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ABSTRACT

Silicon pixel sensors developed by the ATLAS collaboration to meet LHC require-

ments and to withstand hadronic irradiation to uences of up to 1015 neq=cm
2 have

been evaluated using a test beam facility at CERN providing a magnetic �eld. The

Lorentz angle was measured and found to alter from 9:0Æ before irradiation, when
the detectors operated at 150 V bias at B=1.48 T, to 3:1Æ after irradiation and

operating at 600 V bias at 1.01 T. In addition to the e�ect due to magnetic �eld

variation, this change is explained by the variation of the electric �eld inside the

detectors arising from the di�erent bias conditions.

The depletion depths of irradiated sensors at various bias voltages were also mea-

sured. At 600 V bias 280 �m thick sensors depleted to � 200 �m after irradiation

at the design uence of 1 � 1015 1 MeV neq=cm
�2 and were almost fully depleted

at a uence of 0:5 � 1015 1 MeV neq=cm
�2.

The spatial resolution was measured for angles of incidence between 0Æ and 30Æ. The

optimal value was found to be better than 5:3 �m before irradiation and 7:4 �m
after irradiation.
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1 INTRODUCTION

At the LHC silicon microstrip and pixel detectors will be exposed to unprecedented
levels of ionizing and hadronic radiation. As a consequence of displacement damage arising
from hadronic radiation, the silicon detectors will change their characteristics during their
lifetime, resulting in the requirement that their operating conditions (bias voltage, tem-
perature etc.) be modi�ed. These factors inuence the motion of charge carriers and a�ect
the charge collection performance. Potential radiation-induced performance degradation
is a serious issue which has thus been studied in detail.

Spatial resolution and hit eÆciency may be a�ected by variations in the amount
of collected charge and in its sharing amongst neighbouring pixels. Optimal resolution is
achieved when the charge generated by particles that traverse the sensor is spread over
two pixels and an interpolation algorithm is used for the determination of the crossing
point. Charge sharing is determined by the depth of the depleted region, the Lorentz
angle, the angle of the sensor with respect to the incident particles and nonuniformity in
charge collection.
In this paper measurements of the Lorentz angle and spatial resolution (as a function
of the incident angle) of prototype ATLAS pixel sensors, before and after irradiation to
uences of up to 1015 neq/cm

2 1), are presented.
A model [1] for charge drift in silicon has been developed and is used to predict the

behaviour of silicon devices for comparison with the data. An essential parameter in this
model is the value of depletion depth for irradiated devices and a new method to measure
this quantity has been developed.

2 ATLAS PIXEL DETECTOR

A full description of the ATLAS pixel detector can be found in [2], so only a brief
description is given here.

2.1 Pixel sensors

The ATLAS pixel sensors consist of n+ implants on a high resistivity n-bulk sub-
strate [3]. This choice was taken because it allows for operation in partially depleted mode
after type inversion of the silicon material and subsequent increases in the full depletion
voltage, arising from radiation damage. Before irradiation the pn-junction is located on
the sensor p+-backside. After type inversion it moves to the segmented n+ pixel side of the
sensor and the depleted region grows from the n+ pixel implants to the opposite side of
the sensor, thus allowing collection of charge carriers on the pixels, even when the sensor
is not fully depleted.
Two techniques of n+ implant isolation were incorporated in the prototype designs: the
p-stop [4], where a high dose p-implant surrounds the n-cell and the p-spray [5] technique,
where a uniform medium dose p-implant covers the whole n-side and is overcompensated
by the high dose of the pixel implants themselves.
Two con�gurations of p-spray have been studied, in the �rst of these the dose is uniform
over the whole sensor area. In the other con�guration (known as moderated p-spray) the
p-doping concentration is reduced in the regions surrounding n+ implants. In this way
the electric �eld is reduced at the interface from p-type to n+-type thus increasing the
breakdown voltage.

1) In this paper the uences are converted in neq/cm
2 where neq is the number of particles with the

non-ionizing energy loss of a 1 MeV neutron.
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The p-spray technique allows the introduction of a punch-through bias grid. This is useful
for sensor testing prior to connection to front-end electronics through bump-bonding. This
is implemented every 2nd column, providing an equal potential to every pixel cell during
testing; it is inactive in normal operation, but keeps a pixel cell close to ground potential
in the case that a bump may be missing. The backside of the sensor has a multi guard
ring structure which serves to grade the potential down towards the edges. Using n+ pixel
implants on n-type substrate allows to have a continuous n+-implant outside the active
area without a guard ring structure on the n-side. The edges of the sensor are thus held
at ground, which prevents arcing between the detector and the front-end electronics.

Wafers containing two or three sensor tiles of the size to be used for ATLAS pixel
modules (16.4 � 60.8 mm2 and to be bump bonded to an array of 2� 8 electronic chips)
and several sensors sized to accept single electronics chip (7.4 � 8.2 mm2) were fabricated
in 200 � 300 �m thicknesses by C.i.S. (Germany) 2) and Seiko (Japan) 3). The result-
s reported in this paper refer to these smaller sized sensors. They incorporated various
designs (Fig. 1), developed to study and thus optimise the performance in terms of in-
terpixel capacitance, cross-talk, noise, eÆciency and intrinsic resolution. Some of these
designs match the tile designs and are referred to as ST1 (Single Tile 1), ST2 (Single
Tile 2), SSG (Single Small Gap) and SMD (Small Dot).
P-stop isolation was adopted in ST1, while p-spray isolation was used in all of the other

Figure 1: Tested design options of the ATLAS pixel sensors.

