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SUMMARY

A recent study of nitrogen dioxide exposure and respiratory health

makes use of improved exposure assessment using indoor monitoring. This

paper develops and applies methods for estimating the parameters of binary

and ordinal regression models when the measured indoor concentrations are

viewed as surrogates for personal exposure. Data from two independent

studies are used to provide information on the relationship between measured

indoor concentrations and personal exposure. Methods for evaluating the

assumptions necessary to estimate the parameters of our models are

discussed.
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INTRODUCTION

In this paper, we develop and apply a measurement error model for

binary and ordinal regression to data relating the occurrence of respiratory

symptoms in children to indoor concentrations of nitrogen dioxide (N02).

These data were collected in Watertown, Massachusetts during the course of a

Harvard study1 designed to evaluate the role of common air pollutants in the

development of lung disease. Originally this study only collected outdoor

pollutant concentrations, but in light of emerging evidence that some

pollutants such as N02 have important indoor sources, and given the fact

that children spend a large portion of their time indoors, the investigators

decided to place monitors directly in the houses of a subsample of their

original population.

In our analysis, we adopt the point of view that the measured indoor

concentrations are surrogates for a child's true exposure to N0
2

, and

that this "personal" exposure is actually the predictor variable of

interest. We are able to determine the relationship between personal

exposure and indoor concentrations by using data from two studies employing

both personal monitoring and indoor monitoring~,3 If we then assume that

indoor concentrations only affect respiratory health through their

contribution to personal exposure, we can use a measurement error method to

estimate the association between personal exposure and respiratory symptoms.

Because our primary goal is the development of an appropriate

methodology, we have chosen to analyze only a greatly simplified subset of

the data from the constituent studies. In particular, we have omitted

covariates known to be important determinants of respiratory health,

although we have made our models flexible enough to include these variables

in subsequent applications. In addition to limiting the scientific validity
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of our results, the omission of relevant covariates may violate the

conditional independence assumption we use to derive our measurement error

model. We discuss methods for testing the appropriateness of this

assumption, and formulate a somewhat weaker assumption which may be more

appropriate in this case, although for the more complete data set for which

these methods are ultimately intended the stronger version seems justified.

DESCRIPTION OF THE DATA SETS

The data set from Watertown includes two health variables and two

indoor measurements for each of 231 children. The health variables are

derived from a questionnaire administered in the summer of 1984 to the

parents of the children, and include binary responses to questions

concerning the occurrence of any wheezing apart from colds in the preceding

12 months, and presence of persistent wheeze in the preceding 12 months.

The second symptom, persistent wheeze, is considered a clinically more

significant outcome, but the relatively low prevalence of this symptom

prompted the inclusion of the first indicator, which we will sometimes refer

to simply as wheeze.

The indoor concentrations of N02 were measured by placing passive

diffusion tubes4 in the bedroom and kitchen of the children's homes. The

tubes were left in place for two seven-day periods during the winter of

1984-1985. We only use the measurements from the first period in this

analysis.

The two studies relating personal exposure to indoor concentrations

were conducted in Portage, Wisconsin, during the winter of 1981-1982 and in

the Netherlands during the winter of 1984-1985. Quackenboss et a1. 2 present

an analysis of the Portage data with a particular emphasis on the effect of
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3Houthuijs et al. present results from the Dutch

data set on the effects of N02 and tobacco smoke exposure on the respiratory

health of children.

The data set derived from the Portage study consists of three

variables for 81 children living in separate homes. One variable represents

a measurement of personal exposure over a seven-day period, obtained by

passive diffusion tubes worn on the lapels of the children. The other two

variables are seven-day samples of kitchen and bedroom concentrations

obtained during the same week, also by means of the diffusion tube.

The data set from the Dutch study contains the same three variables for

564 children living in five small, non-industrial communities in the

southeastern part of the country. As in the Portage and Watertown studies,

the children are from separate homes.

A KODEL FOR TIlE DATA

We propose a model that addresses the two unique features of our data.

The first is the presence of two closely related binary outcomes. As it

happens, the occurrence of persistent wheeze implies the occurrence of any

wheeze apart from colds. We take advantage of this relationship between the

outcomes by combining them into a single ordinal outcome with three

categories: no wheezing, some wheezing apart from colds, and persistent

wheezing. We then develop a method applicable to both ordinal and binary

regression models.

