# A Measurement of the Hadronic Decay Current and the $\nu_{\tau}$ -helicity in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$

# The OPAL Collaboration

#### $\mathbf{A}\mathbf{b}\mathbf{s}\mathbf{t}\mathbf{r}\mathbf{a}\mathbf{c}\mathbf{t}$

The decay  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  has been studied using data collected with the OPAL detector at LEP during 1992 to 1994. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the  $3\pi$  invariant mass squared as well as  $2\pi$  invariant mass squared projections of the Dalitz plot, and the model dependent mass and width of the a<sub>1</sub> resonance are measured for both models. Neither model, however, is found to provide a completely satisfactory description of the data. The hadronic structure functions for this decay are measured in a model independent framework. No evidence for vector or scalar currents has been found. In addition, the parity violating asymmetry parameter is measured in a model independent way to be  $\gamma_{VA} = 1.29 \pm 0.26 \pm 0.11$ .

(Submitted to Zeit. f. Physik C)

K. Ackerstaff<sup>8</sup>, G. Alexander<sup>23</sup>, J. Allison<sup>16</sup>, N. Altekamp<sup>5</sup>, K. Ametewee<sup>25</sup>, K.J. Anderson<sup>9</sup>, S. Anderson<sup>12</sup>, S. Arcelli<sup>2</sup>, S. Asai<sup>24</sup>, D. Axen<sup>29</sup>, G. Azuelos<sup>18,a</sup>, A.H. Ball<sup>17</sup>, E. Barberio<sup>8</sup>, R.J. Barlow<sup>16</sup>, R. Bartoldus<sup>3</sup>, J.R. Batley<sup>5</sup>, J. Bechtluft<sup>14</sup>, C. Beeston<sup>16</sup>, T. Behnke<sup>8</sup>, A.N. Bell<sup>1</sup>, K.W. Bell<sup>20</sup>, G. Bella<sup>23</sup>, S. Bentvelsen<sup>8</sup>, P. Berlich<sup>10</sup>, S. Bethke<sup>14</sup>, O. Biebel<sup>14</sup>, A. Biguzzi<sup>5</sup>, S.D. Bird<sup>16</sup>, V. Blobel<sup>27</sup>, I.J. Bloodworth<sup>1</sup>, J.E. Bloomer<sup>1</sup>, M. Bobinski<sup>10</sup>, P. Bock<sup>11</sup>, H.M. Bosch<sup>11</sup>, M. Boutemeur<sup>34</sup>, B.T. Bouwens<sup>12</sup>, S. Braibant<sup>12</sup>, R.M. Brown<sup>20</sup>, H.J. Burckhart<sup>8</sup>, C. Burgard<sup>8</sup>, R. Bürgin<sup>10</sup>, P. Capiluppi<sup>2</sup>, R.K. Carnegie<sup>6</sup>, A.A. Carter<sup>13</sup>, J.R. Carter<sup>5</sup>, C.Y. Chang<sup>17</sup>, D.G. Charlton<sup>1,b</sup>, D. Chrisman<sup>4</sup>, P.E.L. Clarke<sup>15</sup>, I. Cohen<sup>23</sup>, J.E. Conboy<sup>15</sup>, O.C. Cooke<sup>16</sup>, M. Cuffiani<sup>2</sup>, S. Dado<sup>22</sup>, C. Dallapiccola<sup>17</sup>, G.M. Dallavalle<sup>2</sup>, S. De Jong<sup>12</sup>, L.A. del Pozo<sup>4</sup>, K. Desch<sup>3</sup>, M.S. Dixit<sup>7</sup>, E. do Couto e Silva<sup>12</sup>, M. Doucet<sup>18</sup>. E. Duchovni<sup>26</sup>, G. Duckeck<sup>34</sup>, I.P. Duerdoth<sup>16</sup>, D. Eatough<sup>16</sup>, J.E. G. Edwards<sup>16</sup>, P.G. Estabrooks<sup>6</sup>, H.G. Evans<sup>9</sup>, M. Evans<sup>13</sup>, F. Fabbri<sup>2</sup>, M. Fanti<sup>2</sup>, P. Fath<sup>11</sup>, A.A. Faust<sup>30</sup> F. Fiedler<sup>27</sup>, M. Fierro<sup>2</sup>, H.M. Fischer<sup>3</sup>, R. Folman<sup>26</sup>, D.G. Fong<sup>17</sup>, M. Foucher<sup>17</sup>, A. Fürtjes<sup>8</sup>, P. Gagnon<sup>7</sup>, A. Gaidot<sup>21</sup>, J.W. Gary<sup>4</sup>, J. Gascon<sup>18</sup>, S.M. Gascon-Shotkin<sup>17</sup>, N.I. Geddes<sup>20</sup>, C. Geich-Gimbel<sup>3</sup>, F.X. Gentit<sup>21</sup>, T. Geralis<sup>20</sup>, G. Giacomelli<sup>2</sup>, P. Giacomelli<sup>4</sup>, R. Giacomelli<sup>2</sup>, V. Gibson<sup>5</sup>, W.R. Gibson<sup>13</sup>, D.M. Gingrich<sup>30,a</sup>, D. Glenzinski<sup>9</sup>, J. Goldberg<sup>22</sup>, M.J. Goodrick<sup>5</sup>, W. Gorn<sup>4</sup>, C. Grandi<sup>2</sup>, E. Gross<sup>26</sup>, J. Grunhaus<sup>23</sup>, M. Gruwé<sup>8</sup>, C. Hajdu<sup>32</sup>, G.G. Hanson<sup>12</sup>, M. Hansroul<sup>8</sup>, M. Hapke<sup>13</sup>, C.K. Hargrove<sup>7</sup>, P.A. Hart<sup>9</sup>, C. Hartmann<sup>3</sup>, M. Hauschild<sup>8</sup>, C.M. Hawkes<sup>5</sup>, R. Hawkings<sup>27</sup>, R.J. Hemingway<sup>6</sup>, M. Herndon<sup>17</sup>, G. Herten<sup>10</sup> R.D. Heuer<sup>8</sup>, M.D. Hildreth<sup>8</sup>, J.C. Hill<sup>5</sup>, S.J. Hillier<sup>1</sup>, T. Hilse<sup>10</sup>, P.R. Hobson<sup>25</sup>, R.J. Homer<sup>1</sup>, A.K. Honma<sup>28,a</sup>, D. Horváth<sup>32,c</sup>, R. Howard<sup>29</sup>, R.E. Hughes-Jones<sup>16</sup>, D.E. Hutchcroft<sup>5</sup>. P. Igo-Kemenes<sup>11</sup>, D.C. Imrie<sup>25</sup>, M.R. Ingram<sup>16</sup>, K. Ishii<sup>24</sup>, A. Jawahery<sup>17</sup>, P.W. Jeffreys<sup>20</sup>, H. Jeremie<sup>18</sup>, M. Jimack<sup>1</sup>, A. Joly<sup>18</sup>, C.R. Jones<sup>5</sup>, G. Jones<sup>16</sup>, M. Jones<sup>6</sup>, R.W.L. Jones<sup>8</sup>, U. Jost<sup>11</sup>, P. Jovanovic<sup>1</sup>, T.R. Junk<sup>8</sup>, D. Karlen<sup>6</sup>, K. Kawagoe<sup>24</sup>, T. Kawamoto<sup>24</sup>, R.K. Keeler<sup>28</sup>, R.G. Kellogg<sup>17</sup>, B.W. Kennedy<sup>20</sup>, J. Kirk<sup>29</sup>, S. Kluth<sup>8</sup>, T. Kobayashi<sup>24</sup>, M. Kobel<sup>10</sup>, D.S. Koetke<sup>6</sup>, T.P. Kokott<sup>3</sup>, M. Kolrep<sup>10</sup>, S. Komamiya<sup>24</sup>, T. Kress<sup>11</sup>, P. Krieger<sup>6</sup>, J. von Krogh<sup>11</sup>, P. Kyberd<sup>13</sup>, G.D. Lafferty<sup>16</sup>, H. Lafoux<sup>21</sup>, R. Lahmann<sup>17</sup> W.P. Lai<sup>19</sup>, D. Lanske<sup>14</sup>, J. Lauber<sup>15</sup>, S.R. Lautenschlager<sup>31</sup>, J.G. Layter<sup>4</sup>, D. Lazic<sup>22</sup>, A.M. Lee<sup>31</sup>, E. Lefebvre<sup>18</sup>, D. Lellouch<sup>26</sup>, J. Letts<sup>12</sup>, L. Levinson<sup>26</sup>, C. Lewis<sup>15</sup>, S.L. Lloyd<sup>13</sup> F.K. Loebinger<sup>16</sup>, G.D. Long<sup>28</sup>, M.J. Losty<sup>7</sup>, J. Ludwig<sup>10</sup>, A. Macchiolo<sup>2</sup>, A. Macpherson<sup>30</sup>, A. Malik<sup>21</sup>, M. Mannelli<sup>8</sup>, S. Marcellini<sup>2</sup>, C. Markus<sup>3</sup>, A.J. Martin<sup>13</sup>, J.P. Martin<sup>18</sup>, G. Martinez<sup>17</sup>, T. Mashimo<sup>24</sup>, W. Matthews<sup>25</sup>, P. Mättig<sup>3</sup>, W.J. McDonald<sup>30</sup>, J. McKenna<sup>29</sup>, E.A. Mckigney<sup>15</sup>, T.J. McMahon<sup>1</sup>, A.I. McNab<sup>13</sup>, R.A. McPherson<sup>8</sup>, F. Meijers<sup>8</sup>, S. Menke<sup>3</sup>, F.S. Merritt<sup>9</sup>, H. Mes<sup>7</sup>, J. Meyer<sup>27</sup>, A. Michelini<sup>2</sup>, G. Mikenberg<sup>26</sup>, D.J. Miller<sup>15</sup>, R. Mir<sup>26</sup>, W. Mohr<sup>10</sup>, A. Montanari<sup>2</sup>, T. Mori<sup>24</sup>, M. Morii<sup>24</sup>, U. Müller<sup>3</sup>, K. Nagai<sup>26</sup>, I. Nakamura<sup>24</sup> H.A. Neal<sup>8</sup>, B. Nellen<sup>3</sup>, B. Nijjhar<sup>16</sup>, R. Nisius<sup>8</sup>, S.W. O'Neale<sup>1</sup>, F.G. Oakham<sup>7</sup>, F. Odorici<sup>2</sup>, H.O. Ogren<sup>12</sup>, N.J. Oldershaw<sup>16</sup>, T. Omori<sup>24</sup>, M.J. Oreglia<sup>9</sup>, S. Orito<sup>24</sup>, J. Pálinkás<sup>33,d</sup>, G. Pásztor<sup>32</sup>, J.R. Pater<sup>16</sup>, G.N. Patrick<sup>20</sup>, J. Patt<sup>10</sup>, M.J. Pearce<sup>1</sup>, S. Petzold<sup>27</sup>, P. Pfeifenschneider<sup>14</sup>, J.E. Pilcher<sup>9</sup>, J. Pinfold<sup>30</sup>, D.E. Plane<sup>8</sup>, P. Poffenberger<sup>28</sup>, B. Poli<sup>2</sup>, A. Posthaus<sup>3</sup>, H. Przysiezniak<sup>30</sup>, D.L. Rees<sup>1</sup>, D. Rigby<sup>1</sup>, S. Robertson<sup>28</sup>, S.A. Robins<sup>13</sup>, N. Rodning<sup>30</sup>, J.M. Roney<sup>28</sup>, A. Rooke<sup>15</sup>, E. Ros<sup>8</sup>, A.M. Rossi<sup>2</sup>, M. Rosvick<sup>28</sup>, P. Routenburg<sup>30</sup>, Y. Rozen<sup>22</sup>, K. Runge<sup>10</sup>, O. Runolfsson<sup>8</sup>, U. Ruppel<sup>14</sup>, D.R. Rust<sup>12</sup>, R. Rylko<sup>25</sup>, K. Sachs<sup>10</sup>, E.K.G. Sarkisyan<sup>23</sup>, M. Sasaki<sup>24</sup>, C. Sbarra<sup>29</sup>, A.D. Schaile<sup>34</sup>,

O. Schaile<sup>34</sup>, F. Scharf<sup>3</sup>, P. Scharff-Hansen<sup>8</sup>, P. Schenk<sup>34</sup>, B. Schmitt<sup>8</sup>, S. Schmitt<sup>11</sup>,
M. Schröder<sup>8</sup>, H.C. Schultz-Coulon<sup>10</sup>, M. Schulz<sup>8</sup>, M. Schumacher<sup>3</sup>, P. Schütz<sup>3</sup>, W.G. Scott<sup>20</sup>, T.G. Shears<sup>16</sup>, B.C. Shen<sup>4</sup>, C.H. Shepherd-Themistocleous<sup>8</sup>, P. Sherwood<sup>15</sup>, G.P. Siroli<sup>2</sup>,
A. Sittler<sup>27</sup>, A. Skillman<sup>15</sup>, A. Skuja<sup>17</sup>, A.M. Smith<sup>8</sup>, T.J. Smith<sup>28</sup>, G.A. Snow<sup>17</sup>, R. Sobie<sup>28</sup>, S. Söldner-Rembold<sup>10</sup>, R.W. Springer<sup>30</sup>, M. Sproston<sup>20</sup>, A. Stahl<sup>3</sup>, M. Steiert<sup>11</sup>,
K. Stephens<sup>16</sup>, J. Steuerer<sup>27</sup>, B. Stockhausen<sup>3</sup>, D. Strom<sup>19</sup>, P. Szymanski<sup>20</sup>, R. Tafirout<sup>18</sup>,
S.D. Talbot<sup>1</sup>, S. Tanaka<sup>24</sup>, P. Taras<sup>18</sup>, S. Tarem<sup>22</sup>, M. Thiergen<sup>10</sup>, M.A. Thomson<sup>8</sup>, E. von Törne<sup>3</sup>, S. Towers<sup>6</sup>, I. Trigger<sup>18</sup>, T. Tsukamoto<sup>24</sup>, E. Tsur<sup>23</sup>, A.S. Turcot<sup>9</sup>,
M.F. Turner-Watson<sup>8</sup>, P. Utzat<sup>11</sup>, R. Van Kooten<sup>12</sup>, G. Vasseur<sup>21</sup>, M. Verzocchi<sup>10</sup>, P. Vikas<sup>18</sup>,
M. Vincter<sup>28</sup>, E.H. Vokurka<sup>16</sup>, F. Wäckerle<sup>10</sup>, A. Wagner<sup>27</sup>, C.P. Ward<sup>5</sup>, D.R. Ward<sup>5</sup>,
J.J. Ward<sup>15</sup>, P.M. Watkins<sup>1</sup>, A.T. Watson<sup>1</sup>, N.K. Watson<sup>1</sup>, P.S. Wells<sup>8</sup>, N. Wermes<sup>3</sup>,
J.S. White<sup>28</sup>, B. Wilkens<sup>10</sup>, G.W. Wilson<sup>27</sup>, J.A. Wilson<sup>1</sup>, G. Wolf<sup>26</sup>, S. Wotton<sup>5</sup>, T.R. Wyatt<sup>16</sup>, S. Yamashita<sup>24</sup>, G. Yekutieli<sup>26</sup>, V. Zacek<sup>18</sup>, D. Zer-Zion<sup>8</sup>

<sup>1</sup>School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT, UK

<sup>2</sup>Dipartimento di Fisica dell' Università di Bologna and INFN, I-40126 Bologna, Italy <sup>3</sup>Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany

<sup>4</sup>Department of Physics, University of California, Riverside CA 92521, USA

<sup>5</sup>Cavendish Laboratory, Cambridge CB3 0HE, UK

<sup>6</sup> Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada

<sup>7</sup>Centre for Research in Particle Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada

<sup>8</sup>CERN, European Organisation for Particle Physics, CH-1211 Geneva 23, Switzerland <sup>9</sup>Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago IL 60637, USA

<sup>10</sup>Fakultät für Physik, Albert Ludwigs Universität, D-79104 Freiburg, Germany

<sup>11</sup>Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany

<sup>12</sup>Indiana University, Department of Physics, Swain Hall West 117, Bloomington IN 47405, USA

<sup>13</sup>Queen Mary and Westfield College, University of London, London E1 4NS, UK

<sup>14</sup>Technische Hochschule Aachen, III Physikalisches Institut, Sommerfeldstrasse 26-28, D-52056 Aachen, Germany

<sup>15</sup>University College London, London WC1E 6BT, UK

<sup>16</sup>Department of Physics, Schuster Laboratory, The University, Manchester M13 9PL, UK

<sup>17</sup>Department of Physics, University of Maryland, College Park, MD 20742, USA

<sup>18</sup>Laboratoire de Physique Nucléaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada

<sup>19</sup>University of Oregon, Department of Physics, Eugene OR 97403, USA

<sup>20</sup>Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK

<sup>21</sup>CEA, DAPNIA/SPP, CE-Saclay, F-91191 Gif-sur-Yvette, France

<sup>22</sup>Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

<sup>23</sup>Department of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

<sup>24</sup>International Centre for Elementary Particle Physics and Department of Physics, Univer-

sity of Tokyo, Tokyo 113, and Kobe University, Kobe 657, Japan

<sup>25</sup>Brunel University, Uxbridge, Middlesex UB8 3PH, UK

<sup>26</sup>Particle Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel

<sup>27</sup>Universität Hamburg/DESY, II Institut für Experimental Physik, Notkestrasse 85, D-22607 Hamburg, Germany

<sup>28</sup>University of Victoria, Department of Physics, P O Box 3055, Victoria BC V8W 3P6, Canada

<sup>29</sup>University of British Columbia, Department of Physics, Vancouver BC V6T 1Z1, Canada
 <sup>30</sup>University of Alberta, Department of Physics, Edmonton AB T6G 2J1, Canada

<sup>31</sup>Duke University, Dept of Physics, Durham, NC 27708-0305, USA

 $^{32}\mbox{Research}$  Institute for Particle and Nuclear Physics, H-1525 Budapest, P O Box 49, Hungary

<sup>33</sup>Institute of Nuclear Research, H-4001 Debrecen, P O Box 51, Hungary

<sup>34</sup>Ludwigs-Maximilians-Universität München, Sektion Physik, Am Coulombwall 1, D-85748 Garching, Germany

 $^a$  and at TRIUMF, Vancouver, Canada V6T 2A3

<sup>b</sup> and Royal Society University Research Fellow

<sup>c</sup> and Institute of Nuclear Research, Debrecen, Hungary

<sup>d</sup> and Department of Experimental Physics, Lajos Kossuth University, Debrecen, Hungary

# 1 Introduction

Semihadronic  $\tau$  decays provide an ideal laboratory to study strong interactions in a region currently not accessible to precise theoretical calculations. The decay  $au^- o \pi^- \pi^- \pi^+ 
u_{ au}^{-1}$ , studied in this paper, is expected by the partially conserved axial-vector current hypothesis (PCAC) and by G-parity conservation to be dominated by the axial-vector current, mainly the  $a_1$  resonance, through the decay  $\tau^- \to a_1^- \nu_{\tau}$  followed by the decay chain  $a_1^- \to \rho^0 \pi^-$  and  $ho^0 o \pi^+ \pi^-$  . The correct modelling of the  $au^- o \pi^- \pi^- \pi^+ 
u_ au$  decay dynamics is important in a variety of studies, from setting limits on the  $\tau$  neutrino mass using three-prong  $\tau$  decays to measuring the  $\tau$  polarization. Based on a previous paper [1], two different approaches have been used to study the  $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$  decay. First, the model of Kühn and Santamaria [2], which is used to model the  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  decay in TAUOLA 2.4[3], and the model of Isgur, Morningstar, and Reader [4] are both compared with the OPAL data. The a<sub>1</sub> resonance parameters are extracted for both models, and the comparison between the data and model predicted distributions is discussed. In the second approach, a model independent analysis is used to extract the structure of the weak hadronic current using a general description of hadronic  $\tau$  decays as proposed by Kühn and Mirkes [5]. In this paper, the OPAL data collected in 1994 has been combined with the previously analysed 1992 and 1993 data, allowing the measurement of the model independent structure functions in the Dalitz plane. In addition, non-axial-vector contributions in the decay have been investigated.

