

allocation issues that arise when not all flows are completely

equivalent. When flows with different characteristics-either

different service requests, different holding times, or different

path lengths-compete for admission, ACA’s based purely on

violation prevention can sometimes produce equilibria with

some categories of flows experiencing higher rejection rate

than other categories do. In particular, we identify two causes

of unequal rejection rate: I ) flows traversing a larger number

of hops have a higher chance of being rejected by the network

and 2) flows requesting more resources are more likely to be

rejected by the network.

1) .E#ect of Hop Count on Flow Rejection Rates: As ex-

pected, when the network is as loaded as in our simu-

lations, multihop flows face an increased chance of being

denied service by the network. For example, in our simulation

with homogeneous sources on the TWO-LINK network, as

reported in Table IV, more than 75Yc of the 700 new EXP1

sources admitted under guaranteed service are single-hop

flows. This is true for both of the bottleneck links. A somewhat

smaller percentage of the more than 1000 flows admitted under

predictive service are single-hop flows, This effect is even

more pronounced for sources that request larger amount of

resources, e.g., the PO02 or the fARIMA sources. Furthermore,

it is exacerbated by sources with longer lifetimes: with fewer

departures from the network, new flows see an even higher

rejection rate.

Aside from disparity in the kinds of flow present on the

link, this phenomenon also affects link utilization; upstream

switches (switches closer to source hosts) could yield lower

utilization than downstream switches. We observe two causes

to this: 1) switches that carry only multihop flows could

be starved by admission rejections at downstream switches.

The utilization numbers of link L6 in both Tables IV and

VIII are consistently lower than the utilization of the other

links in the FOLJR-LINK topology. Notice that we set these

simulations up with no single hop flow on link L6. The

low utilization is thus not due to the constraint put on by

link L6’s own admission decisions, but rather is due to

multihop flows being rejected by downstream switches. 2)

Nonconsummated reservations depress utilization at upstream

switches; to illustrate: a flow admitted by an upstream switch

is later rejected by a downstream switch; meanwhile, the

upstream switch has increased its measurement estimates in

anticipation of the new flow’s traffic, traffic that never come.

It takes time (to the expiration of the current measurement

window) for the increased values to come back down. During

this time, the switch cannot give the reserved resources away to

other flows. We can see this effect by comparing the utilization

at the two bottleneck links of the TWO-LINK topology as

reported in Table IV. Note, however, even with the presence

of this phenomenon, the utilization achieved under predictive

service with our measurement-based ACA still outperforms

those achieved under guaranteed service.

2) Effect of Resource Requirements on Flow Rejection Rates:

Sources that request smaller amount of resources can prevent

those requesting larger amount of resources from entering the

network. For example, in the simulation using the EXP2–EXP3

source pair reported in Table VI, 8t)% of the 577 new

guaranteed flows admitted after the simulation warmup period

were EXP2 flows, which are less resource demanding. In

contrast, 4070 of flows admhted under predictive service

with our measurement-based ACA were the more resource

demanding EXP3 flows. Another manifestation of this case is

when there are sources with large bucket sizes trying to get

into a high priority class. Because the delay of a lower priority

class is affected by both the rate and bucket size of the higher

priority flow (as explained in Section II-A), the ACA is more

likely to reject flows with a large bucket size and high priority

than those with a smaller bucket size or low priority. We

see this phenomenon in the simulation of source model EXP3

reported in Table V. When all sources request either of the

two classes of predictive service with equal probability, of the

1162 flows admitted after the simulation warmup period, 83%
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were of class 2. When sources request guaranteed or second

class predictive service, only 8% of the 1137 new flows ends

up being guaranteed flows. In both of these scenarios, the

link utilization achieved is 31%, which is lower than the 62%

achieved when all flows request only class 2 predictive service

(see Table III), but still order of magnitude higher than the

2% achieved when all flows request only guaranteed service

(again, see Table HI).

We consider the unequal rejection rate phenomenon a policy

issue (or rather, several policy issues) because there is no

delay violations and the network is still meeting all its service

commitments (which is the original purpose of admission

control); the resulting allocation of bandwidth is, however,

very uneven and might not meet some policy requirements

of the network. We want to stress that this unequal rejection

rate phenomenon arises in all ACA’s based on the viola-

tion prevention paradigm. In fact, our data show that these

uneven allocations occur in sharper contrast when all flows

request guaranteed service, when admission control is a simple

bandwidth check. Clearly, when possible service commitment

violations is the only admission control criteria, one cannot

ensure that policy goals will be met. Our purpose in showing

these policy issues is to highlight their existence. However,

we do not offer any mechanisms to implement various policy

choices; that is the subject of future research and is quite

orthogonal to our focus on measurement-based admission

control.

V. MISCELLANEOUS PRACTICAL

DEPLOYMENT CONSIDERATIONS

We have not yet addressed the issue of how to adjust the

level of conservatism (through T) automatically, and this will

be crucial before such measurement-based approaches can be

widely deployed. The appropriate values of T, and the other

parameters, must be determined from observed traffic over

longer time scales than discussed (and simulated) here. We

have not yet produced such an higher order control algorithm.

In the simulations presented in this paper, we chose a value of

T for each simulation that yielded no delay bound violation

over the course of the simulation at “acceptable” level of

utilization.

We should also note that our measurement-based approach is

vulnerable to spontaneous correlation of sources, such as when

all the TV channels air coverage of a major event. If all flows

suddenly burst at the same time, delay violations will result.

We are not aware of any way to prevent this kind of delay

violation, since the network cannot predict such correlations

beforehand. Instead, we rely on the uncorrelated nature of

statistically multiplexed flows to render this possibility a very

unlikely event.

As we mentioned earlier, when there are only a few flows

present, or when a few large-grain flows dominate the link

bandwidth, the unpredictability of individual flow’s behavior

dictates that a measurement-based ACA must be very con-

servative. One may need to rely less on measurements and

more on the worst-case parameters furnished by the source,

and perform the following bandwidth check instead of (5)

where

~G is the sum of all reserved guaranteed rates, v, is the sum of

all reserved rates in class j. A’ is number of predictive classes,

and K is a fraction between zero and one. For ~ = 1, we have

the completely conservative case. Similarly, one could do the

following delay check:

(13)

for every predictive class j for which one needs to do a delay

check as determined in Section H-D.

VI. CONCLUSION

In this paper, we presented a measurement-based ACA that

consists of two logically distinct pieces, the criteria and the

estimator. The admission control criteria are based on an

equivalent token bucket filter model, where each predictive

class aggregate traffic is modeled as conforming to a single

token bucket filter. This enables us to calculate worst case

delays in a straightforward manner. The estimator produces

measured values we use in the equations representing our

admission control criteria. We have shown that even with

the most simple measurement estimator, it is possible to

provide a reliable delay bound for predictive service. Thus

we conclude that predictive service is a viable alternative to

guaranteed service for those applications willing to tolerate

occasional delay violations. For bursty sources, in particular,

predictive service provides fairly reliable delay bounds at

network utilization significantly higher than those achievable

under guaranteed service.
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