The second feature of the data is the availability of two surrogates

for the predictor variable of interest, namely the kitchen and bedroom

concentrations of N02 . We accommodate this feature by using the Portage and

Dutch data sets to develop a predictive model for personal exposure given
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kitchen and bedroom concentrations. From this model we obtain predicted

values of personal exposure for each child in the Watertown data.

Recognizing that these predicted values can be represented as the sum of the

true exposures plus an additive error term, we then construct an appropriate

errors-in-variables model for modeling the dependence of wheeze on personal

exposure. This approach can be defended only if the predictive model

developed from the Dutch and Portage data is portable to the Watertown data,

and the errors-in-variables model employed recognizes that the error arises

not from an independent measurement of personal exposure but rather from use

of a predictive model.

We start by postulating an underlying continuous latent variable

. h *measur~ng proneness to w eeze, Y For example, for a binary model of

*persistent wheeze (PW) , it is assumed that PW - 0 whenever Y ~ c
l

and that

PW - 1 for Y* > cl . For the model which regards wheeze ( W ) and persistent

wheeze as ordered categories, two cut points are introduced;

*c l corresponds to (W,PW) - (0,0), c l < Y ~ c2 to (W,PW) - (1,0), and

*Y > c 2 to (W,PW) - (1,0).

Now assume that in each of the three populations for which the Dutch,

*Portage and Watertown data sets are representative, Y has a joint normal

distribution with Xl - log personal exposure ( PE ), conditionally on a

vector of covariates X2 , and a vector Z containing the log kitchen and

bedroom concentrations ( KC & BC). The assumption of conditional normality

leads to a tractable form for the likelihood of the observed data, and is

empirically justified in our example. However, the models can be developed

under distributional assumptions much more general than those of joint

normality, and are likely to be at least approximately correct under still

weaker conditions. We introduce X2 for added generality, noting that in the
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more complete data set for which these methods are eventually intended,

adjustments will have to be made for important covariates. We will

sometimes write X for (Xl' ,X2 ')'.

Recall that the Dutch and Portage data sets contain observations on

only Xl' X2 ' KG and BG whereas the Watertown data contains observations on

* . *only Y (actually the discret~zed version of Y ), X2 ' KG, and BG. Because

*none of our data sets contain simultaneous observations on Y and Xl' it is

*not possible to directly estimate Cov(Y ,xlIX2,z). Thus even under joint

*normality for (Y , xllx2, Z) our goal of investigating the association

between personal exposure to N02 and respiratory health cannot be realized

*unless some restrictions are imposed on Gov(Y ,xlIX2,Z). The most natural

restrictions in our setting involve the role of KG and BG in determining

respiratory health. An assumption which permits us to estimate the

parameters of the distribution *of Y Ix can be constructed by (i) asserting

that indoor N02 concentrations can only affect the respiratory system

through their effect on personal exposure to N02 , and (ii) arguing that KG

and BG carry no additional information relevant to health status that is not

already contained in the covariate vector X2 . For example, the fact that KG

and BC are both concentrations suggests a possible relationship to house

size and hence to numerous other socio-economic variables which may be

related to health status. The completeness argument, (ii), claims that all

such covariable information is contained in X2 . A logical consequence of

* *(i) and (ii) is that the distributions of Y Ix and Y I(X,Z) are equal, which

*in turn allows us to estimate the parameters of Y Ix from the observed data.

For reference we state this as an assumption.

*(Gl) The conditional distributions of Y Ix and *Y I(X,Z) are equal.
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An alternative assumption that also allows the estimation of the

parameters of the distribution of Y*lx is:

* *(C2) The conditional distributions of Y Ix and Y I(X,E(X1IX2,Z» are

equal.

Assumption (C2) is technically weaker than (C1) in that (C1) implies (C2)

but not vice versa. If one adopts the view that interest lies solely in the

*distribution ofY lx, irrespective of the role played by Z, (C2) may be more

appropriate than (C1). In the more complete data set for which our methods

are intended, it can be argued that (C1) has a physiological basis.

Under our normality assumption, (C2) is equivalent to

o - COV{Y*'X1 - E(X1Ix2,z)}2 which is equal to

* * 2Var(Y )Var(X1 - E(X1IX2,Z)}Corr(Y ,Xl - E(X1Ix2,z)} and thus is at least

approximately valid when the prediction error in E(X1IX2,Z) is small or the

*correlation of Y with the error of Xl about its regression on X2 and Z is

small. While the latter is difficult to verify, the former can easily be

checked However, the objective of our study is to develop models for

situations in which the prediction error is not negligible.

