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Abstract

As the most basic cloud service model, Infrastructure as a

Service (IaaS) has been widely used for serving the ever-

growing computing demand due to the prevalence of the

cloud. Using pools of hypervisors within the cloud, IaaS

can support a large number of Virtual Machines (VMs)

and scale services in a highly dynamic manner. How-

ever, it is well-known that the VMs in IaaS are vulnerable

to co-residence threat, which can be easily exploited to

launch different malicious attacks. In this measurement

study, we investigate how IaaS evolves in VM placement,

network management, and Virtual Private Cloud (VPC),

as well as the impact upon co-residence. Specifically,

through intensive measurement probing, we first profile

the dynamic environment of cloud instances inside the

cloud. Then using real experiments, we quantify the im-

pacts of VM placement and network management upon

co-residence. Moreover, we explore VPC, which is a de-

fensive network-based service of Amazon EC2 for se-

curity enhancement, from the routing perspective. On

one hand, our measurement shows that VPC is widely

used and can indeed suppress co-residence threat. On the

other hand, we demonstrate a new approach to achieving

co-residence in VPC, indicating that co-residence threat

still exists in the cloud.

1 Introduction

Entering the era of cloud computing, Infrastructure as

a Service(IaaS) has become prevalent in providing In-

formation Technology (IT) support. IT giants such as

Amazon [1], Microsoft [4], and Google [2] have de-

ployed large-scale IaaS services for public usage. Em-

ploying IaaS, individual IT service providers can achieve

high reliability with low operation cost and no longer

need to maintain their own computing infrastructures.

However, IaaS groups multiple third-party services to-

gether into one physical pool, and sharing physical re-

sources with other customers could lead to unexpected

security breaches such as side-channel [25] and covert

channel [19] attacks. It is well-known that IaaS is vul-

nerable to the co-residence threat, in which two cloud in-

stances (i.e., VMs) from different organizations share the

same physical machine. Co-residence with the victim is

the prerequisite for mounting a side-channel or covert-

channel attack.

The security issues induced by co-residence threat

have been studied in previous research. However, most

previous works focus on “what an attacker can do” [14,

19, 25], “what a victim user should do” [24], and “what

a cloud vendor would do” [12, 15, 26]. In contrast, to

the best of our knowledge, this measurement work ini-

tiates one of the first attempts to understand how cloud

service vendors have potentially reacted to co-residence

threat in the past few years and explore potential new

vulnerabilities of co-residence inside the cloud. While

Amazon Elastic Compute Cloud (EC2) is the pioneer of

IaaS, it has the largest business scale among mainstream

IaaS vendors [11, 18]. Therefore, we focus our study

on Amazon EC2. More specifically, our measurement is

mainly conducted in the largest data center hosting EC2

services: the northern Virginia data center, widely known

as US-East region.

In our measurement study, we first perform a 15-

day continuous measurement on the data center using

ZMap [10] to investigate the data center’s business scale

and some basic management policies. With the basic

knowledge of the cloud, we explore how EC2 has ad-

justed VM placement along with its impact on security.

We further evaluate how much effort an attacker needs

to expend to achieve co-residence in different circum-

stances. Comparing our evaluation results with those

from 2008 [14], we demonstrate that the VM placement

adjustment made by EC2 during the past few years has

mitigated the co-residence threat.

As network management plays a critical role in cloud

performance and security, we also investigate how the

networking management in EC2 has been calibrated to



suppress co-residence threat. We conduct large scale

trace-routing from multiple sources. Based on our mea-

surements, we highlight how the current networking con-

figuration of EC2 is different from what it was and

demonstrate how such evolution impacts co-residence in-

side the cloud. In particular, we measure the change of

routing configuration made by EC2 to increase the diffi-

culty of cloud cartography. We also propose a new algo-

rithm to identify whether a rack is connected with Top of

Rack switch or End of Row switch. With this algorithm,

we are able to derive the network topology of EC2, which

is useful for achieving co-residence inside the cloud.

To provide tenants an isolated networking environ-

ment, EC2 has introduced the service of Virtual Private

Cloud (VPC). While VPC can isolate the instances from

the large networking pool of EC2, it does not physically

isolate the instances. After profiling the VPC usage and

the routing configurations in VPC, we propose a novel

approach to speculating the physical location of an in-

stance in VPC based on trace-routing information. Our

experiments show that even if a cloud instance is hid-

den behind VPC, an adversary can still gain co-residence

with the victim with some extra effort.

The remainder of the paper is organized as follows.

Section 2 introduces background and related work on

cloud measurement and security. Section 3 presents our

measurement results on understanding the overview of

Amazon EC2 and its basic management policies. Section

4 details our measurement on VM placement in EC2, in-

cluding co-residence quantification. Section 5 quantifies

the impact of EC2-improved network management upon

co-residence. Section 6 describes VPC, the most effec-

tive defense against co-residence threat, and reveals the

haunted co-residence threat in VPC. Section 7 proposes

potential solutions to make the cloud environment more

secure. Finally, Section 8 concludes our work.

2 Background and Related Work

To leverage physical resources efficiently and provide

high flexibility, IaaS vendors place multiple VMs owned

by different tenants on the same physical machine. Gen-

erally, a scenario where VMs from different tenants

are located on the same physical machine is called co-

residence. In this work, the definition of co-residence is

further relaxed. We define two VMs located in the same

physical rack as co-residence. Thus, two VMs located

in the same physical machine is considered as machine-

level co-residence, while two VMs located in the same

rack is defined as rack-level co-residence.

2.1 Co-residence threat

The threat of co-residence in the cloud was first identified

by Ristenpart et al. [14] in 2009. Their work demon-

strates that an attacker can place a malicious VM co-

resident with a target and then launch certain attacks such

as side channel and covert channel attacks. Following

Ristenpart’s work, Xu et al. [20] studied the bit rate of

cache-based covert channel in EC2. Wu et al. [19] con-

structed a new covert channel on a memory bus with a

much higher bit rate, resulting in more serious threats

in an IaaS cloud. Zhang et al. [25] proposed a new

framework to launch side channel attacks as well as ap-

proaches to detect and mitigate co-residence threat in the

cloud [24, 26]. Bates et al. [7] proposed a co-resident wa-

termarking scheme to detect co-residence by leveraging

active traffic analysis.

The reason we define different levels of co-residence

is that some attacks do not require VMs to be located on

the same physical machine, but rather in the same rack

or in a higher level network topology. For instance, Xu

et al. [23] proposed a new threat called power attack in

the cloud, in which an attacker can rent many VMs under

the same rack in a data center and cause a power out-

age. There are also some side channel and covert chan-

nel attacks that only require the co-residence in the same

sub-network [5].

In parallel with our work, Varadarajan et al. [16] per-

formed a systematical study on placement vulnerability

in different clouds. While their work mainly stands at

the attacker side to explore more effective launch strate-

gies for achieving co-residence in three different clouds,

our work performs an in-depth study to understand the

evolution of cloud management and the impact on co-

residence threat in Amazon EC2. The two complemen-

tary works both support the point that public clouds are

still vulnerable to co-residence threat.

