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ABSTRACT 

It is a matter of course that Kolmogorov’s probability theory is a very useful mathematical tool for the analysis of statis-
tics. However, this fact never means that statistics is based on Kolmogorov’s probability theory, since it is not guaran-
teed that mathematics and our world are connected. In order that mathematics asserts some statements concerning our 
world, a certain theory (so called “world view”) mediates between mathematics and our world. Recently we propose 
measurement theory (i.e., the theory of the quantum mechanical world view), which is characterized as the linguistic 
turn of quantum mechanics. In this paper, we assert that statistics is based on measurement theory. And, for example, 
we show, from the pure theoretical point of view (i.e., from the measurement theoretical point of view), that regression 
analysis can not be justified without Bayes’ theorem. This may imply that even the conventional classification of (Fish-
er’s) statistics and Bayesian statistics should be reconsidered. 
 
Keywords: The Copenhagen Interpretation; Operator Algebra; Quantum and Classical Measurement Theory; Fisher 

Maximum Likelihood Method; Regression Analysis; Philosophy of Statistics 

1. Introduction 

For example, consider Newtonian mechanics. It is natural 
to understand that Newton mechanics is based on New-
ton’s three laws of motion, though the mathematical the-
ory of differential equations is a useful tool for the analy-
sis of Newtonian mechanics. That is because any mathe- 
matical theory is a closed logical system derived from set 
theory, and thus, it is not qualified to assert statements 
concerning our world without laws. If it is so, and, if 
Kolmogorov’s probability theory [1] is a mathematical 
theory, we think that the foundation of statistics does not 
yet established. Thus, the following problem is natural:   

(A) What kind of law is statistics based on? Or, pro-
pose a foundation of statistics!  

The purpose of this paper is to answer this problem. 
Although in a series of our research [2-8] we have 

been concerned with this problem (A), in this paper we 
give a decisive answer to the problem (A) in the light of 
our final version [7,8] of measurement theory. Here, as 
mentioned in Section 2 later, measurement theory (i.e., 
the theory of the quantum mechanical world view) is 
characterized as the linguistic turn of quantum mechanics. 
Hence, note that measurement theory is not physics but a 
kind of language, and thus, the “law” in (A) is called 
“axiom” in this paper. 

2. Measurement Theory (Axioms and  
Interpretation)  

2.1. Mathematical Preparations  

In this section, we prepare mathematics, which is used in 
measurement theory (or in short, MT).  

Measurement theory ([2-8]) is, by an analogy of 
quantum mechanics (or, as a linguistic turn of quantum 
mechanics), constructed as the scientific theory formu-
lated in a certain -algebra  (i.e., a norm closed 
subalgebra in the operator algebra  composed of 
all bounded operators on a Hilbert space H, cf. [9,10]). 
MT is composed of two theories (i.e., pure measurement 
theory (or, in short, PMT] and statistical measurement 
theory (or, in short, SMT). That is, we see:  
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where Axiom 2 is common in PMT and SMT. For com-
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pleteness, note that measurement theory (B) (i.e., (B1) 
and (B2)) is a kind of language based on the quantum 
mechanical world view, (cf. [8]). It may be understand-
able to consider that   

(C) PMT and SMT is related to Fisher’s statistics and 
Bayesian statistics respectively.  

Also, as mentioned in Section 2.6 latter, our concern in 
this paper is to give an answer to the question “Which is 
fundamental, PMT or SMT?”. 

When , the -algebra composed of all 
compact operators on a Hilbert space H, the (B) is called 
quantum measurement theory (or, quantum system the-
ory), which can be regarded as the linguistic aspect of 
quantum mechanics. Also, when   is commutative 
(that is, when  is characterized by , the - 
algebra composed of all continuous complex-valued 
functions vanishing at infinity on a locally compact 
Hausdorff space  (cf. [9])), the (B) is called classical 
measurement theory. Thus, we have the following classi-
fication:  

 cB H





*C

 0C  *C

(D)   
  
  0

quantum MT when

classical MT when

cB H
MT

C

 


 



 
In this paper, we mainly devote ourselves to classical MT 
(i.e., classical PMT and classical SMT). 

Now we shall explain the measurement theory (B). Let 
 be a -algebra, and let  be the dual 

Banach space of . That is,   {
  B H *C *

* =   is a continu-
ous linear functional on }, and the norm *


 is 

defined by  

     sup : such that 1
B H

F F F F  


  .  

The bi-linear functional  F  is also denoted by  

* ,
A

F


, or in short , F . Define the mixed state 
 such that  *   * 1 


 and  for all 

 satisfying . And put  
  0F 

F  0F 

   * * is a mixed state .m    S  

A mixed state   *m  S  is called a pure state if  

it satisfies that  1 1 2     
*

 for some  

1 2, m   S  and 0 < < 1  implies 1 2    . 

