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Abstract

We describe a mechanically verified proof of correctness of the
floating point multiplication, division, and square root instructions
of the AMD-K7 microprocessor. The instructions are implemented
in hardware and represented here by register-transfer level specifica-
tions, the primitives of which are logical operations on bit vectors.
On the other hand, the statements of correctness, derived from IEEE
Standard 754, are arithmetic in nature and considerably more ab-
stract. Therefore, we begin by developing a theory of bit vectors and
their role in floating point representations and rounding. We then
present the hardware model and a rigorous proof of its correctness.
All of our definitions, lemmas and theorems have been formally
encoded in the ACL2 logic, and every step in the proof has been
mechanically checked with the ACL2 prover.

1. Introduction

One of the challenges of formal hardware verification is the “semantic gap” between ab-
stract behavioral specifications and concrete hardware models. Dealing effectively with this
problem requires a formalism that is flexible enough to represent concepts at different levels
of abstraction. In particular, specifications of floating point operations are most naturally ex-
pressed in numerical terms, while their hardware implementations are commonly modeled
at the level of registers and bit vectors.

Conventional mathematical analysis may be usefully applied to numerical algorithms,
but generally fails to provide any assurance regarding the correctness of hardware imple-
mentations. On the other hand, automatic finite-state techniques, which have been used
to verify low-level specifications of arithmetic circuits [3, 4], lack the expressive power
to represent high-level mathematical properties. General-purpose theorem provers offer an
important alternative to finite-state tools, as they provide a framework for formal numerical
analysis, as well as mechanical support for checking the properties of detailed low-level
models.

In our previous work [8] and that of Mooreet al. [6] on the AMD-K5 floating point
unit, the ACL2 theorem prover [2] was used to support the verification of the IEEE com-
pliance [5] of the AMD-K5 floating point division and square root operations. The imple-
mentation of these instructions was based on microcode that accessed existing hardware for
addition, subtraction, multiplication, and rounding. It was appropriate, therefore, to model
the instructions in a language in which the primitive operations included the computation
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of rounded products and sums, which were assumed to be implemented correctly. Conse-
quently, the analysis was conveniently limited to the familiar realm of floating point numbers
and rational arithmetic.

In contrast, the division and square root instructions of the AMD-K7 microprocessor,
which were recently designed at AMD by Stuart Oberman [7], are implemented directly
in hardware. In order to gain confidence in their correctness, it is desirable to model these
instructions at the register-transfer level, where the basic operations are logical functions
of bit vectors. Verification then requires bridging the gap between these low-level data and
operations and the abstract mathematical objects and functions that they represent.

The subject of this paper is a mechanically verified proof of correctness of the AMD-K7
floating point multiplication, division and square root instructions. The proof is based on a
formal description of the hardware, derived from an executable model that was written in
C and used for preliminary testing. The instructions are defined in terms of bitwise logical
operations and integer addition and multiplication, which are treated as primitives.

The statements of correctness are based on IEEE standard 754 [5], which stipulates that
each operation

... shall be performed as if it first produced an intermediate result correct to infi-
nite precision and with unbounded range, and then rounded that result according
to one of the [supported] modes ....

Thus, if rnd(x, rc,pc) denotes the result of rounding a numberx according to a specified
rounding mode rc and degree of precision pc, andu is the value computed for the product
of floating point numbersa andb in the context of rc and pc, then

u = rnd(a · b, rc,pc). (1)

Similarly, if v andw are the values computed for the quotient ofa andb, and the square
root ofb, respectively, then

v = rnd(a/b, rc,pc) (2)

and

w = rnd(
√

b, rc,pc). (3)

The decision to use ACL2, however, has influenced our formulation of this last speci-
fication. As a subset of Common Lisp [9], ACL2 includes the rational numbers as a data
type, but not the reals. Consequently, we are somewhat limited in our formalization. The
reader will notice that many of our lemmas are truths about real numbers but are presented
here as propositions of rational arithmetic. More critically, since the square root itself is not
a rational function, we are unable to formalize Equation3 directly. Instead, we prove the
following rational version:For any nonnegative rational numbers` andh, if `2 6 P 6 h2,
then

rnd(`, rc,pc)6 w 6 rnd(h, rc,pc). (4)

As shown in [8], the equivalence of Equations3 and4 is a simple consequence of (a) the
monotonicity of rounding, and (b) the observation that for fixed rc and pc, the functionrnd

is constant in some neighborhood of any given irrational number.
Applied to the design of a device as complex as a floating point divider, mathemati-

cal proof provides a level of confidence that cannot be achieved through testing alone. In
the present case, initial proof attempts revealed two design flaws that had survived some
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80 million test vectors. The value of mechanical verification in this context is also clear:
comprehensive analysis of a commercial floating point design is difficult if not impossible
without computer assistance; in any case, the level of investment in its correctness requires
a more efficient means of assurance than the conventional social process by which mathe-
matical results are usually confirmed. This is not an argument, however, for circumventing
the normal review process. The obligation to support a scientific claim cannot be satisfied
simply by announcing that its correctness has been affirmed by an arcane automated proof
system, the soundness of which itself is open to question. Moreover, the advantages of a
coherent, surveyable proof extend beyond the issue of reliability: it is the only means by
which a theory or result may be fully understood, applied, generalized, and assimilated into
the mathematical domain. Traditional mathematical notation is clearly a better choice of
medium for such an exposition than any formal language.

Since machine-assisted proofs have inherent advantages as well as disadvantages with
respect to more traditional methods, we endeavor to combine the benefits of both approaches.
In the following sections, we present a detailed proof of correctness, based on elementary
mathematics and using only standard terminology and notation. In Section2, we establish
a general theory of floating point numbers, which should be reusable in a wide variety of
applications. This is an extension of the theory presented in [8], including some additional
properties of the rounding functions, but more significantly, a comprehensive treatment of
bit vectors and their role in floating point representation. The specific hardware model is
presented in Sections3 and4, along with precise formulations and detailed proofs of the
above Equations1, 2 and4.

For the most part, each step in the proof may be readily checked by hand, requiring no
special background in either mathematics or computer hardware. The only exception occurs
in Section4.2, where the accuracy of an approximation derived from a set of tables depends
on properties of the tables that can only be verified by extensive (although straightforward)
computation, involving approximately 105 table accesses and 106 arithmetic operations.
The results of these calculations are stated without proof in Lemmas4.1,4.2, and4.3.

On the other hand, along with the table calculations, every step in the proof, including
every theorem and lemma presented below, has been formally encoded in the ACL2 logic
and mechanically checked with the ACL2 prover, in the interest of eliminating the possibility
of human error. The input to the prover, culminating in formal versions of our three main
theorems, consisted of some 250 definitions and 3000 lemmas, in addition to the relevant
definitions and lemmas of the previously developed general theory [8]. For the interested
reader, the files containing this input are included inAppendix A, available to subscribers
to the journal at:http://www.lms.ac.uk/jcm/1/lms98001/appendix-a/.

2. Floating point arithmetic

This section is a formalization of the floating point representation of rational numbers
and rounding. The sets of rational numbers, positive rationals, integers, positive integers,
and natural numbers (nonnegative integers) will be denoted by the symbolsQ, Q+, Z, Z+,
andN, respectively. Ifm ∈ Z, n ∈ Z+, andm = nq + r, whereq ∈ Z, r ∈ N, andr < n,
then we shall write rem(m, n) = r.

Forx ∈ Q, bxc anddxe denote thefloor andceilingof x, respectively, defined to be the
unique integers satisfyingbxc 6 x < bxc + 1 anddxe > x > dxe − 1. We shall assume
familiarity with the basic properties of these functions, including the following.
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(1) If n ∈ Z, thenbx + nc = bxc + n.

(2) If n ∈ Z+, thenbbxc/nc = bx/nc.
(3) If m ∈ Z andn ∈ Z+, thenb−(m+ 1)/nc = −bm/nc − 1.

2.1. Bit vectors
We shall exploit the natural correspondence between the bit vectors of lengthn and the

natural numbers in the range 06 x < 2n, under which the vectorbn−1bn−2 · · · b1b0, where
eachbk ∈ {0, 1}, corresponds tox =∑n−1

k=0 2kbk. Thekth bit of x, x[k] = bk, is formally
defined as follows.

Definition 2.1. For allx, k ∈ N, x[k] = rem(bx/2kc, 2).

We have the following alternate characterization ofx[k].

Lemma 2.1. For all x, k ∈ N, x[k] =
{

rem(x, 2) if k = 0
bx/2c[k − 1] if k > 0.

Proof. Fork > 0, x[k] = rem(bx/2kc, 2) = rem(bbx/2c/2k−1c, 2) = bx/2c[k − 1].

Lemma 2.2. For all x, n, k ∈ N,
(a) if x < 2n, thenx[n] = 0;
(b) if k < n and2n − 2k 6 x < 2n, thenx[k] = 1.

Proof. (a)x[n] = rem(bx/2nc, 2) = rem(0, 2) = 0.
(b) Since 2n−k − 1 6 x/2k < 2n−k, rem(bx/2kc, 2) = rem(2n−k − 1,2) = 1.

Lemma 2.3. For all x, m, n ∈ N,
(a) (x + 2n)[n] 6= x[n];
(b) if m > n, thenrem(x, 2m)[n] = x[n].

Proof. For anym > n andq ∈ N,

(x + 2mq)[n] = rem(b(x + 2mq)/2nc, 2) = rem(bx/2nc + 2m−nq, 2).

If m = n, then rem(bx/2nc + 2m−n, 2) = rem(bx/2nc + 1,2) 6= rem(bx/2nc, 2) = x[n];
if m > n, then 2m−nq is even and rem(bx/2nc+2m−nq, 2) = rem(bx/2nc, 2) = x[n].

The left andright shift functions (shlandshr) take three arguments: a bit vectorx, its
lengthn, and a values ∈ {0, 1} to be shifted in.

Definition 2.2. Let x, n, s ∈ N with x < 2n ands < 2.
(a) shl(x, s, n) = rem(2x + s, 2n);
(b) shr(x, s, n) = bx/2c + 2n−1s.

Concatenation(cat) is also a function of three arguments: two bit vectors,x andy, and
the lengthn of y.

Definition 2.3. For allx, y, n ∈ N, cat(x, y, n) = 2nx + y.

The following function extracts a field of bits.

Definition 2.4. For allx, i, j ∈ N, x[i : j ] = brem(x, 2i+1)/2j c.
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Lemma 2.4. For all x, y, i, j ∈ N, if rem(x, 2i+1) = rem(y, 2i+1), thenx[i : j ] =
y[i : j ].
Proof. x[i : j ] = brem(x, 2i+1)/2j c = brem(y, 2i+1)/2j c = y[i : j ].

Lemma 2.5. For all x, i, j, k, ` ∈ N,
(a) if i > k andj > k, thenx[i : j ] = bx/2kc[i − k : j − k];
(b) if i > j + k, thenx[i : j ][k] = x[k + j ];
(c) if i > j + k, thenx[i : j ][k : `] = x[k + j : `+ j ].

Proof. (a) Letx = 2i+1q + r, where 06 r < 2i+1. Then

bx/2kc = b2i−k+1q + r/2kc = 2i−k+1q + br/2kc;
hence

rem(bx/2kc, 2i−k+1) = br/2kc
and

bx/2kc[i − k : j − k] = bbr/2kc/2j−kc = br/2j c = brem(x, 2i+1)/2j c = x[i : j ].
(b) Using Lemma2.3,

x[i : j ][k] = rem(bbrem(x, 2i+1)/2j c/2kc, 2) = rem(brem(x, 2i+1)/2k+j c, 2)

= rem(x, 2i+1)[k + j ] = x[k + j ].
(c) Using (a),

x[i : j ][k : `] = bx/2j c[i − j : 0][k : `] = rem(bx/2j c, 2i−j+1)[k : `]
= brem(rem(bx/2j c, 2i−j+1), 2k+1)/2`c = brem(bx/2j c, 2k+1)/2`c
= bx/2j c[k : `] = x[k + j : `+ j ].

We have two unary operations on bit vectors,complement(comp) anddecrement(dec).