2.2 Measurement in the cloud

In contrast to the measurement on private clouds from

an internal point of view[9], the measurement works on

public data centers are mostly conducted from the per-

spective of cloud customers. Wang et al. [17] demon-

strated that in a public cloud, the virtualization technique

induces a negative impact on network performance of

different instance types. The work of Xu et al. [21] mea-

sures network performance in Amazon EC2 and demon-

strates a long tail distribution of the latency. Their work

also analyzes the reason behind the long tails and pro-

poses a new VM deployment solution to address this is-

sue. Bermudez et al. [8] performed a large-scale mea-

surement on Amazon AWS traffic. Their study shows

that most web service traffic towards Amazon AWS goes

to the data center in Virginia, U.S. Some recent stud-

ies [11, 18] measure how web services are deployed

in public clouds. They found that although many top-

ranked domains deploy their subdomains into the cloud,

most subdomains are located in the same region or zone,
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Figure 1: The system used to scan EC2.

resulting in a relatively poor fault tolerance.

In contrast to those measurement efforts, our study

provides a measurement analysis from the perspective of

security to reveal the management policies of a public

cloud and their impact upon co-residence threat.

3 An Overview of EC2 Management

As the pioneer of IaaS, Amazon EC2 deploys its data

centers all around the world, hosting the largest scale of

IaaS business. In this section, we introduce some ter-

minology in EC2 and provide an overview of the EC2

environment.

3.1 Instance type

An instance represents a virtual machine (VM) in the

cloud, so we use the term “instance” and “VM” inter-

changeably throughout the rest of the paper. EC2 pro-

vides a list of instance types for clients to select while

launching a new instance. The type of an instance in-

dicates the configuration of the VM, determining the

amount of resources the VM can use. The instance type is

defined in the format XX.XXX such as m1.small. The first

part of the instance type reveals the model of the physi-

cal server that will host this type of instance. The second

part indicates the “size” of the VM, i.e., the amount of

resources allocated to the instance. The detailed config-

uration of different instance types can be found at [3].

3.2 Regions and zones

Amazon EC2 has the concept of “region,” which repre-

sents the physical area where the booted instance will

be placed. Amazon has 9 locations around the world

hosting EC2 services. Therefore, the instances in EC2

can be located in 9 regions: US east (northern Virginia),

US west (Oregon), US west (northern California), South

America (Sao Paulo), Asia Pacific southeast (Singapore),

Asia Pacific southeast (Sydney), Asia Pacific northeast

(Tokyo), EU west (Ireland), and EU central (Frankfurt).

As pointed out in previous work [11], the majority of

IaaS business is hosted in the US east region, e.g., in the

data center located in northern Virginia. Most existing

research on cloud measurement was conducted on this

region [8, 13, 14]. Therefore, we also focus our study

on the US east region. For the rest of the paper, we use

the term “cloud” to mean the EC2 US east region and the

term “data center” to mean the Amazon EC2 data center

in northern Virginia, US.

In addition to regions, Amazon EC2 also allows clients

to assign an instance to a certain “zone.” A zone is a

logical partition of the space within a region. Previous

work shows that the instances in the same zone share

common characters in private IP addresses, and likely in-

stances within the same zone are physically close to each

other [14, 19]. There are four availability zones in the

US east region: us-east-1a, us-east-1b, us-east-1c, and

us-east-1d.

3.3 Naming

The naming service is essential to cloud management.

On one hand, the naming service can help customers to

easily access their instances and simplify resource man-

agement. On the other hand, the naming service should

help the cloud vendor to manage the cloud efficiently

with high network performance.

In EC2, an instance is automatically assigned two do-

main names: one public and one private. The public

domain name is constructed based on the public IP ad-

dress of the instance, while the private domain name is

constructed based on either the private IP address or the

MAC address. Performing a DNS lookup outside EC2

returns the public IP of the instance, while performing

a DNS lookup inside EC2 returns the private IP of the

instance.

3.4 Scanning EC2 inside and outside

To better understand the environment and business scale

of EC2, we performed a 15-day continuous measurement

on the EC2 US east region.

Figure 1 illustrates our system to scan EC2. First we

deployed a scanner outside EC2 to scan the cloud through

a public IP address. Since EC2 publishes the IP range for

its IaaS instances, our scanner uses ZMap [10] to scan the

specified ranges of IP addresses. The ports we scanned

include: ports 20 and 21 used for FTP, port 22 used for

SSH, port 23 for telnet, ports 25 and 587 for SMTP, port

43 for WHOIS, port 53 for DNS, port 68 for DHCP, port

79 for Finger protocol, port 80 for HTTP, port 118 for

SQL, port 443 for HTTPS, and port 3306 for MySQL.

We also performed an ICMP echo scan. After scanning,

our outside scanner obtained a list of live hosts in EC2

with the corresponding public IP addresses. In the next

step, we performed automatic domain name generation.

As mentioned above, the public domain name of an in-

stance in EC2 can be derived using its public IP. This step

produces a list of public domain names of live hosts. The

generated public domain names were then sent to our in-

side scanner deployed inside EC2. Our inside scanner

then performed DNS lookups for these domain names.
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Due to the DNS lookup mechanism of EC2, the DNS

server in EC2 answered the queries with the private IP

addresses of the hosts. Reaching this point, our mea-

surement system can detect live hosts in EC2 with their

domain names, IP addresses, as well as the mapping be-

tween the public IP address and private IP address.

The scan interval is set to 20 minutes, which is a trade-

off between cost and accuracy. Scanning the entire EC2

US east region per port takes about 40 seconds, and we

have 14 ports to scan. This means that scanning all the

ports will take around 10 minutes. Note that our mea-

surement also includes DNS lookups for all the detected

live hosts. Performing these DNS lookups takes around

20 minutes, which is approximately the time for two

rounds of scanning.

Our scanning measurement provides us an overview

of the large business scale of EC2, the diversity of ser-

vices, and the dynamic running environment. This scan-

ning measurement also gives us the knowledge base to

understand co-residence threat. The detailed results and

analysis of our scanning measurement can be found in

the Appendix A and B.

4 The Impact of VM Placement upon Co-

residence

The VM placement policy of the cloud determines how

easy or hard it is for an attacker to achieve co-residence.

In this section, we present our measurement on VM

placement and quantification of achieving co-residence.

By comparing our measurement results with previous

work, we demonstrate how the VM placement policy has

been evolving in EC2 and its impact on mitigating co-

residence threats.

4.1 Basic understanding of VM placement

We first launched a sufficiently large number of in-

stances with different types in EC2. Then, we had two

tasks to fulfill: (1) collecting networking (i.e., loca-

tion) information of launched instances and (2) quan-

tifying co-residence threat, i.e., given the current VM

placement policy of EC2, how much effort an attacker

needs to make to achieve co-residence. Since the pro-

cess of achieving co-residence requires the knowledge

of instance location, we can complete the two tasks to-

gether. For every instance we launched while seeking

co-residence, we recorded its private IP address and pub-

lic IP address. We also performed an automatic trace-

route from the instance to its “neighbors” that share the

/24 prefix with it. This information can provide us the

basic knowledge of where the instances are placed.

During our measurement, we recorded the detailed

information of 2,200 instances of type t1.micro, 1,800

instances of type m1.small, 1,000 instances of type
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Figure 2: CDF of IP address distances between co-resident VMs.

m1.medium, 1,000 instances of type m3.medium, 80 in-

stances of m3.large, and 40 instances of m3.xlarge. We

selected some random samples from the instances we

recorded to study the internal IP distribution. We investi-

gated how private IP addresses are associated by the in-

stance type and availability zones, i.e., whether the VM

placement has type and zone locality. Our results demon-

strate that currently EC2 still exhibits certain type and

zone locality, i.e., instances with the same type in the

same zone are more likely to be placed close to one an-

other. However, compared with corresponding results in

2008 [14], such locality has been significantly weakened.

More details of locality comparison can be found in Ap-

pendix C.