2) C.i.S. Centre for intelligent Sensors, Erfurt (Germany)
3) Seiko Instruments Inc., Chiba (Japan)
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designs. In the ST1 design the p+-type isolation rings surround the n+-pixel implants.
In the ST2 design there are n+-type ring-like structures around each pixel to reduce the
inter-pixel capacitance. The SSG design uses p-spray isolation but does not include any
intermediate n+ structures. Neighbouring pixels merely have small gaps between them. S-
ince the ST2 design had a charge collection problem related to the presence of the oating
n+ ring structure surrounding the pixel, an SSG-like design was adoped as the baseline,
with some modi�cations in the region of bias grid (SSGb design). In a subsequent sen-
sor production this SSGb design has been labelled SMD. In the SMD-design each pixel
consists of one rectangular n+-implantation of dimensions 30 �m � 382.5 �m . The gap
between two adjacent pixel is 20 �m in the short pitch direction, 15 �m in the long pitch
direction at the pixel side with the bump-pad and 20 �m at the other pixel side where the
bias-grid is located. The bias-grid connection to each pixel is provided using a round n+-
implant integrated in the n+-pixel implant with 10 �m diameter and 5 �m gap (to limit
the coupling from the bias dot to that particular pixel). The bias-dots of all pixels within
an adjacent pair of columns are connected via a metal line to an outer n+-implantation
which surrounds the border of the active sensor area.
Sensors fabricated on both standard detector-grade and oxygenated [6] silicon substrates
have been evaluated.
The e�ective dimensions of the pixel cell are 50 �m �400 �m . They are connected via
bump bonds to the readout electronics cells which are arranged in a matching matrix.

2.2 Front-end electronics

All of the pixel devices documented here were assembled using readout chips pro-
duced during the demonstrator phase of the ATLAS Pixel front-end electronics devel-
opment programme. The aim of the demonstrator programme was to produce realistic
readout-electronics which addressed all of the requirements and speci�cations of the AT-
LAS Pixel tracker. The initial phase of the programme resulted in the development of
two separate front-end chips which although conceived with radiation hard processes in
mind, were realised at non-radiation hard foundries. The �rst of the front-end chips, FE-
A [7], was fabricated using the BiCMOS process of AMS. The front-end of FE-A used
bipolar transistors although a 100 % CMOS version (called FE-C) was later produced.
The design of the other chip, FE-B [8], was manufactured by HP. In each FE-chip, 2880
channels are arranged into 18 column by 160 rows. The chips have integrated DACs pro-
viding the necessary biases for the analogue front-end circuitry. Each channel is equipped
with its own 3-bit DAC for channel-to- channel threshold adjustments, thus a means of
overall dispersion reduction is provided. All of the ATLAS prototype FE chips have 7-bit
charge measurement capability using time-over-threshold (TOT), taking advantage of the
available deadtime per pixel ( 2 �s excepting the innermost ATLAS pixel layer known
as B-layer). Also featured is a global hit-OR (hitbus) which provides for a means of
self-triggering operation. A 2880-bit pixel register plus one corresponding latch per chan-
nel enable individual pixels to be masked-o� for (independently) calibration-strobing and
readout. The charge-sensitive preampli�ers feature a DC feedback scheme with a tuneable
current providing control over the shaping-time for a given input charge. A discrimination
stage sits behind the preampli�er in each channel which is sensitive to the leading edges
(LE) and trailing edges (TE) of pulses.

The readout-architecture implementations are markedly di�erent for the two design-
s. In FE-A/C each column-pair is served by an 80-bit 40MHz shift register to clock LE and
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TE hit-information towards the end-of-column (EOC) circuitry. There the timestamps of
the hits are determined from the row-number information along with the time-of-arrival
at the EOC. Since the length of the shift registers is 80-bits only one LE or TE from a
4-pixel cell may be introduced for a given BCO. If extra hits are registered in a particular
crossing then their information is held until the next available crossing and a 2-bit late-
�eld is used to indicate the required correction to the hit age at the EOC. In FE-B the
global time information is distributed throughout the array to every pixel as 7-bit Gray-
code. When a hit is tagged in a pixel cell the timestamps for the LE and TE are stored
locally. Meanwhile a continuous vertical-sparse-scan operates along the column pairs seek-
ing tagged hits. As soon as such a hit is seen, the geographical and timing information
is sent directly to the 20 bu�er-sets which are resident at the end of each column-pair.
Upon receipt of a level-1 trigger, a two-dimensional horizontal-sparse-scan looks through
the EOC bu�ers for hits which match in time for the given latency (which is coded in a
register on the chip). Matching hits are then stacked up in a readout-FIFO for subsequent
serial transmission. The TOT is calculated for each hit as the TE-LE time-di�erence prior
to this, resulting in a 7-bit charge �eld in each 26-bit hit-word.