A brief description of the OPAL detector is given in Section 2. The data selection, based on a likelihood method, is described in Section 3, and the theoretical framework of the  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  decay is presented in Section 4. In Section 5, the two models are compared with OPAL data, and the  $a_1$  resonance parameters are extracted for each model. The structure functions are measured in section 6 and compared with model predictions. In Section 7, vector and scalar contributions to the  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  decay are measured using a model independent as well as a model dependent approach. The measurement of the parity violating asymmetry parameter  $\gamma_{VA}$ , in both the model independent and model dependent frameworks, is described in Section 8. Finally, the results are summarized in Section 9.

# 2 The OPAL detector

A detailed description of the OPAL detector can be found in [6]. Only the most important elements for this analysis are mentioned here.

The innermost detector for the measurement of charged tracks is a silicon microvertex detector. Outside the microvertex detector is the central tracking system, consisting of a precision vertex drift chamber, a large volume jet chamber, and a set of z-chambers which provide measurements of the track coordinates along the beam direction. Two tracks can be resolved by the central tracking system when separated by 2.5 mm or more. The central tracking detector is immersed in a 0.435 T axial magnetic field. The momentum resolution of the jet chamber is approximately  $\sigma_{p_t}/p_t = \sqrt{0.0004 + (0.0015p_t)^2}$ , where the momentum  $p_t$ , in GeV, is the component transverse to the beam direction. The resolution on the invariant mass of the  $3\pi$  system can be parametrized as  $\sigma(Q) = 0.011 + 0.011Q^2$ , where Q is in GeV.

<sup>&</sup>lt;sup>1</sup>References in this paper to specific charge states apply to the charge conjugate states also.

The jet chamber also provides measurements of the specific energy loss of tracks in gas, with a resolution of  $\sigma(dE/dx)/(dE/dx) = 3.5\%$  for tracks with a full 159 samplings.

The electromagnetic energy is measured by a lead-glass calorimeter located outside the magnet coil and in the two end caps, while hadronic energy is measured by several planes of limited streamer tubes which are interleaved with the iron layers of the magnet return yoke. The energy resolution of the lead-glass calorimeter for 45.6 GeV electrons is  $\sigma_E/E = 2.1\%$  in the barrel region and  $\sigma_E/E = 3.1\%$  in the two end caps. The lead-glass calorimeter position resolution is about 11 mm.

A preshower system (presampler) is situated in front of the lead-glass calorimeter to improve the position and energy measurement of electromagnetic showers initiating in the magnet coil. Finally, the magnet return yoke is surrounded by a muon detector.

# 3 Selection of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ decays

The selection of  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  candidate events, outlined below, differs only slightly from the selection described in [1]. 114381  $\tau$  pairs have been selected, irrespective of the decay mode, from the 1992 – 1994 data sample using the  $\tau$  pair preselection described in [7]. The polar angle  $\theta_{jet}$  of each  $\tau$ -jet relative to the beam direction is determined using charged tracks and clusters in the lead-glass calorimeter. Events are selected only if the average of  $|\cos \theta_{jet}|$  for the two jets is less than 0.95. The 1992 – 1994 data sample represents 74% of the data collected at center-of-mass energies around  $\sqrt{s} = M_{Z^0}$  with the OPAL detector at LEP, and corresponds to an integrated luminosity of 104 pb<sup>-1</sup>.

For the Monte Carlo simulation we have used KORALZ 4.0 [8] to produce a sample of approximately four times the number of events in the data sample. A modified version<sup>2</sup> of TAUOLA 2.4 [3] is used to generate the  $\tau$  leptons and model their decays, where the model of Kühn and Santamaria [2] is incorporated for the  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  decay. The Monte Carlo generated events are passed through a full simulation of the OPAL detector [11].

The  $\tau^- \rightarrow h^- h^- h^+ \nu_{\tau}$  candidates have been selected from the  $\tau$  pair sample using a channel likelihood method [12]. Four variables are used in the likelihood selection to discriminate against specific background channels. Background from one-prong decays accompanied by an additional pair of electron and positron tracks from photon conversion is suppressed by using the specific energy loss (dE/dx) to separate pions from electrons, and by using the probability of the  $\chi^2$  of a 3-dimensional vertex fit of the three tracks. Three-prong events with additional neutrals in the final state are separated from the signal channel by using the calorimetric energy sum divided by the sum of the track momenta, and also the sum of the energy of the reconstructed photons in the decay.

Reference samples have been selected for each of the four variables by applying stringent cuts on the three variables not under examination and also using information from the presampler. Although the overall agreement is satisfactory, some discrepancies between data and Monte Carlo have been observed. The Monte Carlo reference distributions have therefore been modified for the final data selection according to correction functions taken from the comparison.

<sup>&</sup>lt;sup>2</sup>Unlike the standard version of TAUOLA2.4, the description of the  $\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$  decay is taken here from [9]. In this description, the modelling of the  $\rho$  and  $\omega$  resonances is in better agreement with the data [10].

From the selected  $\tau^- \rightarrow h^- h^- h^+ \nu_{\tau}$  sample, final states with kaons are suppressed by applying a cut on the specific energy loss of the tracks. Since the events have to be kinematically well reconstructed for the following analysis, a cut is also applied on the probability of the  $\chi^2$  of the three-dimensional vertex fit. The tracks of the remaining events have been constrained to the fitted vertex and the four-momenta then re-evaluated. Finally, events whose values of the reconstructed kinematical variables lie outside the physical region are rejected. A total of 7443 events pass the full selection criteria, with an estimated purity of  $(84.8\pm2.2)\%$ . The error is dominated by the uncertainty in the branching ratio of three-prong decays with kaons in the final state, and small discrepancies in the reference samples used for the likelihood selection between data and Monte Carlo. Estimated background contributions are itemized in table 1.

## 4 Theoretical description of the decay

The partial decay width of the decay  $au^- o \pi^- \pi^- \pi^+ 
u_ au$  can be written as

$$d\Gamma \left(\tau^{-} \to \pi^{-} \pi^{-} \pi^{+} \nu_{\tau}\right) = \sum_{\mu\nu} \frac{G_{F}^{2}}{4m_{\tau}} \cos^{2} \theta_{C} L_{\mu\nu} H^{\mu\nu} dPS^{(4)}$$
$$= \sum_{X} \frac{G_{F}^{2}}{4m_{\tau}} \cos^{2} \theta_{C} L_{X} W_{X} dPS^{(4)}.$$
(1)

 $G_F$  is the Fermi constant,  $\theta_C$  the Cabbibo angle,  $m_{\tau}$  is the mass of the  $\tau$  lepton and dPS<sup>(4)</sup> symbolizes the phase space integration. The sixteen leptonic functions  $L_X$  (X = A, B...I, SA, ...SG) are symmetric and antisymmetric combinations of the components of the leptonic tensor  $L_{\mu\nu}$ . The hadronic structure functions  $W_X$ , the subject of our measurement, are composed in the same way from the hadronic tensor  $H_{\mu\nu}$  [5].

The  $L_X$  can be calculated within the framework of the electroweak theory as functions of the  $\tau$  polarization  $P_{\tau}$ , the parity violating asymmetry parameter  $\gamma_{VA}$ , the invariant mass squared  $Q^2 = (p_1 + p_2 + p_3)^2$  of the hadronic system, and four decay angles  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\cos \theta^*$ . In the Standard Model,  $\gamma_{VA} = 2g_V g_A / (g_V^2 + g_A^2) = 1$ , where  $g_V$  and  $g_A$  are the vector and axial-vector couplings in the  $\tau$  decay. The definitions of the decay angles and the detailed form of the  $L_X$  can be found in [5]. Assuming universality of the neutral current couplings as predicted by the Standard Model, the value for  $P_{\tau} = -0.144 \pm 0.003$  [13] is taken from a Standard Model fit which has very little dependence on measurements in the  $\tau$  sector.

The hadronic structure functions  $W_X$  depend on the four-momenta of the outgoing pions in a Lorentz invariant way, that is,  $W_X \equiv W_X (Q^2, s_1, s_2)$ . The Dalitz plot variables  $s_1$ and  $s_2$  are defined in terms of the pion momenta as  $s_1 = (p_2 + p_3)^2$  and  $s_2 = (p_1 + p_3)^2$ , with the labels chosen such that  $|\vec{p}_2| > |\vec{p}_1|$  for the two like-sign pions and  $p_3$  refers to the unlike-sign pion. In the most general description of the hadronic decay current, contributions from pseudoscalar, vector and axial-vector components have to be taken into account [14]. However, the  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  decay is dominated by the axial-vector current, decaying predominantly through the decay chain  $\tau^- \to a_1^- \nu_{\tau}$ ,  $a_1^- \to \rho^0 \pi^-$  and  $\rho^0 \to \pi^+ \pi^-$ . Vector currents are not expected because of G-parity conservation, and pseudoscalar contributions should be small due to the PCAC hypothesis. The detailed structure of the hadronic current cannot, however, yet be predicted from theory. Furthermore, there is no way to derive the decay structure from  $e^+e^-$  data as can be done for decays with an even number of pions in the final state through the conserved vector current hypothesis (CVC). Chiral perturbation theory methods can be used in the low energy region [15], but in the resonance region accessible here, only model predictions are available.

For this work, two techniques are used to measure the structure of the hadronic current:

- 1. The models give predictions for the structure functions and therefore the shapes of the distributions of the kinematic variables. The comparison between data distributions and model predictions is a measure of the quality of the model. The model parameters, such as the mass and width of the  $a_1$  meson, can also be extracted experimentally.
- 2. The hadronic structure functions can be extracted directly in a model independent approach. For a pure axial-vector current, only four out of 16 structure functions contribute. Using the notation defined in [5], these four structure functions are  $W_A$ ,  $W_C$ ,  $W_D$  and  $W_E$ .

# 5 Model analysis of the three-pion and two-pion mass squared distributions

Two models for the  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  decay will be investigated in this analysis. These are the models of Kühn and Santamaria [2] and of Isgur et al. [4], henceforth referred to as the KS model and IMR model, respectively. The KS model uses point-like strong form factors, and incorporates only the lowest dimensional Born term in the decay amplitude. In the present analysis, the  $\rho(1450)$  is included in the KS model parametrization with a strength  $\beta_{o(1450)} = -0.145$ , as specified for model 1 of table 1 in ref. [2]. The IMR model, in contrast, uses strong form factors with full off-shell dependence, derived from a flux-tube breaking model [16]. The IMR model is formulated with two distinct  $a_1 \rho \pi$  couplings which allows a prediction of the D/S amplitude ratio, the ratio of the amplitudes for the two possible angular momentum states of the intermediate  $\rho\pi$  state. For the IMR model, the K<sup>\*</sup>K decay channel is allowed to contribute to the total decay width, however the pseudoscalar contribution  $(\pi(1300) \text{ production})$  is not included in the present analysis since the decay is dominated by the axial-vector current  $(W_{SA}(Q^2, s_1, s_2) = 0)$ . Several effects, such as model deficiencies and possible nonresonant contributions, are accounted for in the IMR model by employing a three parameter polynomial background term. Further details of the models can be found in [2] and [4], and a comparison of the phenomenology of the two models in [17].

Least-squares fits between predicted and data distributions have been carried out for both the models. The  $3\pi$  invariant mass squared distribution is used for both the KS and IMR model fits. For the IMR model, three  $2\pi$  invariant mass squared Dalitz-plot projections in different  $Q^2$  intervals are also used in order to measure the D/S amplitude ratio. The three Dalitz-plot projections are formed by cutting around the  $\rho$  mass squared at  $0.5 < s_1 < 0.7 \,\text{GeV}^2$  and then projecting onto  $s_2$ , and vice versa, for three separate intervals in  $Q^2$ . The polynomial background term in the IMR model is employed when fitting the  $3\pi$  mass squared distribution, but not for the three  $2\pi$  mass squared projections since the cut on the  $\rho$  mass squared should suppress any possible nonresonant contributions. The non- $3\pi$  background, the selection efficiency, and the OPAL detector resolution for each of the four histograms are estimated by analysing Monte Carlo simulated events. The non- $3\pi$  background is subtracted from each histogram, and then each histogram is corrected for efficiency. The detector resolution is accounted for by folding into the fit function the estimated resolution function. The model fits, shown in fig. 1 and summarized in table 2, will be discussed below.

The systematic errors on the  $a_1$  resonance parameters are summarized in table 3. Several checks were made concerning the background. The effects of removing the cut against kaons and the effects of using the standard version of TAUOLA 2.4 [3] to model the background from  $\tau^- \rightarrow \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$  decays were investigated. For the kaon cut variations, half of the change from the nominal fits is taken as the error, reflecting the uncertainty in the corresponding branching ratios. The background fraction was also varied by  $\pm 0.020$  from the nominal value of  $f_{bgd} = 0.152$ . The effects of the detector resolution were investigated by varying the mass resolution by  $\pm 10$  %. This has a negligible effect on the extracted parameters.

#### 5.1 The KS model fits

As noted above, the  $a_1 \max m_{a_1}$  and width  $\Gamma_{a_1}$  are extracted using the KS model by fitting the  $3\pi$  distribution. The normalization term for the  $3\pi$  distribution is also allowed as a free parameter. In the previous OPAL  $a_1$  model analysis [1], the  $3\pi$  and three  $2\pi$  distributions were fitted simultaneously with the KS model, using one normalization for all four histograms. There was already some evidence in [1] that the normalization for the  $2\pi$  distributions was lower than that for the  $3\pi$  distribution. This discrepancy is apparently due to the cut on the  $\rho$  mass squared when forming the  $2\pi$  distributions, since the model overestimates the  $\rho$  peak contribution. With the improved statistics of the present study, the discrepancy is even more serious. With the present data, the  $\chi^2/d.o.f$ . from a global fit of the  $3\pi$  and three  $2\pi$  distributions with the KS model is 111/49, making the extraction of the resonance parameters from a global fit unreliable.

As can be seen in fig. 1, the KS model gives a reasonably good description of the shape of the  $3\pi$  distribution. The three  $2\pi$  distributions shown for the KS model are not fits, but are derived from the parameters, including the normalization, obtained from the fit to the  $3\pi$ distribution. The model is significantly high in the region of the  $\rho$  peak of the  $2\pi$  distributions. If the three  $2\pi$  distributions are fitted separately from the  $3\pi$  distribution, with the  $a_1$  mass and width fixed at the values determined from the fit to the  $3\pi$  distribution and only the normalization allowed as a free parameter, the normalization of the fitted  $2\pi$  distributions is found to be approximately 10% lower than that of the  $3\pi$  distribution. This suggests the presence of contributions to the decay not predicted by the model. Such contributions would affect the  $3\pi$  and  $2\pi$  plots differently because of the cut on the  $\rho$  resonance region when forming the  $2\pi$  plots.