After understanding the current VM placement in

EC2, we further investigate co-residence threats in EC2.

4.2 Quantifying machine level co-residence

To understand how VM placement will affect co-

residence, we assess the effort one needs to make to

achieve machine level co-residence in two scenarios. The

first scenario is to have a random pair of instances located

on the same physical machine, and the second scenario is

to have an instance co-reside with a targeted victim.

4.2.1 Random co-residence

To make our random co-residence quantification more

comprehensive, we perform our measurement with dif-

ferent instance types and in different availability zones.

Since zone us-east-1c is no longer hosting t1, m1, c1,

and m3 instances, our measurement is performed in zone

us-east-1a, us-east-1b, and us-east-1d. We achieve co-

residence pairs with t1.micro, m1.small, m1.medium,

and m3.medium. We did not achieve co-residence with

large, xlarge or 2xlarge instances, because there are only

1 to 4 such large instances on one physical machine and

it will be very difficult and costly to achieve co-residence

with these types. Overall, we conduct 12 sets of experi-

ments, with each set targeting a specific type of instances

in a specific availability zone.

In each set of experiments, we perform rounds of

co-residence probing until we find a co-residence pair.
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Figure 3: The service hour spent, i.e., the

number of instances booted to achieve co-

residence.
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Figure 4: The financial cost (in US dollar) to

achieve co-residence.
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Figure 5: The time spent to achieve co-

residence.

For the sake of robustness, EC2 has never placed in-

stances from the same user on the same physical ma-

chine [14]. Therefore, we set up two accounts to launch

instances simultaneously. Within one round, each ac-

count launches 20 instances, which will produce 400

pairs of co-residence candidates. Once a co-residence

pair is verified, this set of experiments are terminated

and the corresponding cost is recorded. If there is no co-

residence pair found in this round, we move on to the next

round by terminating all running instances and launching

another 20 instances in each account, and then repeat the

same procedure.

Given a pair of instances, verifying whether they are

located on the same physical machine involves two steps:

(1) pre-filtering unlikely pairs and (2) using a covert

channel to justify co-residence.

For the first step, we need to screen out those pairs that

are not likely to be co-resident to reduce probing space.

Since the private IP address of an instance can indicate

its physical location to some extent, and if the private

IP addresses of two instances are not close enough, the

two instances will have little chance to be co-resident.

Based on this heuristic, we use the share of /24 prefix

as the prerequisite of co-residence, i.e., if two instances

do not share the /24 prefix, we consider them as not be-

ing co-resident and bypass the highly costly step 2. The

rationale of setting the /24 prefix sharing as pre-filter is

twofold:

1. First, the prerequisite of the /24 prefix sharing will

not likely rule out any co-residence instance pairs.

The number of instances that are hosted on the same

physical machine is limited. Even for micro in-

stances, there are no more than 32 instances run-

ning on a physical machine. For the instance type

with larger size, there are even fewer instances run-

ning on a physical machine. In contrast, a /24

address space can contain 256 instances. There-

fore, two co-resident instances are unlikely to be

in different /24 subnets. Moreover, we obtained

some co-residence pairs without any pre-filtering

and recorded the private IP address distance be-

tween a pair of co-residence instances. Figure 2

illustrates the CDF of IP address distance between

two co-residence instances. The distance is calcu-

lated as the difference between the two 32-bit inte-

gers of the two IP addresses. From the results we

can figure out that most of these co-residence in-

stances share the /27 prefix, which further confirms

that the /24 prefix filtering will introduce very few,

if any, false negatives.

2. Second, the prerequisite of sharing the /24 prefix

can effectively narrow down the candidate space.

Each time we use one account to launch 20 instances

and use another account to launch another 20 in-

stances, we will have 400 candidate pairs. Dur-

ing our measurement, we generated more than 40

rounds of such 400-pair batches. The average num-

ber of instance pairs that share the /24 prefix among

400 candidates is only 4. This means the /24 prefix

sharing prerequisite can help us to screen out 99% of

the candidates, which significantly accelerates the

process of co-residence verification. During the 40

rounds of measurement, five co-residence pairs are

observed.

The second step is to use a covert channel to ver-

ify whether two instances are actually located on the

same physical machine. We use the technique intro-

duced by Wu et al. [19] to construct a memory-bus-based

covert channel between two instances. If the two in-

stances can communicate with each other via the covert

channel, then they are located on the same physical ma-

chine. This covert-channel-based verification can guar-

antee zero false positives.

The cost of achieving co-residence includes financial

cost and time. According to the pay-as-you-go billing

system, the financial cost is mainly determined by the

service hours consumed during the co-residence prob-

ing. Every time an instance is launched, one billing

hour is charged. Thus, the more probing instances an

attacker needs to launch, the higher financial cost it will

cause. In our experiments, we use only two accounts.

In a real world attack, an attacker could use more ac-

counts to launch the attack in parallel, which will result in

less time required to achieve co-residence. However, un-

der the same condition, regardless of attack process op-
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residence with a target.

timization, the time spent to achieve co-residence should

have a positive correlation with the number of instances

to launch, i.e., the more instances need to launch, the

more time spent for detecting co-residence.

Figure 3 illustrates how many instances are required

to achieve co-residence, while Figure 4 illustrates the

actual financial cost. Figure 5 illustrates how much time

it takes to achieve co-residence, i.e., the time cost. For

each type of instance, the measurement repeats for five

times and the mean value is shown in the figures. From

the figures, it is evident that the cost for achieving co-

residence of different types in different availability zones

is quite different. Intuitively, as a larger instance has

higher resource charge, it costs more money to achieve

co-residence with those instances at a larger size. How-

ever, there is no such rule that the smaller size an instance

is, the lower time cost we need to pay for co-residence.

4.2.2 Target co-residence

In the quantification of achieving co-residence with a par-

ticular target, we first randomly launched one instance

with specific type from one account as the target. Then,

from the other account, we also performed many rounds

of co-residence probing until we found the instance that

is co-resident with the target. The process of verifying

co-residence remains the same. As demonstrated by the

verification results of random co-residence above, differ-

ent availability zones do not greatly impact the difficulty

of achieving co-residence. Here we only show the results

when our target instances are placed in zone us-east-1a.

Figures 6, 7 and 8 illustrate the number of instances to

launch, the financial cost, and the time taken to achieve

co-residence with a particular target, respectively. For

each type of instance, the measurement is repeated for

15 times and the mean value is illustrated. The error bar

with standard deviation is also shown in the figures. As

is intuitive, achieving co-residence with a particular tar-

get requires launching more instances than achieving ran-

dom co-residence. Getting a random co-residence pair

requires launching 200 to 300 instances with two ac-

counts (i.e., 100 to 150 instances per account), which

can be done in 5 to 8 rounds. In contrast, achieving

co-residence with a particular target requires launching

300 to 400 instances, which will take 15 to 20 rounds

with each round launching 20 instances from one ac-

count. However, achieving co-residence with a particular

target does not cost more time than achieving a random

co-residence pair. The reason for this is simple: To get

a random pair, we need to check 400 candidate pairs in

each round, but to get a co-residence pair with a target,

we only need to check 20 candidates in one round.

It is also possible that an attacker is unable to achieve

co-residence with a certain target due to various rea-

sons, e.g., the target physical machine reaches full capac-

ity. During our study, we failed to achieve co-residence

with two targets, one is m1.medium type and the other

is m3.medium type. By failing to achieve co-residence

we mean that after trying with more than 1,000 probing

instances in two different days, we still cannot achieve

co-residence with these two targets.