Operationally, (C1) and (C2) are nearly identical, in that the same

model can be derived from either. The distinction between the two arises

only in the interpretation of a test statistic for model adequacy which we

present later in this section.

We are now in a position to proceed with the development of a model.

Separate analyses of the Dutch and Portage data ( see the next section )

showed remarkable agreement between the two linear regression models of Xl

on (X
2

,Z) and provided ample evidence for combining the data to obtain a
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final prediction model for Xl. Because the combined data contain over three

times as many observations as the Watertown data, the variances of

prediction are essentially equal to the HSE over much of the range of

interest, so there is some heuristic support for ignoring the sampling

variability in a consistent estimate of the coefficients. We do this in part

to simplify the discussion and partly because it seems reasonable in the

present context. However, in other problems in which the discrepancy between

the sizes of the validation and target data sets is not so great, it may be

necessary to incorporate this additional source of variation into the model.

To use the regression of Xl on (X2 ,Z) from the Dutch-Portag~ population

to predict Xl values for the Watertown data, it is necessary to assume that

the regressions in the two populations coincide. Letting ~l and a~ denote

the (known) regression function and prediction-error variance from the

Dutch-Portage population we assume:

(Hl) Within the Watertown population xli (X2 ,Z) is

distributed N{~l(X2'Z), a l } where ~l(·'·)

and a l are known.

We now define the variable Xl - ~l(X2'Z) which will play the role of a

proxy for Xl.

If we now assume

it follows from either (Cl) or (C2) that
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The vector X2 can include a constant term.

Since our interest lies primarily in inference on P1 , eqn. (1)

. * -indicates that an ord1nary least-squares analysis of Y on (X1 ,X
2

) is

sufficient; the estimated coefficient of Xl will be unbiased for P1 and the

corresponding hypothesis test of P1 - 0 will have the correct level although

be less powerful than if Xl was available rather than its proxy. This

situation is similar to one which arises in the so-called Berkson (linear)

*errors-in-variab1es model. Unfortunately we do not observe Y but rather a

discretized version of it and this introduces additional complications due

to use of the proxy, Xl.

If we now postulate that the observed categorical variable, Y, falls

into category i, 0 s i < k, according to c i < Y* < c
i
+

1
where

-~ - Co < c1 < ... < ck -~, it follows from (MZ) that

(M2') Pr(Y - i) - ~[ {c1+1 - (P1X1 + PZ'XZ)}/a ]

- ~[ (c i - (P1X1 + P2'X2)}/a ], OSi<k.

That is, the induced model for YI(x1 ,xZ) ~s a regression model for ordinal

5data of the type studied by McCullagh with a probit link. It is apparent

that a is not identified and there is no loss in generality setting a - 1.

The induced model for YI(x1 ,XZ) becomes

- Z l/ZPr(Y - i) - ~[ {c i +l - (PlXl + PZ'X2)}/{l + (alPl ) ) ] (2)

- ~[ (c
i

- (P1X1 + P2 'X2)}/{l + (al pl )2 }l/Z], OSi<k.
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Thus the probit models for ordered categorical responses for both

(Y,(Xl ,X2)} and (Y,(Xl ,X2)} differ in that the coefficients of the latter

model are attenuated by the factor

Equations (M2') and (2) indicate that if 81 is the estimated coefficient of

Xl in a probit model fit to (Y,(X1 ,X2)} then a consistent estimate of ~l in

(M2') can be obtained according to

(3)

provided that (u18l )2 < 1; similar corrections can be made to the other

parameters. Burr6 has studied estimation in models like (2). In

particular, she suggests that confidence intervals for ~l be constructed by

applying the transformation (3) to the limits of the confidence interval for

Although our model was obtained under assumptions of joint normality a

close inspection reveals that the same results are obtained under either

assumption (Cl) or (C2) provided: the probit link model in (M2) is

appropriate; the regression structures in both the target and validation

populations coincide with respect to both mean function (which need not be

linear) and variance (which must be constant); and the prediction errors in

the target population are normal. Clearly the most critical of these

assumptions are (Cl) ( or (C2) ) and the equality of regression structures,

and we now discuss the consequences should they be violated. We consider

only the case of linear prediction equations.
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The simplest violation of our assumptions occurs when the prediction

error variances are not equal. The consequence is that we misjudge the

extent of attenuation. Understating the prediction error variance in the

target population results in under estimation of 7 and vice versa. There

seems to be no way of checking this with the available data. In some studies

it may be that the validation and target populations coincide in which case

this would not be a problem.