#### 5.2 The IMR model fits

With the IMR model fit, the normalization is applied only to the part of the  $3\pi$  distribution lying above the polynomial background. As noted in [1], this serves to compensate the normalization discrepancy between the  $3\pi$  and the three  $2\pi$  distributions, for which the polynomial background is not employed. A global analysis of all four histograms can therefore be carried out with the IMR model. In order to extract the D/S amplitude ratio, the strengths of the  $f_{\mathbf{a}_1 \rho \pi}$  and  $g_{\mathbf{a}_1 \rho \pi}$  form factors (see ref. [4]) are allowed to vary independently from their nominal flux-tube breaking model values. The relative strengths of these two form factors are most sensitive to the shapes of the three  $2\pi$  distributions. All other form factor parameters are held fixed at their nominal values,  $\beta_{HO} = 0.4 \text{ GeV}$  and  $\gamma_{\circ} = 0.39$ . For the fits to the data with the IMR model, the free parameters of the fit are the  $\mathbf{a}_1$  mass, the overall normalization, the three parameters which govern the strength and shape of the polynomial background underlying the  $3\pi$  distribution, and the two strengths for the  $f_{\mathbf{a}_1 \rho \pi}$  and  $g_{\mathbf{a}_1 \rho \pi}$  form factors.

As can be seen in fig. 1, the IMR model also gives a reasonably good description of the  $3\pi$  distribution, with  $\chi^2$  = 34.3 for 23 bins. As mentioned above, the polynomial background term employed by the IMR model serves as a correction for the inconsistencies seen with the KS model fit. However, if the polynomial background is excluded from the IMR model, the  $\chi^2$  increases to 138.7 for 48 *d.o.f.* and the extracted parameters shift significantly. The three parameters for the polynomial background of the IMR model fit are  $c_1 = -1.86$ ,  $c_2 = 5.65$ , and  $c_3 = -0.78$  (see [4] for the parametrization of the polynomial background). These three parameters are highly correlated and have errors ranging from 50% to 130%. The normalization for the polynomial background term is such that the background contribution is  $(13.8\pm2.4)\%$  of the total  $3\pi$  distribution, where the error is statistical only. As can be seen in table 2, the a<sub>1</sub> mass and width extracted from the IMR model fit differ significantly from those extracted from the KS model fit. This has been shown in [17] to be due primarily to the employment of off-shell dependent strong form factors by the IMR model, in contrast to the pointlike strong form factors used by the KS model. The overall features of the  $2\pi$  distributions are also reproduced by the IMR model. As can be seen in fig. 1(c), however, the model is systematically low in the low  $s_{1,2}$  region. The results for the strong decay on-shell  $a_1 \rho \pi$ form factors and the D/S amplitude ratio of the IMR model fit are  $f_{\mathrm{a}_1}, m_{\mathrm{a}_1}^2, m_{
ho}^2) = 5.0 \pm 0.1$ GeV,  $g_{a_1\rho\pi}(m_{a_1}^2, m_{\rho}^2) = 3.7 \pm 1.3$  GeV, and  $D/S = -0.10 \pm 0.02 \pm 0.02$ . These values are in reasonable agreement with the predictions of  $f_{a_1\rho\pi}(m_{a_1}^2,m_{\rho}^2) = 4.8 \text{ GeV}, g_{a_1\rho\pi}(m_{a_1}^2,m_{\rho}^2) = 6.0$ GeV, and D/S = -0.15 from the flux-tube breaking model [4], which is used by the IMR model to compute the strong form factors.

#### 5.3 Further discussion of the model fits

The problems noted above with the model fits to the data can be seen more clearly if we investigate the  $2\pi$  mass squared Dalitz-plot projection with no cuts on either the  $a_1$  mass or the  $\rho$  mass. The data have been overlaid by the two models in fig. 2, with the model parameters held fixed at their nominal best fit values. The normalization for the KS model was taken from the fit to the  $3\pi$  distribution, and the normalization for the IMR model, determined from the  $3\pi$  distribution in the IMR global fit, has also been included for that model.

It is clearly evident that the KS model overestimates the  $\rho$  peak contribution relative to the high and low  $s_1$  regions, especially the low  $s_1$  region. The total  $\chi^2$  for the KS model overlay is 95.4 for 28 bins. The IMR model gives an improved description of the uncut  $2\pi$ distribution, although it remains systematically low in the low  $s_1$  region. The IMR model's inclusion of the  $g_{a_1\rho\pi}$  term is responsible for the steeper rise toward the low  $s_1$  region. The total  $\chi^2$  for the IMR model overlay is 50.2 for 28 bins. Without the inclusion of the polynomial background term, the total  $\chi^2$  for the IMR model overlay increases to 115 for 28 bins. To investigate whether the apparent poor modelling of the data in the low  $s_1$  region could be due to incorrect modelling of the  $\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$  decay mode, which is the predominant background in this region, a data selection was generated with the purity improved to 89.8 %. The improvement in purity was aimed primarily at reducing the background due to  $\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$  decays. The ratio of data events to Monte Carlo simulated events remains unchanged in the low  $s_1$  region with this selection, which provides evidence that the discrepancy of the models with the data in the low  $s_1$  region is not due to incorrect background modelling.

It should be pointed out that the  $Q^2$  dependence of the polynomial background term of the IMR model has largely been integrated out when it is projected onto the  $s_1$  axis for the  $2\pi$  mass projection. The residual  $s_1$  dependent shape is due to the kinematic boundaries of the physical region in  $(Q^2, s_1, s_2)$  space. Also, since the polynomial background term is a function of  $Q^2$  only, the IMR model is of limited use for Monte Carlo simulation of the  $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$  decay. The limited available statistics prohibit a reliable determination of the the full  $(Q^2, s_1, s_2)$  dependence of the background term. Nonetheless, in the framework of the IMR model it is evident that the data do require some sort of additional term with a magnitude of  $(13.8 \pm 2.4)\%$ .

The high model dependence of the measured  $a_1$  resonance parameters, and also the failure of either model to provide a completely satisfactory description of the data, strongly suggest that caution must be exercised when carrying out measurements which rely on models for predicting the decay dynamics in  $\tau^- \to \pi^- \pi^- \pi^- \pi^+ \nu_{\tau}$ .

# 6 Extraction of the structure functions

The hadronic decay current can be measured in a model independent way by extracting the hadronic structure functions directly. This can be done in two steps.

1. As the axial-vector current dominates the decay, all structure functions other than  $W_A$ ,  $W_C$ ,  $W_D$ , and  $W_E$  can be fixed to zero. To measure the  $Q^2$ -dependence, the structure functions are integrated over the Dalitz plane,

$$w_X\left(Q^2\right) = \int W_X\left(s_1, s_2, Q^2\right) \mathrm{d}s_1 \mathrm{d}s_2 , \qquad (2)$$

and the selected events are put into nine equal sized  $Q^2$  bins between 0.5 and 2.75 GeV<sup>2</sup>. No binning is used for the angles.

2. To study the full structure of the hadronic decay current, and accepting larger errors, the events are binned not only in  $Q^2$  but also in  $(s_1, s_2)$ , as shown in table 4. This is only possible due to the increased data sample compared with [1]. Structure functions that include scalar ( $W_{SB}$  and  $W_{SD}$ ) and vector ( $W_F, W_G, W_H$ , and  $W_I$ ) contributions have also been taken into account, neglecting only those that are pure vector ( $W_B$ ), pure scalar ( $W_{SA}$ ), or interference terms between vector and scalar currents ( $W_{SF}$ ) as they are expected to be very small. Since the respective angular dependences of  $W_G$  and  $W_{SD}$ and of  $W_I$  and  $W_{SB}$  are very similar, they cannot be separated with the available data sample. Therefore they are combined in the fit parameters  $X_1 = -\bar{K}_3/\bar{K}_2W_G - W_{SD}$ and  $X_2 = -\bar{K}_3/\bar{K}_2W_I + W_{SB}$  (See [5] for the definitions of  $\bar{K}_3$  and  $\bar{K}_2$ ). Both measurements can be made, following the method described in [1], by applying an extended maximum likelihood fit [18] to the data events. With z representing the kinematic variables  $Q^2$ ,  $s_1$ ,  $s_2$ ,  $\cos \theta^*$ ,  $\cos \beta$ , and  $\gamma$ , and  $dz = dQ^2 ds_1 ds_2 d \cos \theta^* d \cos \beta d\gamma$ , the likelihood function can be written as

$$(\ln \mathcal{L})_j = \sum_{i}^{N_j} \ln\left(\frac{\mathrm{d}\Gamma}{\mathrm{d}z}\left(z_i; W_X^j\right) \frac{N}{C_{corr}\Gamma_{3\pi}}\right) - \Gamma_{\Delta_j}\left(W_A^j\right) \frac{N}{C_{corr}\Gamma_{3\pi}}.$$
(3)

Here the  $W_X^j$  are the average values of the structure functions  $W_X$  within bin j (referring only to  $Q^2$  in the first step and to  $Q^2$ ,  $s_1$ ,  $s_2$  in the second step). They are the parameters of the fit.  $N_j$  is the number of events in bin j and N is the total number of selected events.  $\Gamma_{3\pi}$  is the partial decay width of the  $\tau$  decay into three pions, calculated from ref. [13]  $(\Gamma_{3\pi}/\Gamma_{tot} = 9.31$  %, with  $\Gamma_{3\pi} = 2.11 \times 10^{-4} \text{ eV}$  ). The factor  $C_{corr}$  (with  $C_{corr} = 0.996$ ) corrects  $\Gamma_{3\pi}$  for events with  $Q^2$  outside of the selected range of 0.5 GeV<sup>2</sup>  $< Q^2 < 2.75 \text{ GeV}^2$ . The decay distribution  $d\Gamma/dz$  is defined in eq. (1). The normalization term  $\Gamma_{\Delta_j}$  is the integral of  $d\Gamma/dz$  over the full ranges of the kinematic angles and the bin width. Because of the increased value of BR( $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$ ) relative to the value taken in the previous analysis [1], the integral and therefore the values of the structure functions have also increased.

The detector resolution has been taken into account by applying a smearing function to each of the kinematic variables on an event by event basis. To correct for migration effects between neighbouring bins, a bin to bin correction is included [19]. A smooth efficiency correction derived from Monte Carlo is incorporated in the fit by multiplying  $d\Gamma/dz$  by a correction function for each of the respective four (in the case of  $w_X(Q^2)$ ) and six (for the  $W_X(Q^2, s_1, s_2)$  measurement) kinematic variables. The background is included in the fit by replacing  $d\Gamma/dz$  in eq. (3) by

$$f_{sig} \frac{\mathrm{d}\Gamma}{\mathrm{d}z}(z; W_X) + f_{bgd} \frac{\mathrm{d}\Gamma}{\mathrm{d}z}(z; W_X^{bgd}) , \qquad (4)$$

where  $f_{sig} = 1 - f_{bgd}$  and  $f_{bgd}$  are the overall fractions of signal and background, and  $W_X^{bgd}$  are the background structure functions taken from the Monte Carlo prediction. These background structure functions have no physical meaning — they are simply a way to include the background in the fit function.

#### 6.1 Results

The results of the measurements of the hadronic structure functions  $w_A$ ,  $w_C$ ,  $w_D$ , and  $w_E$  are presented in fig. 3 and table 5. The measurements of the hadronic structure functions  $W_A$ ,  $W_C$ ,  $W_D$ ,  $W_E$ ,  $W_F$ ,  $W_H$ ,  $X_1$ , and  $X_2$  are summarized in tables 6 and 7.

The systematic errors have been derived for both measurements in a similar way. The uncertainty in the background and migration between bins dominate the systematic errors. The different contributions have been estimated in the same way as described in section 5. The background fraction  $f_{bgd}$  has been changed in the fit by  $\pm 0.020$ . The cut against three-prong events with kaons was removed and half of the change is quoted as the error. To derive the uncertainty from the background description, the change from varying the background structure functions  $W_X^{bgd}$  within their statistical errors and the change obtained

when using the original version of TAUOLA 2.4 for the description of the background from  $\tau^- \rightarrow \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$  decays are added in quadrature.

Effects due to detector efficiency and resolution were estimated by varying the correction functions for the efficiencies within one standard deviation and by increasing by 10% the widths of the Gaussians for the resolution simultaneously for all kinematic variables. The migration corrections have been varied within the errors. Furthermore, the value taken for  $P_{\tau}$  has been varied within the errors (see section 4).

Table 8 itemizes the estimated systematic error contributions averaged over all bins. The systematic error determined for each bin separately is used in tables 5–7, where the measured values including statistical and systematic errors are given bin by bin. The correlations between the values of the structure functions typically range between -15% and +15%.

#### 6.2 Comparison of the structure functions with the model predictions

In fig. 4 the measured structure functions  $w_A$ ,  $w_C$ ,  $w_D$ , and  $w_E$  are compared with the KS and IMR model predictions using the fit parameters extracted in section 5. For the IMR model, the polynomial background term is included in  $w_A$ . The ratio  $w_X/w_A$ , which is only weakly dependent on  $m_{a_1}$  and  $\Gamma_{a_1}$ , is plotted for each of the other three structure functions  $w_C$ ,  $w_D$ , and  $w_E$ . For  $w_A$ , which is closely related to the  $a_1$  resonance shape, the KS model fits the data distribution very well, with  $\chi^2_{KS} = 6.2$  for 9 bins. The IMR model, however, shows some discrepancies, with  $\chi^2_{IMR} = 16.9$  for 9 bins. The structure visible in the IMR model prediction at  $Q^2 = 1.9 \text{ GeV}^2$ , which is related to the  $a_1 \rightarrow K^*\overline{K}$  decay channel, is not visible in the data. This suggests that the IMR modelling of that decay channel is not correct. For the description of  $w_C/w_A$ ,  $w_D/w_A$ , and  $w_E/w_A$ , both models agree well with the measurement, with  $\chi^2_{KS} = 19.6$  for 27 bins and  $\chi^2_{IMR} = 17.6$  for 27 bins.

To demonstrate how the structure functions are distributed in the Dalitz plane, the axialvector structure functions  $W_A$ ,  $W_C$ ,  $W_D$ , and  $W_E$  are shown in fig. 5 in comparison with the KS model. The results for the KS model are evaluated at  $Q^2 = 1.3 \text{ GeV}^2$ , while the fit results are integrated over the range  $1.21 \text{ GeV}^2 < Q^2 < 1.44 \text{ GeV}^2$ . The structure functions  $W_F$ ,  $W_H$ ,  $X_1$ , and  $X_2$  all vanish for the model predictions.

# 7 Non-axial-vector contributions

If there are non-axial-vector contributions in the hadronic decay current, they should be visible in the angular distributions and therefore manifest themselves in the hadronic structure functions  $W_F$  and  $W_H$  and in the fit parameters  $X_1$  and  $X_2$ . The fit results, shown in fig. 6, can therefore be compared to the null prediction of vanishing vector and scalar components. This leads to  $\chi^2 = 81.2$  for 84 *d.o.f.* No deviation from a pure axial-vector current is observed.

For a quantitative measurement of the non-axial-vector contributions, a different method has been applied. Because of strong correlations between  $W_A$ ,  $W_B$  and  $W_{SA}$  the fit result for  $W_A^{fit}$  includes possible scalar or vector contributions. The pure axial-vector part of  $W_A$ can be calculated from  $W_C$ ,  $W_D$  and  $W_E$  ( $W_A^2 = W_C^2 + W_D^2 + W_E^2$ ) since these structure functions are independent of vector or scalar contributions.<sup>3</sup> An estimate of the non-axialvector components can be calculated as  $\Delta^{non-AV} = W_A^{fit} - \sqrt{W_C^2 + W_D^2 + W_E^2}$ . This

 $<sup>{}^{3}</sup>W_{SF}$ , a combination of vector and scalar components, is neglected here.

leads to the first model independent measurement of non-axial-vector contributions, with an upper limit at the 95% confidence level of

$$rac{\Gamma^{non-AV}( au^- o \pi^- \, \pi^- \, \pi^+ \, 
u_ au)}{\Gamma^{tot}( au^- o \pi^- \, \pi^- \, \pi^+ \, 
u_ au)} ~<~ 26.1\% \,.$$

The deviation from zero non-axial-vector contributions was also measured using samples of Monte Carlo generated events which include different amounts of non-axial-vector contributions. In addition to the systematic errors considered in the previous section, an error of 14% from this test with Monte Carlo events has been included.

The contribution of a scalar component to the decay can be measured model dependently under the assumption that it can be fully described through the decay chain  $\tau^- \rightarrow \pi^-(1300)\nu_{\tau}$ ,  $\pi^-(1300) \rightarrow \rho^0 \pi^-$  and  $\rho^0 \rightarrow \pi^+ \pi^-$ . In this approach, the axial-vector current is described by the KS or IMR model. The scalar contribution can be incorporated in both models; only the strength of the scalar current is not fixed. The structure functions in eq. 3 can now be replaced by the model predictions when performing the extended maximum likelihood fit, with the contribution from the scalar current being the only fit parameter. The result of the fit shows no evidence for a scalar current, and leads to the 95% confidence level upper limit

$$rac{\Gamma^{scalar}( au^- o \pi^-(1300)\,
u_ au\;)}{\Gamma^{tot}( au^- o \pi^-\,\pi^-\,\pi^+\,
u_ au)} < 0.84\%\;,$$

in agreement with a model dependent analysis by ARGUS [20]. In addition to the systematic errors described above, the dependence on model (KS or IMR) used for the axial-vector part of the decay has been investigated and included in the systematic error.