Overall, it is still very feasible to achieve co-residence

in EC2 nowadays. However, an attacker needs to launch

hundreds of instances to reach that goal, which may in-

troduce considerable cost. In Section 4.4, we will com-

pare our results to previous studies, demonstrating that

achieving machine-level co-residence has become much

more difficult than before, due to the change in cloud en-

vironments and VM placement policies.

4.3 Quantifying rack level co-residence

While covert channel and side channel attacks require

an attacker to obtain an instance located exactly on the

same physical machine with the victim, some malicious

activities only need coarse-grained co-residence. Xu et

al. [23] proposed a new attack called power attack. In

their threat model, the attacker attempts to significantly

increase power consumption of multiple machines con-

nected by the same power facility simultaneously to trip

the circuit breaker (CB). Since these machines located

in the same rack are likely to be connected by the same

CB, in a power attack the attack instances are not re-

quired to be placed on a same physical machine. Instead

the attacker should place many instances within the same

rack as the victim, i.e., achieving as much rack-level co-

residence as possible. We performed measurement on

how much effort is required to place a certain number of

6



Table 1: The number of co-residence pairs achieved by one round of

probing in 2008 [14].

Account A Account B Co-residence

Zone 1

1 20 1

10 20 5

20 20 7

Zone 2

1 20 0

10 20 3

20 20 8

Zone 3

1 20 1

10 20 2

20 20 8

instances under the same rack.

We first use one account to launch 20 instances, and

then we check whether there are any instances in this

batch that are located within the same rack. If there are

no instances located in the same rack, we just randomly

pick an instance and set its hosting rack as the target rack.

Thanks to the Top of Rack(ToR) switch topology, verify-

ing whether two instances are in the same rack is simple.

Through a simple trace-routing, we can verify whether an

instance has the same ToR switch with our target rack.

This rack level co-residence can be further verified by

performing trace-route from the candidate instance to the

target instance. If the two instances are in the same rack,

there should be only one hop in the trace, i.e., they are

one hop away.

Figure 9 shows our measurement results. It is clear

that an attacker can easily have multiple instances lo-

cated within the same rack. The information of ToR

switch helps the attacker quickly verify the rack-level

co-residence. Since the malicious attack based on the

rack-level co-residence is newly proposed [23], EC2 is

unlikely to take any action to suppress rack-level co-

residence.

4.4 Battle in VM placement

Table 1 lists the data from the original work on co-

residence [14]. We can see that it was extremely easy

to achieve co-residence in 2008. With two accounts each

launching 20 instances, there were 7 or 8 co-residence

pairs observed. In the 2012 work [19], the cost of achiev-

ing a co-residence instance pair is also briefly reported: A

co-residence pair (micro) is achieved with 160 instances

booted.

As we can see, nowadays it is much more difficult to

achieve co-residence than in 2008 and 2012. EC2 could

have adjusted its VM placement policies to suppress co-

residence.

4.4.1 A larger pool

The business of EC2 is scaling fast, and thus it is intuitive

that Amazon keeps deploying more servers into EC2.

The measurement in 2008 [14] shows that there were

three availability zones in the US east region. At present,

the availability zones are expanded to four. Such expan-

sion in availability zones also indicates that the business

scale of EC2 is growing rapidly.

The measurement in 2008 [14] also shows 78 unique

Domain0 IP addresses with 1785 m1.small instances,

which means it only observed 78 physical machines that

host m1.small service. Due to the evolution in EC2 man-

agement, we are no longer able to identify Dom0. How-

ever, we have identified at least 59 racks of servers that

host m1.small instances. This suggests that the number

of physical machines hosting m1.small instances is sig-

nificantly larger than that in 2008. The enlarged pool pro-

vides EC2 with more flexibility to place incoming VMs,

which is one of the reasons that it is now much more dif-

ficult to achieve co-residence than before.

4.4.2 Time locality

Time locality can help to achieve co-residence. Time lo-

cality means if two accounts launch instances simultane-

ously, it is more likely that some of these instances with

time locality will be assigned to the same physical ma-

chine.

To verify whether such time locality exists in the cur-

rent EC2, we performed another measurement. We set

up four groups of experiments. In the first group, the two

accounts always launch 20 VMs simultaneously. In the

second group, the second account launches 20 VMs 10

minutes after the first account launches 20 VMs. In the

third group, the launching time of the second account is

one hour apart from that of the first account. In the fourth

group, the second account launches VMs four hours af-

ter the first account. All instances are t1.micro type. In

each group, the measurement terminates whenever a co-

residence pair is observed and the number of instances

required to achieve co-residence is recorded. All the ex-

periments are repeated 5 times and the average is noted.

Figure 10 illustrates the number of instances required

to achieve co-residence in each case. We can see that

the efforts required to achieve co-residence do not vary

significantly with the change of instance launching in-

tervals. This implies that time locality seems to be very

weak in the current EC2, which increases co-residence

cost.

4.4.3 Dynamic assignment

In 2008, the IP addresses and instances in EC2 were as-

signed in a relatively static manner [14]. However, as we

have demonstrated before, there are considerable map-

ping changes in our measurement, which indicates that

the IP assignment has introduced a certain dynamism.

Meanwhile, in 2008, the instances were placed strictly

based on the instance type, i.e., one physical machine

can only host one type of instance [14]. In contrast, our

measurement results show that such an assumption may

not hold anymore. First, some small instances use in-

ternal IP addresses that were used by micro instances

7



2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

Number of Instances in a Rack

In
s
ta

n
c
e
s
 L

a
u
n
c
h
e
d

Figure 9: Instances launched to place certain number of instances

within the same rack.
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Figure 10: Effort to achieve co-residence with different time lo-

cality.

before. Second, during our measurement, by accident

we observed that one live small instance has very close

IP to a medium instance. We then attempted to build

a covert channel between them. It turned out that the

covert channel did work, which verifies that these two in-

stances with different types are indeed located on a same

physical machine. Following such an observation, in the

rest of our rest measurement we also kept checking co-

residence between different types of instances. Overall,

five pairs of different-type co-residence instances are ob-

served throughout our study. Our results indicate that in

certain cases current VM placement policies in EC2 can

mix different types of instances on one physical machine,

potentially to reduce fragmentation. Such a policy also

increases the difficulty of achieving co-residence.

5 The Impact of Network Management

upon Co-residence

As network management plays a critical role in data

center management, it has a significant impact on co-

residence. On one hand, an attacker attempts to obtain

as much networking information inside the cloud as pos-

sible to ease the gaining process of co-residence. On the

other hand, the cloud vendors try to protect sensitive in-

formation while not degrading regular networking man-

agement and performance. In this section, we introduce

the adjustments made by EC2 in network management

during recent years to mitigate co-residence threat and

the effectiveness of these approaches.

5.1 Methodology

To study the adjustment made by EC2 in network man-

agement, we performed large scale trace-routing. First,

for the instances we booted, we performed “neighbor-

hood trace-routing” from our instances to their “neigh-

bors.” Here we define neighbors as all those instances

that share the /23 prefix of their private IP addresses with

our source instances. Such trace-routing can inform us of

the routing paths between an instance and other instances

in the same rack and neighboring racks.

We next performed trace-routing from several of our

instances (i.e., the instances we booted) to all the in-

stances in a target list. We use the live host list from our

scanning measurement (see Section 3.5 and Appendix A)

as the target list. Trace-routing from our instances to over

650,000 target instances takes more than 8 days, but it

can help us to understand network management in EC2

in a more comprehensive manner.