Put  

    * * is a pure state ,p m  S S   

which is called a state space. The Riese theorem (cf. [11]) 
says that  

     *

0 is a signed measure onC M       , 

    

  

*

0 1

is a measure on such that 1 .

m mC M

  

  

   

S
 

Also, it is well known (cf. [9]) that  

     *
. .,  the Dirac notation 1 ,p

c H
B H u u i e u  S  

and  

    

 

*

0 1

00 0
is a point measure at ,

p pC M

   

  

 

S
 

where         0 00
df f f   


C    . The lat- 

ter implies that   C S
*p

0  can be also identified 
with   (called a spectrum space or maximal ideal 
space) such as  

  *

0
(spectrum space)

(state space)

p C      S  

Here, assume that the *-algebra  is unital, 
i.e., it has the identity I. This assumption is not unnatural, 
since, if 

C   B H 

I  , it suffices to reconstruct the  such 
that it includes 


 I . 

According to the noted idea (cf. [12]) in quantum me-
chanics, an observable  in   is defined 
as follows:  

 , ,O X F 

(E1) [Field] X is a set, ( , the power set of X) 
is a field of X, that is, “ 1 2


,

2X
1 2        ”,  

“ \X    ”.  
(E2) [Countably additivity] F is a mapping from  

to  satisfying: 1) for every ,  is a non- 
negative element in  such that 


   F 

  0 F I  , 2) 
  0F    and  F X I , where 0 and I is the 0- 

element and the identity in A  respectively. 3): for any 
countable decomposition  1 2, ,    of  (i.e., 

,k   such that 
1 kk

,  
   

 ji j i     ), it holds that  

     *

1
lim

( . ., in the sense of weak convergence).

K
m

k
K k

F F

i e

  
 

  
      

  
 S 

  (1) 

Remark 1. By the Hopf extension theorem (cf. [11]), 
we have the mathematical probability space (X,  ,  

  m F  ) where   is the smallest  -field such that 
F   . For the other formulation (i.e., -algebraic 
formulation), see the appendix in [7]. 

*W

2.2. Pure Measurement Theory in (B1)  

In what follows, we shall explain PMT in (B1).  
With any system S, a *-algebra  can be 

associated in which the pure measurement theory (B1) of 
that system can be formulated. A state of the system S is 
represented by an element 

C   B H

  *p  S  and an ob- 
servable is represented by an observable  , , FO X  
in . Also, the measurement of the observable O for 
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the system S with the state   is denoted by  
 (or more precisely,   [ ],M O S 

AM O X


  [ ], , ,F S  ). An observer can obtain a  

measured value x X  by the measurement  
.   [ ],AM O S 

The AxiomP 1 presented below is a kind of mathe- 
matical generalization of Born’s probabilistic interpreta- 
tion of quantum mechanics. And thus, it is a statement 
without reality.  

AxiomP 1. [Pure Measurement]. The probability that a 
measured value x X  


obtained by the measurement 

 [ ],F S 0A  belongs to a set , ,M O X   

 ,T

 is 
given by .    0

Next, we explain Axiom 2 in (B). Let 
F

  be a 
tree, i.e., a partial ordered set such that 1 3t t  and 

2 3  implies 1 2  or 2 1t t t t t t . In this paper, we 
assume that T is finite (cf. Remark 9 in Section 7 later). 
Assume that there exists an element 0 , called the  
root of T, such that  ( ) holds. Put  

t T

0t  t t T 
  2

1 2,T t t   2
1 2t tT . The family  

 1 2 2, :t t t  
2

1 2
2( , )t t t T 
 is called a causal relation (due  

to the Heisenberg picture), if it satisfies the following 
conditions (F1) and (F2).  

(F1) With each t , a -algebra  is associ-

ated.  

T *C t

(F2) For every   2
1 2,t t T , a Markov operator 

 is defined (i.e., , 
1 2 2, :t t t 

 1 2,t t At

1t


1 2, 0t t 

2 1
At

I I

,t t



1 2, :t t

1 2 1

* *
,t t t S

). And it satisfies that  

holds for any , .  

1 2 2 3 1 3, ,t t t t t t    ,



*

 1 2  2 3,t t

2t

2

p
tS

2T

The family of dual operators  

  
  21

1 2

* * *

,

m m
t

t t T
  S S  is called a dual  

causal relation (due to the Schrödinger picture). When  

   p   holds for any   2
1 2,t t T , 

the causal relation is said to be deterministic. 
Now Axiom 2 in the measurement theory (B) is pre-

sented as follows:   
Axiom 2. [Causality]. The causality is represented by 

a causal relation .  
  21

1 2
,1 2 ,

:t t t
t t T

 
2t

 

2.3. Interpretation  

Next, we have to study how to use the above axioms as 
follows. That is, we present the following interpretation 
(G) [= (G1) – (G3)], which is characterized as a kind of 
linguistic turn of so-called Copenhagen interpretation (cf. 
[7,8]). That is, we propose:  

(G1) Consider the dualism composed of observer and 
system (= measuring object). And therefore, observer and 
system must be absolutely separated.  