# 8 The parity violating asymmetry parameter $\gamma_{VA}$

As explained in section 4, the leptonic current depends on the parity violating asymmetry parameter  $\gamma_{VA}$ . For the measurement of the hadronic structure functions described in the previous sections, the value was fixed at the Standard Model value of  $\gamma_{VA} = 1$ . If instead  $\gamma_{VA}$  is varied in the fit along with the structure functions, the parity violating asymmetry parameter can be measured. Non-axial-vector contributions are neglected here. The likelihood function summed over all bins is shown in fig. 7, leading to a model independent measurement of  $\gamma_{VA} = 1.29 \pm 0.26 \pm 0.11$ , consistent with the Standard Model prediction of  $\gamma_{VA} = 1$  for left-handed tau neutrinos. This result is in agreement with a recent measurement by SLD [21] where the sign of the helicity of the tau neutrino has also been measured model independently, and with other more precise measurements based on different techniques [22]. The systematic error is derived from the same variations described above. The dominant effects come from the uncertainty in the detector resolution and the background, especially from three-prong events with kaons in the final state. The error contributions are summarized in table 9.

The model independent result can be compared to the model dependent measurements when the fit parameters  $W_X^j$  in eq. (3) are replaced by the hadronic structure functions derived from the two models. The model dependent values obtained for the parity violating asymmetry parameter are  $\gamma_{VA}^{\text{KS}} = 0.87 \pm 0.16 \pm 0.04$  for the KS model and  $\gamma_{VA}^{\text{IMR}} = 1.20 \pm 0.21 \pm 0.14$ for the IMR model. The systematic errors for the model dependent measurements have been derived from the same variations described above, and also by varying the model parameters within the errors given in section 5. A summary of the different error contributions is given in table 9. The largest systematic error contribution for the IMR model is due to the uncertainty in the D/S amplitude ratio. No variation of this parameter is possible for the KS model. The strong model dependence demonstrated in the measurements again emphasizes that caution must be exercised when carrying out precision measurements which rely on model descriptions for the hadronic decay current in  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$ .

## 9 Conclusions

We have studied the structure of the decay  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$  using two different approaches. First, the models of Kühn and Santamaria [2] and of Isgur et al. [4] have been used to fit the distributions of the  $3\pi$  invariant mass squared as well as  $2\pi$  mass projections of the corresponding Dalitz plot. The  $a_1$  resonance model parameters have been measured for both models, and are summarized in table 2. Both models describe reasonably well the shape of the  $3\pi$  mass squared distribution. For the uncut  $2\pi$  mass projection, however, the KS model overestimates the  $\rho$  peak, and both models underestimate the low  $s_{1,2}$  region. By including the  $Q^2$  dependent polynomial background term in the  $2\pi$  mass projection for the IMR model, the agreement with the data is improved. This suggests the possibility that some additional contribution to the decay, other than the  $a_1$  intermediate resonance, of magnitude ( $13.8 \pm 2.4$ )% is required by the data within the framework of that model. The failure of either model to provide a completely satisfactory description of the data strongly suggests that caution must be used when carrying out measurements which rely on model descriptions for the decay dynamics in  $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$ , and calls for further theoretical input to the modelling of this decay.

A model independent measurement has been presented of the structure functions  $w_A$ ,  $w_C$ ,  $w_D$ , and  $w_E$ , as well as  $W_A$ ,  $W_C$ ,  $W_D$ ,  $W_E$ ,  $W_F$ ,  $W_H$ ,  $X_1$ , and  $X_2$ . No evidence for non-axial-vector contributions in the decay current has been found. In the model independent approach we have obtained, at the 95% confidence level,

$$rac{\Gamma^{non-AV}( au^- o \pi^- \, \pi^- \, \pi^+ \, 
u_ au)}{\Gamma^{tot}( au^- o \pi^- \, \pi^- \, \pi^+ \, 
u_ au)} ~<~ 26.1\% ~.$$

When model descriptions for the decay are used, we obtain as the 95% confidence level upper limit

$$rac{\Gamma^{scatar}( au^- o \pi^-(1300)\,
u_ au^-)}{\Gamma^{tot}( au^- o \pi^-\,\pi^-\,\pi^+\,
u_ au^-)} < 0.84\% \,.$$

Finally, the value for the parity violating asymmetry parameter has been determined in a model independent way to be

$$\gamma_{VA} = -1.29 \pm 0.26 \pm 0.11$$
,

which is consistent with the Standard Model prediction of  $\gamma_{VA} = 1$  for left-handed tau neutrinos. The model dependent values have also been measured, but demonstrate a strong model dependence in the value obtained.

#### Acknowledgements

We would like to thank J. H. Kühn and E. Mirkes for many useful discussions. We also particularly wish to thank the SL Division for the efficient operation of the LEP accelerator and for their continuing close cooperation with our experimental group. In addition to the support staff at our own institutions we are pleased to acknowledge the

Department of Energy, USA,

National Science Foundation, USA,

Particle Physics and Astronomy Research Council, UK,

Natural Sciences and Engineering Research Council, Canada,

Israel Science Foundation, administered by the Israel Academy of Science and Humanities, Minerva Gesellschaft,

Japanese Ministry of Education, Science and Culture (the Monbusho) and a grant under the Monbusho International Science Research Program,

German Israeli Bi-national Science Foundation (GIF),

Direction des Sciences de la Matière du Commissariat à l'Energie Atomique, France,

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Germany, National Research Council of Canada,

Hungarian Foundation for Scientific Research, OTKA T-016660, and OTKA F-015089.

### References

- [1] R. Akers et al., OPAL Collab., Z. Phys. C67 (1995) 45.
- [2] J. H. Kühn and A. Santamaria, Z. Phys. C48 (1990) 445.
- [3] S. Jadach, Z. Was, R. Decker and J. H. Kühn, Comp. Phys. Comm. 76 (1993) 361.
- [4] N. Isgur, C. Morningstar and C. Reader, Phys. Rev. **D39** (1989) 1357.
- [5] J. H. Kühn and E. Mirkes, Z. Phys. C56 (1992) 661.
- [6] K. Ahmet *et al.*, OPAL Collab., Nucl. Instr. Meth. A305 (1991) 275;
  P. P. Allport *et al.*, OPAL Collab., Nucl. Instr. Meth. A324 (1993) 34;
  P. P. Allport *et al.*, OPAL Collab., Nucl. Instr. Meth. A346 (1994) 476.
- [7] M. Z. Akrawy et al., OPAL Collab., Phys. Lett. **B247** (1990) 458.
- [8] S. Jadach, B. F. L. Ward and Z. Was, Comp. Phys. Comm. 79 (1994) 503.
- [9] R. Decker et al., Z. Phys. C70 (1996) 247.
- [10] H. Albrecht et al., ARGUS Collab., Phys. Lett. B185 (1987) 223; Phys. Lett. B260 (1991) 259.
- [11] J. Allison et al., Nucl. Instr. Meth. A317 (1992) 47.

- [12] P. E. Condon and P. L. Cowell, Phys. Rev. **D9** (1974) 2558.
- [13] Review of Particle Physics, R. M. Barnett et al., Phys. Rev. D54 (1996) 91.
- [14] Y. S. Tsai, Phys. Rev. **D4** (1971) 2821.
- [15] G. Colangelo et al., TTP96-02 (1996).
- [16] R. Kokoski and N. Isgur, Phys. Rev. D35 (1987) 907.
- [17] P. R. Poffenberger, Z. Phys. C71 (1996) 579.
- [18] R. J. Barlow: Statistics, New York: John Wiley & Sons (1989).
- [19] V. Blobel, DESY 84-118 (1984);
   V. Blobel, Proceedings of the 1984 CERN School of Computing, CERN 85-02 (1984).
- [20] H. Albrecht et al., ARGUS Collab., Phys. Lett. **B349** (1995) 576.
- [21] K. Abe et al., SLD Collab., SLAC-PUB-7333.
- [22] D. Buskulic et al., ALEPH Collab., Phys. Lett. B346 (1995) 379;
   H. Albrecht et al., ARGUS Collab., Phys. Lett. B349 (1995) 576.

| decay channel                                                | background fraction |
|--------------------------------------------------------------|---------------------|
| $	au^- 	o \pi^- \ \pi^- \ \pi^+ \ \pi^0 \  u_	au$            | $(11.7\pm 0.5)\%$   |
| $	au^-  ightarrow { m K}^- \ \pi^- \ \pi^+ \  u_	au$         | $(2.3\pm 0.3)\%$    |
| $	au^-  ightarrow \pi^-  \mathrm{K}^-  \mathrm{K}^+   u_	au$ | $(0.5\pm 0.1)\%$    |
| $	au^-  ightarrow \pi^-  \pi^-  \pi^+  2 \pi^0   u_	au$      | $(0.3\pm 0.1)\%$    |
| others                                                       | $(0.4\pm 0.1)\%$    |

Table 1: Estimated background fractions in the final data sample. The errors are thestatistical errors from the Monte Carlo only.

|                                   | Kühn et al. [2]             | Isgur et al. [4]            |
|-----------------------------------|-----------------------------|-----------------------------|
| $m_{\mathbf{a}_1} (\mathrm{GeV})$ | $1.262 \pm 0.009 \pm 0.007$ | $1.210 \pm 0.007 \pm 0.002$ |
| $\Gamma_{a_1}$ (GeV)              | $0.621 \pm 0.032 \pm 0.058$ | $0.457 \pm 0.015 \pm 0.017$ |
| D/S amplitude ratio               | _                           | $-0.10 \pm 0.02 \pm 0.02$   |
| $\chi^2/d.o.f.$                   | $25.2/20~(3\pi)$            | —                           |
|                                   | $111/49~({ m global})$      | $91.9/45~{ m (global)}$     |
| polynomial background fraction    |                             | $(13.8 \pm 2.4)\%$          |

Table 2: Model parameters extracted from fitting the KS and IMR models to OPAL data. The errors quoted are statistical followed by systematic. Note that  $\Gamma_{a_1}$  and the D/S amplitude ratio for the IMR model are calculated quantities, not parameters of the fit. Also listed is the polynomial background fraction for the IMR model.

|                                                    | KS model error |                  | IMR model error |                  |              |
|----------------------------------------------------|----------------|------------------|-----------------|------------------|--------------|
|                                                    | $\Delta m_a$   | $\Delta\Gamma_a$ | $\Delta m_a$    | $\Delta\Gamma_a$ |              |
|                                                    | (GeV)          | (GeV)            | (GeV)           | (GeV)            | $\Delta D/S$ |
| Kaon channels                                      | $\pm 0.002$    | $\pm 0.014$      | $\pm 0.001$     | $\pm 0.005$      | $\pm 0.01$   |
| $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $\pm 0.006$    | $\pm 0.055$      | $\pm 0.001$     | $\pm 0.016$      | $\pm 0.01$   |
| modelling                                          |                |                  |                 |                  |              |
| Background fraction                                | $\pm 0.001$    | $\pm 0.011$      | $\pm 0.001$     | < 0.001          | < 0.01       |
| Detector resolution                                | $\pm 0.003$    | $\pm 0.007$      | $\pm 0.001$     | $\pm 0.002$      | < 0.01       |
| Total systematic error                             | $\pm 0.007$    | $\pm 0.058$      | $\pm 0.002$     | $\pm 0.017$      | $\pm 0.02$   |
| Statistical error                                  | $\pm 0.009$    | $\pm 0.032$      | $\pm 0.007$     | $\pm 0.015$      | $\pm 0.02$   |

Table 3: Estimated error contributions for each of the KS and IMR model fits.

|        | $\sqrt{Q^2}$ | $s_1$              | $s_2$            | $N_{j}$ |
|--------|--------------|--------------------|------------------|---------|
|        | in (GeV)     | in $(GeV^2)$       | in $(GeV^2)$     | -       |
| Bin 1  | 0.8 - 1.0    | $s_1^{min}-0.4$    | $s_2^{min}-s_1$  | 417     |
| Bin 2  | 0.8 - 1.0    | 0.4-0.5            | $s_2^{min}-s_1$  | 462     |
| Bin 3  | 0.8 - 1.0    | $0.5-s_1^{max}$    | $s_2^{min}-0.25$ | 359     |
| Bin 4  | 0.8 - 1.0    | $0.5-s_1^{max}$    | $0.25-s_1$       | 140     |
| Bin 5  | 1.0 - 1.1    | $s_1^{min}-0.5$    | $s_2^{min}-s_1$  | 392     |
| Bin 6  | 1.0 - 1.1    | 0.5-0.65           | $s_2^{min}-0.35$ | 537     |
| Bin 7  | 1.0 - 1.1    | 0.5-0.65           | $0.35 - s_1$     | 372     |
| Bin 8  | 1.0 - 1.1    | $0.65 - s_1^{max}$ | $s_2^{min}-s_1$  | 315     |
| Bin 9  | 1.1 - 1.2    | $s_1^{min}-0.5$    | $s_2^{min}-s_1$  | 247     |
| Bin 10 | 1.1 - 1.2    | 0.5-0.7            | $s_2^{min}-0.3$  | 352     |
| Bin 11 | 1.1 - 1.2    | 0.5-0.7            | 0.3-0.5          | 377     |
| Bin 12 | 1.1 - 1.2    | 0.5-0.7            | $0.5-s_1$        | 324     |
| Bin 13 | 1.1 - 1.2    | $0.7-s_1^{max}$    | $s_2^{min}-s_1$  | 408     |
| Bin 14 | 1.2 - 1.4    | $s_1^{min}-0.5$    | $s_2^{min}-s_1$  | 137     |
| Bin 15 | 1.2 - 1.4    | 0.5-0.7            | $s_2^{min}-0.45$ | 461     |
| Bin 16 | 1.2 - 1.4    | 0.5-0.7            | $0.45 - s_1$     | 339     |
| Bin 17 | 1.2 - 1.4    | $0.7-s_1^{max}$    | $s_2^{min}-0.6$  | 743     |
| Bin 18 | 1.2 - 1.4    | $0.7-s_1^{max}$    | $0.6-s_1$        | 434     |
| Bin 19 | 1.4 - 1.7    | $s_1^{min}-0.7$    | $s_2^{min}-s_1$  | 111     |
| Bin 20 | 1.4 - 1.7    | $0.7 - s_1^{max}$  | $s_2^{min}-0.6$  | 173     |
| Bin 21 | 1.4 - 1.7    | $0.7 - s_1^{max}$  | $0.6 - s_1$      | 209     |

Table 4: Binning employed in  $Q^2$ ,  $s_1$ , and  $s_2$  for the second structure function fit.  $s_1^{min/max}$ and  $s_2^{min/max}$  are the values at the phase space boundaries. Only the lower half of the Dalitz plane  $(s_1 > s_2)$  is used in the fit.