5.2 The evolution in routing configuration

The routing information has been leveraged to perform

cloud cartography [14], which can further be used to

launch co-residence-based attacks. However, our trace-

routing results demonstrate that, as a response to cloud

cartography, EC2 has adjusted its routing configurations

to enhance security in the past few years. The adjust-

ments we found are listed as follows.

5.2.1 Hidden Domain0

EC2 uses XEN as the virtualization technique in the

cloud. According to the networking I/O mechanism of

XEN [6], all the network traffic of guest VMs (instances)

should travel through the privileged instance: Domain-

0 (i.e, Dom0). Thus, Dom0 acts as the gateway of all

instances on the physical machine, and all instances on

this physical machine should have the same first-hop in

their routing paths. Such Dom0 information provides an

attacker with a very efficient probing technique: by sim-

ply checking the Dom0’s IP addresses of two instances,

one can know whether they are co-resident. Therefore,

to prevent this Dom0 information divulgation, EC2 has

hidden Dom0 in any and all routing paths, i.e. at present

the Dom0 does not appear in any trace-routing results.

5.2.2 Hidden hops

To suppress cloud cartography enabled by trace-routing,

EC2 has hidden certain hops in the routing paths. Ac-

cording to the work in May 2013 [13], traffic only needs

to traverse one hop between two instances on the same

physical machine and two hops between instances in
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Figure 11: A common tree topology of a data

center.

Figure 12: The topology with End of Row

switch.
Figure 13: The topology with Top of Rack

switch.

a same rack but not on the same physical machine.

The paths between instances in different racks typically

have 4 or 6 hops. However, our neighborhood trace-

routing results show that the routing management has

been changed in EC2.

First, a path of one hop does not necessarily indicate

co-residence anymore. Our neighborhood trace-routing

results show that an instance can have a very large num-

ber of 1-hop neighbors. For instance, one m1.small in-

stance can have more than 60 1-hop neighbors. It is

technically impractical to host so many instances on an

m1 machine. To verify our hypothesis, we selected sev-

eral pairs of instances with a 1-hop path and checked

co-residence using covert channel construction. Our co-

residence verification fails for most of these pairs, con-

firming that two instances with a 1-hop path do not neces-

sarily co-locate on the same physical machine. This ob-

servation indicates that EC2 even hides the ToR switches

in the routing path in some cases, leaving only one hop

in the path between two instances in the same rack.

Second, we observed many odd-hop paths, accounting

for 34.26% of all paths. In contrast, almost all the paths

in the measurement conducted in May 2013 are even-

hop [13]. This indicates that the network configuration

of EC2 has changed since May 2013.

Third, the ToR switch of a source instance is shown

as the first hop in the path, which indicates that the ToR

switch should be an L3 router. However, we cannot ob-

serve the ToR switch of a target instance in the traces, im-

plying that EC2 has configured the ToR switch to hide it-

self in the incoming traffic to the rack. Moreover, among

our traces, we observed that 76.11% of paths have at least

one hop filled with stars. The hops filled with stars can

be a result of the configuration of certain devices such as

L2 switches; it is also possible that EC2 has deliberately

obscured those hops for security reasons. These paths

with invisible or obscured hops significantly increase the

difficulty of conducting cloud cartography.

5.3 Introducing VPC

To suppress the threat from internal networks, EC2 pro-

poses a service called Virtual Private Cloud (VPC). VPC

is a logically isolated networking environment that has a

separate private IP space and routing configuration. Af-

ter creating a VPC, a customer can launch instances into

its VPC, instead of the large EC2 network pool. The

customer can also divide a VPC into multiple subnets,

where each subnet can have a preferred availability zone

to place instances.

Moreover, EC2 provides instance types that are ded-

icated for VPC instances. These instance types include

t2.micro, t2.small, and t2.medium. According to the in-

stance type naming policy, instances with t2 type should

be placed on those physical servers with the t2 model.

An instance in a VPC can only be detected through its

public IP address, and its private address can never be

known by any entity except the owner. Therefore, within

a VPC, an attacker can no longer speculate the physical

location of a target using its private IP address, which

significantly reduces the threat of co-residence.

5.4 Speculating network topology

Besides routing configuration, the knowledge of network

topology also helps to achieve co-residence, especially

for high level co-residence such as rack-level. Figure 11

depicts the typical network topology in a data center. The

core and aggregation switches construct a tree topology.

Before connecting to the aggregate switches, there are

two mainstream ways to connect servers in a rack/racks:

End of Row (EoR) switches and Top of Rack (ToR)

switches.

For EoR switches, as illustrated in Figure 12, servers

of several racks are connected to the same EoR switch.

To be more precise, an EoR switch can be a switch ar-

ray including a group of interconnected switches. These

switches can function as aggregate switches themselves.

For ToR switches, as illustrated in Figure 13, all servers

in a rack are first connected to a separate ToR switch, and

then the ToR switch is connected to aggregate switches.

Such a topology has currently become the mainstream

network topology in a data center.

There are several variants of EoR topology, such as

Middle of Rack (MoR) and ToR switch with EoR man-

agement. Meanwhile, there are other potential topolo-

gies such as OpenStack cluster in a data center. There-

fore, we classify the network topology of a rack/racks

into two classes: ToR connected and non-ToR connected.

To identify whether a rack uses a ToR switch or a non-

ToR switch, we analyze the neighborhood trace-routing

results of multiple instances. Based on our analysis, we
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proposed a method to identify the network topology of a

rack, ToR-connected or non-ToR-connected.

ToR-connected: a rack that deploys ToR switches

must satisfy all of the following conditions:

1. For an instance A in the rack, there should be at least

one instance B that is only one hop away from A.

2. For an instance A in the rack, there should be at least

8 instances that are two hops away from A.

3. For any two instances A and B, if (i) conditions 1

and 2 hold for both A and B, (ii) the trace-routing

path between A and B has no more than two hops,

and (iii) for any instance C, the first hop in the trace-

routing path from A to C is the same as the first hop

in the path from B to C, then A and B are considered

as being in the same ToR rack.

4. For an instance A in the rack, for any trace-routing

path with A as source and length larger than 2, the

first hop in the path should share the /16 prefix with

the private IP address of A.

The IP address of the first hop (i.e., ToR switch’s IP ad-

dress) is used to differentiate two ToR racks.

Non-ToR-connected: a rack that deploys non-ToR

switches must satisfy all of the following conditions:

1. For an instance A in the rack, there should be no

instance B such that the path between A and B has

two hops.

2. For an instance A in the rack, for any instance B

in EC2, either (i) A and B are machine-level co-

resident and the path between A and B has only one

hop or (ii) the path between A and B has more than

two hops.

3. For two instances A and B, if (i) conditions 1 and

2 hold for both A and B, (ii) A and B share the /24

prefix of their private IP, (iii) the trace-routing path

between A and B has 4 or 6 hops, and (iv) for any

instance C, the first hop in the path between A and

C is the same as the first hop in the path between B

and C, then A and B are considered as being in the

same non-ToR rack.

4. For an instance A in the rack, for any trace-routing

path with A as source and length larger than 2, the

first hop in the path should not share the /20 prefix

with the private IP address of A.

Again, the IP address of the first hop is used to differen-

tiate two non-ToR racks.

In EC2, there are two “generations” of instances. The

old generation carries all the instances with m1 type, and

the new generation covers all the instances with other

types. We applied our method on m1.small, m1.medium,

m3.medium, and m3.large type, which cover both old-

generation instances and new-generation instances.