During the operation in the test beam the thresholds of the individual channels were
adjusted achieving a threshold dispersion of 120 e� rms. Typical thresholds were around
3000 electrons, with a noise of 110 e� for ST1 and ST2, 170 e� for SSG. The TOT was
calibrated by injecting a known charge into every channel, with an accuracy of the order
of 10 %.

2.3 Hybridization

The pixel sensor and FE electronics are electrically connected via bump bonds.
Bump bonding at 50 �m pitch was considered a serious challenge until recently. Hovewer
several �rms were able to provide high density bump bonding using both Indium and
PbSn solder techniques with a connection failure rate lower than 10�4. For the Indium
process, the bumps are grown both on the sensor and on the electronics chip. During
ip-chipping the two surfaces are pressed together forming a cold weld. For solder, the
bumps are grown only on electronics surface and the ip-chip step is performed at 250
ÆC in order to reow the solder. Assemblies using both techniques have been evaluated in
the test beam.

2.4 Irradiated sensors

In order to characterize irradiated sensors with pixel readout electronics, indium
bumps were deposited on some single chip sensors which were then exposed to uences
comparable to those expected at the LHC. The irradiations were performed using the 300
MeV/c pion beam at PSI and the 55 MeV/c proton beam at LBNL. After irradiating
these devices, they were ip chipped to the front-end electronics. Since indium bumps do
not need to be heated for ip chipping, this process was used to limit reverse annealing.
Sensors irradiated with uences of 0.5�1015 and 1�1015 neq/cm2 were tested in the beam.
They were cooled to �9 0C during data taking.

Sensors with p-stop isolation (ST1) produced high noise even at low bias voltages.
Irradiated sensors with p-spray separation, on the other hand, performed well at voltages
of up to 600 V.
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3 TEST BEAM SET-UP

Test beam experiments were performed in 1998-2000 at the CERN SPS accelerator
with a pion beam of 180 GeV/c momentum. A beam telescope consisting of 4 pairs of
silicon microstrip detectors (each pair having two planes of detectors with orthogonal
strips) was used to measure the transverse position of the incident beam particles. The
position resolution of tracks projected onto the test devices varied from 3 �m to 6 �m
depending on the position of the detector under test with respect to the telescope (see
section 6). For the Lorentz angle measurements, the pixel assemblies and the silicon strip
telescope were positioned inside a superconducting magnet providing a �eld of magnitude
up to 1.67 T. Data have been taken at various values of magnetic �eld. The pixels were
oriented in such a way that the charge carrier motion in the 50 �m pitch direction was
inuenced by the magnetic �eld.

Relevant parameters of some of the sensors tested in the beam may be found in
Table 3. When not otherwise stated, they were fabricated in standard detector-grade
silicon substrates.

3.1 Data Analysis

Events were �ltered with the requirement of one and only one track reconstructed
by the silicon microstrip telescope in each event. Tracks were required to extrapolate into
a �ducial region inside the pixel sensor. This was de�ned as the region within 40 �m
from the edge of the pixel sensor for perpendicular tracks or at least 40+t�tg� �m for
inclined tracks, where t is the sensor thickness and � the incidence angle (such that �=0Æ

is normal incidence).
In addition, only events with track reconstruction �2-probability value of more than 0.02
were kept. Pixel clusters were constructed in the following way:

{ all pixel hits were considered independent of track extrapolations;
{ all adjacent hits were clustered together.

For irradiated sensors at large incidence angles, the clustering algorithm allowed for the
presence of not-hit pixels within a cluster.
The cluster position was then evaluated as described in section 6.
To associate a cluster to a beam particle track the residual between track extrapolation
and mean cluster position was required to be less than 100 �m in the short pixel dimension
and 800 �m in the long pixel dimension. Clusters and events that passed all the above
requirements were used in the measurements reported in this paper.

4 DEPLETION DEPTH OF IRRADIATED SENSORS

To perform measurements of the depletion-zone depth, data were taken with particle
beam incident on the sensor at an angle of 20Æ or 30Æ with respect to the normal to the
pixel plane (Fig. 2). A particle crossing the detector produces a cluster of hits consisting
of the pixel cells that collect a signi�cant fraction of the charge released in the subtended
segment of the track. When the sensor is not fully depleted, the cluster width may be
less than that expected by purely geometric considerations. To measure the depth of the
depleted region the maximum depth of track segment was used (Fig. 2); it was de�ned
as the distance of the center of the track-segment subtended by a given pixel from the
pixel itself. Since the entrance points of the tracks are uniformly distributed, all of the
depths vary continously and the maximum observed depth D is a measurement of the
depletion depth within the detector. The distribution of the depths is shown in Fig. 3 for
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Figure 2: Schematic view of an irradiated sensor crossed by a track. The hatched zone
corresponds to the not-depleted zone.

a sensor irradiated with a uence of 0:5 � 1015 neq/cm
2 for four di�erent bias voltages.

The observed distribution is a convolution of a uniform distribution between 0 and D and
a resolution function due to extrapolation error of the beam telescope etc.