| $Q^2 \left({ m GeV}^2 ight)$                                                                                                                                                                                    | $N_j$                                                                                                    | i                                                                                                                                  | $v_A  ({ m GeV}^4$                                                                                                                                     | )                                                                                                                   | ı                                                                                                             | $v_C \; (\mathrm{GeV}^4)$                                                                                                                                    | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.5 - 0.75                                                                                                                                                                                                      | 334                                                                                                      | 32                                                                                                                                 | $\pm 6$                                                                                                                                                | $\pm 18$                                                                                                            | 0                                                                                                             | $\pm 34$                                                                                                                                                     | $\pm 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.75 - 1.00                                                                                                                                                                                                     | 1178                                                                                                     | 670                                                                                                                                | $\pm 20$                                                                                                                                               | $\pm 36$                                                                                                            | 630                                                                                                           | $\pm 200$                                                                                                                                                    | $\pm70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.00 - 1.25                                                                                                                                                                                                     | 1920                                                                                                     | 2316                                                                                                                               | $\pm 59$                                                                                                                                               | $\pm 77$                                                                                                            | 1800                                                                                                          | $\pm 530$                                                                                                                                                    | $\pm 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.25 - 1.50                                                                                                                                                                                                     | 1793                                                                                                     | 3870                                                                                                                               | $\pm 100$                                                                                                                                              | $\pm 150$                                                                                                           | 3800                                                                                                          | $\pm 1100$                                                                                                                                                   | $\pm 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.50 - 1.75                                                                                                                                                                                                     | 1133                                                                                                     | 4290                                                                                                                               | $\pm 130$                                                                                                                                              | $\pm 170$                                                                                                           | 5900                                                                                                          | $\pm 1900$                                                                                                                                                   | $\pm 700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.75 - 2.00                                                                                                                                                                                                     | 655                                                                                                      | 4140                                                                                                                               | $\pm 180$                                                                                                                                              | $\pm 260$                                                                                                           | 2900                                                                                                          | $\pm 1900$                                                                                                                                                   | $\pm 500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.00 - 2.25                                                                                                                                                                                                     | 269                                                                                                      | 3400                                                                                                                               | $\pm 220$                                                                                                                                              | $\pm 270$                                                                                                           | 7300                                                                                                          | $\pm 3800$                                                                                                                                                   | $\pm 1400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.25 - 2.50                                                                                                                                                                                                     | 106                                                                                                      | 3330                                                                                                                               | $\pm 350$                                                                                                                                              | $\pm 390$                                                                                                           | 3300                                                                                                          | $\pm 7400$                                                                                                                                                   | $\pm 5700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.50 - 2.75                                                                                                                                                                                                     | 55                                                                                                       | 2170                                                                                                                               | $\pm 290$                                                                                                                                              | $\pm 360$                                                                                                           | 9400                                                                                                          | $\pm 6800$                                                                                                                                                   | $\pm 2800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                 |                                                                                                          | $w_D \; ({ m GeV}^4)$                                                                                                              |                                                                                                                                                        |                                                                                                                     |                                                                                                               |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $Q^2 \left({ m GeV}^2 ight)$                                                                                                                                                                                    | $N_j$                                                                                                    | ı                                                                                                                                  | $v_D \ ({ m GeV}^4$                                                                                                                                    | )                                                                                                                   | ı                                                                                                             | $v_E \ ({ m GeV}^4$                                                                                                                                          | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\boxed{\begin{array}{c} Q^2 \left( {\rm GeV}^2 \right) \\ 0.5 - 0.75 \end{array}}$                                                                                                                             | N <sub>j</sub><br>334                                                                                    | 1 v<br>24                                                                                                                          | $v_D \ ({ m GeV}^4 \ \pm 36$                                                                                                                           | $\pm 24$                                                                                                            | v<br>                                                                                                         | $v_E \ ({ m GeV}^4 \ \pm 27$                                                                                                                                 | )<br>±6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ${\begin{array}{c} \hline Q^2 ~({\rm GeV}^2) \\ \hline 0.5-0.75 \\ \hline 0.75-1.00 \end{array}}$                                                                                                               | $\frac{N_j}{334}$ 1178                                                                                   | 24<br>160                                                                                                                          | $v_D ({ m GeV}^4  egg {\pm} 36  egg {\pm} 180$                                                                                                         | $(1)$ $\pm 24$ $\pm 30$                                                                                             | $\begin{array}{c c} & & & \\ & & -22 \\ & & 20 \end{array}$                                                   | $\frac{v_E \ ({\rm GeV}^4)}{\pm 27}$                                                                                                                         | ) 	extstyle 	e |
| $\begin{array}{c} Q^2 \left( {\rm GeV}^2 \right) \\ \hline 0.5 - 0.75 \\ 0.75 - 1.00 \\ 1.00 - 1.25 \end{array}$                                                                                                | N <sub>j</sub><br>334<br>1178<br>1920                                                                    | $ \begin{array}{c c}                                    $                                                                          | $\begin{array}{r} & \\ & \\ & \\ \hline & \\ & \\ \hline & \\ & \\ & \\ & \\$                                                                          | $(1)$ $(\pm 24)$ $(\pm 30)$ $(\pm 100)$                                                                             | $\begin{array}{c c} & & \\ & -22 \\ & 20 \\ & -220 \end{array}$                                               | $ \frac{v_E \left(\text{GeV}^4\right.}{\pm 27} \\ \frac{\pm 120}{\pm 270} $                                                                                  | ) $\pm 6 \\ \pm 50 \\ \pm 70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} Q^2 \left( {\rm GeV}^2 \right) \\ \hline 0.5 - 0.75 \\ 0.75 - 1.00 \\ \hline 1.00 - 1.25 \\ \hline 1.25 - 1.50 \end{array}$                                                                   | $\begin{array}{c c} N_{j} \\ \hline 334 \\ 1178 \\ 1920 \\ 1793 \end{array}$                             | $     \begin{array}{ c c c c }             224 \\             160 \\             1430 \\             2500 \\         \end{array} $ | $v_D ({ m GeV}^4) = \frac{\pm 36}{\pm 180} = \frac{\pm 530}{\pm 1000}$                                                                                 | $\begin{array}{c} \pm 24 \\ \pm 30 \\ \pm 100 \\ \pm 500 \end{array}$                                               | $\begin{array}{c c} & & & & \\ & -22 & & \\ & 20 & & \\ & -220 & & \\ & -600 & & \end{array}$                 | $v_E ({ m GeV}^4) \ \pm 27 \ \pm 120 \ \pm 270 \ \pm 430 \ end{tabular}$                                                                                     | )<br>$\pm 6 \\ \pm 50 \\ \pm 70 \\ \pm 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                         | $\begin{array}{c} N_{j} \\ \hline 334 \\ 1178 \\ 1920 \\ 1793 \\ 1133 \end{array}$                       | 24<br>160<br>1430<br>2500<br>2900                                                                                                  | $     \begin{array}{r} & v_D \ ({\rm GeV}^4 \\ \hline                                   $                                                              | $\begin{array}{c} \pm 24 \\ \pm 30 \\ \pm 100 \\ \pm 500 \\ \pm 1000 \end{array}$                                   | $ \begin{array}{c c}  & & & \\  & -22 \\  & 20 \\  & -220 \\  & -600 \\  & -1180 \\ \end{array} $             | $v_E ({ m GeV}^4 \ \pm 27 \ \pm 120 \ \pm 270 \ \pm 430 \ \pm 540 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                     | )<br>$\pm 6 \\ \pm 50 \\ \pm 70 \\ \pm 100 \\ \pm 180$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                         | $\begin{array}{c} N_{j} \\ \hline 334 \\ 1178 \\ 1920 \\ 1793 \\ 1133 \\ 655 \end{array}$                | v<br>24<br>160<br>1430<br>2500<br>2900<br>900                                                                                      | $     \begin{array}{r} & v_D (\text{GeV}^4 \\ \hline \pm 36 \\ \pm 180 \\ \pm 530 \\ \pm 1000 \\ \pm 1700 \\ \pm 2500 \end{array} $                    | $\begin{array}{c} \pm 24 \\ \pm 30 \\ \pm 100 \\ \pm 500 \\ \pm 1000 \\ \pm 800 \end{array}$                        | $ \begin{array}{c c}  & & & & \\  & -22 \\  & 20 \\  & -220 \\  & -600 \\  & -1180 \\  & -40 \\ \end{array} $ | $     \begin{array}{r} & \\ \hline v_E  ({\rm GeV}^4 \\ \hline \pm 27 \\ \pm 120 \\ \pm 270 \\ \hline \pm 270 \\ \pm 540 \\ \pm 540 \\ \pm 650 \end{array} $ | )<br>$\pm 6$<br>$\pm 50$<br>$\pm 70$<br>$\pm 100$<br>$\pm 180$<br>$\pm 240$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} Q^2 \left( {\rm GeV}^2 \right) \\ \hline 0.5 - 0.75 \\ 0.75 - 1.00 \\ \hline 1.00 - 1.25 \\ \hline 1.25 - 1.50 \\ \hline 1.50 - 1.75 \\ \hline 1.75 - 2.00 \\ \hline 2.00 - 2.25 \end{array}$ | $\begin{array}{c} N_j \\ \hline 334 \\ 1178 \\ 1920 \\ 1793 \\ 1133 \\ 655 \\ 269 \end{array}$           | v<br>24<br>160<br>1430<br>2500<br>2900<br>900<br>800                                                                               | $ \begin{array}{c} v_D \ ({\rm GeV}^4 \\ \hline \pm 36 \\ \pm 180 \\ \pm 530 \\ \pm 1000 \\ \pm 1700 \\ \pm 2500 \\ \pm 3800 \end{array} $             | $\begin{array}{c} \pm 24 \\ \pm 30 \\ \pm 100 \\ \pm 500 \\ \pm 1000 \\ \pm 800 \\ \pm 500 \end{array}$             | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                      | $     \begin{array}{r} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                      | )<br>$\pm 6$<br>$\pm 50$<br>$\pm 70$<br>$\pm 100$<br>$\pm 180$<br>$\pm 240$<br>$\pm 360$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} Q^2 \left( {\rm GeV}^2 \right) \\ \hline 0.5 - 0.75 \\ 0.75 - 1.00 \\ 1.00 - 1.25 \\ 1.25 - 1.50 \\ 1.50 - 1.75 \\ 1.75 - 2.00 \\ 2.00 - 2.25 \\ 2.25 - 2.50 \end{array}$                     | $\begin{array}{c} N_j \\ \hline 334 \\ 1178 \\ 1920 \\ 1793 \\ 1133 \\ 655 \\ 269 \\ 106 \\ \end{array}$ | v<br>24<br>160<br>1430<br>2500<br>2900<br>900<br>800<br>6600                                                                       | $ \begin{array}{c} v_D \ ({\rm GeV}^4 \\ \hline \pm 36 \\ \pm 180 \\ \pm 530 \\ \pm 1000 \\ \pm 1700 \\ \pm 2500 \\ \pm 3800 \\ \pm 7200 \end{array} $ | $\begin{array}{c} \pm 24 \\ \pm 30 \\ \pm 100 \\ \pm 500 \\ \pm 1000 \\ \pm 800 \\ \pm 500 \\ \pm 3300 \end{array}$ | $\begin{tabular}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$                                    | $ \begin{array}{c} \hline \\ v_E  ({\rm GeV}^4 \\ \hline \pm 27 \\ \pm 120 \\ \pm 270 \\ \pm 430 \\ \pm 540 \\ \pm 650 \\ \pm 770 \\ \pm 1300 \end{array} $  | $\begin{array}{c} \pm 6 \\ \pm 50 \\ \pm 70 \\ \pm 100 \\ \pm 180 \\ \pm 240 \\ \pm 360 \\ \pm 400 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Table 5: The hadronic structure functions  $w_A$ ,  $w_C$ ,  $w_D$ , and  $w_E$  as measured in each  $Q^2$  bin. For each structure function, the central value, statistical and systematic errors are given.  $N_j$  is the number of decays in the given  $Q^2$  bin. The contributions shown in table 8 are included in the systematic errors.