Note that model (2) depends on Z through a particular linear

combination dictated by ~l(·'·) ( see (MI». If this regression plane is not

appropriate in the target population then the derived model, (2), would

likely depend on some other linear combination of KC, BC, and X2 .

Furthermore, even if we are willing to accept (HI) entirely, a violation of

either (CI) or (C2) would have the effect that the induced model, (2), would

not necessarily depend·on X2 and Z only through ~l(.'·)' and again we would

expect some other linear combination to appear in (2). Furthermore there is

a converse to this statement with regards to (Cl). If we find that some

other linear combination of KC and BC is more appropriate in (2) then it

follows that (CI) is violated. However, this does not imply that (C2) is

violated.

The variables KC and BC enter our derived model only through the linear

combination dictated by (Ml). The discussion of the critical assumptions

(HI), (CI) and (C2) indicates that a violation of anyone assumption

generally has the effect of altering this linear combination. Consequently,

we can define a test statistic which is sensitive to certain violations of

assumptions, namely the likelihood-ratio statistic comparing the fits of the

constrained and unconstrained models of Y on (XI 'X2) and Y on (Z,X2)

respectively. A small value of the test statistic indicates that the data
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provide little evidence contradicting the assumptions. A large value of the

statistic is more difficult to interpret. It cannot distinguish between a

violation of (Cl), (C2) or (Hl); and in the case that only the distribution

of YIX is of interest ( and (C2) is assumed ) it may merely reflect the fact

KC and BC have some explanatory power in addition to PE and hence does not

necessarily imply that (C2) is violated. An additional complication arises

whenever the sampling variability ,in the estimate of ~l(·'·) is appreciable,

for then the statistic may be nonnegligible even though all assumptions are

satisfied. Although the problems with this statistic are legion, it may be

the only vehicle for checking assumptions in many situations and it seems

like good statistical practice to compute it, provided it is interpreted in

light of all its shortcomings.

RESULTS

An initial graphical analysis of the Dutch and Portage data showed

that a linear fit for PE on KC and BC appeared reasonable and yielded normal

residuals. To illustrate this point, Figure 1 shows a plot of PE versus KC

in the Dutch data. Table 1 shows the coefficients for the fitted regression

planes in the Dutch, Portage, and combined data sets. The results for the

two original data sets are remarka~ly similar, and although a test for the

equality of that residual variances is somewhat significant (p = 0.06), a

formal test for the equality of the regression planes indicates no

significant differences (p = 0.76) We therefore decided to use the combined

2data to form Xl and to estimate ul .

INSERT TABLE 1 HERE

INSERT FIGURE 1 HERE
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Our initial analysis of the Watertown data focussed on the occurrence

of wheeze, which the reader will recall is implied by the occurrence of

persistent wheeze. Figure 2 is a scatterplot of BC versus KC for the 231

Watertown children. At each point is plotted a 1 or 0 corresponding to

whether or not the child reported wheezing. While there is no apparent

indication that wheeze prevalence increases with an increasing total of KC

and BC, there is some evidence that there are more l's in the northwest part

of the point cloud than in the southeast. The line drawn on the points is

the regression of BC on KC and is used, somewhat arbitrarily to show this

effect. That is, above this line there is a higher percentage of children

who wheeze .

INSERT FIGURE 2 HERE

This apparent effect is confirmed by a probit regression analysis. The

fitted model for the proportion of wheezers in terms of the two predictor

variables is the following:

~-I{pr(W_l)} - -0.79 - 0.59xKC + 0.73xBC , (4)
(0.32) (0.36)

where the numbers in parentheses are approximate standard errors. A

likelihood ratio test for the joint significance of both predictors is

suggestive (p =0.13), although neither predictor is significant by itself.

It can be seen that the ratio of the coefficients of KC and BC is

suggestively close to -1, so that the effect of the two predictors may be
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through their difference, or equivalently through the ratio of the

untransformed concentrations.