Definition 2.5. For allx, n ∈ N, if x < 2n, then
(a) comp1(x, n)= 2n − x − 1;
(b) dec1(x, n)= rem(2n + x − 1,2n).

We have three binary logical operations,and,or, andexclusive or.

Definition 2.6. For allx, y ∈ N,

(a) x & y =



0 if x = 0
2(bx/2c & by/2c)+ 1 if x andy are both odd
2(bx/2c & by/2c) otherwise.

(b) x | y =



y if x = 0
2(bx/2c | by/2c) if x andy are both even
2(bx/2c | by/2c)+ 1 otherwise.

(c) x ˆ y =



y if x = 0
2(bx/2c ˆ by/2c) if rem(x, 2) = rem(y, 2)

2(bx/2c ˆ by/2c)+ 1 otherwise.
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The remainder of this subsection is a collection of properties of the binary logical oper-
ations.

Lemma 2.6. For all x, y ∈ N,
(a)x & y = 2(bx/2c & by/2c)+ (rem(x, 2) & rem(y, 2));
(b) x | y = 2(bx/2c | by/2c)+ (rem(x, 2) | rem(y, 2)).

Proof. The equivalences are easily checked for all possible values of rem(x, 2)and rem(y, 2).

Lemma 2.7. For all x, y, z ∈ N,
(a)x & 0= 0;
(b) x | 0= x;
(c) x & y = y & x;
(d) x | y = y | x;
(e) (x & y) & z = x & (y & z);
(f) (x | y) | z = x | (y | z);
(g) x | (y & z) = (x | y) & (x | z);
(h) x & (y | z) = (x & y) | (x & z).

Proof. First note that Lemma2.6 implies

b(x & y)/2c = bx/2c & by/2c and rem(x & y, 2) = rem(x, 2) & rem(y, 2)

and

b(x | y)/2c = bx/2c | by/2c and rem(x | y, 2) = rem(x, 2) | rem(y, 2).

We shall prove (h); the other proofs are similar.
It is easily verified that the statement holds for arguments in{0, 1}. Thus,

rem(x & (y | z), 2) = rem(x, 2) & rem(y | z, 2)

= rem(x, 2) & (rem(y, 2) | rem(z, 2))

= (rem(x, 2) & rem(y, 2)) | (rem(x, 2) & rem(z, 2))

= rem(x & y, 2)) | (rem(x & z, 2)

= rem((x & y) | (x & z), 2).

Now, by inductive hypothesis,

b(x & (y | z))/2c = bx/2c & b(y | z)/2c
= bx/2c & (by/2c | bz/2c)
= (b(x & y)/2c) | (b(x & z)/2c)
= (bx/2c & by/2c) | (bx/2c & bz/2c)
= b((x & y) | (x & z))/2c.

Therefore,

x & (y | z) = b(x & (y | z))/2c + rem(x & (y | z), 2)

= b((x & y) | (x & z))/2c + rem((x & y) | (x & z), 2)

= (x & y) | (x & z).
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Lemma 2.8. Letx, y, n ∈ N.
(a) if x < 2n andy < 2n, thenx | y < 2n;
(b) if y < 2n, then(2nx) | y = 2nx + y;
(c) (2nx) | (2ny) = 2n(x | y);
(d) rem(x | y, 2n) = rem(x, 2n) | rem(y, 2n).

Proof. (a) Forn > 0, bx/2c < 2n−1 andby/2c < 2n−1, which impliesbx/2c | by/2c <

2n−1; hence

x | y 6 2(bx/2c | by/2c)+ 1 6 2(2n−1− 1)+ 1 < 2n.

(b) Forn > 0, sinceby/2c < 2n−1,

(2nx) | y = 2(b2nx/2c | by/2c)+ rem(2nx, 2) | rem(y, 2)

= 2(2n−1x | by/2c)+ 0 | rem(y, 2)

= 2(2n−1x + by/2c)+ rem(y, 2)

= 2nx + 2by/2c + rem(y, 2)

= 2nx + y.

(c) Forn > 0,

(2nx) | (2ny) = 2(b2nx/2c | b2nx/2c)+ rem(2nx, 2) | rem(2ny, 2)

= 2(2n−1x | 2n−1y)+ 0 | 0= 2(2n−1(x | y))+ 0

= 2n(x | y).

(d) Letx = 2nq1+ r1 andy = 2nq2+ r2, where 06 r1 < 2n and 06 r2 < 2n. Then

x | y = (2nq1+ r1) | (2nq2+ r2) = (2nq1 | r1) | (2nq2 | r2)

= (2nq1 | 2nq2) | (r1 | r2) = (2n(q1 | q2)) | (r1 | r2)

= 2n(q1 | q2)+ (r1 | r2).

But r1 | r2 < 2n; hence rem(x | y, 2n) = r1 | r2 = rem(x, 2n) | rem(y, 2n).

Lemma 2.9. Letx, y, n ∈ N.
(a)x & y 6 x;
(b) 2nx & y = 2n(x & by/2nc);
(c) rem(x & y, 2n) = rem(x, 2n) & y;
(d) if x < 2n, thenx & y = x & rem(y, 2n).

Proof. (a) If x = 0, thenx & y = 0 6 x, and forx > 0,

x & y = 2(bx/2c & by/2c)+ (rem(x, 2) & rem(y, 2)) 6 2bx/2c + rem(x, 2)

= x.

(b) Forn > 0,

2nx & y = 2(b2nx/2c & by/2c)+ rem(2nx, 2) & rem(y, 2)

= 2(2n−1x & by/2c)+ 0 & rem(y, 2)

= 2(2n−1(x & bby/2c/2n−1c))+ 0

= 2n(x & by/2nc).
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(c) Letx = 2nq + r, 0 6 r < 2n. Then 06 r & y 6 r < 2n and

x & y = (2nq + r) & y = (2nq | r) & y

= (2nq & y) | (r & y) = (2n(q & by/2nc) | (r & y)

= (2n(q & by/2nc)+ (r & y).

Therefore, rem(x & y, 2n) = r & y = rem(x, 2n) & y.
(d) Sincex & y 6 x < 2n, x & y = rem(x & y, 2n) = x & rem(y, 2n).

Lemma 2.10. Letx, y, n ∈ N.
(a) (x & y)[n] = x[n] & y[n];
(b) (x | y)[n] = x[n] | y[n].

Proof. The proofs are similar; we present the proof of (a), which proceeds by induction.
Forn = 0,

(x & y)[0] = rem(x & y, 2) = rem(x, 2) & rem(y, 2) = x[0] & y[0];
for n > 0,

(x & y)[n] = b(x & y)/2c[n− 1] = (bx/2c & by/2c)[n− 1]
= bx/2c[n− 1] & by/2c[n− 1] = x[n] & y[n].

Lemma 2.11. Letx, n, k ∈ N, k < n.
(a)x & 2k = 2kx[k];
(b) x | 2k = x + 2k(1− x[k]);
(c) x & (2n − 2k) = 2k(x[n− 1 : k]).

Proof. (a) In the casek = 0, we have

x & 1= 2(bx/2c & 0)+ rem(x, 2) = rem(x, 2) = x[0],
and fork > 0, by Lemma2.1,

x & 2k = 2(bx/2c & 2k−1) = 2(2k−1bx/2c[k − 1])= 2kx[k].
(b) Fork = 0, we have

x | 1= 2(bx/2c | 0)+ 1= 2bx/2c + 1= x + 1− rem(x, 2) = x + 1− x[0],
and fork > 0,

x | 2k = 2{bx/2c | 2k−1} + rem(x, 2)

= 2
{
bx/2c + 2k−1(1− bx/2c[k − 1])

}
+ rem(x, 2)

= 2bx/2c + rem(x, 2)+ 2k(1− bx/2c[k − 1])
= x + 2k(1− x[k]).

(c) It suffices to prove the identity under the assumptionx < 2n, because then, by
Lemmas2.9and2.4, we have for arbitraryx:

x & (2n − 2k) = rem(x, 2n) & (2n − 2k) = rem(x, 2n)[n : k] = x[n : k].
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For k = 0, we show by induction thatx & (2n − 1) = x. The casen = 0 is trivial, and
for n > 0, sinceb(2n − 1)/2c = 2n−1− 1, we have

x & (2n − 1)= 2(bx/2c & (2n−1− 1))+ rem(x, 2)

= 2bx/2c + rem(x, 2) = x.

Now, for k > 0,

x & (2n − 2k) = 2(bx/2c & (2n−1− 2k−1)) = 2 · 2k−1bx/2c[n− 2 : k − 1]
= 2kbrem(bx/2c, 2n−1)/2k−1c = 2kbbx/2c/2k−1c
= 2kbx/2kc = 2k(x[n− 1 : k]).

Lemma 2.12. Letn, k, ` ∈ N, ` 6 k < n. Then

(2n − 2` − 1) & (2n − 2k) =
{

2n − 2k+1 if ` = k

2n − 2k if ` < k.

Proof. Applying Lemma2.11(c), we have

(2n − 2` − 1) & (2n − 2k) = 2k(2n − 2` − 1)[n− 1 : k] = 2kb(2n − 2` − 1)/2kc
= 2k(2n−k + b−(2` + 1)/2kc
= 2n − 2k(b2`−kc + 1).

2.2. Floating point representations
Floating point representation is based on the observation that every nonzero rational

numberx admits a unique factorization,

x = sgn(x)sig(x)2expo(x),

where sgn(x) ∈ {1,−1} (the sign of x), 1 6 sig(x) < 2 (the significandof x), and
expo(x)∈ Z (theexponentof x).

Definition 2.7. Let x ∈ Q. If x 6= 0, then
(a) sgn(x) = x/|x|;
(b) expo(x)is the unique integer that satisfies 2expo(x) 6 |x| < 2expo(x)+1;
(c) sig(x)= |x|2−expo(x).

A floating point representation ofx consists of three bit vectors, corresponding to sgn(x),
sig(x), and expo(x). A format is defined by the number of bits allocated to sig(x) and
expo(x).

Definition 2.8. Letφ = (µ, ε) ∈ Z+×Z+. Thenφ is a floating point format. Aφ-encoding
is a triple(s, m, e) ∈ N×N×N such thats < 2,m < 2µ, ande < 2ε .If z = (s, m, e), then
s = get-sign(z), m = get-man(z), ande = get-expo(z). Ifm > 2µ−1, then z is anormal
φ-encoding.
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The formats that are supported by the AMD-K7 floating point operations include(24, 7),
(53,10), and(64, 15), which correspond tosingle,double, andextendedprecision as spec-
ified by IEEE, as well as a larger format,(68,18). In addition, in order to allow for the
rounding error incurred by our iterative division and square root algorithms, which are re-
quired to produce results that are correctly rounded to 68 bits, the multiplier must support a
somewhat more precise internal format. One of the objectives of our analysis is to determine
the minimum required size of this format, and hence the minimum width of the multiplier.
Thus, we introduce an integer parameterM, which represents the multiplier width and de-
termines the internal format(M, 18). We assume thatM > 75, for as we shall see in Section
4, our proofs of correctness for division and square root will depend on this constraint.

In our formulation of the algorithms, the floating point formats are encoded as symbols.

Definition 2.9. A precision control specifieris any of the symbols

PC-32, PC-64, PC-80, PC-87, and PC-*,

which correspond to the floating point formats

(24, 7), (53,10), (64, 15),(68,18), and(M, 18),

respectively. The first four of these symbols are calledexternalprecision control specifiers.
If π is any precision control specifier andφ = (µ, ε) is the corresponding format, then
mbits(π) = µ.

The numberx represented by a normal(µ, ε)-encoding(s, m, e) is given by sgn(x) =
(−1)s , sig(x)= 2µ−1m, and expo(x)= e − (2ε−1 − 1). Thus, the exponent is biased in
order to provide for an exponent range 1− 2ε−1 6 expo(x)6 2ε−1.

Definition 2.10. Let z = (s, m, e) be aφ-encoding, whereφ = (µ, ε) is a floating point
format. Then decode(z, φ) = (−1)s ·m · 2e−2ε−1−µ+2. In the caseφ = (M, 18), we shall
designatex simply as anencoding, anddecode(x, (M,18))will be denoted aŝx.