|                                                                                                                                                                                             |                                                                                                                                                                                        | $W_A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    | $W_C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bin 1                                                                                                                                                                                       | 1100                                                                                                                                                                                   | $\pm 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 500$                                                                                                                                                                                                                                                                         | 800                                                                                                                                                                                                | $\pm 680$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\pm 250$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 2                                                                                                                                                                                       | 3100                                                                                                                                                                                   | $\pm 180$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 390$                                                                                                                                                                                                                                                                         | 3000                                                                                                                                                                                               | $\pm 1200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 3                                                                                                                                                                                       | 8230                                                                                                                                                                                   | $\pm 500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 830$                                                                                                                                                                                                                                                                         | 7800                                                                                                                                                                                               | $\pm 4000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 2300$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 4                                                                                                                                                                                       | 9200                                                                                                                                                                                   | $\pm 800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 3300$                                                                                                                                                                                                                                                                        | 2800                                                                                                                                                                                               | $\pm 7800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 3800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 5                                                                                                                                                                                       | 2780                                                                                                                                                                                   | $\pm 140$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 540$                                                                                                                                                                                                                                                                         | 1500                                                                                                                                                                                               | $\pm 1600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 6                                                                                                                                                                                       | 10090                                                                                                                                                                                  | $\pm 500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 750$                                                                                                                                                                                                                                                                         | 10300                                                                                                                                                                                              | $\pm 4000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 1200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 7                                                                                                                                                                                       | 12130                                                                                                                                                                                  | $\pm 680$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 1410$                                                                                                                                                                                                                                                                        | 1600                                                                                                                                                                                               | $\pm 5500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 2800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 8                                                                                                                                                                                       | 5630                                                                                                                                                                                   | $\pm 370$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 920$                                                                                                                                                                                                                                                                         | 3100                                                                                                                                                                                               | $\pm 3200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 900$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 9                                                                                                                                                                                       | 3870                                                                                                                                                                                   | $\pm 320$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 880$                                                                                                                                                                                                                                                                         | 3800                                                                                                                                                                                               | $\pm 3100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 1100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 10                                                                                                                                                                                      | 9080                                                                                                                                                                                   | $\pm 560$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 740$                                                                                                                                                                                                                                                                         | 2900                                                                                                                                                                                               | $\pm 4600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 11                                                                                                                                                                                      | 8000                                                                                                                                                                                   | $\pm 460$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 920$                                                                                                                                                                                                                                                                         | 14700                                                                                                                                                                                              | $\pm 4100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 2100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 12                                                                                                                                                                                      | 24700                                                                                                                                                                                  | $\pm 1500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\pm 2500$                                                                                                                                                                                                                                                                        | 37000                                                                                                                                                                                              | $\pm 13000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\pm 5900$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 13                                                                                                                                                                                      | 3290                                                                                                                                                                                   | $\pm 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 390$                                                                                                                                                                                                                                                                         | 3300                                                                                                                                                                                               | $\pm 2000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 14                                                                                                                                                                                      | 1940                                                                                                                                                                                   | $\pm 210$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 670$                                                                                                                                                                                                                                                                         | 700                                                                                                                                                                                                | $\pm 2600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 1300$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 15                                                                                                                                                                                      | 5830                                                                                                                                                                                   | $\pm 310$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 750$                                                                                                                                                                                                                                                                         | 1900                                                                                                                                                                                               | $\pm 4000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 900$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 16                                                                                                                                                                                      | 11500                                                                                                                                                                                  | $\pm 700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 1500$                                                                                                                                                                                                                                                                        | 13900                                                                                                                                                                                              | $\pm 8300$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 2100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 17                                                                                                                                                                                      | 2810                                                                                                                                                                                   | $\pm 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 230$                                                                                                                                                                                                                                                                         | 2900                                                                                                                                                                                               | $\pm 1500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 18                                                                                                                                                                                      | 9900                                                                                                                                                                                   | $\pm 500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 1100$                                                                                                                                                                                                                                                                        | 15900                                                                                                                                                                                              | $\pm 6700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 1900$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 19                                                                                                                                                                                      | 2750                                                                                                                                                                                   | $\pm 290$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 530$                                                                                                                                                                                                                                                                         | -6500                                                                                                                                                                                              | $\pm 5100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 1400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 20                                                                                                                                                                                      | 1010                                                                                                                                                                                   | $\pm 90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\pm 220$                                                                                                                                                                                                                                                                         | 1800                                                                                                                                                                                               | $\pm 1500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 21                                                                                                                                                                                      | 2940                                                                                                                                                                                   | $\pm 220$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 730$                                                                                                                                                                                                                                                                         | 6100                                                                                                                                                                                               | $\pm 3700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 1700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                             |                                                                                                                                                                                        | $W_D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    | $W_E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bin 1                                                                                                                                                                                       | 450                                                                                                                                                                                    | $W_D$ $\pm 640$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\pm 410$                                                                                                                                                                                                                                                                         | -250                                                                                                                                                                                               | $W_E = \pm 470$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\pm 130$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 1<br>Bin 2                                                                                                                                                                              | 450<br>500                                                                                                                                                                             | $W_D \ \pm 640 \ \pm 1200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $egin{array}{c} \pm 410 \ \pm 300 \end{array}$                                                                                                                                                                                                                                    | $\begin{array}{c} -250 \\ -1370 \end{array}$                                                                                                                                                       | $W_E \ \pm 470 \ \pm 810$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ${\pm 130 \over \pm 530}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 1<br>Bin 2<br>Bin 3                                                                                                                                                                     | $\begin{array}{c} 450\\ 500\\ 500\end{array}$                                                                                                                                          | $W_D \ \pm 640 \ \pm 1200 \ \pm 3500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $egin{array}{c} \pm 410 \ \pm 300 \ \pm 1200 \end{array}$                                                                                                                                                                                                                         | $-250 \\ -1370 \\ 4300$                                                                                                                                                                            | $W_E \ \pm 470 \ \pm 810 \ \pm 2100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $egin{array}{c} \pm 130 \ \pm 530 \ \pm 600 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4                                                                                                                                                            | 450<br>500<br>500<br>3300                                                                                                                                                              | $W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} \pm 410 \\ \pm 300 \\ \pm 1200 \\ \pm 1600 \end{array}$                                                                                                                                                                                                         | $-250 \\ -1370 \\ 4300 \\ -40$                                                                                                                                                                     | $W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 3600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5                                                                                                                                                   | 450<br>500<br>500<br>3300<br>4000                                                                                                                                                      | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 1800 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} \pm 410 \\ \pm 300 \\ \pm 1200 \\ \pm 1600 \\ \pm 600 \end{array}$                                                                                                                                                                                              | $ \begin{array}{r} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \end{array} $                                                                                                                              | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 3600 \ \pm 720 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6                                                                                                                                          | 450<br>500<br>500<br>3300<br>4000<br>7500                                                                                                                                              | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 1800 \ \pm 4200 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\pm 410 \\ \pm 300 \\ \pm 1200 \\ \pm 1600 \\ \pm 600 \\ \pm 900$                                                                                                                                                                                                                | $-250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100$                                                                                                                                                    | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 3600 \ \pm 720 \ \pm 2000 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7                                                                                                                                 | 450<br>500<br>3300<br>4000<br>7500<br>1100                                                                                                                                             | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 1800 \ \pm 4200 \ \pm 5600 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\pm 410 \\ \pm 300 \\ \pm 1200 \\ \pm 1600 \\ \pm 600 \\ \pm 900 \\ \pm 2600$                                                                                                                                                                                                    | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100 \\ 300 \end{array}$                                                                                                                | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 3600 \ \pm 720 \ \pm 2000 \ \pm 2800 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 600 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bin 1           Bin 2           Bin 3           Bin 5           Bin 6           Bin 7           Bin 8                                                                                       | 450<br>500<br>500<br>3300<br>4000<br>7500<br>1100<br>1400                                                                                                                              | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 1800 \ \pm 4200 \ \pm 4200 \ \pm 5600 \ \pm 3000 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\pm 410 \\ \pm 300 \\ \pm 1200 \\ \pm 1600 \\ \pm 600 \\ \pm 900 \\ \pm 2600 \\ \pm 1200$                                                                                                                                                                                        | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100 \\ 300 \\ 1300 \end{array}$                                                                                                        | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 3600 \ \pm 22000 \ \pm 22000 \ \pm 2800 \ \pm 1600 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 600 \\ \pm 400 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9                                                                                                               | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700                                                                                                                             | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 1800 \ \pm 4200 \ \pm 3600 \ \pm 3000 \ \pm 3100 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$                                                                                                                                                                         | $\begin{array}{r} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100 \\ 300 \\ 1300 \\ 1500 \end{array}$                                                                                                | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 3600 \ \pm 22000 \ \pm 2800 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 600 \\ \pm 400 \\ \pm 600 \\ \pm 600 \\ \pm 600 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10                                                                                                     | $\begin{array}{c} 450 \\ 500 \\ 500 \\ 3300 \\ 4000 \\ 7500 \\ 1100 \\ 1400 \\ 2700 \\ 6700 \end{array}$                                                                               | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 5800 \ \pm 4200 \ \pm 4200 \ \pm 3000 \ \pm 3000 \ \pm 3100 \ \pm 55000 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 900$<br>$\pm 1500$                                                                                                                                                            | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100 \\ 300 \\ 1300 \\ 1500 \\ 1200 \end{array}$                                                                                        | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2600 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 600 \\ \pm 400 \\ \pm 600 \\ \pm 400 \\ \pm 600 \\ \pm 700 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11                                                                                           | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6100                                                                                                             | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 5800 \ \pm 4200 \ \pm 4200 \ \pm 3000 \ \pm 3100 \ \pm 3100 \ \pm 3600 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1400$                                                                                                                                             | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100 \\ 300 \\ 1300 \\ 1500 \\ 1200 \\ -4000 \\ \end{array}$                                                                            | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2600 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 1300 \ \pm 1300 \ \pm 1900 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 600 \\ \pm 400 \\ \pm 600 \\ \pm 700 \\ \pm 1000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12                                                                                 | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6100<br>5000                                                                                                     | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 3500 \ \pm 1800 \ \pm 4200 \ \pm 5600 \ \pm 3000 \ \pm 3100 \ \pm 3600 \ \pm 13000 \ \pm 13000 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1500$<br>$\pm 1400$<br>$\pm 2000$                                                                                                                                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                             | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 5900 \ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 600 \\ \pm 400 \\ \pm 600 \\ \pm 1000 \\ \pm 1800 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13                                                                       | $\begin{array}{c} 450 \\ 500 \\ 500 \\ 3300 \\ 4000 \\ 7500 \\ 1100 \\ 1400 \\ 2700 \\ 6700 \\ 6100 \\ 5000 \\ 3000 \\ \end{array}$                                                    | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 5800 \ \pm 4200 \ \pm 3000 \ \pm 3000 \ \pm 3000 \ \pm 3100 \ \pm 3600 \ \pm 13000 \ \pm 13000 \ \pm 1900 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \pm 410 \\ \pm 300 \\ \pm 1200 \\ \pm 1600 \\ \pm 900 \\ \pm 2600 \\ \pm 1200 \\ \pm 1200 \\ \pm 1200 \\ \pm 1400 \\ \pm 1400 \\ \pm 2000 \\ \pm 2000 \\ \pm 600 \end{array}$                                                                                   | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -500 \\ -4100 \\ 300 \\ 1300 \\ 1500 \\ 1200 \\ -4000 \\ -7800 \\ 30 \\ \end{array}$                                                                    | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 5900 \ \pm 760 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 1000 \\ \pm 1800 \\ \pm 1800 \\ \pm 280 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13                                                                       | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6100<br>5000<br>3000<br>1400                                                                                     | $egin{arred} & W_D \ & \pm 640 \ & \pm 1200 \ & \pm 3500 \ & \pm 5800 \ & \pm 1800 \ & \pm 4200 \ & \pm 5600 \ & \pm 3000 \ & \pm 3100 \ & \pm 3100 \ & \pm 3600 \ & \pm 3600 \ & \pm 13000 \ & \pm 1900 \ & \pm 1900 \ & \pm 2500 \ & \end{arred}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1400$<br>$\pm 2000$<br>$\pm 600$<br>$\pm 1300$                                                                                                    | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100 \\ 300 \\ 1300 \\ 1300 \\ 1200 \\ -4000 \\ -7800 \\ 30 \\ -3500 \\ \end{array}$                                                    | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 2900 \ \pm 5900 \ \pm 760 \ \pm 900 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 240 \\ \pm 1000 \\ \pm 1800 \\ \pm 280 \\ \pm 1300 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15                                                   | 450           500           3300           4000           7500           1100           1400           2700           6700           6100           5000           3000           1400 | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 5800 \ \pm 5800 \ \pm 4200 \ \pm 5600 \ \pm 3000 \ \pm 3100 \ \pm 3100 \ \pm 3100 \ \pm 3600 \ \pm 13000 \ \pm 13000 \ \pm 1900 \ \pm 1900 \ \pm 2500 \ \pm 3800 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \pm 410 \\ \pm 300 \\ \pm 1200 \\ \pm 1600 \\ \pm 600 \\ \pm 900 \\ \pm 2600 \\ \pm 1200 \\ \pm 1200 \\ \pm 1200 \\ \pm 1300 \\ \pm 1300 \\ \pm 1300 \\ \pm 1400 \end{array}$                                                                                   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                             | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 1900 \ \pm 5900 \ \pm 760 \ \pm 900 \ \pm 1100 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 1000 \\ \pm 280 \\ \pm 1300 \\ \pm 1300 \\ \pm 500 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16                                         | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6700<br>6100<br>5000<br>3000<br>1400<br>5800<br>-9400                                                            | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 3500 \ \pm 5800 \ \pm 1800 \ \pm 4200 \ \pm 5600 \ \pm 3000 \ \pm 3000 \ \pm 3600 \ \pm 13000 \ \pm 13000 \ \pm 1900 \ \pm 2500 \ \pm 3800 \ \pm 3800 \ \pm 8000 \ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1500$<br>$\pm 1400$<br>$\pm 2000$<br>$\pm 1300$<br>$\pm 1400$<br>$\pm 1400$                                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                             | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2100 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 1900 \ \pm 1900 \ \pm 1900 \ \pm 1100 \ \pm 2500 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 400 \\ \pm 600 \\ \pm 400 \\ \pm 1000 \\ \pm 280 \\ \pm 1300 \\ \pm 280 \\ \pm 1300 \\ \pm 500 \\ \pm 700 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17                               | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6100<br>5000<br>3000<br>1400<br>5800<br>-9400<br>1600                                                            | $egin{array}{c} W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 3500 \ \pm 5800 \ \pm 5800 \ \pm 4200 \ \pm 5600 \ \pm 3000 \ \pm 3000 \ \pm 3000 \ \pm 3000 \ \pm 13000 \ \pm 130000 \ \pm 1300000 \ \pm 1300000 \ \pm 130000 \ \pm 130000 \ \pm 13000000 \ \pm 1300000 \ \pm 13000000 \ \pm 130$ | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1300$<br>$\pm 1300$<br>$\pm 1400$<br>$\pm 2800$<br>$\pm 2800$                                                                       | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -500 \\ -40 \\ 300 \\ 1300 \\ 1300 \\ 1300 \\ 1200 \\ -4000 \\ -7800 \\ 30 \\ -3500 \\ -200 \\ -4200 \\ -30 \\ \end{array}$                             | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 5900 \ \pm 760 \ \pm 760 \ \pm 2500 \ \pm 1100 \ \pm 2500 \ \pm 430 \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 280 \\ \pm 1300 \\ \pm 1800 \\ \pm 1800 \\ \pm 280 \\ \pm 1300 \\ \pm 500 \\ \pm 700 \\ \pm 80 \\ \pm $ |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17<br>Bin 18                     | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6100<br>5000<br>3000<br>1400<br>5800<br>-9400<br>1600<br>10100                                                   | $egin{arred} & W_D \ \pm 640 \ \pm 1200 \ \pm 3500 \ \pm 3500 \ \pm 5800 \ \pm 4200 \ \pm 5600 \ \pm 3000 \ \pm 3000 \ \pm 3100 \ \pm 3000 \ \pm 3600 \ \pm 13000 \ \pm 1900 \ \pm 2500 \ \pm 3800 \ \pm 1500 \ \pm 1500 \ \pm 1500 \ \pm 6100 \ \hline \pm 6100 \ \hline \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 2600$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1300$<br>$\pm 1400$<br>$\pm 1400$<br>$\pm 1400$<br>$\pm 2800$<br>$\pm 200$<br>$\pm 200$                                                          | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                             | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 2500 \ \pm 1900 \ \pm 5900 \ \pm 760 \ \pm 2500 \ \pm 1100 \ \pm 2500 \ \pm 430 \ \pm 1800 \ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 280 \\ \pm 1300 \\ \pm 280 \\ \pm 1300 \\ \pm 500 \\ \pm 500 \\ \pm 300 \\ \pm 300 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17<br>Bin 18                     | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6700<br>6700<br>6100<br>5000<br>3000<br>1400<br>5800<br>-9400<br>1600<br>10100                                   | $egin{arred} & W_D \ & \pm 640 \ & \pm 1200 \ & \pm 3500 \ & \pm 5800 \ & \pm 5800 \ & \pm 1800 \ & \pm 4200 \ & \pm 5600 \ & \pm 3000 \ & \pm 3100 \ & \pm 3100 \ & \pm 3600 \ & \pm 3600 \ & \pm 13000 \ & \pm 1900 \ & \pm 1900 \ & \pm 1900 \ & \pm 3800 \ & \pm 1500 \ & \pm 4800 \ & \pm 4800 \ & \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 2600$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1300$<br>$\pm 1400$<br>$\pm 1400$<br>$\pm 1300$<br>$\pm 1400$<br>$\pm 2800$<br>$\pm 2000$<br>$\pm 13100$                                         | $\begin{array}{c} -250 \\ -1370 \\ 4300 \\ -40 \\ -500 \\ -4100 \\ 300 \\ 1300 \\ 1300 \\ 1300 \\ 1200 \\ -4000 \\ -7800 \\ -300 \\ -200 \\ -200 \\ -4200 \\ -30 \\ -2100 \\ -1300 \\ \end{array}$ | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 1300 \ \pm 1300 \ \pm 1900 \ \pm 1900 \ \pm 5900 \ \pm 760 \ \pm 1100 \ \pm 2500 \ \pm 1100 \ \pm 1800 \ \pm 1100 \ \pm 11000 \ \pm 110000 \ \pm 110000 \ \pm 11000 \ \pm 11000 \ \pm 11000 \ \pm 110000$ | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 280 \\ \pm 1300 \\ \pm 280 \\ \pm 1300 \\ \pm 500 \\ \pm 300 \\ \pm 300 \\ \pm 500 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17<br>Bin 18<br>Bin 19<br>Bin 20 | 450<br>500<br>3300<br>4000<br>7500<br>1100<br>1400<br>2700<br>6700<br>6700<br>6100<br>5000<br>3000<br>1400<br>5800<br>-9400<br>1600<br>10100<br>4900<br>1500                           | $egin{arred} & W_D \ & \pm 640 \ & \pm 1200 \ & \pm 3500 \ & \pm 3500 \ & \pm 5800 \ & \pm 1800 \ & \pm 4200 \ & \pm 5600 \ & \pm 3000 \ & \pm 3100 \ & \pm 3100 \ & \pm 3100 \ & \pm 3100 \ & \pm 3600 \ & \pm 3800 \ & \pm 13000 \ & \pm 13000 \ & \pm 1500 \ & \pm 48000 \ & \pm 1500 \ & \pm 6100 \ & \pm 4800 \ & \pm 1700 \ & \pm 11700 \$                                                       | $\pm 410$<br>$\pm 300$<br>$\pm 1200$<br>$\pm 1600$<br>$\pm 900$<br>$\pm 2600$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1200$<br>$\pm 1500$<br>$\pm 1400$<br>$\pm 2000$<br>$\pm 1400$<br>$\pm 2800$<br>$\pm 1400$<br>$\pm 2800$<br>$\pm 1400$<br>$\pm 1400$<br>$\pm 1500$<br>$\pm 1500$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                             | $egin{array}{c} W_E \ \pm 470 \ \pm 810 \ \pm 2100 \ \pm 2100 \ \pm 2000 \ \pm 2800 \ \pm 1600 \ \pm 1300 \ \pm 2200 \ \pm 1900 \ \pm 1900 \ \pm 1900 \ \pm 1900 \ \pm 1100 \ \pm 2500 \ \pm 430 \ \pm 1800 \ \pm 1100 \ \pm 320 \ \hline \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \pm 130 \\ \pm 530 \\ \pm 600 \\ \pm 700 \\ \pm 180 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 400 \\ \pm 280 \\ \pm 1000 \\ \pm 1000 \\ \pm 1300 \\ \pm 280 \\ \pm 1300 \\ \pm 500 \\ \pm 300 \\ \pm 300 \\ \pm 500 \\ \pm 90 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 6: The hadronic structure functions  $W_A$ ,  $W_C$ ,  $W_D$  and  $W_E$  for each  $(Q^2, s_1, s_2)$  bin. For each structure function, the central value, statistical and systematic errors are given. The contributions shown in table 8 are included in the systematic errors.