A �t to the data yields D, de�ned as the point of inection of the �tting function.
Two main corrections are needed to correctly estimate the depletion depth. First the
measurement of the position of the impact point x0 of the beam particle into the pixel
plane must be corrected for the relative alignments of the telescope planes and the pixel
plane. The pixel sensors are aligned with respect to the silicon microstrip telescope by
minimizing the residuals xb � xc, where xb is the position of the beam particle track
extrapolated to the plane at the center of the sensor. xc is the cluster position, de�ned
as the charge-weighted average of the positions of the hit pixel cells. The de�nitions of
the two positions are inconsistent since a proper alignment would require extrapolation of
the beam particle track to a plane at the center of the depleted region (x

0

b) of the sensor
whose depth is unknown: this causes a systematic o�set �x to the alignment that must
be accounted for. The residual misalignment �x between telescope and pixel coordinates
is determined using the charge collected on the �rst pixel in the cluster. With reference
to Fig. 4, pixel n is the �rst hit pixel only when the impact position of the track is
between the points xA and xC . Point xA is de�ned by requiring that the charge collected
by pixel n-1 is equal to the threshold. Similarly, point xC is de�ned by requiring that
the charge collected by pixel n is also equal to the threshold; in both cases the segment
length xA�xB = xC�xD = l is related to the electronics threshold. The charge collected
on pixel n as a function of the position of the impact point, xE, of the beam particle is
constant when xE lies between xA and xB, but linearly decreases when xE lies between
xB and xC , as sketched in the upper part of Fig. 4. The position of the knee is the true
position of the edge of the pixel and enables the systematic alignment correction �x to
be determined. In Fig. 5b the ToT of the �rst pixel as a function of the distance of the
impact point x0 from the center of pixel n is plotted for an unirradiated ST2 sensor.

The second correction deals with the e�ect of the threshold on the de�nition of the
maximum observed depth, D. Referring again to Fig. 2 it can be seen that the maximum
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Figure 3: Distribution of the track-segment depth for sensors irradiated to a uence of
0:5� 1015 neq/cm

2 for four di�erent bias voltages.
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Figure 4: Position of the entry point of tracks that hit pixel n but not pixel n-1. The
expected shape of the Time over Threshold of the �rst hit pixel as a function of the
incident track position is sketched above.

measured value of D occurs when the charge collected by the last pixel is just above the
threshold. In this case the correction to the depth D is D-d = (p=2 � l)=tg�, p being
the pixel size (50 �m ) and l, de�ned above, the projected length of the track-segment
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corresponding to the threshold. To measure l, the distribution of the hits of pixel n as a
function of the distance of the impact point of the beam particle x0 from its center was
studied (Fig. 5a). The mean value of the distribution is not zero since pixel n was hit also
when x0 was on pixel n� 1. The measured mean value is the value of l.
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Figure 5: a): Distribution of track positions relative to the center of the �rst hit pixel.
b): ToT of the �rst hit pixel as a function of track position relative to pixel center. The
�tting functions are superimposed.

The consistency of the method was checked with fully depleted unirradiated sensors,
for which the measured depletion depth should be equal to the nominal thickness. The
measured depletion depth values were: 288�6 �m for an unirradiated 280 �m thick sensor
and 190� 7 �m for an unirradiated sensor which was nominally 200 �m thick. The errors
are dominated by the uncertainty on the threshold corrections.

Table 1 summarizes the results of the measurements made on ST2 sensors irradiated
with two di�erent uences. This table also shows results for unirradiated sensors of the
ST2 and SSGb types. All ST2 sensors were 280 �m thick while the SSGb sensor was
200 �m thick. They were fabricated on standard silicon. These results show that after a
uence of 1� 1015 neq/cm

2 an ST2 sensor had a depletion depth4) of �200 �m at 600 V,
while after a uence of 0:5 � 1015 neq/cm

2 the same design was almost fully depleted at
600 V. Table 1 also shows the result of a bias voltage scan performed on one of the tested
sensors.

5 DETERMINATION OF LORENTZ ANGLE

In the presence of an electric �eld, E, and a magnetic �eld, B, the charge carri-
ers liberated by a passing particle within silicon drift along a direction at an angle �L

4) The two values reported in Table 1 refer to the same sensor, evaluated at one year distance. The
precision is not suÆcient to conclude that the depletion depth had actually increased. There may
have been an e�ect however due to annealing.
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( Lorentz angle ) with respect to the electric �eld direction (due to the ~E � ~B e�ect ).
They usually spread over several pixels, depending on the angle of incident particle. This
spread is a minimum for an angle equal to the Lorentz angle as shown schematically in
Fig. 6 5). Knowledge of this angle is needed to optimize the spatial resolution by tuning

B

Figure 6: Drift of charge carriers under the inuence of a magnetic �eld. The upper �gure
shows a perpendicular particle, in the lower the incident particle crosses the sensor at the
Lorentz angle.