Overall, we identified 59 distinct racks that host

m1.small instances, 18 racks that host m1.medium in-

stances, 22 racks that host m3.medium instances, and

10 racks that host m3.large instances. Among the 109

racks, there are only 14 racks identified as non-ToR-

connected while the rest are ToR-connected. Among the

14 non-ToR racks, we observed 12 old-generation racks,

in which 7 racks host m1.small instances and 5 racks host

m1.medium instances, and only 2 new-generation racks

host m3.medium instances.

Our results demonstrate that while both ToR racks and

non-ToR racks exist in EC2, ToR-connected is the dom-

inating topology in EC2. Moreover, it is evident that

new-generation machines are more likely to be located

in the ToR-connected topology, indicating that the ToR-

connected topology has become the main trend. While

the ToR-connected topology is easy to manage, the rout-

ing information is very straightforward since the first hop

reveals which rack the instance is in. Such information

can be leveraged by an attacker to achieve rack-level co-

residence.

6 A New Battle in VPC

Using VPC, customers can protect their instances in an

isolated network environment. However, VPC only logi-

cally isolates the networks. The instances from different

VPCs may still share the same physical machine, leaving

the opportunity to achieve co-residence. In this section,

we first take an overview on the usage of VPC in EC2,

and then we introduce a new method to attack instances

that are hidden behind VPCs.

6.1 The overview of VPC usage

For those instances in the default networks of EC2, our

inside scanner can obtain their private addresses via DNS

lookups. However, the DNS query for an instance in

a VPC will only return its public IP address. There-

fore, the instances in a VPC can be easily identified by

checking the DNS query results of our inside scanner,

i.e., any instance whose private IP address cannot be de-

tected by our inside scanner is an instance in a VPC. Fig-

ure 14 shows the VPC usage in EC2. As we can see,

all instances in VPC are assigned public IP addresses

in five different ranges: 107.20.0.0/14, 184.72.64.0/18,

54.208.0.0/15, 54.236.0.0/15, and 54.80.0.0/13. This im-

plies that all instances in a VPC are managed in a uni-

form manner. On average, in each round of our probing

we can observe 115,801 instances in a VPC, which are

around 17% of all live instances observed, demonstrat-

ing that VPC is widely used in EC2 to protect instances.

6.2 Routing paths of VPC instances

Since a VPC should be treated as a private network, the

routing policies for instances inside a VPC must be dif-

ferent from those in the default EC2 network. This rout-

ing difference can help us further understand the manage-

ment of a VPC. To connect a VPC to the public Internet, a
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Figure 14: The live instances in VPCs.

customer must create a gateway and attach it to the VPC.

The gateway must be included into the route table of the

VPC. All traffic from or to the Internet must go through

the gateway, but the traffic inside EC2 does not require

the gateway to be involved.

Besides the basic understanding of the routing config-

uration of a VPC, we also need to know how a VPC is

connected with the default EC2 network and other VPCs.

We created several VPCs with two different accounts.

The instances with different types are launched into these

VPCs. Trace-routing is performed in four different ways:

(1) trace-routing from an instance in a VPC to another

instance in the same VPC, (2) trace-routing from an in-

stance in a VPC to an instance in another VPC, (3) trace-

routing from an instance in a VPC to an instance in the

default EC2 network, and (4) trace-routing from an in-

stance in the default EC2 network to an instance in a

VPC.

6.2.1 Routing within VPC

Routing inside the same VPC is expected to be simple.

We performed trace-routing between two instances in the

same VPC, using both private and public IP addresses.

The results show that trace-routing with private IP or

public IP addresses will yield different routing paths. If

trace-routing is performed with the private IP of the tar-

get instance, the result path has only one-hop, i.e., the

direct connection to the destination, which is reasonable.

However, if trace-routing is performed with the public IP

of the target, trace-routing will return two hops with the

first hop obscured with stars. Apparently, EC2 intention-

ally hides some routing information. The routing infor-

mation between the two instances within the same VPC

is made transparent to customers. Such obscuration dis-

ables a customer from speculating the physical location

of the instances.

As discussed in Section V, even within the same VPC,

two instances can be located in different “subnets.” We

also performed trace-routing between two instances in

the same VPC but in different subnets. The resulting

paths do not differ from the paths between two instances

within the same subnet.

6.2.2 Routing between VPCs

The traffic between instances in different VPCs should

traverse multiple switches and routers. Surprisingly, we

found that any routing path between any two instances in

any two different VPCs only has two hops: the first hop is

obscured and the second hop is the destination. EC2 once

again obscures the routing path between VPCs to prevent

an adversary from revealing sensitive information of a

VPC, e.g., the IP address of a gateway.

6.2.3 Routing from VPC to default EC2 network

Although instances in a VPC no longer share a pri-

vate network with the default pool of EC2, the

switches/routers that connect VPCs might still be physi-

cally connected to the other switches/routers in the data

center. How EC2 routes the traffic between instances in a

VPC and instances in the default EC2 network can reveal

its network topology to some extent. Figure 15 shows

a sample trace-routing result from an instance in a VPC

to an instance in the default EC2 network. We can see

that the first two hops of the path are obscured. This pre-

vents us from knowing the switch/router that connects

the VPC, thereby hiding the physical location of VPC

instances. However, we can still see parts of the path

and can infer the end-to-end latency based on the trace-

routing result.

6.2.4 Routing from default EC2 network to VPC

Figure 16 shows a sample trace-routing result from an

instance in the default EC2 network to an instance in a

VPC. The path is almost symmetric to the path from a

VPC to the default EC2 network. Again, the last two

hops before reaching the destination are obscured to hide

the information of the router/switch.

Overall, EC2 manages a VPC in a transparent fashion,

i.e., to a customer it should look like all instances in a

VPC are connected by a dedicated switch, just like a real

private network. However, instances in the same VPC

are not physically located together. These instances are

still located in different racks and are connected to differ-

ent ToR or EoR switches. Thus, the traffic inside a VPC

might still traverse multiple switches/routers. Similarly,

the traffic between an instance in a VPC and an instance

in the default EC2 network can have a similar path to the

traffic between two instances in the default EC2 network.

However, EC2 hides or obscures certain hops in the path

to provide the image of “private network.”

6.3 Co-residence in VPC

The traditional way of achieving co-residence relies on

the knowledge of private IP address to seek potential can-

didates. With VPC, this approach no longer works as

VPC hides the private IP address of an instance. An alter-

native is to infer the physical location of a target based on
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Figure 15: A sample trace-routing result from an instance in VPC

to an instance in EC2.

Figure 16: A sample trace-routing result from an instance in EC2

to an instance in VPC.

the routing paths to the target. Unfortunately, our trace-

routing results show that sensitive information of a rout-

ing path is obscured by EC2, and therefore it also does

not work well.

However, in our trace-routing results we found that

the end-to-end latency to and from an instance in a VPC

varies with different instance types and the location of

the instance. This latency variation can be leveraged to

help an attacker speculate the type and location of a tar-

get instance. Moreover, while performing trace-routing

between an instance in a VPC and an instance in the de-

fault EC2 network, the number of hops required is not

obscured. Therefore, the number of hops in a path can

also be leveraged to derive useful information for achiev-

ing co-residence.

Based on our measurement analysis, we propose a new

method to achieve co-residence with instances in a VPC.

It has two steps: (1) speculate the type and availability

zone of a target and (2) launch probing instances with

the same type in the same availability zone and perform

co-residence verification.