(G2) Only one measurement is permitted. And thus, 
the state after a measurement is meaningless since it can 
not be measured any longer. Also, the causality should be 
assumed only in the side of system, however, a state 
never moves. Thus, the Heisenberg picture should be 
adopted, and thus, the Schrödinger picture should be 
prohibited.  

(G3) Also, the observer does not have the space-time. 
Thus, the question: “When and where is a measured val-
ue obtained?” is out of measurement theory. And thus, 
Schrödinger’s cat is out of measurement theory, and so 
on. 

2.4. Sequential Causal Observable and Its 
Realization  

For each 1,2, ,k K  , consider a measurement  
  [ ], , ,k k k kM O X F S  . However, since the (G2) 

says that only one measurement is permitted, the meas- 

urements   [ ]
1

,
K

k
k

M O S    should be reconsidered in  

what follows. Under the commutativity condition such 
that  

       
 , , =

i i j j j j i i

i i j j

F F F F

i j ,

    

    
          (2) 

we can define the product observable  
 1 1 1 1, ,K K K K

k k k k k k k kO X F       F  in  such that  

         
 

=1 =1 1 1 2 2=

, = 1, , .

K K
k k k k K K

k k

F F F F

k K

     

  




 

Here, 1
K
k kF  is the smallest field including the family 

 =1 = 1, 2, ,K
k k   


:k k k


K . Then, the above  

 [ ]
1

,
K

k
k

M O S    is, under the commutativity condi- 

tion (2), represented by the simultaneous measurement 
 1 [ ],K

A k kM O S  . 
Consider a tree   0 1, , , ,nT t t t   with the root 
. This is also characterized by the map  0t

 0: \T t Tπ  such that    π maxt s  <T s t . Let  

   2, ,t t t t t t T
:


   

    be a causal relation, which is 

also represented by  
0

π( ), π( ) \{ }
:t t t t t T t

   . Let an  

observable  , ,t t tO X F  t  in the  be given for 
each 

t
t T . Note that  is 

an observable in the . 
  , π( ),, ,t t t t t t tO X F  π( )

π( )t
t 

The pair       2, ( , )
:T t t t t tt T t t T

O


   
     

   , is  

called a sequential causal observable. For each s T , 
put  sT t T t s   . And define the observable  

 ˆ ˆ, ,s t T t t T t ss s
O X     F  in s  as follows:  
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       1 π ,π

if \ π
ˆ

ˆ if π

s

s
s tt tt s

O
O

O O s


 

   

s T T

T


  (3) 

if the commutativity condition holds (i.e., if the product 

observable 
     1 π ,π

ˆ
s tt tt s

O 
   O  exists) for each  

 πs T . Using (3) iteratively, we can finally obtain the  

observable  in . The  is called the realize-  
0

ˆ
tO

0t


0

ˆ
tO

tion (or, realized causal observable) of  T . 

2.5. Statistical Measurement Theory in (B2)  

We shall introduce the following notation: it is usual to 
consider that we do not know the pure state  

  *
0
p p  S

0

, pM O S
 
  



 



M O

 when we take a measurement  

. That is because we usually take a meas-

urement  in order to know the state 







0

, pS
 
  



 

0
p . 

Thus, when we want to emphasize that we do not know 

the state 0
p ,  is denoted by  

0
pS

 
   

,M O






 [ ],M O S  . Also, when we know the distribution  

  *
0
m m  S   of the unknown state 0

p , the  

0

, pM O S
 
  



 



m


  is denoted by . The    [ ] 0, mM O S 

0  is called a mixed state. And further, if we know that 
a mixed state 0

m  belongs to a compact set  

  *mK  S , the 
0

, pM O S
 
  



 



  is denoted by  

  [ ],M O S K . 

The AxiomS 1 presented below is a kind of mathe-
matical generalization of AxiomP 1. 

AxiomS 1. [Statistical measurement]. The probability 
that a measured value  x X  

  [ ], , ,F S 
obtained by the meas- 

urement  belongs to a    0
mM O X 

   set  is given by     0 ,m m

A A
F 



0 *F   .  

Thus, we can propose the statistical measurement the-
ory (B2), in which Axiom 2 and Interpretation (G) are 
common. 

Let  be an observable in a - 
algebra . Assume that we know that the measured 
value 

ˆ , ,O X Y H  


  ,

*C

x y X Y 

 ˆ m

 obtained by a statistical meas- 

urement  belongs to   [*] 0,AM O S  
Y   . Then, there is a reason to infer that the 

unknown measured value  y Y  is distributed under 

the conditional probability , where   P G 

 


  
 

 * 0

* 0

,

,

m

A

m

A

P G


   A

A

H

H Y




   (4) 

Thus, by a hint of Fisher’s maximum likelihood me-
thod, we have the following theorem, which is the most 
fundamental in this paper.  