the angular orientation of the detectors.
The Lorentz angle for irradiated and unirradiated sensors was determined by mea-

suring the minimum of the mean cluster size plotted as a function of the angle of the
incident beam particles. For each angle, two measurements were performed in sequence.
Data were taken with magnetic �eld o� and with magnetic �eld on. The values of magnetic
�eld are listed in Table 2. The mean cluster size was computed by applying minimal cuts
in order to avoid biases. The dominant uncertainty on the mean cluster size for each angle
is systematic. It was conservatively taken as half of the maximum di�erence between pairs
of mean cluster sizes measured at opposite angles for data taken without the magnetic
�eld. In fact, with no magnetic �eld any di�erence in mean cluster sizes at opposite angles
is attributable to alignment uncertainties.
The mean cluster size as a function of the angle for an unirradiated sensor operated at
150 V in a magnetic �eld B=1.48 T is shown in Fig. 7. The minimum is extracted by
�tting the mean cluster size distribution with a parabola. Data taken without magnetic
�eld is used to check systematic errors caused by the angular positioning of the sensor. In
this case the minimum was expected at 0Æ and any deviation from this value was used to

5) The drift trajectories are not straight lines because the electric �eld is not constant inside the depleted
region of the sensor; see section 5.1
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correct the measurement; the value of the correction was �nally quoted as a systematic
error. The Lorentz angle was measured to be 9:0�0:4�0:5Æ, where the former error comes
from the �t (containing the statistical and systematic error on mean cluster size described
above) and the latter from the subtraction of the value found for data without magnetic
�eld. In Fig. 8 the data for a sensor irradiated to a uence of 1015 neq/cm

2 and operated
at 600 V in B=1.01 T are shown. The corresponding Lorentz angle is 3:1� 0:4� 0:6Æ. A
similar measurement using a sensor irradiated to a uence of 0:5� 1015 neq/cm

2 operated
in a magnetic �eld B=0.95 T yielded 2:6 � 0:2 � 0:3Æ when it was biased at 600 V and
5:9� 1:0� 0:3Æ when biased at 150 V (Table 2 ).
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Figure 7: Mean cluster size as a function of the track angle of incidence in a magnetic
�eld of 1.48 T for an unirradiated sensor. The solid line corresponds to the parabola �t.
Model prediction is superimposed (dashed line).

5.1 Interpretation of the measurements of Lorentz angle

The measured values of Lorentz angle were compared (Fig. 9) with the predictions
of a model [1] that was developed to evaluate the charge drift in silicon and to compute
the mean cluster multiplicity as a function of the incidence angle using the properties
of the detectors under study (temperature, magnetic �eld, bias voltage, depletion depth,
geometry, thresholds). The Lorentz angle �L is given by [9] tg�L = �HB = r�dB where
�H is the Hall mobility and �d the drift mobility. Their ratio r (Hall factor) is a pure
number of value � 1. This depends on the scattering cross section of the charge-carriers.
More speci�cally [10] r =< � 2 > = < � >2 where � is the mean free time between
collisions. It can be computed using the dependence of � on charge-carriers energy and
their energy distribution.
The Hall factor of electrons in silicon has been measured and computed at di�erent
temperatures and doping levels [11, 12]. It has a weak dependence on temperature and does
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Figure 9: Lorentz angle measurement results. The dots are the experimental results, tri-
angles are the expected values given by the model as a function of the mean electric
�eld.

not depend on doping concentration for values below 1014 cm�3. The detectors tested,
including those irradiated to 1015 neq/cm

2, are expected to have an impurity concentration
too low to a�ect the value of r. The values used are r = 1:15 at 300 0K and r = 1:12 at
264 0K. The mobility depends on temperature and electric �eld which vary considerably
in the operation of irradiated sensors (Fig. 10), while it does not depend on impurity
concentration [13, 14] for values below 1014cm�3. This dependence is parametrized as [15]
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�d =
vs=Ec

[1 + (E=Ec)�]1=�
(1)

8><
>:

vs = 1:53 � 109 � T�0:87 cm s�1

Ec = 1:01 � T 1:55 V cm�1

� = 2:57 � 10�2 � T 0:66

where T is the absolute temperature. The uncertainty on the mobility is 5%. The elec-
tric �eld in the depleted region of the sensor is not constant due to the presence of the
space charge. Furthermore the space charge density varies during the detector irradiation,
changing its sign after type inversion. This implies that the Lorentz angle changes from
point to point inside the detector and as a consequence the charge carriers drift along
curved paths (Fig. 6). The e�ective doping concentration is assumed to be uniform. This
is in agreement with the scaling of depletion depth with bias voltage observed in the
detectors irradiated to 0:5 � 1015 neq/cm