Our characterization of the rational numbers that are represented by normal encodings
is based on the following definition.

Definition 2.11. Let x ∈ Q andn ∈ Z+. Thenx is n-exactiff sig(x)2n−1 ∈ Z.

The following basic property ofn-exact numbers is proved in [8].

Lemma 2.13. If x ∈ Q+, n ∈ Z+, andx is n-exact, then the leastn-exact number that is
greater thanx is x + 2expo(x)+1−n.

We shall also require this trivial characterization ofn-exact bit vectors.

Lemma 2.14. Letx, n, k ∈ Z+, 2n−1 6 x < 2n andk < n. The following are equivalent.
(a) 2k dividesx;
(b) x is (n− k)-exact;
(c) x[n− 1 : k] = x/2k;
(d) x[k − 1 : 0] = 0.

Definition 2.12. Let x ∈ Q and letφ = (µ, ε) be a floating point format. Then x isφ-
representableiff x is µ-exact and−2ε−1+ 1 6 expo(x)6 2ε−1. If φ = (M, 18), then we
shall say that x isrepresentable.
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The inverse of decode is given below.

Definition 2.13. Let φ = (µ, ε) be a floating point format and letx beφ-representable,
x 6= 0. Then encode(x, φ) = (s, m, e), where

(a) if sgn(x) = 1, thens = 0, and if sgn(x) = −1, thens = 1;
(b) m = sig(x)2µ−1;
(c) e = expo(x)+ 2ε−1− 1.

Lemma 2.15. Let φ = (µ, ε) be a floating point format, letz = (s, m, e) be a normal
φ-encoding, and letx = decode(z, φ).

(a) sgn(x) = (−1)s ;
(b) sig(x)= m/2µ−1;
(d) x is φ-representable;
(c) expo(x)= e − 2ε−1+ 1;
(e) encode(x, φ) = z.

Proof. Let φ = (µ, ε). Then

x = (−1)sm2e−(2ε−1−1)−µ+1 = (−1)s(m21−µ)2e−(2ε−1−1).

But 2µ−1 6 m < 2µ yields 1 6 m21−µ < 2, which implies (a), (b), and (c). Now (d)
follows from the relation 06 e < 2ε , and (e) from Definition2.13.

2.3. Rounding
A rounding modeis a functionM that computes ann-exact numberM(x, n) correspond-

ing to an arbitrary rationalx and a degree of precisionn ∈ Z+. We define five rounding
modes.

Definition 2.14. A rounding modeis any of the functionstrunc,away,near,inf, andminf,
where, forx ∈ Q andn ∈ Z+,

(a) trunc(x, n)= sgn(x)b2n−1sig(x)c2expo(x)−n+1;
(b) away(x, n) = sgn(x)d2n−1sig(x)e2expo(x)−n+1;
(c) if z = b2n−1sig(x)candf = 2n−1sig(x)− z, then

near(x, n) =




trunc(x, n) if f < 1/2
away(x, n) if f > 1/2
trunc(x, n) if f = 1/2 andz is even
away(x, n) if f = 1/2 andz is odd;

(d) inf(x, n) =
{

away(x, n) if x > 0
trunc(x, n) if x < 0;

(e) minf(x, n) =
{

trunc(x, n) if x > 0
away(x, n) if x < 0.

Only four of these modes are supported by the IEEE standard. In our representation of
the algorithms, they will be encoded as symbols.

Definition 2.15. A rounding control specifieris any of the symbols

RC-CHOP,RC-POS,RC-NEG, andRC-NEAR,
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which correspond to the rounding modes

trunc, inf, minf, and near,

respectively. Letρ be a rounding control specifier corresponding to the rounding modeM,
let π be a precision control specifier, and letx ∈ Q. Then

rnd(x, ρ, π) =M(x, mbits(π)).

Some of the basic properties of the rounding modes, which are proved in [8], are listed
in the following eight lemmas.

Lemma 2.16. If x ∈ Q, M is a rounding mode, andn ∈ Z+, then
(a) sgn(M(x, n)) = sgn(x);
(b) if M ∈ {trunc,away, near}, thenM(−x, n) = −M(x, n).

Lemma 2.17. If x, y ∈ Q, x 6 y, M is a rounding mode, andn ∈ Z+, then

M(x, n) 6 M(y, n).

Lemma 2.18. If x ∈ Q, M is a rounding mode, andn ∈ Z+, then
(a)M(x, n) is n-exact;
(b) if x is n-exact, thenx =M(x, n).

Lemma 2.19. If x ∈ Q, M is a rounding mode other thannear,m, n ∈ Z+, andm 6 n,
then

M(M(x, n), m) =M(x, m).

Lemma 2.20. If x ∈ Q andn ∈ Z+, then

|x| − 2expo(x)−n+1< |trunc(x, n)|6 |x| 6 |away(x, n)| < |x| + 2expo(x)−n+1.

Lemma 2.21. If x ∈ Q andn ∈ Z+, then
(a) expo(trunc(x, n))= expo(x);
(b) expo(away(x, n)) = expo(x)unless|away(x, n)| = 2expo(x)+1.

Lemma 2.22. If x, a ∈ Q, n ∈ Z+, and a is n-exact, then
(a) if a 6 |x|, thena 6 |trunc(x, n)|;
(b) if a > |x|, thena > |away(x, n)|.

Lemma 2.23. Letx, y ∈ Q andn ∈ Z+. If y is n-exact, then|x − y| > |x − near(x, n)|.
We shall require a number of properties in addition to the above. The next lemma provides

an implementation of truncation of bit vectors.

Lemma 2.24. Letx, m, n, k ∈ N. If 0 < k < n 6 m and2n−1 6 x < 2n, then

trunc(x, k)= x & (2m − 2n−k).
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Proof. By Lemma2.11,

trunc(x, k)= b2k−1−expo(x)xc2expo(x)+1−k= bx/2n−kc2n−k

= 2n−k(x[n− 1 : n− k]) = x & (2n − 2n−k).

But by Lemma2.9,

x & (2m − 2n−k) = x & rem(2m − 2n−k, 2n) = x & (2n − 2n−k).

Lemma2.24 is also the basis for our implementations of the other rounding modes,
which therefore must be characterized in terms of truncation.

Lemma 2.25. Letx ∈ Q+, m ∈ Z+, andn ∈ Z+. If x is m-exact andm > n, then

away(x, n) = trunc(x+ 2expo(x)+1(2−n − 2−m), n).

Proof. Let a = trunc(x+ 2expo(x)+1(2−n − 2−m), n). Since

a < x + 2expo(x)+1−n6 away(x, n)+ 2expo(away(x,n))+1−n,

a 6 away(x, n) by Lemma2.13.
If x is n-exact, thena > trunc(x, n)= x = away(x, n), and hencea = away(x, n).

Thus, we may assumex is notn-exact. But then sincex > trunc(x, n)andx is m-exact,

x > trunc(x, n)+ 2expo(x)+1−m

and hence

x + 2expo(x)+1(2−n − 2−m) > trunc(x, n)+ 2expo(x)+1−n= away(x, n),

which impliesa > away(x, n).

The remainder of this section addresses the properties ofnear rounding, concluding with
its characterization as a truncated sum.

Lemma 2.26. If x ∈ Q andn ∈ Z+, then|x − near(x, n)| 6 2expo(x)−n.

Proof. By Lemma2.16, we may assumex > 0. Let a = trunc(x, n)+ 2expo(x)+1−n. By
Lemmas2.18and2.23, if the statement fails, then

trunc(x, n) < x− 2expo(x)−n < x + 2expo(x)−n < away(x, n);
hencea < away(x, n). Then by Lemmas2.13and2.22(a), we havea < x, contradicting
Lemma2.22(b).

Lemma 2.27. Letx ∈ Q andn ∈ Z+. If x is (n+ 1)-exact but notn-exact, then
(a) trunc(x, n)= x − sgn(x)2expo(x)−n;
(b) away(x, n) = x + sgn(x)2expo(x)−n.

Proof. Again we may assumex > 0. Let a = x − 2expo(x)−n andb = x + 2expo(x)−n.
Sincex > 2expo(x), x > 2expo(x)+ 2expo(x)+1−nby Lemma2.13; hencea > 2expo(x) and
expo(a)= expo(x).

By hypothesis,x2n−expo(x) is odd. Letx2n−expo(x)= 2k + 1. Then

a2n−1−expo(a)= (x − 2expo(x)−n)2n−1−expo(x)= (2k + 1)/2− 1/2= k ∈ Z.
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Thus,a is n-exact, and by Lemma2.13, so is a+ 2expo(a)+1−n= b. Now by Lemma2.22,
a 6 trunc(x, n), but ifa < trunc(x, n), then Lemma2.13would imply b 6 trunc(x, n),
contradictingx < b. This establishes (a), and the proof of (b) is similar.

Lemma 2.28. Letx, a ∈ Q+, andn ∈ Z+. If a is n-exact, then
(a) if x > a + 2expo(a)−n, thennear(x, n) > a + 2expo(a)+1−n;
(b) if x < a + 2expo(a)−n, thennear(x, n) 6 a;
(c) if x > a − 2expo(x)−n, thennear(x, n) > a.

Proof. (a) Letb = a+2expo(a)+1−n. If near(x, n) < b, then Lemma2.13yields near(x, n) 6
a; hence|near(x, n)− x| > |near(x, n)− b|, contradicting Lemma2.23.

(b) If near(x, n) > a, then near(x, n) > b, and a contradiction may be derived as in (a).
(c) By Lemma2.17, we may assumex < a. Letc = a−2expo(x)+1−n. Thenc < x < a.

Sincea > x > 2expo(x), a > 2expo(x)+ 2expo(x)+1−n, and hencex > c > 2expo(x), which
implies expo(c)= expo(x). But expo(c)6 expo(a)and therefore

c2n−1−expo(c)= a2n−1−expo(c)− 1 ∈ Z,

i.e.,c is n-exact. Now sincex > a − 2expo(x)−n= c+ 2expo(c)−n, (a) implies near(x, n) >
c + 2expo(c)+1−n= a.

Lemma 2.29. Let n ∈ Z, n > 1, andx ∈ Q. If x is (n + 1)-exact but notn-exact, then
near(x, n) is (n− 1)-exact.

Proof. Again we may assumex > 0. Letz = b2n−1sig(x)candf = 2n−1sig(x)−z. Since
2n−1sig(x) /∈ Z, 0 < f < 1. But 2nsig(x)= 2z+ 2f ∈ Z; hence 2f ∈ Z andf = 1

2.
If z is even, then

near(x, n) = trunc(x, n)= z2expo(x)+1−n

and by Lemma2.21,

2n−2−expo(near(x,n))near(x, n) = 2n−2−expo(x)z2expo(x)+1−n= z/2 ∈ Z.

If z is odd, then

near(x, n) = away(x, n) = (z+ 1)2expo(x)+1−n.

We may assume away(x, n) 6= 2expo(x)+1; hence by Lemma2.21,

2n−2−expo(near(x,n))near(x, n) = 2n−2−expo(x)(z+ 1)2expo(x)+1−n= (z+ 1)/2∈ Z.

Lemma 2.30. Letn ∈ Z, n > 1, andx ∈ Q+. If x + 2expo(x)−n > 2expo(x)+1, then

near(x, n) = 2expo(x)+1= trunc(x+ 2expo(x)−n, n).

Proof. Suppose near(x, n) 6= 2expo(x)+1. Then Lemma2.21implies near(x, n) < 2expo(x)+1

and by Lemmas2.13and2.26,

2expo(x)+1> near(x, n)+ 2expo(x)+1−n> x − 2expo(x)−n+ 2expo(x)+1−n

= x + 2expo(x)−n > 2expo(x)+1.
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It follows thatx = 2expo(x)+1−2expo(x)−nis(n+1)-exact but notn-exact, while near(x, n) =
2expo(x)+1− 2expo(x)+1−n is n-exact but not(n− 1)-exact, contradicting Lemma2.29.