|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           | $W_F$                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                | $W_H$                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bin 1                                                                                                                                                                                                 | -1600                                                                                                                                                                                                                                                     | $\pm 630$                                                                                                                                                                                                                                                                                 | $\pm 340$                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                             | $\pm 700$                                                                                                                                                                                                                                                                       | $\pm 200$                                                                                                                                                                                                                                                                     |
| Bin 2                                                                                                                                                                                                 | 130                                                                                                                                                                                                                                                       | $\pm 1300$                                                                                                                                                                                                                                                                                | $\pm 400$                                                                                                                                                                                                                                           | -100                                                                                                                                                                                                           | $\pm 1300$                                                                                                                                                                                                                                                                      | $\pm 600$                                                                                                                                                                                                                                                                     |
| Bin 3                                                                                                                                                                                                 | 1300                                                                                                                                                                                                                                                      | $\pm 3200$                                                                                                                                                                                                                                                                                | $\pm 1000$                                                                                                                                                                                                                                          | -7000                                                                                                                                                                                                          | $\pm 3600$                                                                                                                                                                                                                                                                      | $\pm 1000$                                                                                                                                                                                                                                                                    |
| Bin 4                                                                                                                                                                                                 | -600                                                                                                                                                                                                                                                      | $\pm 7000$                                                                                                                                                                                                                                                                                | $\pm 1200$                                                                                                                                                                                                                                          | 8400                                                                                                                                                                                                           | $\pm 6200$                                                                                                                                                                                                                                                                      | $\pm 3700$                                                                                                                                                                                                                                                                    |
| Bin 5                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                        | $\pm 1900$                                                                                                                                                                                                                                                                                | $\pm 700$                                                                                                                                                                                                                                           | -400                                                                                                                                                                                                           | $\pm 1600$                                                                                                                                                                                                                                                                      | $\pm 500$                                                                                                                                                                                                                                                                     |
| Bin 6                                                                                                                                                                                                 | -5600                                                                                                                                                                                                                                                     | $\pm 4100$                                                                                                                                                                                                                                                                                | $\pm 1100$                                                                                                                                                                                                                                          | -5300                                                                                                                                                                                                          | $\pm 4300$                                                                                                                                                                                                                                                                      | $\pm 1800$                                                                                                                                                                                                                                                                    |
| Bin 7                                                                                                                                                                                                 | 4300                                                                                                                                                                                                                                                      | $\pm 5600$                                                                                                                                                                                                                                                                                | $\pm 1100$                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                           | $\pm 6000$                                                                                                                                                                                                                                                                      | $\pm 1200$                                                                                                                                                                                                                                                                    |
| Bin 8                                                                                                                                                                                                 | -4900                                                                                                                                                                                                                                                     | $\pm 3200$                                                                                                                                                                                                                                                                                | $\pm 1200$                                                                                                                                                                                                                                          | -5900                                                                                                                                                                                                          | $\pm 3000$                                                                                                                                                                                                                                                                      | $\pm 1700$                                                                                                                                                                                                                                                                    |
| Bin 9                                                                                                                                                                                                 | -2000                                                                                                                                                                                                                                                     | $\pm 2900$                                                                                                                                                                                                                                                                                | $\pm 1600$                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                            | $\pm 3100$                                                                                                                                                                                                                                                                      | $\pm 700$                                                                                                                                                                                                                                                                     |
| Bin 10                                                                                                                                                                                                | 3500                                                                                                                                                                                                                                                      | $\pm 5700$                                                                                                                                                                                                                                                                                | $\pm 1000$                                                                                                                                                                                                                                          | 6700                                                                                                                                                                                                           | $\pm 5200$                                                                                                                                                                                                                                                                      | $\pm 1100$                                                                                                                                                                                                                                                                    |
| Bin 11                                                                                                                                                                                                | -3100                                                                                                                                                                                                                                                     | $\pm 4600$                                                                                                                                                                                                                                                                                | $\pm 900$                                                                                                                                                                                                                                           | -2800                                                                                                                                                                                                          | $\pm 4800$                                                                                                                                                                                                                                                                      | $\pm 700$                                                                                                                                                                                                                                                                     |
| Bin 12                                                                                                                                                                                                | -700                                                                                                                                                                                                                                                      | $\pm 14800$                                                                                                                                                                                                                                                                               | $\pm 4900$                                                                                                                                                                                                                                          | -14000                                                                                                                                                                                                         | $\pm 15000$                                                                                                                                                                                                                                                                     | $\pm 4000$                                                                                                                                                                                                                                                                    |
| Bin 13                                                                                                                                                                                                | 3200                                                                                                                                                                                                                                                      | $\pm 2100$                                                                                                                                                                                                                                                                                | $\pm 400$                                                                                                                                                                                                                                           | 1900                                                                                                                                                                                                           | $\pm 2100$                                                                                                                                                                                                                                                                      | $\pm 400$                                                                                                                                                                                                                                                                     |
| Bin 14                                                                                                                                                                                                | 800                                                                                                                                                                                                                                                       | $\pm 3100$                                                                                                                                                                                                                                                                                | $\pm 1400$                                                                                                                                                                                                                                          | -4300                                                                                                                                                                                                          | $\pm 2400$                                                                                                                                                                                                                                                                      | $\pm 1800$                                                                                                                                                                                                                                                                    |
| Bin 15                                                                                                                                                                                                | 1700                                                                                                                                                                                                                                                      | $\pm 3900$                                                                                                                                                                                                                                                                                | $\pm 1900$                                                                                                                                                                                                                                          | -1100                                                                                                                                                                                                          | $\pm 4000$                                                                                                                                                                                                                                                                      | $\pm 900$                                                                                                                                                                                                                                                                     |
| Bin 16                                                                                                                                                                                                | 7800                                                                                                                                                                                                                                                      | $\pm 8400$                                                                                                                                                                                                                                                                                | $\pm 1700$                                                                                                                                                                                                                                          | 3500                                                                                                                                                                                                           | $\pm 8400$                                                                                                                                                                                                                                                                      | $\pm 2300$                                                                                                                                                                                                                                                                    |
| Bin 17                                                                                                                                                                                                | -300                                                                                                                                                                                                                                                      | $\pm 1500$                                                                                                                                                                                                                                                                                | $\pm 200$                                                                                                                                                                                                                                           | 2000                                                                                                                                                                                                           | $\pm 1600$                                                                                                                                                                                                                                                                      | $\pm 300$                                                                                                                                                                                                                                                                     |
| Bin 18                                                                                                                                                                                                | -5000                                                                                                                                                                                                                                                     | $\pm 5700$                                                                                                                                                                                                                                                                                | $\pm 1700$                                                                                                                                                                                                                                          | 3800                                                                                                                                                                                                           | $\pm 7200$                                                                                                                                                                                                                                                                      | $\pm 1600$                                                                                                                                                                                                                                                                    |
| Bin 19                                                                                                                                                                                                | 4000                                                                                                                                                                                                                                                      | $\pm 5100$                                                                                                                                                                                                                                                                                | $\pm 1100$                                                                                                                                                                                                                                          | -1900                                                                                                                                                                                                          | $\pm 5600$                                                                                                                                                                                                                                                                      | $\pm 900$                                                                                                                                                                                                                                                                     |
| Bin 20                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                       | $\pm 1800$                                                                                                                                                                                                                                                                                | $\pm 400$                                                                                                                                                                                                                                           | -1500                                                                                                                                                                                                          | $\pm 1800$                                                                                                                                                                                                                                                                      | $\pm 1000$                                                                                                                                                                                                                                                                    |
| Bin 21                                                                                                                                                                                                | -5400                                                                                                                                                                                                                                                     | $\pm 3800$                                                                                                                                                                                                                                                                                | $\pm 1800$                                                                                                                                                                                                                                          | 10200                                                                                                                                                                                                          | $\pm 4700$                                                                                                                                                                                                                                                                      | $\pm 2500$                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           | $X_1$                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                | $X_2$                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |
| Bin 1                                                                                                                                                                                                 | -50                                                                                                                                                                                                                                                       | $X_1$<br>$\pm 150$                                                                                                                                                                                                                                                                        | ±110                                                                                                                                                                                                                                                | -10                                                                                                                                                                                                            | $X_2$<br>$\pm 150$                                                                                                                                                                                                                                                              | $\pm 130$                                                                                                                                                                                                                                                                     |
| Bin 1<br>Bin 2                                                                                                                                                                                        | $-50\\120$                                                                                                                                                                                                                                                | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \end{array}$                                                                                                                                                                                                                                      | $\pm 110 \\ \pm 130$                                                                                                                                                                                                                                | -10<br>-80                                                                                                                                                                                                     | $egin{array}{c} X_2 \ \pm 150 \ \pm 310 \end{array}$                                                                                                                                                                                                                            | $egin{array}{c} \pm 130 \ \pm 60 \end{array}$                                                                                                                                                                                                                                 |
| Bin 1<br>Bin 2<br>Bin 3                                                                                                                                                                               | $-50 \\ 120 \\ 1040$                                                                                                                                                                                                                                      | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \end{array}$                                                                                                                                                                                                                          | $\begin{array}{r} \pm 110 \\ \pm 130 \\ \pm 540 \end{array}$                                                                                                                                                                                        | -10<br>-80<br>450                                                                                                                                                                                              | $     \begin{array}{r} X_2 \\                                    $                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4                                                                                                                                                                      | $-50 \\ 120 \\ 1040 \\ -1900$                                                                                                                                                                                                                             | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \end{array}$                                                                                                                                                                                                               | $\begin{array}{r} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \end{array}$                                                                                                                                                                            | $ \begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \end{array} $                                                                                                                                                   | $egin{array}{c} X_2 \ \pm 150 \ \pm 310 \ \pm 800 \ \pm 1400 \ \end{array}$                                                                                                                                                                                                     | $\begin{array}{r} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \end{array}$                                                                                                                                                                                                        |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5                                                                                                                                                             | $ \begin{array}{c c} -50 \\ 120 \\ 1040 \\ -1900 \\ 20 \\ \end{array} $                                                                                                                                                                                   | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \end{array}$                                                                                                                                                                                                     | $egin{array}{c} \pm 110 \ \pm 130 \ \pm 540 \ \pm 1000 \ \pm 70 \ \end{array}$                                                                                                                                                                      | $ \begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ 40 \\ \end{array} $                                                                                                                                          | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \end{array}$                                                                                                                                                                                      | $ \begin{array}{r} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 80 \end{array} $                                                                                                                                                                                            |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6                                                                                                                                                    | $-50 \\ 120 \\ 1040 \\ -1900 \\ 20 \\ 370$                                                                                                                                                                                                                | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 870 \ \end{array}$                                                                                                                                                                                           | $\pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \end{bmatrix}$                                                                                                                                                                   | $ \begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ 40 \\ -160 \\ \end{array} $                                                                                                                                  | $egin{array}{c} X_2 \ \pm 150 \ \pm 310 \ \pm 800 \ \pm 1400 \ \pm 350 \ \pm 850 \ \end{array}$                                                                                                                                                                                 | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 80 \\ \pm 220 \end{array}$                                                                                                                                                                                   |
| Bin 1           Bin 2           Bin 3           Bin 4           Bin 5           Bin 6           Bin 7                                                                                                 |                                                                                                                                                                                                                                                           | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 870 \ \pm 1400 \ \end{array}$                                                                                                                                                                      | $\pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300$                                                                                                                                                                         | $ \begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ 40 \\ -160 \\ 100 \\ \end{array} $                                                                                                                           | $egin{array}{c} X_2 \ \pm 150 \ \pm 310 \ \pm 800 \ \pm 1400 \ \pm 350 \ \pm 850 \ \pm 1300 \ \end{array}$                                                                                                                                                                      | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 80 \\ \pm 220 \\ \pm 300 \end{array}$                                                                                                                                                                        |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8                                                                                                                                  | $\begin{array}{c} -50\\ 120\\ 1040\\ -1900\\ \hline 20\\ 370\\ -600\\ -560\\ \end{array}$                                                                                                                                                                 | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 870 \ \pm 1400 \ \pm 630 \ \hline \end{array}$                                                                                                                                                     | $\begin{array}{c} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300 \\ \pm 300 \end{array}$                                                                                                                                 | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ 40 \\ -160 \\ 100 \\ 380 \\ \end{array}$                                                                                                                      | $egin{array}{c} X_2 \ \pm 150 \ \pm 310 \ \pm 800 \ \pm 1400 \ \pm 350 \ \pm 850 \ \pm 1300 \ \pm 680 \ \end{array}$                                                                                                                                                            | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \end{array}$                                                                                                                                                                       |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9                                                                                                                         | $\begin{array}{c} -50\\ 120\\ 1040\\ -1900\\ \hline 20\\ 370\\ -600\\ -560\\ \hline -690\\ \end{array}$                                                                                                                                                   | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 870 \ \pm 1400 \ \pm 630 \ \pm 610 \ \hline \end{array}$                                                                                                                                           | $\begin{array}{c} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300 \\ \pm 300 \\ \pm 240 \end{array}$                                                                                                                      | $\begin{array}{ c c c c }\hline & -10 \\ & -80 \\ 450 \\ \hline 1900 \\ \hline 40 \\ -160 \\ \hline 100 \\ 380 \\ \hline 810 \\ \hline \end{array}$                                                            | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \end{array}$                                                                                                                                         | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \end{array}$                                                                                                                                                            |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10                                                                                                               | $\begin{array}{c} -50\\ 120\\ 1040\\ -1900\\ \hline 20\\ 370\\ -600\\ -560\\ \hline -690\\ -800\\ \end{array}$                                                                                                                                            | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 630 \ \pm 630 \ \pm 610 \ \pm 1100 \ \end{array}$                                                                                                                                                  | $\pm 110$<br>$\pm 130$<br>$\pm 540$<br>$\pm 1000$<br>$\pm 70$<br>$\pm 460$<br>$\pm 300$<br>$\pm 300$<br>$\pm 240$<br>$\pm 200$                                                                                                                      | $\begin{array}{ c c c c c }\hline & -10 \\ & -80 \\ \hline & 450 \\ \hline & 1900 \\ \hline & 40 \\ & -160 \\ \hline & 100 \\ \hline & 380 \\ \hline & 810 \\ & -3500 \\ \hline \end{array}$                   | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \end{array}$                                                                                                                  | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \end{array}$                                                                                                                                                 |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11                                                                                                     | $\begin{array}{c} -50 \\ 120 \\ 1040 \\ -1900 \\ \hline 20 \\ 370 \\ -600 \\ -560 \\ \hline -690 \\ -800 \\ -1330 \\ \end{array}$                                                                                                                         | $\begin{array}{c} X_1 \\ \pm 150 \\ \pm 280 \\ \pm 810 \\ \pm 1200 \\ \pm 310 \\ \pm 310 \\ \pm 630 \\ \pm 630 \\ \pm 610 \\ \pm 1100 \\ \pm 770 \end{array}$                                                                                                                             | $\begin{array}{c} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300 \\ \pm 300 \\ \pm 240 \\ \pm 200 \\ \pm 260 \end{array}$                                                                                                | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ 40 \\ -160 \\ 100 \\ 380 \\ 810 \\ -3500 \\ -210 \end{array}$                                                                                                 | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 890 \end{array}$                                                                                                                  | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \end{array}$                                                                                                                                      |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12                                                                                           | $\begin{array}{c} -50 \\ 120 \\ 1040 \\ -1900 \\ \hline 20 \\ 370 \\ -600 \\ -560 \\ \hline -560 \\ -800 \\ -1330 \\ -3100 \\ \end{array}$                                                                                                                | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 630 \ \pm 1400 \ \pm 630 \ \pm 610 \ \pm 1100 \ \pm 2700 \ \pm 2700 \ \hline \end{array}$                                                                                                          | $\begin{array}{c} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300 \\ \pm 300 \\ \pm 240 \\ \pm 200 \\ \pm 260 \\ \pm 800 \end{array}$                                                                                     | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ 40 \\ -160 \\ 100 \\ 380 \\ 810 \\ -3500 \\ -210 \\ 1900 \\ \end{array}$                                                                                      | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 890 \\ \pm 3000 \end{array}$                                                                                                      | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 200 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \end{array}$                                                                                                     |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13                                                                                 | $\begin{array}{c} -50\\ 120\\ 1040\\ -1900\\ \hline 20\\ 370\\ -600\\ -560\\ \hline -690\\ -800\\ -1330\\ \hline -3100\\ 130\\ \end{array}$                                                                                                               | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 630 \ \pm 630 \ \pm 610 \ \pm 1100 \ \pm 2700 \ \pm 2700 \ \pm 360 \ \hline \end{array}$                                                                                                           | $\begin{array}{c} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300 \\ \pm 300 \\ \pm 240 \\ \pm 200 \\ \pm 260 \\ \pm 800 \\ \pm 320 \end{array}$                                                                          | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ \hline 40 \\ -160 \\ 100 \\ 380 \\ \hline 810 \\ -3500 \\ -210 \\ 1900 \\ -340 \\ \end{array}$                                                                | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 890 \\ \pm 3000 \\ \pm 380 \end{array}$                                                                                           | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 700 \\ \pm 70 \end{array}$                                                                                |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14                                                                       | $\begin{array}{c} -50\\ 120\\ 1040\\ -1900\\ \hline \\ 20\\ 370\\ -600\\ -560\\ \hline \\ -690\\ -800\\ -1330\\ \hline \\ -3100\\ 130\\ \hline \\ 130\\ \hline \\ -10\\ \end{array}$                                                                      | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 630 \ \pm 1400 \ \pm 630 \ \pm 1400 \ \pm 630 \ \pm 1100 \ \pm 2700 \ \pm 2700 \ \pm 360 \ \pm 450 \ \hline \end{array}$                                                                           | $\pm 110$<br>$\pm 130$<br>$\pm 540$<br>$\pm 1000$<br>$\pm 70$<br>$\pm 460$<br>$\pm 300$<br>$\pm 240$<br>$\pm 200$<br>$\pm 260$<br>$\pm 800$<br>$\pm 320$                                                                                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                         | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 890 \\ \pm 3000 \\ \pm 380 \\ \pm 530 \end{array}$                                                                                | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 80 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 70 \\ \pm 70 \\ \pm 310 \end{array}$                                                            |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15                                                             | $\begin{array}{c} -50\\ 120\\ 1040\\ -1900\\ \hline 20\\ 370\\ -600\\ -560\\ \hline -690\\ -800\\ -1330\\ \hline -13100\\ 130\\ \hline -10\\ 170\\ \end{array}$                                                                                           | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 310 \ \pm 1400 \ \pm 630 \ \pm 1400 \ \pm 630 \ \pm 1100 \ \pm 2700 \ \pm 2700 \ \pm 260 \ \pm 450 \ \pm 450 \ \pm 650 \ \hline \end{array}$                                                       | $\pm 110$<br>$\pm 130$<br>$\pm 540$<br>$\pm 1000$<br>$\pm 70$<br>$\pm 460$<br>$\pm 300$<br>$\pm 240$<br>$\pm 200$<br>$\pm 260$<br>$\pm 800$<br>$\pm 320$<br>$\pm 250$<br>$\pm 200$                                                                  | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ 40 \\ -160 \\ 100 \\ 380 \\ 810 \\ -3500 \\ -210 \\ 1900 \\ -340 \\ -100 \\ -100 \\ -100 \end{array}$                                                         | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 890 \\ \pm 3000 \\ \pm 380 \\ \pm 530 \\ \pm 650 \end{array}$                                                                     | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 700 \\ \pm 710 \\ \pm 310 \\ \pm 250 \end{array}$                                                                               |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16                                                   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                    | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 310 \ \pm 470 \ \pm 1400 \ \pm 630 \ \pm 1400 \ \pm 2700 \ \pm 2700 \ \pm 360 \ \pm 450 \ \pm 650 \ \pm 1400 \ \end{array}$                                                                        | $\begin{array}{c} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300 \\ \pm 200 \\ \pm 240 \\ \pm 200 \\ \pm 260 \\ \pm 260 \\ \pm 250 \\ \pm 250 \\ \pm 200 \\ \pm 200 \\ \pm 300 \end{array}$                              | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ \hline 40 \\ -160 \\ 100 \\ 380 \\ \hline 810 \\ -3500 \\ -210 \\ 1900 \\ -340 \\ \hline -100 \\ -100 \\ -1900 \\ \hline \end{array}$                         | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 890 \\ \pm 3000 \\ \pm 380 \\ \pm 530 \\ \pm 650 \\ \pm 1400 \\ \end{array}$                                                      | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 700 \\ \pm 700 \\ \pm 310 \\ \pm 250 \\ \pm 600 \\ \end{array}$                                           |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17                                         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                    | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 630 \ \pm 1400 \ \pm 630 \ \pm 610 \ \pm 1100 \ \pm 2700 \ \pm 360 \ \pm 450 \ \pm 450 \ \pm 650 \ \pm 1400 \ \pm 2200 \ \end{array}$                                                              | $\begin{array}{c} \pm 110 \\ \pm 130 \\ \pm 540 \\ \pm 1000 \\ \pm 70 \\ \pm 460 \\ \pm 300 \\ \pm 300 \\ \pm 240 \\ \pm 200 \\ \pm 260 \\ \pm 260 \\ \pm 320 \\ \pm 250 \\ \pm 220 \\ \pm 200 \\ \pm 200 \\ \pm 300 \\ \pm 100 \end{array}$        | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ \hline \\ 40 \\ -160 \\ 100 \\ 380 \\ \hline \\ 810 \\ -3500 \\ -210 \\ 1900 \\ -340 \\ \hline \\ -100 \\ -100 \\ -100 \\ \hline \\ 350 \\ \end{array}$       | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 890 \\ \pm 3000 \\ \pm 380 \\ \pm 530 \\ \pm 530 \\ \pm 650 \\ \pm 1400 \\ \pm 230 \end{array}$                                   | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 700 \\ \pm 700 \\ \pm 250 \\ \pm 600 \\ \pm 50 \end{array}$                                               |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17<br>Bin 18                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                    | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 1200 \ \pm 310 \ \pm 630 \ \pm 1400 \ \pm 630 \ \pm 610 \ \pm 1100 \ \pm 2700 \ \pm 2700 \ \pm 360 \ \pm 450 \ \pm 450 \ \pm 450 \ \pm 1400 \ \pm 200 \ \pm 1100 \ \end{array}$                                        | $\pm 110$<br>$\pm 130$<br>$\pm 540$<br>$\pm 1000$<br>$\pm 70$<br>$\pm 460$<br>$\pm 300$<br>$\pm 240$<br>$\pm 200$<br>$\pm 260$<br>$\pm 200$<br>$\pm 250$<br>$\pm 200$<br>$\pm 200$<br>$\pm 200$<br>$\pm 100$                                        | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ \hline \\ 40 \\ -160 \\ 100 \\ 380 \\ \hline \\ 810 \\ -3500 \\ -210 \\ 1900 \\ -340 \\ \hline \\ -100 \\ -100 \\ -1900 \\ 350 \\ -400 \\ \hline \end{array}$ | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 680 \\ \pm 630 \\ \pm 530 \\ \pm 3000 \\ \pm 380 \\ \pm 530 \\ \pm 530 \\ \pm 650 \\ \pm 1400 \\ \pm 230 \\ \pm 1000 \end{array}$ | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 300 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 700 \\ \pm 700 \\ \pm 700 \\ \pm 50 \\ \pm 600 \\ \pm 50 \\ \pm 200 \\ \end{array}$                                  |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17<br>Bin 18<br>Bin 19                     | $\begin{array}{c} -50 \\ 120 \\ 1040 \\ -1900 \\ \hline \\ 20 \\ 370 \\ -600 \\ -560 \\ \hline \\ -560 \\ -3100 \\ \hline \\ 130 \\ -110 \\ 130 \\ \hline \\ 130 \\ -10 \\ 170 \\ 2000 \\ \hline \\ 300 \\ -1900 \\ \hline \\ -260 \\ \hline \end{array}$ | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 630 \ \pm 1400 \ \pm 630 \ \pm 610 \ \pm 1100 \ \pm 2700 \ \pm 360 \ \pm 450 \ \pm 450 \ \pm 650 \ \pm 1400 \ \pm 200 \ \pm 1100 \ \pm 2780 \ \end{array}$                                         | $\pm 110$<br>$\pm 130$<br>$\pm 540$<br>$\pm 1000$<br>$\pm 70$<br>$\pm 460$<br>$\pm 300$<br>$\pm 240$<br>$\pm 200$<br>$\pm 260$<br>$\pm 200$<br>$\pm 320$<br>$\pm 250$<br>$\pm 200$<br>$\pm 100$<br>$\pm 100$<br>$\pm 400$                           | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ \hline \\ 40 \\ -160 \\ 100 \\ 380 \\ 810 \\ -3500 \\ -210 \\ 1900 \\ -340 \\ -100 \\ -100 \\ -100 \\ -100 \\ 350 \\ -400 \\ \hline \\ 10 \\ \end{array}$     | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 680 \\ \pm 530 \\ \pm 380 \\ \pm 530 \\ \pm 530 \\ \pm 530 \\ \pm 650 \\ \pm 1400 \\ \pm 230 \\ \pm 1000 \\ \pm 710 \end{array}$  | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 80 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 700 \\ \pm 700 \\ \pm 700 \\ \pm 50 \\ \pm 600 \\ \pm 50 \\ \pm 200 \\ \pm 140 \\ \end{array}$                        |
| Bin 1<br>Bin 2<br>Bin 3<br>Bin 4<br>Bin 5<br>Bin 6<br>Bin 7<br>Bin 8<br>Bin 9<br>Bin 10<br>Bin 11<br>Bin 12<br>Bin 13<br>Bin 14<br>Bin 15<br>Bin 16<br>Bin 17<br>Bin 18<br>Bin 19<br>Bin 19<br>Bin 20 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                    | $egin{array}{c} X_1 \ \pm 150 \ \pm 280 \ \pm 810 \ \pm 1200 \ \pm 310 \ \pm 310 \ \pm 310 \ \pm 310 \ \pm 470 \ \pm 1400 \ \pm 630 \ \pm 1400 \ \pm 2700 \ \pm 360 \ \pm 450 \ \pm 450 \ \pm 650 \ \pm 1400 \ \pm 200 \ \pm 1100 \ \pm 200 \ \pm 1100 \ \pm 240 \ \pm 240 \ \end{array}$ | $\pm 110$<br>$\pm 130$<br>$\pm 540$<br>$\pm 1000$<br>$\pm 70$<br>$\pm 460$<br>$\pm 300$<br>$\pm 240$<br>$\pm 240$<br>$\pm 200$<br>$\pm 260$<br>$\pm 200$<br>$\pm 320$<br>$\pm 250$<br>$\pm 200$<br>$\pm 300$<br>$\pm 400$<br>$\pm 400$<br>$\pm 400$ | $\begin{array}{c c} -10 \\ -80 \\ 450 \\ 1900 \\ \hline 40 \\ -160 \\ 100 \\ 380 \\ 810 \\ -3500 \\ -210 \\ 1900 \\ -340 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ 350 \\ -400 \\ 10 \\ 110 \\ \end{array}$   | $\begin{array}{c} X_2 \\ \pm 150 \\ \pm 310 \\ \pm 800 \\ \pm 1400 \\ \pm 350 \\ \pm 850 \\ \pm 1300 \\ \pm 680 \\ \pm 620 \\ \pm 1100 \\ \pm 680 \\ \pm 630 \\ \pm 530 \\ \pm 380 \\ \pm 530 \\ \pm 530 \\ \pm 1400 \\ \pm 230 \\ \pm 1000 \\ \pm 240 \\ \end{array}$          | $\begin{array}{c} \pm 130 \\ \pm 60 \\ \pm 320 \\ \pm 900 \\ \pm 80 \\ \pm 220 \\ \pm 300 \\ \pm 140 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 600 \\ \pm 220 \\ \pm 700 \\ \pm 310 \\ \pm 250 \\ \pm 310 \\ \pm 250 \\ \pm 600 \\ \pm 200 \\ \pm 140 \\ \pm 80 \\ \end{array}$ |