2. The depletion depth approximately doubles
when the voltage is increased from 150 V to 600 V, as expected for uniform doping.
With this assumption for irradiated sensors, which have a p-type conductivity and are
not completely depleted, the electric �eld varies linearly from 2 �V=d near the pixel (where
the n-p junction is located) to zero at the limit of depleted zone. In unirradiated devices
which are over-depleted, the electric �eld varies linearly from (V � Vd)=d near the pixels
to (V + Vd)=d at the junction located on the backside (where V = 150 V was the applied
bias). The full depletion voltage was determined to be 105 V for an unirradiated sensor.
The e�ective Lorentz angle was de�ned as the incident track angle for which the mean
hit multiplicity is at its minimum. In the model, to calculate the cluster multiplicity, the
ionization charge was transported to the pixel plane taking into account the electric and
magnetic forces and di�usion. The transverse di�usion coeÆcient for an electric �eld par-
allel to the < 111 > direction is given in [15]. Since it has only a weak dependence on the
electric �eld E a value of 25 cm2s�1 (independently of E) was taken. Finally, to de�ne
hit pixels, a threshold is applied on the charge collected by every pixel. The values of
depletion depth used in the model were experimentally measured (see Section 4), so that
all except one of the model parameters are measured quantities. The only �t parameter
was the threshold 6). This was determined using data with no magnetic �eld present.
The uncertainty on the values given by the model was estimated by varying the input
depletion depths, the magnetic �eld and the mobility within their errors. Other potential
sources of errors proved to be negligible. Fig. 10 shows the mobility as a function of the
electric �eld and for T=264 0K and T =300 0K, which were the operating temperatures
of irradiated and unirradiated detectors. The markers correspond to the temperature and
the mean electric �eld < E >= V=d present in the detectors under study.
The experimental results presented in the previous section were compared with the predic-
tion of the model in Fig. 9 and summarized in Table 2. Taking into account the variation
of the magnetic �eld, it is apparent that for irradiated sensors the Lorentz angle is smaller
mostly because of the larger electric �eld. The dependence of Lorentz angle on electric

6) It was necessary to �t the threshold instead of using the value obtained by electronic calibration of
the front end electronics because the sensors used for the measurements had a non uniform charge
collection with losses along the edges of the pixel cells ([16]). This necessitated the extraction of an
e�ective threshold from the data (which was about 20% higher than the real one).
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threshold. Two di�erent algorithms were used to reconstruct the spatial position of two-
pixels-clusters. A digital algorithm which uses the center position between the two pixels
and an analog algorithm that corrects the binary position just described using an inter-
polation of the charge collected by the two pixels. Since it was observed that the ratio of
the charge collected on the right hand side pixel (Qr) over the total charge collected by
the two pixels � = Qr=(Ql +Qr) (where Qr and Ql are the charges collected by the right
hand side and left hand side pixels in the cluster respectively) had a dependence on the
position of the passing particle, the following interpolation was adopted [17]:

xan = xdig +
�

N0

Z �

0

dN

d�
d� (2)

where xan and xdig are the spatial positions reconstructed by the analog and digital

algorithms respectively. This formula assumes that N0 particles are spread uniformly over
an interval � that is the width of the region within which charge sharing occurs.

An equivalent procedure was adopted for multi-pixel-clusters. These occur when
particles traverse the pixel sensor at an angle. For inclined particles, the charge is collect-
ed over a region approximately given by D�tg(�), where D is the sensor depletion depth.
Charged particles with large incident angles produce signals on many pixels and the av-
erage charge per pixel decreases, despite the longer trajectory in the silicon. Since only
the signal amplitudes on the edge pixels in the clusters carry information on the position
of the passing particle, the digital and the analog algorithms described above were used
to reconstruct the coordinate but only taking into account the �rst and the last pixel in
the clusters [18].
Referring to (2), � depends on angle, cluster multiplicity and sensor design and is ex-
tracted from a �t to data for each con�guration.

Fig. 11 shows the correlation between � and the di�erence between the reconstructed
track position and the space point recostructed with digital information alone at an angle
of 15Æ for an ST1 sensor. The �gure also shows that the correction to be applied depends
on the number of pixels in the cluster (i.e. the cluster multiplicity), so it is convenient to
treat di�erent multiplicities separately.

As the track length under a pixel is geometrically limited by p= sin� (p being the
pixel size), charges on a pixel exceeding Qcut = � p= sin� (where � is the mean number
of electrons generated per unit path length) are due to energy loss uctuations and Æ
electrons. The impact of these uctuations on resolution was reduced by setting pulse
heights exceeding Qcut to Qcut, when computing �.

In what follows, x describes the short (50 �m) and y the long (400 �m) pitch
dimension of the pixel assembly.

6.1 Telescope resolution

Spatial resolution was determined by computing the residuals between the coordi-
nate measured by the pixel detector and that predicted by the silicon microstrip telescope.
The extrapolation uncertainty depends on many parameters, e.g. the position of the mi-
crostrip planes and of the pixel detector under study, the microstrips intrinsic resolution,
the amount of material along the beam path etc. Telescope resolution was improved ap-
plying a tighter selection on track reconstruction �2 probability. Keeping 20% of events,
telescope resolution improved from � 6 to � 4 �m . In order to study the telescope reso-
lution, data taken at normal incidence were used. At normal incidence mainly single-pixel
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Figure 11: Di�erence between position measured by the telescope and by the pixel detector
with digital information alone, plotted against the variable � (de�ned in the text). Data
are taken with an ST1 device for an angle of incidence of 15Æ.