Now suppose 2expo(x)+1 6= trunc(x+2expo(x)−n, n). Since 2expo(x)+1isn-exact, 2expo(x)+1

< trunc(x+ 2expo(x)−n, n) by Lemma2.22. But then by Lemma2.13,

trunc(x+ 2expo(x)−n, n) > 2expo(x)+1+ 2expo(x)+2−n > x + 2expo(x)−n.

Lemma 2.31. If n ∈ Z, n > 1, andx ∈ Q+, then

near(x, n) =
{

trunc(x+ 2expo(x)−n, n− 1) if x is (n+ 1)-exact but notn-exact
trunc(x+ 2expo(x)−n, n) otherwise.

Proof. If x + 2expo(x)−n > 2expo(x)+1, then by Lemmas2.19and2.30,

near(x, n) = 2expo(x)+1= trunc(x+ 2expo(x)−n, n) = trunc(x+ 2expo(x)−n, n− 1).

Thus, we may assumex + 2expo(x)−n < 2expo(x)+1, and it follows from Lemmas2.21
and2.26that

expo(near(x, n)) = expo(x+ 2expo(x)−n) = expo(x).

Case 1.x is n-exact
By Lemma2.22, trunc(x+ 2expo(x)−n, n) > x. But since

trunc(x+ 2expo(x)−n, n) 6 x + 2expo(x)−n < x + 2expo(x)+1−n,

Lemma2.13yields trunc(x+ 2expo(x)−n, n) 6 x; hence

trunc(x+ 2expo(x)−n, n) = x = near(x, n).

Case 2.x is not(n+ 1)-exact
We have near(x, n) > x − 2expo(x)−n, for otherwise we would have near(x, n) = x −

2expo(x)−nby Lemma2.26, and since near(x, n) is (n+ 1)-exact, so would be

near(x, n)+ 2expo(near(x,n))−n = x − 2expo(x)−n+ 2expo(near(x,n))−n = x.

Since near(x, n) 6 x + 2expo(x)−n, near(x, n) 6 trunc(x+ 2expo(x)−n, n) by Lemma2.22.
But since

trunc(x+ 2expo(x)−n, n) 6 x + 2expo(x)−n < near(x, n)+ 2expo(x)+1−n,

trunc(x+ 2expo(x)−n, n) 6 near(x, n).
Case 3.x is (n+ 1)-exact but notn-exact

First suppose near(x, n) > x. Since near(x, n) is (n + 1)-exact, near(x, n) > x +
2expo(x)−n; hence near(x, n) = x + 2expo(x)−n, and by Lemma2.29,

trunc(x+ 2expo(x)−n, n− 1)= trunc(near(x, n), n− 1)= near(x, n).

Now suppose near(x, n) < x. Then near(x, n) < x + 2expo(x)−n implies near(x, n) 6
trunc(x+ 2expo(x)−n, n− 1). But since

trunc(x+ 2expo(x)−n, n− 1) 6 x + 2expo(x)−n= x − 2expo(x)−n+ 2expo(x)+1−n

< near(x, n)+ 2expo(x)+2−n,

we have trunc(x+ 2expo(x)−n, n− 1) 6 near(x, n).
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3. Multiplication

3.1. The program FPU-MUL
The multiplication algorithm is represented by the programFPU-MUL, as listed in

Figures1 and2. The program is coded in a simple language, consisting of assignments
and conditional branches. The primitive operations are logical operations on bit vectors and
integer addition and multiplication, the implementation of which is not addressed here.

The algorithm is intended to be implemented with three distinct (integer) multipliers,
which operate on the same twoM-bit factors, yielding identical products of either 2M or
2M − 1 bits. The output of the first multiplier is manipulated under the assumption that
overflowoccurs, i.e., the product has 2M bits. In parallel, the output of the second multiplier
is similarly manipulated under the opposite assumption. Meanwhile, the most significant
bit produced by the third multiplier is examined to determine which of the first two results
will actually be used, while the other is discarded.

The inputs to this program include two encodings,x andy, of the numbers to be mul-
tiplied, as well as two specifiers, rc and pc, which control the rounding of the product.
Irrespective of this rounding, the result is returned in the(M, 18) format. Thus, the output
z is expected to satisfy

ẑ = rnd(x̂ŷ, rc,pc).

As a notational convenience, the following function gives the position of theleast significant
bit of a 2M-bit integer that has been rounded to a given degree of precision.

Definition 3.1. For any precision control specifierπ , lsb(π)= 2M −mbits(π).

In addition to computing products, the multiplication hardware performs several auxiliary
functions in support of the divide and square root operations. These are specified by the
input op, the value of which may be any of the symbolsOP-MUL,OP-DIV, OP-SQRT,
OP-LAST, andOP-BACK.

Basic floating point multiplication is performed in the case op= OP-MUL: the inputsx
andy are simply multiplied and rounded according to the specifiers pc and rc, and the IEEE
compliant result is returned as the outputz, as described by Theorem1. The same holds for
op= OP-DIV and op= OP-SQRT, but an additional outputr is returned in these cases:
for OP-DIV, r̂ is an approximation of 2− x̂ŷ; for OP-SQRT,r̂ is an approximation of
(3− x̂ŷ)/2. The errors of these approximations are given by Lemma3.5.

WhenFPU-MUL is called by division or square root, pc is alwaysPC-*, indicating
the internal format(M, 18). However, on the final iteration of either of these operations,
signaled byOP-LAST, the product is rounded to a lower precision, as determined by the
input lastpc. This behavior is described formally by Lemma3.7.

Finally, the symbolOP-BACKindicates aback multiplicationto determine whether the
product previously computed byOP-LAST is an overestimate or an underestimate of the
exact value sought. The value given by the inputd is subtracted from the product ofx and
y. In the case of division,x is the denominator,y is the approximate quotient, andd is the
numerator; in the square root case, bothx andy are the approximate square root andd is
the radicand. In both cases, the results of the comparison are given by the outputsz and
inexact , as stated in Lemma3.8.

Thus, our analysis will be based on an execution of

FPU-MUL(op,pc,lastpc,rc,x,y,z,r,d,inexact),
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Program FPU-MUL(op,pc,lastpc,rc,x,y,z,r,d,inexact):

sign← get-sign(x) ˆ get-sign(y);
man-unrounded← get-man(x) · get-man(y);
overflow← man-unrounded[2M − 1];
if man-unrounded[lsb(pc)− 3 : 0] = 0

then sticky-no-overflow← 0
else sticky-no-overflow← 1;

sticky-with-overflow← sticky-no-overflow| man-unrounded[lsb(pc)− 2];
inexact-no-overflow← sticky-with-overflow;
inexact-with-overflow← inexact-no-overflow| man-unrounded[lsb(pc)− 1];
if op = OP-BACK

then if overflow= 1
then inexact← inexact-with-overflow
else inexact← inexact-no-overflow;

if op = OP-BACKthen
rconst-with-overflow← comp1(2Mget-man(d), 2M)

else if op= OP-LASTthen
rconst-with-overflow← 2lsb(lastpc)−2

else if rc= RC-NEARthen
rconst-with-overflow← 2lsb(pc)−1

else if(sign= 1∧ rc= RC-NEG)∨ (sign= 0∧ rc= RC-POS)then
rconst-with-overflow← 2lsb(pc)− 1

else rconst-with-overflow← 0;
rconst-no-overflow← shr(rconst-with-overflow, 0, 2M);
if op = OP-BACK

then{add-with-overflow← (man-unrounded+ rconst-with-overflow+ 1)[2M : 0];
add-no-overflow← (man-unrounded+ rconst-no-overflow+ 1)[2M − 1 : 0]}

else{add-with-overflow← (man-unrounded+ rconst-with-overflow)[2M : 0];
add-no-overflow← (man-unrounded+ rconst-no-overflow)[2M − 1 : 0]};

round-carryout-no-overflow← add-no-overflow[2M − 1];
round-carryout-with-overflow← add-with-overflow[2M];
if op = OP-LAST

then{trunc-with-overflow← 22M − 2lsb(lastpc)−1;
trunc-no-overflow← 22M − 2lsb(lastpc)−2}

else{trunc-with-overflow← 22M − 2lsb(pc);
trunc-no-overflow← 22M − 2lsb(pc)−1};

Figure 1:FPU-MUL
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if rc = RC-NEAR∧ sticky-no-overflow= 0∧ add-no-overflow[lsb(pc)− 2] = 0
then man-rounded-no-overflow

← (22M−2round-carryout-no-overflow| add-no-overflow)
& ((22M − 1− 2lsb(pc)−1) & trunc-no-overflow)

else man-rounded-no-overflow
← (22M−2round-carryout-no-overflow| add-no-overflow)

& trunc-no-overflow;
if rc = RC-NEAR∧ sticky-with-overflow= 0∧ add-with-overflow[lsb(pc)− 1] = 0

then man-rounded-with-overflow
← (22M−1round-carryout-with-overflow| add-with-overflow)

& ((22M − 1− 2lsb(pc)) & trunc-with-overflow);
else man-rounded-with-overflow

← (22M−1round-carryout-with-overflow| add-with-overflow)
& trunc-with-overflow;

exp-unrounded← (get-expo(x)+ get-expo(y)+ 217+ 1)[17 : 0];
exp-rounded-with-overflow
← (exp-unrounded+ round-carryout-with-overflow+ 1)[17 : 0];

exp-rounded-no-overflow← (exp-unrounded+ round-carryout-no-overflow)[17 : 0];
if get-man(x) = 0 then

z← (sign, 0, get-expo(x))

else if get-man(y) = 0 then
z← (sign, 0, get-expo(y))

else if overflow= 1 then
z← (sign, man-rounded-with-overflow[2M − 1 : M], exp-rounded-with-overflow)

elsez← (sign, man-rounded-no-overflow[2M − 2 : M − 1],exp-rounded-no-overflow);
if op = OP-DIV then

if overflow= 1 then
r ← (0, comp1(man-unrounded, 2M)[2M − 2 : M − 1],217− 2)

else if round-carryout-no-overflow= 0 then
r ← (0, comp1(man-unrounded, 2M)[2M − 1 : M], 217− 1)

elser ← (0, 2M − 1,217− 2)

else if op= OP-SQRTthen
if overflow= 1 then

r ← (0, (comp1(man-unrounded, 2M) | 22M−1)[2M − 1 : M], 217− 2)

else if round-carryout-no-overflow= 0 then
r ← (0, shr(comp1(man-unrounded, 2M)[2M − 2 : 0], 1,2M)[2M − 1 : M], 217− 1)

elser ← (0, 2M − 1,217− 2)

Figure 2:FPU-MUL (continued)
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under the following assumptions regarding the inputs.

(a) op∈ {OP-MUL,OP-DIV, OP-SQRT,OP-LAST,OP-BACK};
(b) pc is a precision control specifier;

(c) if op= OP-LAST, then lastpc is an external precision control specifier;

(d) rc is a rounding control specifier;

(e) x andy are normal encodings;

(f) if op = OP-BACK, thend is a normal encoding.

3.2. Basic results
For convenience, we introduce several auxiliary variables. First, we define

sticky =
{

sticky-with-overf low if overflow= 1
sticky-no-overf low if overflow= 0.

Each of the variablesrconst , add, round-carryout , trunc, man-rounded, andexpo-
rounded is defined in the analogous manner. We also define

P =
{

2M if overflow= 1
2M − 1 if overflow= 0,

µ = mbits(pc),

and

trunc′ =
{

trunc, if rc 6= RC-NEARor sticky= 1 or add[P − µ− 1] = 1
trunc& (22M − 1− 2P−µ), otherwise.

Lemma 3.1.
(a) sig(man-unrounded) = sig(x̂)sig(ŷ)/2overflow;
(b) expo(man-unrounded) = P − 1;
(c) sig(x̂ŷ) = sig(man-unrounded);
(d) expo(̂xŷ) = expo(̂x)+ expo(̂y)+ overflow.