Using values for Xl calculated from the coefficients reported for the

combined data in Table 1, we obtain the following fitted model relating the

occurrence of wheeze directly to the estimated. PE's:

-1 -
~ (Pr(W-l)} - -0.88 + 0.08XX1 . (5)

(0.21)

A 95% confidence interval for the slope is (-0.32,0.48). It is interesting

to note that corrections based upon equation (3) with u~ taken from the

combined data produce no changes in these estimates for the number of digits

2reported. Thus, due to the fact that 81 and ul are both relatively
A A

small, ~ ~ 1, and consequently 81 and Pl are approximately equal in these

data.

When we consider the ordinal variable, Y, we obtain similar results. A

maximum likelihood fit of McCu1lagh's5 model for ordinal data with a probit

link to Y and (KC,BC) results in the following estimated probabilities for

the occurrence of wheeze (Y > 0) and persistent wheeze (Y > 1):

~-l{Pr(Y>O)}

~-l{Pr(Y>l)}

-0.73 - 0.51xKC + 0.62xBC.
(0.30) (0.34)

~-l{Pr(Y>O)} - 0.93 (6)

We note that Y > 0 is equivalent to W - 1; therefore the resemblance to the

previously fitted model is not surprising. The fitted model using Xl is
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~-l{Pr(Y>O)} -0.79 + 0.05xX.
(0.20~

~-l{pr(Y>l)} _ ~-l{Pr(Y>O)} - 0.88 (7)

As before, because ~ = 1, the confidence intervals for the coefficients of

Xl and Xl are essentially identical.

The likelihood ratio test for the joint significance of KC and BC based

upon the fitted ordinal regression (6) is less suggestive (p = 0.20) than

the test based on the binary regression, and neither concentration is

significant alone. This finding is due to the fact that the binary

regression fit to PW, the results for which are not shown here, indicates a

much weaker effect for KC and BC. Considering PW and W jointly in an

ordinal regression model yields a p-value somewhere in between the p-values

for the two binary regressions.

The difference in the deviances for the ordinal regressions (6) and

(7) is 3.2, which when referred to the X~l) distribution yields a p-value of

0.07. The same difference calculated for the binary regressions (4) and (5)

is 3.9, which yields a p-value of 0.05. This is the test statistic for

checking the assumptions discussed in the last section. The p-values seem

to indicate some evidence that the best explanatory model treats KC and BC

separately; however, interpreting this observation is problematic. The most

likely explanation is the absence of important covariates in our example

data set, although as indicated earlier, other explanations exist.

For instance, it might be the case that N02 affects respiratory health

through some measure of exposure other than, or in addition to, the week-

long integrated average used in the Dutch and Portage studies, and that this

measure is correlated with kitchen and bedroom concentrations.
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DISCUSSION

The traditional application of measurement error methods in regression

makes use of a variety of assumptions concerning the independence of the

structural and measurement components of variability. These assumptions are

crucial in assuring the identifiability of the regression coefficients of

interest. Frequently a physical basis can be found for the assumptions, as

in the case of an instrument error due to a process unrelated to the latent

variables being measured. In epidemiology, and many other applications, it

is tempting to ascribe independence properties to many types of data

inaccuracies without sufficient consideration of alternative models. In our

example, the multiple indoor measurements in the Watertown data provide a

means for evaluating the adequacy of a particular measurement error model.

However, it would be far more satisfying if the Watertown data included at

least a subset of individuals with both personal exposures and indoor

measurements, thus permitting more direct tests of the conditional

independence assumption.

The use of probit links leads to convenient closed forms for the

induced model for the observed data. However, we have also examined logit

links using approximate methods, with very similar results. This is not

unexpected, due to the well known similarities between the two models, and

we feel that the probit model, although not as frequently used with

epidemiological data, has much tp recommend it in measurement error and

other latent variable models.
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Table 1. Summary of regressions of log personal exposure on the log of
indoor concentrations.

Data Set

Dutch

Portage

Combined

Regression Coefficients

Intercept Kitchen Bedroom

Est. SE Est. SE Est. SE

1.17 0.06 0.30 0.02 0.33 0.03

1.28 0.10 0.28 0.07 0.33 0.07

1.22 0.05 0.30 0.02 0.33 0.02

MSE

0.05

0.07

0.06
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FIGURE LEGENDS

Figure 1. Log personal exposure versus log kitchen concentration in the

Dutch data set.

Figure 2. Log kitchen concentration versus log bedroom concentration

in the health data set. Wheeze status is indicated by a 1 or

a O.
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