and double-pixel-clusters occur. The resolution is determined by their relative abundance.
Single pixel and double pixel clusters were studied separately. Examples of such residual
distributions are shown for a modi�ed SSGb 200 �m thick sensor in Fig. 12. Single-pixel
clusters occur when incident particles cross the pixel central region of with L=p-2*�.
Then for single pixel clusters the distribution is parametrized with a uniform distribution
of width L, convoluted with a Gaussian distribution that takes into account the resolution
of the silicon strip telescope, threshold e�ects and Æ-rays. The result of this �t (Fig. 12c)
was �tel = 4.5 � 0.3 �m and L = 44.0 � 0.4 �m for the extension of the region at the
centre of the pixel where the charge is collected by a single pixel. The �tted width L is in
agreement with the measured width of � 3 �m for the region in which charge sharing oc-
curs for this sensor design and operating conditions. As a consequence of the dimensions of
the region of charge sharing, the double-pixel-cluster distribution of residuals had a width
of 5.2 �m for the digital algorithm (Fig. 12a), when calculated �tting the distributions
with a Gaussian function. An alternative method to estimate telescope resolution is to �t
a Gaussian function to the analog residuals. This yielded a value of 4.8 �m (Fig. 12b),
in agreement within statistical errors with the value obtained using the �t to the single
pixel cluster distribution.

At 0Æ telescope resolution values between 3 and 5 �m were measured, depending
on the di�erent amount of material along the beam line. At higher angles slightly worse
values were measured, due to the projection on the pixel detector plane (which yields a
telescope resolution proportional to 1= cos�) and the presence of more material along the
beam when detectors are tilted.

The resolution �gures quoted here are not corrected for telescope extrapolation un-
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Figure 12: Residuals between position measured by the telescope and by pixel detector for
a 200 �m thick SSGb sensor at 0Æ. a) Double hits residuals (digital algorithm). b) Double
hits residuals (analog algorithm). c) Single hits residuals. d) Total residuals distribution
(analog algorithm).

certainty since its measurement may be a�ected by systematic e�ects which are diÆcult to
evaluate for any data taking con�guration. The quoted values are the standard deviations
evaluated by �tting the residual distributions with a Gaussian function. These are less
sensitive to statistical uctuations than the rms and give a reasonably good description
of the width of the distributions even when the distributions are not Gaussian (as occurs
at angles at which a limited charge sharing is present).

6.2 x-spatial resolution at normal incidence

At 0Æ the resolution depends on the relative fraction of single and multi-hit clusters
and is dominated by the single hit cluster resolution. The combined distribution of single
and double pixel clusters for the SSGb 200 �m thick sensor (Fig. 12d) has a standard
deviation of 12.7 �m (the rms is 14.0 �m).

The relative weight of single-pixel and double-pixel-clusters are listed in Table 3,
where the results for other six sensors with di�erent designs or with di�erent irradiation are
presented. There is not a great di�erence recorded between analog and digital resolutions
for a given sensor, but di�erences appear between di�erent con�gurations. Devices which
collected more charge (either due to their larger thickness, or because they were fully
depleted or since the design had negligible charge loss, as the ST1 and SSG layouts)
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produced less single pixel clusters, located in a narrower region (i.e. L was smaller) and
therefore had better resolution. As a consequence unirradiated 280 �m thick devices
provided resolutions superior to the irradiated sensors or to the 200 �m thick sensors.
The ST2 devices had worse resolution than SSG and ST1 sensors, as a consequence of
charge collection ineÆciencies.
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Figure 13: Measured digital resolution without subtraction of telescope extrapolation
uncertainty.

6.3 x-spatial resolution as a function of the angle of incidence

Finally, the dependence of the resolution on the angle � of the incident particle
with respect to the normal to sensor surface was studied. The standard deviations of
the all-cluster residual distributions are shown in Fig. 13 (using a digital algorithm) and
in 14 and 15 (analog algorithm). The data were not corrected for the silicon microstrip
telescope extrapolation uncertainty.

As the tilt angle is increased, the fraction of double pixel clusters increases, their
residual distribution gets wider and the single pixel cluster distribution narrower. This is
a consequence of single pixel clusters occurring in a more restricted region.
The best digital resolution is obtained when the two distributions are equally populated.
At any given angle about 98 % of clusters are formed from only two multiplicities (1
and 2, 2 and 3 and so on, depending on the angle). When they are equally populated
the digital resolution is of the order of p=2=

p
12 = 25 �m=

p
12. When the angle is such

that nearly all of the events belong to one multiplicity only, the digital resolution is of
the order of p=

p
12 = 50 �m=

p
12. Then the digital resolution as a function of angle

(Fig. 13) shows a structure of alternating minima and maxima. The angular position
of minima and maxima depends on the charge collection properties of the device which
inuence the cluster multiplicity. For example, for 280 �m thick sensor devices and with
negligible charge loss (SSG and ST1), the position of �rst minimum is obtained at 5Æ.
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Figure 14: Measured analog resolution without subtraction of telescope extrapolation
uncertainty (1998 data).
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Figure 15: Measured analog resolution without subtraction of telescope extrapolation
uncertainty (1999 and 2000 data).