Proof. Sincex andy are normal encodings,

22M−2 6 man-unrounded= get-man(x) · get-man(y) < 22M,

and (b) follows from Lemma2.2.
By Lemma2.15,

man-unrounded= 2M−1sig(x̂)2M−1sig(ŷ)

= sig(x̂)sig(ŷ)2−overflow22M−2+overflow

= sig(x̂)sig(ŷ)2−overflow2expo(man-unrounded),

which implies (a).
To derive (c) and (d), we need only observe that

x̂ŷ = sgn(x̂)sig(x̂)2expo(̂x)sgn(ŷ)sig(ŷ)2expo(̂y)

= sgn(x̂ŷ)
[
sig(x̂)sig(ŷ)/2overflow

]
2expo(̂x)+expo(̂y)+overflow.
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Lemma 3.2.
(a) sticky= 0 iff man-unroundedis (µ+ 1)-exact;
(b) inexact= 0 iff man-unroundedis µ-exact.

Proof. We have sticky-no-overflow= 0⇔ 2lsb(pc)−2divides man-unrounded, and

sticky-with-overflow= 0
⇔ 2lsb(pc)−2divides man-unrounded and man-unrounded[lsb(pc)− 2] = 0
⇔ 2lsb(pc)−2divides man-unrounded and 2 divides man-unrounded/2lsb(pc)−2

⇔ 2lsb(pc)−1divides man-unrounded.

Thus, sticky= 0 iff 2P−(µ+1) divides man-unrounded, and (a) follows from Lemma2.14.
Similarly, it may be shown that inexact= 0 iff 2P−µ divides man-unrounded, which

implies (b).

Lemma 3.3.
(a) man-rounded= (2P−1round-carryout) | (add& trunc′);
(b) man-rounded[P − 1] = 1;
(c) expo(man-rounded) 6 expo(add) = P − 1+ round-carryout;
(d) man-roundedis divisible by2P−M .

Proof. (a) In all cases,

man-rounded= (2P−1round-carryout| add) & trunc′

and trunc′[P − 1] = 1. Thus, by Lemmas2.7and2.11,

man-rounded= (2P−1round-carryout& trunc′) | (add& trunc′)
= 2P−1round-carryout| (add& trunc′)

(b) By Lemma2.10, we may assume round-carryout= 0 and hence

man-rounded[P − 1] = add[P − 1].
Note that

add=
{

rem(man-unrounded+ rconst+ 1,2P+1) if op = OP-BACK
rem(man-unrounded+ rconst, 2P+1) otherwise,

and that since

man-unrounded+ rconst+ 1 6 (2P − 1)+ (2P − 1)+ 1 < 2P+1,

we have

2P−1 6 man-unrounded6 add< 2P+1.

But since round-carryout= add[P ] = 0, Lemma2.2implies add< 2P and hence add[P −
1] = 1.

(c) If round-carryout= 0, then

man-rounded= add& trunc′ 6 add< 2P ,
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by Lemma2.9, and man-rounded[P − 1] = 1 implies man-rounded> 2p−1; hence

expo(man-rounded) = expo(add) = P − 1.

On the other hand, if round-carryout= add[P ] = 1, then expo(add) = P , while
man-rounded< 2P+1 by Lemma2.8; hence expo(man-rounded) 6 P .

(d) Since 2P−M divides trunc, the result follows from Lemmas2.9and2.8.

Lemma 3.4. z is a normal encoding and
(a) sgn(ẑ) = sgn(x̂ŷ);
(b) sig(̂z) = rem(man-rounded, 2P )/2P−1;
(c) rem(expo(̂z), 218) = rem(expo(̂xŷ)+ round-carryout, 218).

Proof. First, observe that

z = (sign, man-rounded[P − 1 : P −M], exp-rounded).

Let ρ = rem(man-rounded, 2P ). By Lemma2.3,

ρ[P − 1] = man-rounded[P − 1] = 1;
hence expo(ρ)= P − 1. Since man-rounded is divisible by 2P−M , so isρ. Thus, by
Lemmas2.4and2.14,

get-man(z) = man-rounded[P − 1 : P −M] = ρ[P − 1 : P −M] = ρ/2P−M.

It follows that

expo(get-man(z)) = expo(ρ)− (P −M) = (P − 1)− (P −M) = M − 1.

Since

get-expo(z)= exp-rounded= rem(exp-unrounded+ round-carryout+ overflow, 218),

0 < get-expo(z) <218, and hencez is a normal encoding. The proof is completed by
applying Lemma2.15.

(a) sgn(ẑ) = (−1)sign; hence sgn(ẑ) = 1⇔ sign= 0⇔ get-sign(x) = get-sign(y)⇔
sgn(x̂) = sgn(ŷ)⇔ sgn(x̂ŷ) = 1.

(b) sig(̂z) = get-man(z)/2M−1 = (ρ/2P−M)/2M−1 = ρ/2P−1.
(c) expo(̂z) = get-expo(z)− (217− 1), where

get-expo(z)

= rem(exp-unrounded+ round-carryout+ overflow, 218)

= rem(get-expo(x)+ get-expo(y)+ 217+ 1+ round-carryout+ overflow, 218)

= rem(expo(̂x)+ expo(̂y)+ 218− 2+ 217+ 1+ round-carryout+ overflow, 218)

= rem(expo(̂x)+ expo(̂y)+ overflow+ 217− 1+ round-carryout, 218)

= rem(expo(̂xŷ)+ 217− 1+ round-carryout, 218).

3.3. The operationsOP-MUL,OP-DIV, and OP-SQRT
This is our statement of IEEE compliance for multiplication.

Theorem 1. Assume thatop ∈ {OP-MUL,OP-DIV, OP-SQRT},rc is a rounding con-
trol specifier,pc is a precision control specifier, and x and y are normal encodings. If
rnd(x̂ŷ, rc,pc) is representable, then̂z = rnd(x̂ŷ, rc,pc).
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Proof. Let

rc′ =



RC-NEG if rc = RC-POS
RC-POS if rc = RC-NEG
rc otherwise.

Then rnd(−x̂ŷ, rc,pc) = −rnd(x̂ŷ, rc′, pc). Also, by inspection of the code that defines
FPU-MUL, it is easy to see that replacing either “get− sign(x)” or “get − sign(y)” by its
complement and rc by rc′ has the effect of negatinĝz. It follows that it suffices to prove the
theorem under the assumptionsx̂ > 0 andŷ > 0, which imply that sign= 0.

Note that (under these assumptions)

rconst=



2P−µ−1 if rc = RC-NEAR
2P−µ − 1 if rc = RC-POS
0 otherwise.

In all cases, rconst< 2P . Since man-unrounded< 2P as well,

add= rem(man-unrounded+ rconst, 2P+1) = man-unrounded+ rconst.

If rc = RC-NEARand sticky= add[P − µ− 1] = 0, then by Lemma2.12,

trunc′ = (22M − 2P−µ) & (22M − 1− 2P−µ) = (22M − 2P−µ+1),

and otherwise

trunc′ = (22M − 2P−µ).

We shall show that

rem(man-rounded, 2P ) = rnd(man-unrounded, rc,pc)2−round-carryout,

by considering the following cases.
Case 1.round-carryout= 0

Since man-rounded< 2P by Lemma3.3, we must show

man-rounded= rnd(man-unrounded, rc,pc).

Subcase 1.1.rc= RC-NEAR

First suppose sticky= add[P − µ− 1] = 0. Then Lemma2.3 implies

man-unrounded[P − µ− 1] = 1,

and by Lemmas3.2and2.14, man-unrounded is(µ + 1)-exact but notµ-exact. Thus, by
Lemmas3.3,2.24, and2.31,

man-rounded= (man-unrounded+ 2P−µ−1) & (22M − 2P−µ+1)

= trunc(man-unrounded+ 2P−µ−1, µ− 1)

= near(man-unrounded, µ)

= rnd(man-unrounded, rc,pc).

In the remaining case, man-unrounded is eitherµ-exact or not(µ+ 1)-exact, and the same
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three lemmas yield

man-rounded= (man-unrounded+ 2P−µ−1) & (22M − 2P−µ)

= trunc(man-unrounded+ 2P−µ−1, µ)

= near(man-unrounded, µ)

= rnd(man-unrounded, rc,pc).

Subcase 1.2.rc= RC-POS
By Lemmas2.24and2.25,

man-rounded= (man-unrounded+ 2P−µ − 1) & (22M − 2P−µ)

= trunc(man-unrounded+ 2P−µ − 1, µ)

= away(man-unrounded, µ)

= rnd(man-unrounded, rc,pc).

Subcase 1.3.rc= RC-CHOPor rc= RC-NEG
By Lemma2.24,

man-rounded= man-unrounded& (22M − 2P−µ)

= trunc(man-unrounded, µ)

= rnd(man-unrounded, rc,pc).

Case 2.round-carryout= 1
In this case,

2P 6 add= man-unrounded+ rconst< 2P + rconst,

which implies

0 6 rem(add, 2P ) < rconst< 2P−µ.

By Lemmas3.3,2.9, and2.8,

rem(man-rounded, 2P ) = rem(2P−1 | (add& trunc′), 2P )

= 2P−1 | (rem(add, 2P ) & trunc′)
= 2P−1 | (rem(add, 2P ) & rem(trunc′, 2P−µ))

= 2P−1 | (rem(add, 2P ) & 0)

= 2P−1.

Thus, it suffices to show that rnd(man-unrounded, rc,pc)= 2P .
Subcase 2.1.rc= RC-NEAR

Since

man-unrounded+ 2P−1−µ = man-unrounded+ rconst> 2P ,

near(man-unrounded, µ) = 2P by Lemma2.30.
Subcase 2.2.rc= RC-POS

Let a = 2P − 2P−µ. Then

man-unrounded> 2P − rconst= 2P − 2P−µ + 1 > a,
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and sincea is µ-exact,

away(man-unrounded, µ) > a + 2expo(a)+1−µ= a + 2P−µ = 2P ,

which implies away(man-unrounded, µ) = 2P .
Subcase 2.3.rc= RC-CHOPor rc= RC-NEG

This case is precluded by our earlier observation that 0< rconst.
The proof is completed by applying Lemmas3.4and3.1, which yield

sgn(ẑ) = sgn(x̂ŷ) = 1,

sig(ẑ) = rnd(man-unrounded, rc,pc)2−round-carryout−P+1

= rnd(sig(x̂ŷ), rc,pc)2−round-carryout,

and for somek ∈ Z,

expo(̂z) = expo(̂xŷ)+ round-carryout+ 218k.

Thus,

ẑ = rnd(sig(x̂ŷ), rc,pc)2expo(̂xŷ)+218k = rnd(x̂ŷ, rc,pc)2218k.

But since rnd(x̂ŷ, rc,pc) is representable, i.e., 1− 2−17 6 expo(rnd(x̂ŷ, rc,pc)) 6 217,
and the same is true ofẑ,

|218k| = |expo(̂z)− expo(rnd(x̂ŷ, rc,pc))|< 218,

and hencek = 0.

In theOP-DIV andOP-SQRTcases, an additional value is returned.

Lemma 3.5. Let op ∈ {OP-DIV, OP-SQRT},pc= PC-*, and rc = RC-NEAR. Assume
that x and y are normal encodings,3/2 < sig(x̂)sig(ŷ) < 3, and|1− x̂ŷ| < 1/8. Then

(a) r is a normal encoding;
(b) r̂ < 1⇔ ẑ > 1;
(c) if op= OP-DIV, then 2− x̂ŷ − 21−M 6 r̂ < 2− x̂ŷ;
(d) if op= OP-SQRT, then(3− x̂ŷ)/2− 21−M 6 r̂ < (3− x̂ŷ)/2.

Proof. First note that the hypothesis implies that expo(x̂ŷ) is either 0 or−1, and it follows
from Lemma3.4that

expo(̂z) = expo(̂xŷ)+ round-carryout.