Theorem 1. [Fisher’s maximum likelihood method in 
general ]. Let   ˆ , ,O X Y H  

  mK S
 be an observable 

in a C -algebra . Let  be a com-
pact set. Assume that we know that the measured value 

*  * 
  ,x y X Y   obtained by a measurement  

  [*]
ˆ ,M O S K  belongs to . Then, there 

is a reason to infer that the unknown measured value 
Y  

 y Y  is distributed under the conditional probability 
  P G  , where  

  
 


*

*

0

0

,
= .

, ( )
m

H
P G

H Y






 

  
 




m

   (5) 

Here,   *
0
m mK   S  is defined by  

   *
*

0 , ,max
m

m m

K

.H Y


 





  
H Y   

Remark 2. Theorem 1 is new throughout our research 
[2-8], though, in a particular case that  *pK  S , 
Theorem 1 was proposed in [7] where we devoted our-
selves to PMT. 

2.6. Our Concern in This Paper  

Note that  

(H1)  for    
0

[ ] 0, ,p
p

A AM O S M O S


 
  

   
 


 0  S *p p , therefore, we see that [PMT]  [SMT].  

However, we have the following problem:  
(H2) Which is fundamental, PMT or SMT?  
Recalling the (C), most readers may consider that 

PMT is more fundamental than SMT. In fact, throughout 
our research [2-8], we have believed in the fundamental-
ity of PMT. However, in this paper, we assert that Theo-
rem 1 in SMT is the most fundamental as far as inference. 
In fact, every result in this paper is regarded as one of the 
corollaries of Theorem 1. And hence, we shall conclude 
that SMT is proper as the answer to the problem (A). 
Also, our proposal has a merit such that the philosophy 
of statistics is naturally induced by the philosophy of 
measurement theory (cf. [8]). 

3. Fisher-Bayes Method in Classical  C Ω   

3.1. Notations  

We shall devote ourselves to classical case (i.e.,  
 0C  ). From here,  (or, commutative  0C 
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unital -algebra that includes ) is, for simplic- 
ity, denoted by . Thus, we put  

*C



  

 0C 

   

 *

1 

1 

 1
m
 

 0C 
* C

 *m mS S

 *p pS S

 , , F

 

 *  , 

   mC  



, 

and  

    * pC    . 

And, for any mixed state  and any observ- 
able  in , we put:  

 
 C O X 

        

     

* , ,

d .

C CC
F F F

F

  

  

  



    

   


 (6) 

Also, put 
D

   = dD    ( D   : Borel  -field). 
In order to avoid the confusion between  F   in (6) 
and , we do not use . Also, for any 

, we put:  
D

1
p


 


    

  F  
0



 
     

 

         

*C  0

0

0

0

, ,

d .

C C
F F

F F

 



 

   

 



1O X

 

  

         






 

3.2. Bayes Method in Classical   ΩC

Let  be an observable in a commutative 
-algebra . And let  be any ob- 

servable in . Consider the product observable 

1 2  in . The exis- 
tence will be shown in Section 7 (Appendix). 

 , , F
 C 
 C 

O O X Y  

*C 2 , ,O Y G 

G  C , , F

Assume that we know that the measured value  ,x y

  

 
obtaine

     belongs to . 
Then, by (4), we can infer that   

d by
M O

 a simultaneous measurement  
   1 2 0*,C O S   Y 

(I) the probability  that y belongs to  P G      

is given by  

  
       

     
 0

0

d
.

d

F G
P G

F

  

  






     
  




  

Thus, we can assert that: 
Theorem 2. [Bayes method, cf. [4,5]]. When we 

know that a measured value obtained by a measurement  
     ( ) , , ,C X F S   1M O [*] 0  belongs to  , there 

is a reason to infer that the mixed state after the meas- 
urement is equal to   0 1

a m   , where  

 
     
     

 0

0
a

1
m

  

0

d
.

d
D

F
D D

F

  

   



    
  






. That is, there exists  

 

Proof. Note that we can regard that 

    *
P C 

  *

0
a C    such that  

          0 daP G    
  G    (7) 

Then, AxiomS 1 says that the probability that a mea
value 

sured 
 y Y  obtained by the measurement  

         , , , a
CM O Y G S     belongs to a set  2 0

 is given by  G      0 da   , which


    is 
 equal to   P G   in (7). Since 2

orem 2. 
 , ,O Y G   is 

3. The ab rse, fundamen
e above proof, we 

ad

  

orem 2 was, for the first e, proposed in [4,5] 
without the conscious understanding of Interpretation 
(G

arbitrary, we obtain The
Remark ove (I) is, of cou tal. 

However, in the sense mentioned in th
mit Theorem 2 as the equivalent statement of the (I). 