This angle is larger for the ST2 design, since it su�ers from charge loss and larger still
for an irradiated ST2 sensor operating underdepleted. The resolutions at the maxima and
minima are governed by pixel pitch only.
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The spatial resolution obtained with the analog algorithm (Fig. 14 and 15) is always
better than the corresponding digital resolution once the incidence angles are larger than
0Æ. The best resolution value occurs when the proportion of single pixel clusters becomes
negligible. This occurred at 10Æ for the unirradiated 280 �m thick devices (5:3 �m before
correction for the telescope resolution, 3:2+0:8�1:2 �m after correction7)), and at 15Æ� 20Æ for
partially depleted or thinner sensors. The best resolution before subtraction of telescope
error for a device irradiated to 1015 neqcm

�2 is 7:4 �m, 6:0+0:5�0:6 �m after subtraction 7). It
should be noted that the spatial resolution is not signi�cantly degraded post-irradiation,
showing that there are no inhomogenities in the sensor after irradiation. The di�erences
in spatial resolution before and after irradiation are completely explained in terms of
reduced charge collection eÆciency.

As the angle of incidence increases further, the charge collected by every pixel is
reduced and energy loss uctuations introduce ineÆciencies in the �rst and last pixel in
the cluster, thus degrading the resolution.

Similar results were obtained for all the designs. For any given design, no di�erences
were found between di�ering implant widths, for a given degree of charge collection.
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Figure 16: Measured analog resolution inside a magnetic �eld as a function of the di�erence
between the beam incidence angle and the Lorentz angle, without subtraction of telescope
extrapolation uncertainty.

6.4 Spatial resolution in the presence of a magnetic �eld

It is expected that the e�ect of a magnetic �eld on the resolution is to shift the
angular dependence by a quantity equal to the Lorentz angle. In Fig. 16 the analog
resolution for data taken with a magnetic �eld is shown as a function of the absolute
value of the di�erence between the incidence angle and the measured Lorentz angle. The

7) Statistical error.
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electric �eld to increase further to values in excess of 104 V/cm. Since in this regime the
electron drift mobility is a rapidly decreasing function of the electric �eld, the Lorentz
angle is consequentely a�ected. No deviations from expectations have been found at 264
0K and 300 0K.
A Lorentz angle variation is then expected during operation in ATLAS, when the bias
will be adjusted for the increased depletion voltage. This will a�ect the ultimate spatial
resolution, due to its dependence on track incidence angle. However a position resolution
optimal value better than 7.4 �m at 15Æ has been demonstrated even after irradiation of
1� 1015 1 MeV neq/cm

2, when measured charge is properly taken into account.
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Table 1: Depletion depth measurement results.

Fluence [neq/cm
2] Thickness [�m] Bias Voltage [V] Depletion depth [�m]

0 200 150 190� 7

0 280 150 288� 6

0:5� 1015 280 600 261� 8

0:5� 1015 280 400 252� 10

0:5� 1015 280 200 147� 7

0:5� 1015 280 150 123� 11

0:5� 1015 280 100 100� 7

1015 (1998) 280 600 189� 12

1015 (1999) 280 600 217� 13

1015 280 300 111� 10
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Table 2: Lorentz angle measurement results.

Fluence [neq/cm2] 0 0:5� 1015 0:5� 1015 1� 1015 (1998) 1� 1015 (1999)

Bias Voltage [V] 150 150 600 600 600

T [ 0K ] 300 264 264 264 264

Depletion [�m] 288 � 6 123 � 11 261� 8 189 � 12 217� 13

Magn. Field [T] 1:48� 0:02 0:95� 0:05 0:95� 0:05 1:01� 0:05 0:74 � 0:05

�L (meas.) [Æ] 9:0� 0:4� 0:5 5:9� 1:0� 0:3 2:6� 0:2� 0:3 3:1� 0:4� 0:6 2:7� 0:4� 0:4

�L (th.) [Æ] 9:3� 0:4 3:7� 0:5 2:7� 0:2 2:1� 0:2 1:8� 0:2
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Table 3: Measurements of Spatial Resolution*.

Design ST2 ST1 SSG ST2 ST2 SSGb SMD+

Isolation p-spray p-stop p-spray p-spray p-spray p-spray p-spray
Fluence ( neq/cm2) 0 0 0 1015 0:5 � 1015 0 1015

Bias (V) 150 150 150 600 600 150 600
Depletion depth (�m) 280 280 280 190 260 200 230

Thickness (�m) 280 280 280 280 280 200 250
Cluster multiplicity (%)
(at normal incidence)

1 hit 76.8 67.5 66.7 90.6 83.6 82.5 85.9
2 hits 20.9 29.5 30.4 8.4 14.5 15.9 12.4
3 hits 1.2 1.7 1.6 0.6 1.3 0.8 1.0

4 hits or more 1.1 1.3 1.3 0.4 0.6 0.8 0.7
Normal incidence:

Charge sharing region (�m) 9.2 13.6 14.0 3.5 5.8 6.2 4.3
Digital resolution� (�m) 12.1 10.7 10.5 13.7 13.1 12.7 12.5
Analog resolution� (�m) 12.0 10.4 10.1 13.7 12.9 12.6 12.4

Best Analog Resolution� (�m) 6.5 5.3 5.8 9 7.3 6.2 7.4
Corresp. angle 10Æ 10Æ 10Æ 15Æ 10Æ 15Æ 15Æ

* Telescope extrapolation uncertainty not subtracted.
+ Oxygenated silicon substrate and moderated p-spray isolation.
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