We consider the following cases.
Case 1.overflow= 1

In this case, expo(man-unrounded) = 2M − 1, but by Lemma3.1,

man-unrounded= sig(x̂ŷ)22M−1 = sig(x̂)sig(ŷ)22M−2 < 3 · 22M−2

and hence

add= man-unrounded+ 2M−1 < 3 · 22M−2+ 2M−1 < 22M

and round-carryout= 0. We have expo(̂z) = expo(̂xŷ) = 0, for otherwise

x̂ŷ = sig(x̂ŷ)/2= sig(x̂)sig(ŷ)/4 < 3/4,

171https://doi.org/10.1112/S1461157000000176 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000176


Proof of IEEE Compliance of the AMD-K7TM Processor

contradicting|1− x̂ŷ| < 1/8. Thus,

x̂ŷ = sig(x̂ŷ) = sig(man-unrounded) = man-unrounded/22M−1.

Also note that

comp1(man-unrounded, 2M) = 22M −man-unrounded− 1

6 22M − 22M−1− 1 < 22M−1.

Subcase 1.1.op= OP-DIV

get-man(r) = comp1(man-unrounded, 2M)[2M − 2 : M − 1]
= b(22M −man-unrounded− 1)/2M−1c
= 2M+1+ b−(man-unrounded+ 1)/2M−1c
= 2M+1− bman-unrounded/2M−1c − 1.

But

bman-unrounded/2M−1c 6 man-unrounded/2M−1 = 2Mx̂ŷ

and

bman-unrounded/2M−1c > man-unrounded/2M−1− 1= 2Mx̂ŷ − 1;
hence

2M−1 6 2M+1− 2Mx̂ŷ − 1 6 get-man(r) < 2M+1− 2Mx̂ŷ 6 2M

andr is normal. Since expo(r̂) = 217− 2− (217− 1)= −1, r̂ < 1 6 ẑ and

2− x̂ŷ − 2−M 6 r̂ = 2−Mget-man(r) < 2− x̂ŷ.

Subcase 1.2.op= OP-SQRT
By Lemmas2.2and2.11,

comp1(man-unrounded, 2M) | 22M−1 = comp1(man-unrounded, 2M)+ 22M−1

= 22M + 22M−1−man-unrounded− 1

< 22M ;
hence

get-man(r) = (comp1(man-unrounded, 2M) | 22M−1)[2M − 1 : M]
= (22M + 22M−1−man-unrounded− 1)[2M − 1 : M]
= b(22M + 22M−1−man-unrounded− 1)/2Mc
= 2M + 2M−1+ b−(man-unrounded+ 1)/2Mc
= 3 · 2M−1− bman-unrounded/2Mc − 1.

But

bman-unrounded/2Mc 6 man-unrounded/2M = 2M−1x̂ŷ

and

bman-unrounded/2Mc > man-unrounded/2M − 1= 2M−1x̂ŷ − 1,

implying

2M−1 6 2M−1(3− x̂ŷ)− 1 6 get-man(r) < 2M−1(3− x̂ŷ) 6 2M ;
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hencer is normal. Again, expo(r̂) = −1 andr̂ < 1 6 ẑ. Thus

(3− x̂ŷ)/2− 2−M 6 r̂ = get-man(r)/2M < (3− x̂ŷ)/2.

Case 2.overflow= 0

In this case, expo(man-unrounded) = 2M − 2, and expo(x̂ŷ) = −1, for otherwise

x̂ŷ = sig(x̂ŷ) = sig(x̂)sig(ŷ) > 3/2,

contradicting|1− x̂ŷ| < 1/8. Thus

x̂ŷ = sig(x̂ŷ)/2= sig(man-unrounded)/2= man-unrounded/22M−1.

Subcase 2.1.round-carryout= 0

Since expo(̂z) = expo(̂xŷ) = −1, ẑ < 1.
Subcase 2.1.1.op= OP-DIV

get-man(r) = (22M −man-unrounded− 1)[2M − 1 : M]
= b(22M −man-unrounded− 1)/2Mc
= 2M + b−(man-unrounded+ 1)/2Mc
= 2M − bman-unrounded/2Mc − 1.

In this case,

2M−1x̂ŷ − 1 < bman-unrounded/2Mc 6 2M−1x̂ŷ

and

2M−1− 1 < 2M − 2M−1x̂ŷ − 1 6 get-man(r) < 2M − 2M−1x̂ŷ < 2M.

Since expo(̂r) = (217− 1)− (217− 1)= 0, r̂ > 1 > ẑ, and

2− x̂ŷ − 21−M 6 r̂ = get-man(r)/2M−1 < 2− x̂ŷ.

Subcase 2.1.2.op= OP-SQRT

Note that

comp1(man-unrounded, 2M) = 22M −man-unrounded− 1 > 22M − 22M−1 = 22M−1,

while comp1(man-unrounded, 2M) < 22M ; hence

rem(comp1(man-unrounded, 22M), 22M−1)

= comp1(man-unrounded, 2M)− 22M−1

= 22M−1−man-unrounded− 1.
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Therefore, applying Lemma2.11, we have

get-man(r) = shr(comp1(man-unrounded, 2M)[2M − 2 : 0], 1,2M)[2M − 1 : M]
= shr(rem(comp1(man-unrounded, 2M), 22M−1), 1,2M)[2M − 1 : M]
= shr(22M−1−man-unrounded− 1,1,2M)[2M − 1 : M]
= (22M−1+ b(22M−1−man-unrounded− 1)/2c)[2M − 1 : M]
= b(22M−1+ b(22M−1−man-unrounded− 1)/2c)/2Mc
= 2M−1+ bb(22M−1−man-unrounded− 1)/2c)/2Mc
= 2M−1+ b(22M−1−man-unrounded− 1)/2M+1c
= 2M−1+ 2M−2+ b−(man-unrounded+ 1)/2M+1c)
= 3 · 2M−2− bman-unrounded/2M+1c − 1.

But

2M−2x̂ŷ − 1 < bman-unrounded/2M+1c 6 2M−2x̂ŷ;
hence

2M−1− 1 < 2M−2(3− x̂ŷ)− 1 6 get-man(r) < 2M−2(3− x̂ŷ) < 2M.

Again, expo(r̂) = 0, r̂ > 1 > ẑ, and

(3− x̂ŷ)/2− 21−M 6 r̂ = get-man(r)/2M−1 < (3− x̂ŷ)/2.

Subcase 2.2.round-carryout= 1
In this case, get-man(r) = 2M −1 andr̂ = 1−2−M < 1, while expo(ẑ) = expo(̂xŷ)+

1= 0, soẑ > 1. Since add= man-unrounded+ 2M−2 > 22M−1, we have

22M−1− 2M−2 6 man-unrounded< 22M−1

and hence

1− 2−1−M 6 x̂ŷ < 1,

which implies

2− x̂ŷ − (2−M + 2−1−M) 6 r̂ < 2− x̂ŷ − 2−M

and

(3− x̂ŷ)/2− (2−M + 2−2−M) 6 r̂ < (3− x̂ŷ)/2− 2−M.

The following corollary of Lemma3.5 allows the outputs ofFPU-MUL to be used as
inputs on the next iteration ofFPU-DIV-SQRT.

Lemma 3.6. Let op ∈ {OP-DIV, OP-SQRT},pc= PC-*, and rc = RC-NEAR. Assume
that x and y are normal encodings,3/2 < sig(x̂)sig(ŷ) < 3, and|1− x̂ŷ| < 1/8. Then

(a) if op= OP-DIV, then 3/2 < sig(ẑ)sig(r̂) < 3;
(b) if op= OP-SQRT, then3/2 < sig(ẑ)sig(near(r̂2, M)) < 3.

Proof. Note first that by Theorem1, |1 − ẑ| 6 1/8. Now suppose that̂z < 1. Then
7/8 6 ẑ < 1. If op= OP-DIV, then 16 r̂ < 2− x̂ŷ 6 9/8; hence sig(ẑ)sig(r̂) = 2ẑr̂ and
3/2 < 7/4 6 2ẑr̂ < 9/4 < 3. For the case op= OP-SQRT, letw = near(r̂2, M). Since
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1 6 r̂ < (3− x̂ŷ)/2 < 17/16, 16 r̂2 < 289/256< 3/2, which implies 16 w < 3/2.
Thus, sig(̂z)sig(w)= 2ẑw and 3/2< 7/4 < 2ẑw < 3.

On the other hand, if̂z > 1, then 16 ẑ < 9/8. If op= OP-DIV, then 1> r̂ > 2− x̂ŷ−
21−M > 7/8− 21−M > 3/4, and again sig(ẑ)sig(r̂) = 2ẑr̂, where 3/2< 2ẑr̂ < 9/4 < 3.
If op = OP-SQRT, then 1> r̂ > (3 − x̂ŷ)/2 − 21−M > 15/16− 21−M > 7/8 and
1 > r̂2 > 49/64, which implies 1>> w > 49/64> 3/4. Thus, sig(ẑ)sig(w)= 2ẑw and
3/2 < 2ẑw 6 9/4 < 3.

3.4. The operationOP-LAST
In theOP-LAST case, the product is rounded to mbits(lastpc)+ 1 bits, essentially by

nearrounding.

Lemma 3.7. If op= OP-LAST, pc= PC-*, rc= RC-NEAR,mbits(lastpc)= λ, x and y
are normal encodings, and

2−217
(2− 2−λ−1) 6 |x̂ŷ| < 2217

(2− 2−λ−1),

then
(a) ẑ is (λ+ 1)-exact;
(b) expo(̂xŷ) 6 expo(̂z);
(c) |ẑ− x̂ŷ| 6 2expo(̂xŷ)−λ−1.

Proof. Note that

add= man-unrounded+ 2P−λ−2

and by Lemma2.12,

trunc= 22M − 2P−λ−1 = trunc′.

Let ρ = rem(man-rounded, 2P ). We shall show that

|ρ2round-carryout−man-unrounded| 6 2P−λ−2

and that

1− 217 6 expo(̂xŷ)+ round-carryout6 217,

by considering the following two cases.
Case 1.round-carryout= 0

By Lemma3.3, expo(add) = expo(man-rounded) = P − 1; hence

ρ = man-rounded= add& (22M − 2P−λ−1) = trunc(add, λ+ 1)

by Lemma2.24. Thus, by Lemma2.20,

ρ 6 add= man-unrounded+ 2P−λ−2

and

ρ > add− 2(P−1)−(λ+1)+1= man-unrounded− 2P−λ−2.

If expo(x̂ŷ) = 2−17, then 2−217
(2− 2−λ−1) 6 |x̂ŷ| < 2−217+1; hence

man-unrounded= 2P−1sig(x̂ŷ) > 2P−1(2− 2−λ−1) = 2P − 2P−λ−2,

contradicting add< 2P . Thus, 1− 217 6 expo(̂xŷ) 6 217.

Case 2.round-carryout= 1
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In this case,

2P 6 add= man-unrounded+ 2P−λ−2 < 2P + 2P−λ−2,

which implies

|2P −man-unrounded| < 2P−λ−2

as well as

rem(add, 2P ) < 2P−λ−2.

Thus, by Lemmas3.3,2.9,2.8, and2.7,

ρ = rem(2P−1 | (add& trunc′), 2P ) = 2P−1 | (rem(add, 2P ) & trunc′)
= 2P−1 | (rem(add, 2P ) & rem(trunc′, 2P−λ−2)) = 2P−1 | (rem(add, 2P ) & 0)

= 2P−1,

and therefore

|2ρ −man-unrounded| = |2P −man-unrounded| < 2P−λ−2.

If expo(x̂ŷ) = 217, then 22
17 6 |x̂ŷ| < 2217

(2− 2−λ−1); hence

man-unrounded= 2P−1sig(x̂ŷ) < 2P−1(2− 2−λ−1) = 2P − 2P−λ−2,

contradicting add> 2P . Thus, 1− 217 6 expo(̂xŷ)+ 1 6 217.

Note that in both cases,ρ is (λ+ 1)-exact; hence so iŝz, since sig(̂z) = ρ21−P . Since

1− 217 6 expo(̂xŷ)+ round-carryout6 217,

and expo(̂z) must lie in the same interval,

expo(̂z) = expo(̂xŷ)+ round-carryout.