That is, in spite of Interpretation (G2), we admit the wa-
vefunction collapse such as   

(J) 
(posttest state)(pretest state)

Bayes
0 0

Theorem 2

a 
     1 1

m m
     

The tim

2). Also, note that,  
(K) in Theorem 2, if   00 1

p
     , then it 

clearly holds that a

00   .  
oncerning the waveAlso, for our opinion c function 

collapse in quantum mechanics, see [7]. 

al 3.3. Fisher-Bayes Method in Classic  ΩC   

heor  
. 

 meas- 
ur

Combining Theorem 1 (Fisher’s method) and T em 2
(Bayes’ method), we get the following corollary

Corollary 1. [Fisher-Bayes method (i.e., Regression 
analysis in a narrow sense)]. When we know that a

ed value obtained by a measurement  
    ( ) 1 [*], , ,CM O X F S K    belongs to  , there is 

a reason to infer that the state after the me ement is asur
equal to   0 1

a m    such that  

 
     
     

 0

0

d
a

  


0 d
D

F
D D

F    



  
  




  

where the 

 

 0 K   is defined by  

           0 d max
K

F F


d .        
 

    
Remark 4. As mentioned in the above, note that C r- 

ollary 1 is composed of the following two procedure:  
o

(L) 
    1

Fisher Bayes
0 0

Theorem 1 Theorem 2m

a

K K

K  
   

 


  

3.4. A Simple Example of Fisher-Bayes Method 
(Regression Analysis in a Narrow Sense)  

- 
amp ed 
In this section, we examine Corollary 1 in a simple ex

le. Readers will find that Corollary 1 can be regard
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as regression analysis in a narrow sense. 
We have a rectangular water tank filled with water. 

Assume that the height of water at time t is given by the 
following function  h t :  

  0 0 ,h t t                  (8) 

where 0  and 0  are unknown f
that 

ixed parameters such 

0  is the height of water filling the tank at the be- 
ginning and 0   the increasing height of water per 
unit t e. The measured height  mh t  of water at time t 
is assumed to represented by  

  0 0 ,mh t t              (9) 

is

e 
im

b

 e t

where  represents a noise (or m
measurement error) with some suitable

 e t

 that 

ore precisely, a 
 conditions. And 

assume we obtained the measured data of the heights 
of water at 0,1,2t   as follows:  

     0 0.5, 1 1.6, 2 3.3.m mh h h       (10) 

 
m

 
 

Under this setting, we shall study the following prob- 
m:  

unknown parameter 

le
(M) [Inference]: when measured data (10) is obtained, 

infer the  0 0,   in (9).  

wer the ). Let 
In what follows, from the measurement theoretical 

point of view, we shall ans problem (M
 0,1,2  be a series ordered set such that the parent 

map  π : \ 0T
T

T  is defined by  π 1t t    0,1, 2t  .  
Put    0 0  , 2 0,2 ,    1 0, 4 0, 2   ,  

   2

tinuo t

0,6 0,2
us map π( ),t t

  t  - . For each , consider a con1,2

π( ) t:    such that  

      0,1 0 ,     

  
0

1,2 1 1

, ,

( , ) ( , ) , .

   

        

  

    
  (11) 

Then, we get the deterministic causal operators hus, 

       π( ), π( )
{1,2}

:t t t t
t

C C


 such that  

        
        

0,1 1 0 1 0,1 0 0 0

1,2 2 1 2 1,2 1 2 2 1 1, .

f f f

f f f C

   

   

   

      
 

1 1 ,C   



(12
Thus, we have the causal relation as follows.  

2

) 

     0,1 1,2
0 1 .C C C

       

Put     0,2 0 1,2 0,1 0     , 0,2 0,1 1,    2 . 
bers. Fix 0Let num  be the set of real > . For 

each , define the normal observable  0,1,2t 
 , ,O G  in  tC   n s h that  t    uc

     

      

2π

, , 0,2 2 0,2 .

n

t t t




  




      

(13) 

Thus, we get the sequential deterministic causa
servable  

2

2

1
exp dt

x
G x






 
       22 



l ob- 

        π( ), π( )0,1,2 1,2
, :T t t t t tt t

O C C
 

       
 . 

Then, the realized causal observable 
in 

 3
3

0 0
ˆ ˆ, ,O F


   

 0C   is, by (3) and (12), obtained as follows:  

   

         

0 0 1 2 0

0 0,1 1 1,2 2 0
n n nG G 
        
    

  

0 0 1 0,1 0

2 0,2 0

0 1 2 0 0

ˆ

, , , , .

n n

n

F

G

G G

G

  

 







  

 

  

   

    
         
   

      

 

    

(14) 

Putting  1 0
pK  

 
, we have the measurement  

    0 0 [ ] 1 0
ˆ

CM O   , pS  . Recall the (10), that is, the  

m valueeasured   20 1, ,x x x  obtained by the measure-  

ment      0  is equal to  
0 0 [ ] 1

ˆ ,CM O S   p

  3.3 .            (15) 0.5, 1.6, 3

Def 0,2,3  suchine the closed interval  that   t t

0

1 1
0.5 ,0.5


,
2 2


N N

    
 



1

1 1
1.6 ,1.6 ,

2 2N N
      

 

2

1 1
3.3 ,3.3 ,

2 2N N
      

 

for sufficiently large N. Here, Fisher’s method (Theorem 
1) says that it suffices to solve the problem

(N) Find 
.  