6.3.1 Type and zone speculation

We collected statistical data of the end-to-end latency be-

tween a pair of instances with different types and in dif-

ferent zones. Table 2 shows part of the end-to-end latency

statistics. Each row represents an instance in a VPC with

a certain type and availability zone preference. Each col-

umn stands for an instance in the default EC2 network

with a certain type and availability zone preference. Each

value in the table is calculated as the average of 50 sam-

ples. Each sample is obtained with a distinct instance

pair and is averaged over five rounds of latency measure-

ment. With this latency table, we are able to construct a

latency vector for each target instance in a VPC and use

the latency vectors to speculate the type and availability

zone of a target.

There are three availability zones and each zone has

six types: t1.micro, m1.small, m1.medium, m1.large,

m3.medium, and m3.large. Thus, the complete version

of Table 2 has 18 rows and 18 columns, which can be

found in our technical report [22]. Note that each row

in the table can represent a latency vector, and such a

latency vector derived from our controlled sampling is

called a baseline vector.

In each different availability zone, we randomly se-

lect an instance for each different type, resulting in 18

(3×6) sample instances in total for testing type and zone

speculation. For each target in a VPC, we perform trace-

routing from each of our sample instances to the target for

5 times and record the average end-to-end latency of each

pair. Such measurement can provide us 18 end-to-end la-

tency values, which constitute an input vector of length

18. We then calculate the cosine similarity between the

input vector and these 18 baseline vectors. The baseline

latency vector that has the highest similarity with the tar-

get input vector is selected, and we can speculate that the

target instance has the same {instance type, availability

zone} as the instance in the selected baseline vector.

6.3.2 Verifying co-residence

To achieve co-residence with an instance in a VPC, our

probing instances are also launched in a VPC. There are

two reasons that we do not use the instances in the default

EC2 network as probing instances. First, it is possible

that EC2 uses a separate algorithm to place instances in

a VPC. In other words, compared to an instance in the

default EC2 network, an instance in a VPC may have a

better chance to achieve co-residence with an instance in

another VPC. Second, as we have observed, the end-to-

end latency between two instances in two different VPCs

is more stable than the latency between an instance in the

default EC2 network and an instance in a VPC, which

allows us to leverage latency for pre-filtering.

Similar to verifying co-residence in the default EC2

network, verifying co-residence in a VPC also includes

two steps: pre-filtering and covert channel construction.

While the way of using covert channel construction to

confirm co-residence remains the same, the pre-filtering

process in a VPC is different.

To verify whether an attack instance is co-resident with

a target, we rely on two rounds of pre-filtering to screen

out irrelevant candidates. First, we perform trace-routing

from our 18 sample instances to our attack instance and

the target instance. If any path from the sample instance

to the attack instance is not equivalent to the correspond-

ing path from the sample instance to the target in terms

of number of hops, this attack instance is abandoned.

Second, if all the paths match in the number of hops,

we measure end-to-end latency between our attack in-

stance and the target instance. Figure 17 shows a sam-

ple latency distribution between an instance in a VPC
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Table 2: End to end latency between different instances.

1a-t1.micro 1a-m1.small 1a-m1.medium 1b-t1.micro 1b-m1.small 1b-m1.medium

1a-t1.micro 1.224ms 1.123ms 1.025ms 2.237ms 2.221ms 2.304ms

1a-m1.small 1.361ms 1.059ms 1.100ms 2.208ms 2.055ms 2.198ms

1a-m1.medium 1.165ms 1.102ms 0.986ms 2.211ms 2.060ms 1.988ms

1b-t1.micro 2.101ms 2.235ms 2.188ms 1.108ms 1.243ms 1.202ms

1b-m1.small 2.202ms 2.003ms 2.190ms 1.131ms 0.968ms 1.048ms

1b-m1.medium 2.087ms 2.113ms 1.965ms 1.088ms 1.023ms 0.855ms
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Figure 17: End-to-end latency between an instance in VPC and all

other instances in other VPCs in EC2.

with the micro type in availability zone 1a to all live

VPC instances in EC2. As we can see, most end-to-end

latency values (over 99%) are above 1ms, and in very

rare cases (below 0.1%) the latency is below 0.850ms.

We perform such latency measurement from 18 sample

VPC instances with different types in different availabil-

ity zones, and similar distribution is repeatedly observed.

Based on such observations and the heuristics that in-

stances located on the same physical machine should

have lower latency than instances located in a different

physical location, we set a latency threshold for each type

of instance in each availability zone. The threshold is se-

lected so that for an instance in a VPC with certain type

and availability zone, the end-to-end latency between the

instance and 99.9% of all other VPC instances should

be above the threshold. For example, based on our mea-

surement introduced above, if we speculate that the target

VPC instance is located in availability zone 1a with mi-

cro type, the latency threshold is set to 0.850ms. Only

if the end-to-end latency between a probing instance and

a target instance is below the threshold, will the probing

instance be considered as a co-residence candidate.

If the probing instance passes the two rounds of filter-

ing, we will perform covert-channel construction to con-

firm co-residence.

6.4 VPC co-residence evaluation

To verify the feasibility of our VPC co-residence ap-

proach, we conducted a series of experiments in EC2. We

first tested whether our approach can speculate the type

and availability zone of a target instance correctly. We

launched VPC instances in three availability zones with

six different types. For each combination, 20 instances

were launched. We applied our approach to speculate
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Figure 18: The effort for co-residence with instances in VPC.

the type and availability zone of the target. If both the

type and availability zone are correctly inferred, we con-

sider that the target instance is correctly identified. Ta-

ble 3 lists our evaluation results. Each number in the

table indicates the number of the successfully identified

instances among the 20 launched instances for a zone-

type combination (e.g., 1a-t1.micro means t1.micro in-

stances launched in the us-east-1a zone). The results

show that our type/zone speculation can achieve an ac-

curacy of 77.8%.

We then evaluated the overall effectiveness of our ap-

proach for achieving co-residence. We launched 40 in-

stances in one VPC, with different types and availability

zones. We performed the full process of achieving co-

residence with VPC instances.

First, we measured the effectiveness of our two-stage

filtering technique. Among all the probing instances we

launched, 63.2% of them did not pass the first step fil-

tering. For the second stage, our technique filtered out

97.9% of the instances that passed the first stage filter-

ing. For all the instances passed the two-stages filter-

ing, 17.6% of them passed the covert-channel verifica-

tion, which are the instances actually co-resident with the

target.

Eventually, among 40 instances, we successfully

achieved co-residence with 18 of them. Figure 18 illus-

trates the effort we paid to achieve co-residence, showing

that to achieve co-residence in VPC is not an easy task.

An attacker may need to launch more than 1,000 probing

instances and such a process can take many hours.

Overall, we are the first to demonstrate that an attacker

can achieve co-resident with a target inside a VPC with

high cost, and hence VPC only mitigates co-residence

threat rather than eliminating the threat all together.
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Table 3: The number of successfully identified targets.

1a-t1.micro 1a-m1.small 1a-m1.medium 1a-m1.large 1a-m3.medium 1a-m3.large

Success 16 13 18 14 16 17

1b-t1.micro 1b-m1.small 1b-m1.medium 1b-m1.large 1b-m3.medium 1b-m3.large

Success 13 13 19 16 20 17

1d-t1.micro 1d-m1.small 1d-m1.medium 1d-m1.large 1d-m3.medium 1d-m3.large

Success 12 18 15 13 14 18

7 A More Secure Cloud

Based on our measurement analysis, we have proposed

some guidelines towards more secure IaaS cloud man-

agement.