Thus,

|ẑ− x̂ŷ| = |ρ21−P2expo(̂xŷ)+round-carryout− sig(x̂ŷ)2expo(̂xŷ)|
= 2expo(̂xŷ)+1−P |ρ2round-carryout−man-unrounded|
6 2expo(̂xŷ)+1−P2P−λ−2

= 2expo(̂xŷ)−λ−1.

3.5. The operationOP-BACK
In theOP-BACKcase, the product is compared, by way of subtraction, to the inputd.

The results of the comparison are given by the outputsz andinexact .

Lemma 3.8. If op= OP-BACK,pc= PC-*, rc= RC-CHOP, x and y are normal encod-

ings, and|x̂ŷ − d̂| < 2expo(d̂)−3, then
(a) |x̂ŷ| < |d̂| ⇔ get-man(z)[M − 2] = 1;
(b) x̂ŷ = d̂ ⇔ get-man(z)[M − 2 : 0] = inexact= 0.

Proof. (a) Since

rconst-with-overflow= comp1(2Mget-man(d), 2M)

= 22M − 2Mget-man(d)− 1
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and

rconst-no-overflow= shr(rconst-with-overflow, 0, 2M)

= b(22M − 2Mget-man(d)− 1)/2c
= 22M−1− 2M−1get-man(d)− 1,

we have

rconst= 2P − 2P−Mget-man(d)− 1,

and thus

add= rem(2P +man-unrounded− 2P−Mget-man(d), 2P+1)

= rem(2P + 2P−1sig(x̂ŷ)− 2P−1sig(d̂), 2P+1)

= rem(2P−1(2+ sig(x̂ŷ)− sig(d̂)), 2P+1)

= 2P−1(2+ sig(x̂ŷ)− sig(d̂)).

Note also that trunc′ = trunc= 22M − 2P−M.

By Lemmas2.4,2.5,2.11, and3.3,

get-man(z)[M − 2 : 0] = (man-rounded[P − 1 : P −M])[M − 2 : 0]
= man-rounded[P − 2 : P −M]
= (add& trunc′)[P − 2 : P −M]
= (2P−Madd[2M − 1 : P −M])[P − 2 : P −M]
= add[2M − 1 : P −M][M − 2 : 0]
= add[P − 2 : P −M]
= ρ[P − 2 : P −M],

whereρ = rem(add, 2P−1). In particular, by Lemma2.5,

get-man(z)[M − 2] = get-man(z)[M − 2 : 0][M − 2]
= ρ[P − 2 : P −M][M − 2] = ρ[P − 2].

We must show

ρ[P − 2] = 1⇔ |x̂ŷ| < |d̂|.
Since

|x̂ŷ − d̂| = |2expo(̂xŷ)−expo(d̂)sig(x̂ŷ)− sig(d̂)|2expo(d̂) < 2expo(d̂)−3,

we have

|2expo(̂xŷ)−expo(d̂)sig(x̂ŷ)− sig(d̂)| < 2−3,

which implies|expo(̂xŷ)− expo(d̂)| 6 1. Thus, we have three cases to consider.
Case 1.expo(̂xŷ) = expo(d̂)

In this case,|sig(x̂ŷ)− sig(d̂)| < 2−3.
Suppose first that|x̂ŷ| < |d̂|. Then sig(̂xŷ) < sig(d̂) and

2P > add= 2P−1(2+ sig(x̂ŷ)− sig(d̂)) > 2P−1(2− 2−3) > 2P−1+ 2P−2.

Thus,

2P−2 < ρ < 2P−1,
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andρ[P − 2] = 1 by Lemma2.2.
On the other hand, if|x̂ŷ| > |d̂|, then sig(̂xŷ) > sig(d̂) and

2P 6 add< 2P−1(2+ 2−3) < 2P + 2P−2,

henceρ < 2P−2 andρ[P − 2] = 0.
Case 2.expo(̂xŷ) = expo(d̂)+ 1

Here,|x̂ŷ| > |d̂| and

0 < 2sig(x̂ŷ)− sig(d̂) < 2−3.

Thus,

sig(x̂ŷ) <
1

2
sig(d̂)+ 2−4 6 1+ 2−4

and

sig(d̂) > 2sig(x̂ŷ)− 2−3 > 2− 2−3.

It follows that

add< 2P−1(2+ 1+ 2−4− 2+ 2−3) < 2P−1+ 2P−2.

But add> 2P−1(2+ 1− 2) = 2P−1; henceρ < 2P−2 andρ[P − 2] = 0.
Case 3.expo(̂xŷ) = expo(d̂)− 1

In this case,|x̂ŷ| < |d̂| and

0 < sig(d̂)− 1

2
sig(x̂ŷ) < 2−3.

Thus, sig(̂d) < 1+ 2−3, sig(x̂ŷ) > 2− 2−2, and

add> 2P−1(2+ 2− 2−2− 1− 2−3) > 3 · 2P−1− 2P−2 = 2 · 2P−1+ 2P−2.

But

add< 2P−1(2+ 2− 1)= 3 · 2P−1;
henceρ > 2P−2 andρ[P − 2] = 1.

(b) Note that by Lemmas3.1and3.2, inexact= 0 iff x̂ŷ isM-exact. Thus, if̂xŷ = d̂, then
inexact= 0 and add= 2P , which impliesρ = 0, and hence get-man(z)[M − 2 : 0] = 0.

Conversely, suppose

get-man(z)[M − 2 : 0] = ρ[P − 2 : P −M] = inexact= 0.

Then sig(̂xŷ) is M-exact, i.e., 2M−1sig(x̂ŷ) ∈ Z, hence 2P−1sig(x̂ŷ) is divisible by 2P−M .
Similarly, 2P−1sig(d̂) is divisible by 2P−M , and hence, so are add andρ. Thus,

ρ = (ρ/2P−M)2P−M = bρ/2P−Mc2P−M = ρ[P − 2 : P −M]2P−M = 0.

Sincex̂ŷ = −d̂ is impossible, we need only show|x̂ŷ| = |d̂|. In view of (a), we may
assume|x̂ŷ| > |d̂|. Thus, there are two cases to consider.
Case 1.expo(̂xŷ) = expo(d̂)

In this case, sig(̂xŷ) > sig(d̂), which implies

ρ = 2P−1(sig(x̂ŷ)− sig(d̂)) = 0,

hence sig(̂xŷ) = sig(d̂) and|x̂ŷ| = |d̂|.
Case 2.expo(̂xŷ) = expo(d̂)+ 1
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If this were to occur, then we would have

ρ = 2P−1(1+ sig(x̂ŷ)− sig(d̂)) = 0,

implying sig(d̂) = 1+ sig(x̂ŷ) > 2, which is impossible.

4. Division and square root

4.1. The program FPU-DIV-SQRT
The hardware for division and square root is represented by the programFPU-DIV-SQRT,

shown in Figures3 and4. Our analysis will be based on an execution of

FPU-DIV-SQRT(op,pc,rc,a,b,z),

with inputs as follows.

(a) op∈ {OP-DIV, OP-SQRT};
(b) pc is an external precision control specifier;

(c) rc is a rounding control specifier;

(d) a andb are normal encodings.

In the case op= OP-DIV, the outputz represents an appropriately rounded approximation

of the quotientâ/b̂; when op= OP-SQRT,a is ignored and an approximation of
√

b̂ is
returned.

Both operations are based on Goldschmidt’s Algorithm [1], a variant of Newton-Raphson
approximation. Our analysis of division will involve a sequenceξ0, ξ1, ξ2, ξ3 of approxi-
mations to 1/b̂, whereξ0 is derived from a table and the otherξi are computed by three
successive Newton-Raphson iterations. The square root involves a similar sequence of ap-

proximations to 1/
√

b̂.
Although the algorithm does not explicitly compute theξi for i > 0, a sequence of calls

toFPU-MULproduces an encodingq of eitherâξi or b̂ξi , modulo rounding error, according
to whether op= OP-DIV or op= OP-SQRT, where (a)i = 1 if pc = PC-32, (b) i = 2
if pc = PC-64, and (c) i = 3 if pc= PC-80 or pc= PC-87. Lemmas4.9and4.13give

estimates of the errors|q̂ − â/b̂| and |q̂ −
√

b̂|. Note that the constraintM > 75 on the
multiplier width is required in the proofs of these lemmas.

The approximation̂q is compared to the exact value by means of a final call toFPU-MUL
with op= OP-BACK. Using the results of this comparison,q is then adjusted to produce
the correctly rounded resultz. The correctness of this result is guaranteed by Theorems2
and3.

4.2. Initial approximation
The initial approximationx0 to the reciprocal ofb, in the case op= OP-DIV, is derived

from a pair of tables, each consisting of 210 bit vectors, which we represent by the functions
recip-rom-pandrecip-rom-n. If sig(b̂) has the binary representation 1.b1b2b3 . . . , then the
bit vectors

b1b2 . . . b9b10 = get-man(b)[M − 2 : M − 11]
and

b1 . . . b5b11 . . . b15 = cat(get-man(b)[M − 2 : M − 6],get-man(b)[M − 12 : M − 16],5)
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Program FPU-DIV-SQRT(op,pc,rc,a,b,z):

if op = OP-DIV then
{sign← get-sign(a) ˆ get-sign(b);
p-value← recip-rom-p(get-man(b)[M − 2 : M − 11]);
n-value← recip-rom-n(cat(get-man(b)[M − 2 : M − 6],

get-man(b)[M − 12 : M − 16],
5));

estimate← (p-value+ n-value)[16 : 0];
x0← (get-sign(b),

2M−17estimate| 2M−1,
(218− 2+ comp1(get-expo(b),18)+ estimate[16])[17: 0]);

FPU -MUL(OP-DIV, PC-*, NIL, RC-NEAR, b, x0, d0, r0, NIL, NIL);
FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, a, x0, n0, NIL, NIL, NIL);
if pc = PC-32

thenFPU -MUL(OP-LAST,PC-*, pc,RC-NEAR, n0, r0, q, NIL, NIL, NIL)

else{FPU -MUL(OP-DIV, PC-*, NIL, RC-NEAR, d0, r0, d1, r1, NIL, NIL);
FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, n0, r0, n1, NIL, NIL, NIL);
if pc = PC-64

thenFPU -MUL(OP-LAST,PC-*, pc,RC-NEAR, n1, r1, q, NIL, NIL, NIL)

else{FPU -MUL(OP-DIV, PC-*, NIL, RC-NEAR, d1, r1, d2, r2, NIL, NIL);
FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, n1, r1, n2, NIL, NIL, NIL);
FPU -MUL(OP-LAST,PC-*, pc,RC-NEAR, n2, r2, q, NIL, NIL, NIL)}};

FPU -MUL(OP-BACK,PC-*, NIL, RC-CHOP, b, q,rem, NIL, a, inexact)}

else if op= OP-DIV-SQRT then
{sign← 0;
p-value← sqrt-rom-p(cat(get-expo(b)[0], get-man(b)[M − 2 : M − 11],10));
n-value← sqrt-rom-n(cat(get-expo(b)[0],

cat(get-man(b)[M − 2 : M − 6],
get-man(b)[M − 12 : M − 16],
5),

10));
estimate← (p-value+ n-value)[16 : 0];
x0← (get-sign(b),

2M−17estimate| 2M−1,
shr((218+ 217− 3+ comp1(get-expo(b),19)+ estimate[16])[18: 0], 0, 19));

FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, x0, x0, t0, NIL, NIL, NIL);
FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, b, x0, d0, NIL, NIL, NIL);
FPU -MUL(OP-SQRT,PC-*, NIL, RC-NEAR, b, t0, n0, r0, NIL, NIL);

Figure 3:FPU-DIV-SQRT
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if pc = PC-32
thenFPU -MUL(OP-LAST,PC-*, pc,RC-NEAR, d0, r0, q, NIL, NIL, NIL)

else{FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, r0, r0, t1, NIL, NIL, NIL);
FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, d0, r0, d1, NIL, NIL, NIL);
FPU -MUL(OP-SQRT,PC-*, NIL, RC-NEAR, n0, t1, n1, r1, NIL, NIL);
if pc = PC-64

thenFPU -MUL(OP-LAST,PC-*, pc,RC-NEAR, d1, r1, q, NIL, NIL, NIL)

else{FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, r1, r1, t2, NIL, NIL, NIL);
FPU -MUL(OP-MUL,PC-*, NIL, RC-NEAR, d1, r1, d2, NIL, NIL, NIL);
FPU -MUL(OP-SQRT,PC-*, NIL, RC-NEAR, n1, t2, n2, r2, NIL, NIL);
FPU -MUL(OP-LAST,PC-*, pc,RC-NEAR, d2, r2, q, NIL, NIL, NIL)}};