Table 7: The hadronic structure functions  $W_F$ ,  $W_H$ ,  $X_1$ , and  $X_2$  for each  $(Q^2, s_1, s_2)$  bin. For each structure function, the central value, statistical and systematic errors are given. The contributions shown in table 8 are included in the systematic errors.

|                                                                                                                                                                              | $\Delta W_A$                                                                                                                 | $\Delta W_C$                                                                                                                 | $\Delta W_D$                                                                                                                | $\Delta W_E$                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Efficiency                                                                                                                                                                   | $\pm 22~\%$                                                                                                                  | $\pm7~\%$                                                                                                                    | $\pm 2~\%$                                                                                                                  | $\pm 3~\%$                                                                                                                                |
| Detector resolution                                                                                                                                                          | < 0.1~%                                                                                                                      | $\pm 13~\%$                                                                                                                  | $\pm 17~\%$                                                                                                                 | $\pm 3~\%$                                                                                                                                |
| Migration                                                                                                                                                                    | $\pm 52~\%$                                                                                                                  | $\pm 19~\%$                                                                                                                  | $\pm 11~\%$                                                                                                                 | $\pm 14~\%$                                                                                                                               |
| Background contribution                                                                                                                                                      | $\pm 1~\%$                                                                                                                   | $\pm 2~\%$                                                                                                                   | $\pm 1~\%$                                                                                                                  | $\pm 1~\%$                                                                                                                                |
| $	au^- 	o \pi^-  \pi^-  \pi^+  \pi^0   u_	au  	ext{decay modelling}$                                                                                                         | $\pm 23~\%$                                                                                                                  | $\pm 22~\%$                                                                                                                  | $\pm 30~\%$                                                                                                                 | $\pm 28~\%$                                                                                                                               |
| Kaon channels                                                                                                                                                                | $\pm 1~\%$                                                                                                                   | $\pm 17~\%$                                                                                                                  | $\pm 19~\%$                                                                                                                 | $\pm 28~\%$                                                                                                                               |
| Monte Carlo statistics                                                                                                                                                       | $\pm 0.5~\%$                                                                                                                 | $\pm 20~\%$                                                                                                                  | $\pm 20~\%$                                                                                                                 | $\pm 24~\%$                                                                                                                               |
| $P_{	au}$                                                                                                                                                                    | < 0.1~%                                                                                                                      | $\pm 0.1~\%$                                                                                                                 | $\pm 0.1~\%$                                                                                                                | $\pm 0.1~\%$                                                                                                                              |
|                                                                                                                                                                              |                                                                                                                              |                                                                                                                              |                                                                                                                             |                                                                                                                                           |
|                                                                                                                                                                              | $\Delta W_F$                                                                                                                 | $\Delta W_H$                                                                                                                 | $\Delta X_1$                                                                                                                | $\Delta X_2$                                                                                                                              |
| Efficiency                                                                                                                                                                   | $\Delta W_F \ \pm 3~\%$                                                                                                      | $\Delta W_H \ \pm 6~\%$                                                                                                      | $\Delta X_1 \ \pm 5~\%$                                                                                                     | $\Delta X_2 \ \pm 3~\%$                                                                                                                   |
| Efficiency<br>Detector resolution                                                                                                                                            | $egin{array}{c c} \Delta W_F \ \pm 3\ \% \ \pm 20\ \% \end{array}$                                                           | $egin{array}{c} \Delta W_{H} \ \pm 6~\% \ \pm 21~\% \end{array}$                                                             | $\Delta X_1 \ \pm 5 \ \% \ \pm 5 \ \%$                                                                                      | $egin{array}{c} \Delta X_2 \ \pm 3 \ \% \ \pm 5 \ \% \end{array}$                                                                         |
| Efficiency<br>Detector resolution<br>Migration                                                                                                                               | $egin{array}{c c} \Delta W_F \ \pm 3 \ \% \ \pm 20 \ \% \ \pm 9 \ \% \end{array}$                                            | $egin{array}{c} \Delta W_{H} \ \pm 6~\% \ \pm 21~\% \ \pm 11~\% \end{array}$                                                 | $\Delta X_1 \ \pm 5 \ \% \ \pm 5 \ \% \ \pm 13 \ \%$                                                                        | $\Delta X_2 \ \pm 3 \ \% \ \pm 5 \ \% \ \pm 10 \ \%$                                                                                      |
| Efficiency<br>Detector resolution<br>Migration<br>Background contribution                                                                                                    | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                         | $egin{array}{c} \Delta W_{H} \ \pm 6~\% \ \pm 21~\% \ \pm 11~\% \ \pm 1~\% \ \end{array}$                                    | $\Delta X_1 \ \pm 5 \ \% \ \pm 5 \ \% \ \pm 13 \ \% \ \pm 1 \ \%$                                                           | $egin{array}{c} \Delta X_2 \ \pm 3 \ \% \ \pm 5 \ \% \ \pm 10 \ \% \ \pm 1 \ \% \ \end{array}$                                            |
| Efficiency         Detector resolution         Migration         Background contribution $\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_\tau$ decay modelling                       | $egin{array}{c c} \Delta W_F \ \pm 3\ \% \ \pm 20\ \% \ \pm 9\ \% \ \pm 1\ \% \ \pm 1\ \% \ \pm 11\ \% \ \end{array}$        | $egin{array}{c} \Delta W_{H} \ \pm 6\ \% \ \pm 21\ \% \ \pm 11\ \% \ \pm 1\ \% \ \pm 13\ \% \ \end{array}$                   | $\Delta X_1 \ \pm 5 \% \ \pm 5 \% \ \pm 13 \% \ \pm 1 \% \ \pm 24 \%$                                                       | $\begin{array}{c c} \Delta X_2 \\ \hline \pm 3 \ \% \\ \pm 5 \ \% \\ \pm 10 \ \% \\ \hline \pm 1 \ \% \\ \pm 34 \ \% \end{array}$         |
| Efficiency         Detector resolution         Migration         Background contribution $\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_\tau$ decay modelling         Kaon channels | $egin{array}{c c} \Delta W_F \ \pm 3 \ \% \ \pm 20 \ \% \ \pm 9 \ \% \ \pm 1 \ \% \ \pm 11 \ \% \ \pm 23 \ \% \ \end{array}$ | $egin{array}{c} \Delta W_H \ \pm 6~\% \ \pm 21~\% \ \pm 11~\% \ \pm 13~\% \ \pm 21~\% \ \end{array}$                         | $egin{array}{c} \Delta X_1 \ \pm 5 \ \% \ \pm 5 \ \% \ \pm 13 \ \% \ \pm 13 \ \% \ \pm 24 \ \% \ \pm 23 \ \% \ \end{array}$ | $egin{array}{c} \Delta X_2 \ \pm 3 \ \% \ \pm 5 \ \% \ \pm 10 \ \% \ \pm 1 \ \% \ \pm 34 \ \% \ \pm 21 \ \% \ \end{array}$                |
| EfficiencyDetector resolutionMigrationBackground contribution $\tau^- \rightarrow \pi^- \pi^- \pi^+ \pi^0 \nu_\tau$ decay modellingKaon channelsMonte Carlo statistics       | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                         | $egin{array}{c} \Delta W_H \ \pm 6~\% \ \pm 21~\% \ \pm 11~\% \ \pm 13~\% \ \pm 21~\% \ \pm 21~\% \ \pm 27~\% \ \end{array}$ | $\Delta X_1 \ \pm 5 \ \% \ \pm 5 \ \% \ \pm 13 \ \% \ \pm 13 \ \% \ \pm 24 \ \% \ \pm 23 \ \% \ \pm 31 \ \% \ $             | $egin{array}{c} \Delta X_2 \ \pm 3 \ \% \ \pm 5 \ \% \ \pm 10 \ \% \ \pm 10 \ \% \ \pm 34 \ \% \ \pm 21 \ \% \ \pm 26 \ \% \ \end{array}$ |

Table 8: Estimated contributions to the total systematic errors for the hadronic structure functions, averaged over the bins.

|                                                                      | $\Delta \gamma_{VA}$ | $\Delta \gamma_{VA}^{ m KS}$ | $\Delta\gamma_{VA}^{\mathrm{IMR}}$ |
|----------------------------------------------------------------------|----------------------|------------------------------|------------------------------------|
| Background fraction                                                  | < 0.01               | < 0.01                       | < 0.01                             |
| Kaon channels                                                        | $\pm 0.06$           | $\pm 0.03$                   | $\pm 0.05$                         |
| $	au^- 	o \pi^-  \pi^-  \pi^+  \pi^0   u_	au  	ext{decay modelling}$ | < 0.01               | < 0.01                       | < 0.01                             |
| Efficiency                                                           | < 0.01               | < 0.01                       | < 0.01                             |
| Detector resolution                                                  | $\pm 0.09$           | $\pm 0.02$                   | $\pm 0.03$                         |
| Migration                                                            | $\pm 0.01$           | < 0.01                       | < 0.01                             |
| $P_{	au}$                                                            | $\pm 0.03$           | $\pm 0.01$                   | $\pm 0.02$                         |
| Variation of the model parameters                                    |                      | $\pm 0.01$                   | $\pm 0.12$                         |
| total systematic error                                               | $\pm 0.11$           | $\pm 0.04$                   | $\pm 0.14$                         |
| statistical error                                                    | $\pm 0.26$           | $\pm 0.16$                   | $\pm 0.21$                         |

Table 9: Estimated error contributions for the measurements of  $\gamma_{VA}$ .  $\Delta \gamma_{VA}$  represents the model independent measurement errors, while  $\Delta \gamma_{VA}^{\text{KS}}$  and  $\Delta \gamma_{VA}^{\text{IMR}}$  represent the errors for the KS and IMR models.



Figure 1: The model fits of the  $3\pi$  (a) and  $2\pi$  (b, c, and d) data distributions. The data shown have been corrected for background and efficiency. The detector resolution is folded into the models. The solid line is the KS model fit and the dashed line is the IMR model fit. The dotted line under the  $3\pi$  distribution is the polynomial background contribution of the IMR model. For the KS model, the three  $2\pi$  distributions are derived using the parameters, including the normalization, from the fit to the  $3\pi$  distribution. The IMR model fit is a global fit of all four histograms. The  $Q^2$ intervals for the  $2\pi$  distributions, indicated by the arrows in (a), are (b)  $0.81 < Q^2 < 1.10 \text{ GeV}^2$ , (c)  $1.10 < Q^2 < 1.44 \text{ GeV}^2$ , and (d)  $1.44 < Q^2 < 1.96 \text{ GeV}^2$ .



Figure 2: The data for the uncut Dalitz-plot projection is overlaid by each of the two models. The data has been corrected for background and efficiency. The detector resolution is folded into the models. The solid line is the KS model and the dashed line is the IMR model. The  $Q^2$  dependent polynomial background term of the IMR model has been included for that model, and its contribution is shown as the dotted line.



Figure 3: Measured structure functions  $w_A$ ,  $w_C$ ,  $w_D$ , and  $w_E$  as functions of  $Q^2$ . The error bars represent the statistical and systematic errors added in quadrature.



Figure 4: Comparison of the measured structure functions  $w_A$ ,  $w_C/w_A$ ,  $w_D/w_A$ , and  $w_E/w_A$  (points with error bars) with the predictions of the KS model (solid line) and the IMR model (dashed line). The IMR model prediction for  $w_A$  includes the polynomial background term. With both models there is good agreement between the model predicted and the data angular distributions for  $w_C/w_A$ ,  $w_D/w_A$ , and  $w_E/w_A$ . For the  $w_A$  distribution, however, the KS model is preferred over the IMR model.



**OPAL** 



Figure 5: Qualitative comparison of the axial-vector structure functions  $W_A$ ,  $W_C$ ,  $W_D$ , and  $W_E$  between the measurement (for  $1.21 \text{GeV}^2 < Q^2 < 1.44 \text{GeV}^2$ ) and the KS model prediction (for  $Q^2 = 1.3 \text{GeV}^2$ ) in the Dalitz plane. The fit result from the lower half of the Dalitz plane ( $s_1 > s_2$ ) is mirrored to the upper half for improved clarity. The shapes of the distributions are correctly predicted by the model.



Figure 6: Comparison of the measured structure functions  $W_F$ ,  $W_H$ ,  $X_1$ , and  $X_2$  (points with error bars) with the null hypothesis for scalar and vector components for each bin. See table 4 for an explanation of the bin numbers.



Figure 7: The likelihood as a function of  $\gamma_{VA}$  (points), with arbitrary normalisation. The solid line is a Gaussian interpolation.