 0 0,   such as  

 
  

0
0 0 1 2

,

ˆmax ,F
 

 


           (16) 

Pu

we have the following problem that is equivalent to (N):  
(O) Find 

tting  

    
2

0 1 2
0

, , , , k
k

U x x x x k   


    
2

 0 0,   such as  
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 2max , , , , .U x x x

0

0 1 2

2,

,

, , , ,
min exp

2

U x x x
 

 



0
0 1






 
  
   

Calculating  

 

 0.5,1.6,3.3, , 0,U  






 

 0.5,1.6,3.3, , 0,U  






 

we get  

             (17) 

Thus, we see, by the statement (K), that   

  

This (i.e., e answer to the 
pr

lem 1. Since the above example is quite easy, the 
validity of Bayes’ theorem in (P) may not be clear. f it is 
so  the problem (M), we shou

le problem.   

 the Schrödinger 
pi
is  (par- 
ticularly, Interpretation (G2)) says that the 
picture

  , 0.4,1.4    

(P) 
 

 
 

 
 

 
 1

Fisher Bayes
1 0 0.4,1.4 0.4,1.4Theorem 1 Theorem 2m

p

K K

 



  

  




   , 0.4,1.4   )0 0  is th
oblem (M). 
Prob

 I
, instead of ld present the 

following simp
(Q) Infer the water level at time 1.  
Some may calculate and conclude as follows:  

  0 01 1 0.4 1.4 1.8h             (18) 

However, this calculation is based on
cture, and thus, the justification of this calculation (18) 
 not assured. That is because measurement theory

Heisenberg 
 should be adopted. Therefore, in order to answer 

the problem (Q), we must prepare Corollary 2 (i.e., re- 
gression analysis in a wide sense) in the following sec- 
tion. 

Remark 5. It should be noted that the following two 
are equivalent:  

(R1) [=(M); Inference]: when measured data (10) is 
obtained, infer the unknown parameter  0 0,  .  

(R2) [Control]: Settle the parameter 0 0,    such 
that measured data (10) will be obtained.  

That is, we see that  

“inference” = “control”. 

Hence, from the measurement theoretical point of 
view, we consider that   

“Statistics” = “Dynamical system theory”, 

though these are applications.  superficially different in 

4. Causal Fisher-Bayes Method in Classical 
 C Ω   

4.1. Causal Bayes Method in Classical  ΩC   

Let be the root of a tree T. Let  

be a sequential causal observable with the realization 

0t  

    ,     

    : C C   
 

  21
1 2,

, ,T t t t t t t t t T

t
t t T

O X Y F G









 




  

1 2 2,t t t

    0 0

ˆ ˆ, ,t t T t t t T t t tO X Y H
     

we have the statistical measurement  

   

 in . Thus  0t
C 

  [ ] 0
ˆ ,

C
M O S 

, where  
0t

that we know that the measured value 

 0t
  . Ass0 1

m
 ume 

           , ,t t t T t t T tt T t T
x y x x X Y    

easurement  
 

 tained 

by the m  

 ob

  [ ] 0  b
0

ˆ ,
C t

M O S


elongs to 

        t T t t T t t T t t TY Y            t . Then, by (4), 

we can infer that  

(S) the probability    t T t t t t T
P G

  
  that y be- 

 t  is given by  t T t t T    longs to 

   
   

   
    

   
 

00
ˆ d

=
t t T t

t T t

H

00
ˆ d

, .

t t T

t T t

t t T t

t t

H Y

t T

t T t tP G

  

  





  
 


  







   
   

  




  (19) 

Note that we can regard that  

    *

1t T t

m
t T t t T tP C

         

uniquely exists 

. That is, there 

 1
a m
T t T t      such that  

         da
t T t t T

t
G

t T t t t t T t T
P G        

    
  

(20) 

for any observable  , ,t t tY G
wing notation: 

 in  . Here, 
we used the follo  

 tC   t T

       

  
=

.

t T t t t t t
t T

t tt T

G G

t T

 

 

 



         

    
 



Define the observable Ô   F  such 
that  

0 0
ˆ, ,t t T t t T t tX F 

      0 0
ˆ ˆ= .t t t t t

t T t T t T
F H

  
       Y

erator  Then, we can define the Bayes op

     
01 1:t T t t t T t   

0
ˆ
t

m m

O
B     

    by (20). 