First, the cloud should manage the naming system

properly. In general, a domain name is not sensitive

information. However, EC2’s automatic naming sys-

tem reveals its internal space. In contrast, Azure and

Rackspace employ flexible naming systems that can pre-

vent automatic location probing. However, automatic

domain name generation is more user-friendly since it

allows a user to launch instances in batch, while a cus-

tomer can only launch instances one by one in Azure and

Rackspace. Moreover, automatic domain name gener-

ation can help an IaaS vendor manage the cloud more

efficiently. To balance management efficiency and se-

curity, we suggest that IaaS clouds integrate automatic

domain name generation with a certain randomness. For

example, a random number that is derived from the cus-

tomer’s account information can be embedded into the

EC2 default domain name. This improved naming ap-

proach can prevent location probing while not degrading

management efficiency.

Second, it is controversial to publish all IP ranges of a

cloud. With the introduction of ZMap [10], it is not diffi-

cult to scan all public IPs in the cloud. We have demon-

strated that such scanning can cause serious security con-

cerns.

Third, the routing information should be well-

protected. While trace-routing is a tool for a customer to

diagnose a networking anomaly, it can also be exploited

by an attacker to infer the internal networking informa-

tion of the cloud. However, the approach taken by Azure

and Rackspace is too strict. The prohibition of network-

ing probing deprives a customer from self-diagnosis and

self-management. A good trade-off is to show only part

of the paths, but always obscure the first hop (ToR) and

the last second hop.

Fourth, VM placement should be more dynamic and

have more constraints. Locality reduction will make it

more difficult for an attacker to locate a target. IaaS

vendors can also leverage some historical information of

a user’s account to prevent the abuse of launching in-

stances. While EC2 has significantly increased the dif-

ficulty of achieving machine-level co-residence, it is also

necessary to suppress rack-level co-residence in the fu-

ture.

8 Conclusion

We have presented a systematic measurement study on

the co-residence threat in Amazon EC2, from the per-

spectives of VM placement, network management, and

VPC. In terms of VM placement, we have demonstrated

that time locality in VM placement is significantly re-

duced and VM placement in EC2 becomes more dy-

namic, indicating that EC2 has adjusted its VM place-

ment policy to mitigate co-residence. Regarding net-

work management, by conducting a large-scale trace-

routing measurement, we have shown that EC2 has re-

fined networking configurations and introduced VPC to

reduce the threat of co-residence. We have also pro-

posed a novel method to identify a ToR-connected or

non-ToR-connected topology, which can help an attacker

to achieve rack-level co-residence. As the first to in-

vestigate the co-residence threat in VPC, on one hand,

we have confirmed the effectiveness of VPC in mitigat-

ing the co-residence threat. On the other hand, we have

shown that an attacker can still achieve co-residence by

exploiting a latency-based probing method, indicating

that VPC only mitigates co-residence threat rather than

eliminating the threat.
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A Business scale of EC2

Figure 19 illustrates the number of all the detected live

instances in EC2 US east region during the measurement

period. We can see that the business scale in EC2 US east

region is very impressive. Our scanning can always de-

tect more than 650,000 live instances in the cloud. Dur-

ing the peak time, we can detect almost 700,000 live

instances. It is noteworthy that our system only scans

some common ports. Besides the instances we detected,

there are some instances with no common ports opened

or within the VPC that do not have public IP addresses.

Thus, the real number of live instances in the cloud could

be even larger.

Table 4 lists the break-down statistics, showing the

number of instances hosting a certain service on average.

It is obvious that web service still dominates the usage

in IaaS. Most customers rent the instances to host their

web services. Among these web services (i.e., HTTP),

more than half of them deploy HTTPS at the same time.

Since the default way of accessing an instance in EC2 is

through SSH, the number of instances listening on port

22 is the second largest. There are also considerable in-

stances hosting FTP service, DNS service, and database

service (MYSQL+SQL). For the rest of services, the

number of instances hosting them are less significant.
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Table 4: Number of instances hosting a certain service

FTP SSH Telnet SMTP WHOIS DNS DHCP Finger HTTP SQL HTTPS MYSQL

Live in-

stances
24,962 327,294 350 18,376 305 3,392 15 68 441,499 48 261,446 25,872
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Figure 22: The distribution of internal IP addresses of instances with dif-

ferent types in availability zone us-east-1a.
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Figure 23: The distribution of internal IP addresses of instances in differ-

ent availability zones.

B Dynamic environment of EC2

Our measurement can also reflect the dynamic environ-

ment of EC2 to some extent. First, as shown in Figure 19,

the number of live instances varies over time within a day.

We observed a similar pattern each day: the peak time is

around 5 p.m. (EST) while the service reaches a valley

around 4 a.m. (EST). Despite this diurnal pattern, the

difference in the number of live instances between peak

and valley is not as significant as we expected. There are

only 1,000 more live instances at peak than valley, which

is relatively small considering the overall 650,000 live in-

stances. The diurnal pattern is reasonable, as 4 a.m. EST

is very early morning for the US east coast and it is also

midnight for the US west coast. It is intuitive that at this

time period fewer users are using EC2. The small differ-

ence between peak and valley can be explained from two

aspects. First, most instances run stable services such as

web and database services. These instances remain active

all the time. Second, although the data center is located

in the US, the customers are distributed all around the

world. For instance, Bermudez et al. [8] demonstrated

that the Virginia data center is responsible for more than

85% of EC2 traffic in Italy. The time of 4 a.m. on the

US east coast is 10 a.m. in Italy when customers are very

active there.

We are also interested in how dynamic the cloud en-

vironment is. Figure 20 illustrates how many instances

are shutdown, newly booted, or re-located between each

round of measurement. We can see there are more than

15,000 hosts that are changed every 20 minutes, indicat-

ing that EC2 is a very dynamic environment with tens of

VMs booted and shut down every second.

Besides the dynamics of live instances, we are also in-

terested in the networking dynamics. During our mea-

surement, we observed overall 975,032 distinct private

IP addresses and 1,024,589 distinct public IP addresses.

We recorded all the mappings from public IP to private IP

and the mappings from private IP to public IP during our

measurement. We also recorded the mappings that are

changed during the measurement period. Over the course

of our 15-day measurement, 103,242 mappings changed.

This implies that EC2 has likely recruited dynamic NAT

for address translation.

Figure 21 shows the private IP addresses that are in-

cluded in the changed mappings. It is clear that the IP

address pool in the cloud is dynamic as well. The den-

sity of the IPs in a certain range is significantly higher

than other areas. This range of private IPs are mostly

assigned to micro and small instances. Since micro and

small instances are usually used for temporary purposes,

ON/OFF operations on them are more frequent, leading

to more frequent changes in private-public IP mappings.

C VM placement locality in EC2

To investigate the VM placement locality in EC2, we

launched numerous instances with different types and in

different availability zones to study whether the type or

zone will impact the physical location of an instance.

Figure 22 illustrates the private IP distribution of some

sample instances with different types in zone us-east-1a.

The IP distribution exhibits a certain type locality. We

can see from the figure that the instances of the same

type tend to have closer internal IPs, i.e., they are more

likely to be placed physically close to one another. How-

ever, compared with corresponding results in 2008 [14],

we can see that such type locality has been significantly

weakened.

We also study how availability zone could affect VM

placement. Figure 23 illustrates the internal IP distribu-

tion of instances in different availability zones. As we

can see, VM placement still has availability zone local-

ity, i.e., instances in the same zone are more likely to

have their internal IP addresses located within a certain

range. However, such locality is also much weaker than

in 2008 [14].
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