Thus, as the generalization of Theorem 2, w ve:  
Theorem 3. [Causal Bayes’ theorem in classical meas- 

ur  


e ha

ements]. Let 0t  be the root of a tree T. Let 
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     , , ,T t t t t t T
O X F



 

      21 2 2 1
1 2

,
,

:t t t t
t t T

C C


    

 
 

be a sequential causal observable with the realization 
F . Thus we have the statistical   0 0

ˆ ˆ, ,t t T t t T t tO X F   
measurement      0

0
[ ] 0tC t

S 
,ˆ ,M O  where  

. Assume that we know that a measured 

obtained by the stati

 belongs to n, t

is a reason to infer that the mixed state  

 m
t  
00 1

value stical measurement  

here   0
0

tC t
M O S

 t T t . The   [ ] 0
ˆ ,    

 1
a m
T t T    t  after the statistical measurement  

     0
0

[ ] 0
ˆ ,tC t

O S 
 M  is given by 

     m
t T t t TB   

       

Proof. The proof is  
Thus, we omit it. 

Remark 6. In Theorem 3, we see that   

(T)    

alization of the (J). 
derstanding of 

Theorem 3.  
ple 1. [The simple case suc at 

0
ˆ 0 1
t

tO
 

.


 similar to the proof of Theorem 2.

     11 0
mm

t T tt       

which is the gener

(posttest state)(pretest state)
Bayes

0
Theorem 2

a
T 

The following example promotes the un

Exam h th  0,1,2T 
 0,1,2  is 

]. 
Consider a particular case such that T
series ordered set, i.e.,  π 1t t   
co

  \ 0t T . An  d 

 , that is,  

2

al causal observable  

Let F be its realization. by 
th

Putting 

nsider a causal relation  

  π ( ),t t

tC
   C 

 π( )
\ 0

t
t T

   0,1 1,2
0C C C

     

Further consider sequenti

 1 .  

        ,π( ) π( )
\ 0

O , :T t t t t tt T t T
C C

 

     
 .   

 0 0
ˆ ˆ, ,t T t t T tO X F      Note, 

e Formula (3), that,  

 

         
0 0 1 2

0,1 0 0 1,2 1 1 1,2 2 2

ˆ

.

F

F F F

  

        

  t t t T   

 0K  , we have the measurement  

] 0 .  (21) 

Let 

       0 0 0 [
ˆ ˆ, , ,t T t t T tCM O X F F S      

  1 0 1 2
a m
T      

 a B

be the posttest state in  

(T), that is, 
0

ˆ 0T t T tO
     . Define  

  {1} 1 1
a m    such that  

   1 ( )a a
TD D D         

1{1} 0 1 2 1 .

Then, we see that  

        
      

*
1 1 1,2 2 2 0,1 0 0 0

{1}

0 0 0 0,1 1 1 1,2 2 2

.
F


 

 
,

a
F F F

F F





    


  

That is because that, for any observable we see 
 1 1 1, ,Y G  1C in  ,  

 

         
         

          
       

 

{1} 1 1

1 1 1 1 1,2 2 2

0 0 0 0,1 1 1 1 1 1,2 2 2

*
1 1 1,2 2 2 0,1 0 0 0 1 1

0 0 0 0 1 1,2 2 2

1 1

,

,

,

.

a G

F G F

F F G Y F

F F F G









   


    

0 0 0 0,1, F  

,1 1, F F F

     


 

2) 

Example 2. [Continued from the above example]. For 
each 

    

(2

, assume that    π( ), π( ):t t t tC C   
e exists a continuous m

1,2t   is 
deterministic, that is, ther ap 

π( ),t t tπ( ): t    satisfying (12). And, putting  0
K 

 
, 

consider the measurement 

       00 0 0 [
ˆ ˆ, , ,t T t t T tCM O X F F S       . ]

Then, we see, by (22), that, for any  in  1C 1g ,  

       
       

           
           
  

0 0 0 0,1

{1} 1

0 0 0,1 1 1 1,2 2 20

0 0 0 1 1 1

,
,

,

a
F

g
F F F

F F g












 


    

    

 0,1 01 0,1 0 1, .g g    

1 1 1 1,2 2 2

1,2 2 2 0,1 0

0 0 0 1 1 1,2 2 2 0,1 0

F g F

F

F F F

 

  

  

  
        

 

Thus, we see that  

             (23) 

Further we easily see that  

 0,1 0{1} .a
    

   
       

00

0 0,1 0 0,2 0

ˆ

1 0 1 2, ,
.

a
T t T tO

p

B 

    

 







    

   
 



r-Bayes Method in Classical 4.2. Causal Fishe
 ΩC   

Now present Corollary 2 (i.e., regression analysis we can 
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in 

(U) 

a wide sense) as follows.   

     
(Fisher s method) (Bayes method)

Corollary 2 Theorem 1 Theorem 3
 

   

Corollary 2. [Causal Fisher-Bayes method (i.e., Re- 
gression analysis in a wide sense)]. Let be the root of 



0

a tree T. Let  



t  

     , , ,T t t t t t T
O X F


 

   
  21 2 2 1

1 2
,

,
:t t t t

t t T
C C



    

 
 

be a sequential causal observable with the realization 

 0 0
ˆ, ,t t T t t T t tX F F     Assume the statistical meas- 

urement C

Ô

 0
0

[ ]
ˆ ,t

t
  M O S 

that a measured value obt

    0
0

[ ]
ˆ ,tC t

K

ai


. And assume that we know 

ned by the measurement 

M O S K
 belo

a reason to infer that the mi
a m

ngs

xe

 to . Then, there is 

d st



 t T t 

ate  

  1T t T t      after the measurement  

    0
0

[ ]
ˆ ,tC t

M O S K
 is given by    

0
ˆ 0
t

t T tO
B 
    

. 

Here, the  0 K   is defined

d

 by  

 

   
0

ˆ d

ˆmax

t
T

t t
t TK

F


   

 

0

.

t
t

F  

  

 
   
 



 

 

    
     (24) 

hat Fisher maximum likeliRemark 7. Note t hood me-
thod and Bayes’ theor in Corollary 2. Tha
is, Corollary 2 includes  procedure: 



which is the generalization of the (L).  
Answer 1. [Answer to Problem 1 (Q)]. Now we can

answer Problem 1 (Q) as follows. The (17) says that 

em are hidden t 
the following

(V) sher Bayes 
       1 0 1

Fi
0

Theorem 1 Theorem 3m mt t T t

a
T

K

K
  

     


 

 

 
 

   0 00 0.4,1.4,     . Thus, using (23), we see that  

0 0{1} 1.8
a

     . Also, note that (17) and (23) are con- 

sequences of Corollary 2. Hence, the calculation (18) is 
ju  by Corollary 2. 

Remark 8. As mentioned in Section 1, in our resear
the problem

stified
ch 

[2-8], we have been concerned with 
Pa

 (A). 
rticularly, in [6], we discussed Corollary 2 in the 

commutative *W -algebra  L  . However, this was 
somewhat shallow, since “max” is not proper in  L   
but N e
con s
fram  of

5.

 qu chanica
he mos

ament

e presented 
without the answer to the problem (A). Also, note that 

(U)) implies that even the conven- 
f (Fisher’s) statistics and Bayesian 

[1]

 C  . 
cerning 
ework

ow w
tatist
 C

 believe that fundamental statements 
ics should be always asserted in the 
 . Also, note that Corollary 2 is the  

natural generalization of Theorem 6.3 in [5]. 

 Conclusions  

In this paper, we devote ourselves to the problem (A) in 
the light of the antum me l word view (cf. [7,8]). 
And, we show that regression analysis, which is t t 
fund al in statistics, is formulated as Corollary 2 in 
SMT (i.e., statistical measurement theory). We believe 
that Corollary 2 is the finest formulation of regression 
analysis, since no clear formulation can b

Corollary 2 (or, the 
tional classification o
statistics should be reconsidered. 

We expect that there is a great possibility that our pro- 
posal (i.e., statistics is based on statistical measurement 
theory) will be generally accepted. We of course know 
that the conventional statistics methodology can be good 
applied in many fields. Hence, we hope that our meth- 
odology in the light of the quantum mechenical word 
view should be examined from various points of view. 
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A which is equivalent to the following equality. That is, for 

any , it holds:  
A
lo      

1
k k

k

k k

F G 

Let 1 , ,O X F   2 , ,O Y G 
   . Then, th

 be observables 
ere exists the        

1

lim .
K

K k

F G 
 

      
   (25) 





  
    

  

  


 

in a *C -algebra A C
product observable  1 2 , ,O O X Y F G      in 
 C  .     , ,X F     However, it is easily seen since 

and     , ,Y G   Proof. Let   [resp.  ;   ] be the smallest 
 -f   [re  ]. That is, for 
each 1, 2,k  , co k     such that  

   

 can be regarded as p
spaces. And therefore, we have the product p
space 

robability 
robability ield in  

er

an

Note, by the Hopf extension theorem (cf. emark 1), 
suffices to show that, for any

cluding sp.
 

 ; 
k


 nsid      , ,X Y F G      

the equality (25) holds. This completes 
. This imlies that 
the proof. 

n of a sequential
Remark 9. The above proof is applicable to the reali- 

zatio  causal observable  T  in the 
case of an infinite T under a similar condition such that 
the Ko lds (cf. [1]). Also, 
in quantum case (i.e.,  

   i i j j i j      

d  

 
=1

k
k



  .k    
lmogorov extension theorem ho

 R cA B H ), it is well know

that it   1
m   , it 

holds:  

       

 
1

d

d

k k

k k
k

F G

F G

  

       

1

lim

k

K

K
   



 

  
    

   






  

      

 

n that 
th

 

e weak convergence (1) in  cB H  can be identified 
with the weak convergence in  B H , there we see, 
by a usual way (cf. [10,11]), that Theorem 4 holds under 
the commutativity condition (2). 

fore, 