FPU -MUL(OP-BACK,PC-*, NIL, RC-CHOP, q, q,rem, NIL, b, inexact)};

if get-man(rem)[M − 2 : 0] = 0
then rem-zero← comp1(inexact, 1)

else rem-zero← 0;
rem-neg← comp1(get-man(rem)[M − 2], 1) &comp1(rem-zero,1);
rem-pos← get-man(rem)[M − 2];
q-lsb← get-man(q)[M −mbits(pc)];
q-guard← get-man(q)[M −mbits(pc)− 1];
if op = OP-DIV ∧ get-man(a) = 0 then

z← (sign, 0, get-expo(a))

else if op= OP-SQRT∧ get-man(b) = 0 then
z← (sign, 0, get-expo(b))

else if((rc= RC-POS∧ sign= 1)∨ (rc= RC-NEG∧ sign= 0) ∨ rc= RC-CHOP)

∧q-guard= 0∧ rem-neg= 1 then
if get-man(q) & (2M − 2M−mbits(pc)) = 2M−1

thenz← (sign, 2M − 2M−mbits(pc), dec1(get-expo(q),18))

elsez← (sign,
((get-man(q) & (2M − 2M−mbits(pc)))+ 2M − 2M−mbits(pc))[M − 1 : 0],
get-expo(q))

else if(((rc= RC-POS∧ sign= 0) ∨ (rc= RC-NEG∧ sign= 1))

∧(q-guard= 1∨ rem-pos= 1))

∨(rc= RC-NEAR∧ q-guard= 1∧ rem-pos= 1)

∨(rc= RC-NEAR∧ q-guard= 1∧ rem-zero= 1∧ q-lsb= 1) then
if get-man(q) & (2M − 2M−mbits(pc)) = 2M − 2M−mbits(pc)

thenz← (sign, 2M−1, (get-expo(q)+ 1)[17 : 0])
elsez← (sign,

((get-man(q) & (2M − 2M−mbits(pc)))+ 2M−mbits(pc))[M − 1 : 0],
get-expo(q))

elsez← (sign, get-man(q) & (2M − 2M−mbits(pc)), get-expo(q)).

Figure 4:FPU-DIV-SQRT (continued)
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are used as indices into these tables. The results are added and the 16-bit sum is appended
to a leading 1 andM − 17 trailing 0’s to produce get-man(x0). For op= OP-SQRT, a
separate pair of tables, represented by the functionssqrt-rom-pandsqrt-rom-n, is similarly
used to derive an initial approximation to the reciprocal of the square root ofb.

The functionsR0, S0, andS1, which are defined in terms of these functions, represent
the computation of get-man(x0) in the three cases listed in Lemma4.4below.

Definition 4.1. For all i ∈ N,
(a)R0(i) = 216+ recip-rom-p(i[14 : 5])+ recip-rom-n(cat(i[14 : 10], i[4 : 0], 5));
(b) S0(i) = 216+ sqrt-rom-p(i[14 : 5])+ sqrt-rom-n(cat(i[14 : 10], i[4 : 0], 5));
(c) S1(i) = 216+ sqrt-rom-p(210+ i[14 : 5])

+sqrt-rom-n(210+ cat(i[14 : 10], i[4 : 0], 5)).

While space does not allow a complete listing of the tables here, we list instead the
following three lemmas, which contain all required relevant information, and which have
all been verified by direct computation, using ACL2.

Lemma 4.1. For all i ∈ N, if i < 215, thenR0(i) ∈ N, S0(i) ∈ N, S1(i) ∈ N, and

expo(R0(i)) = expo(S0(i)) = expo(S1(i)) = 16.

Lemma 4.2. For all i ∈ N, if i < 215, then
(a) 232− 3 · 216 < R0(i)(215+ i) < R0(i)(215+ i + 1) < 232+ 3 · 216;
(b) 248− 3 · 232 < S0(i)

2(215+ i) < S0(i)
2(215+ i + 1) < 248+ 3 · 232;

(c) 249− 3 · 233 < S1(i)
2(215+ i) < S1(i)

2(215+ i + 1) < 249+ 3 · 233.

Lemma 4.3. For all i ∈ N, if i < 215, thenS0(i)
2 < 233 6 S1(i)

2.

The relationship betweenx0 andb may be described in terms ofR0, S0, andS1.

Lemma 4.4. Let I = get-man(b)[M − 2 : M − 16]. Assume that ifop= OP-DIV, then
get-expo(b)6 218− 3. Thenx0 is normal and

(a) sgn(x̂0) =
{

sgn(b̂) if op= OP-DIV
1 if op= OP-SQRT;

(b) sig(x̂0) =



2−16R0(I ) if op= OP-DIV
2−16S0(I ) if op= OP-SQRTandget-expo(b)[0] = 0
2−16S1(I ) if op= OP-SQRTandget-expo(b)[0] = 1;

(c) expo(x̂0) =
{ −expo(̂b)− 1 if op= OP-DIV

−bexpo(̂b)/2c − 1 if op= OP-SQRT.

Proof. First consider the case op= OP-DIV. By Lemma2.5,

get-man(b)[M − 2 : M − 11] = get-man(b)[M − 2 : M − 16][14: 5] = I[14 : 5],
hencep-value= recip-rom-p(I[14 : 5]). Similarly,

n-value= recip-rom-n(cat(I [14 : 10], I [4 : 0], 5)).

By Lemma4.1,

p-value+ n-value= R0(I )− 216 < 217− 216 = 216,
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hence

estimate= p-value+ n-value< 216

and by Lemma2.8,

get-man(x0) = 2M−17estimate| 2M−1 = 2M−17(estimate| 216)

= 2M−17(estimate+ 216) = 2M−17R0(I ).

Since estimate[16] = 0 and get-expo(b)6 218− 3,

get-expo(x0) = rem(218− 2+ 218− get-expo(b)− 1,218) = 218− 3− get-expo(b).

TheOP-DIV case now follows easily from Lemmas4.1and2.15.
In the case op= OP-SQRT, we may similarly show that get-man(x0) = 2M−17Sj (I ),

wherej = get-expo(b)[0]. Now

(218+ 217− 3+ comp1(get-expo(b),19)+ estimate[16])[18: 0]
= (218+ 217− 3+ comp1(get-expo(b),19))[18: 0]
= rem(218+ 217− 3+ comp1(get-expo(b),19),219)

= rem(218+ 217− 3+ 219− get-expo(b)− 1,219)

= rem(218+ 217− 3+ 219− (expo(̂b)+ 217− 1)− 1,219)

= rem(218− expo(̂b)− 3,219)

= 218− expo(̂b)− 3.

Thus,

get-expo(x0) = shr(218− expo(̂b)− 3,0, 19)

= b(218− expo(̂b)− 3)/2c
= 217− 1+ b−(expo(̂b)+ 1)/2c,

and

expo(x̂0) = b−(expo(̂b)+ 1)/2c = −bexpo(̂b)/2c − 1.

The error associated withx0 is characterized by the next two lemmas, which also establish
the bounds required by Lemma3.5.

Lemma 4.5. If op= OP-DIV andget-expo(b)6 218− 3, then
(a) |1− x̂0b̂| < 3 · 2−16; (b) 3/2< sig(x̂0)sig(b̂) < 3.

Proof. (a) By Lemma4.4,

x̂0b̂ = sig(x̂0)sig(b̂)2expo(x̂0)+expo(̂b) = sig(x̂0)sig(b̂)/2.

Let I = get-man(b)[M − 2 : M − 16]. Since 2M−1 6 get-man(b) < 2M ,

I = brem(get-man(b), 2M−1)/2M−16c = b(get-man(b)− 2M−1)/2M−16c
= bget-man(b)/2M−16− 215c,

hence

get-man(b)/2M−16− 215− 1 < I 6 get-man(b)/2M−16− 215,
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which along with Lemma2.15, implies

2−15(215+ I ) 6 sig(b̂) < 2−15(215+ I + 1).

Thus, by Lemmas4.4and4.2,

1− 3 · 2−16 < 2−32R0(I )(215+ I ) 6 x̂0b̂ < 2−32R0(I )(215+ I + 1) < 1+ 3 · 2−16.

(b) This follows from (a) and the observation that sig(x̂0)sig(b̂) = 2x̂0b̂.

Lemma 4.6. If op= OP-SQRT,b̂ > 0, andget-expo(b)6 218− 3, then
(a) |1− x̂0

2
b̂| < 3 · 2−16;

(b) 3/2< sig(x̂0
2
)sig(b̂) < 3;

(c) x̂0
2 is representable.

Proof. Let I = get-man(b)[M − 2 : M − 16]and expo(̂b) = 2r + s, where 06 s 6 1.
Case 1.s = 0

(a) In this case, get-expo(b)[0] = 1. By Lemma4.4,

x̂0
2
b̂ = sig(x̂0)

2sig(b̂)22expo(x̂0)+expo(̂b) = sig(x̂0)
2sig(b̂)22(−r−1)+2r

= sig(x̂0)
2sig(b̂)/4= 2−34S1(I )2sig(b̂).

Thus, by Lemma4.2,

1− 3 · 2−16 < 2−49S1(I )2(215+ I ) 6 x̂0
2
b̂ < 2−49S1(I )2(215+ I + 1) < 1+ 3 · 2−16.

(b) By Lemmas4.4 and4.3, sig(x̂0)
2 = 2−32S1(I )2 > 2, which implies sig(x̂0

2
) =

sig(x̂0)
2/2. Thus,

x̂0
2
b̂ = sig(x̂0)

2sig(b̂)/4= sig(x̂0
2
)sig(b̂)/2.

The claim now follows from (a).
(c) By Lemmas4.1 and4.4, x̂0 is 17-exact, and it follows that̂x0

2 is M-exact. Since
expo(̂b) > 1− 217,

expo(x̂0) 6 −b(1− 217)/2c − 1= 216− 1

and

expo(x̂0
2
) 6 2expo(x̂0)+ 1 6 217− 1.

But since expo(̂b) = get-expo(b)− (217− 1) 6 (218− 3)− (217− 1)= 217− 2,

x̂0
2 = sig(x̂0

2
)sig(b̂)/2b̂ > sig(b̂)/2b̂ = 2−1−expo(̂b) > 21−217

,

hence expo(̂x0
2
) > 1− 217.

Case 2.s = 1
(a) In this case, get-expo(b)[0] = 0. By Lemma4.4,

x̂0
2
b̂ = sig(x̂0)

2sig(b̂)22expo(x̂0)+expo(̂b) = sig(x̂0)
2sig(b̂)22(−r−1)+2r+1

= sig(x̂0)
2sig(b̂)/2= 2−33S0(I )2sig(b̂).

Thus, by Lemma4.2,

1− 3 · 2−16 < 2−48S0(I )2(215+ I ) 6 x̂0
2
b̂ < 2−48S0(I )2(215+ I + 1) < 1+ 3 · 2−16.
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(b) By Lemmas4.4 and4.3, sig(x̂0)
2 = 2−32S0(I )2 < 2, which implies sig(x̂0

2
) =

sig(x̂0)
2. Thus,

x̂0
2
b̂ = sig(x̂0)

2sig(b̂)/2= sig(x̂0
2
)sig(b̂)/2.

(c) As in Case 1,̂x0
2 is M-exact and expo(x̂0

2
) 6 217−1. Since expo(b̂) 6 217−2 and

expo(̂b) is odd, expo(̂b) 6 217− 3; hence

expo(x̂0) > −b(217− 3)/2c − 1= 1− 216

and

expo(x̂0
2
) > 2expo(x̂0) > 2− 217.

4.3. The operationOP-DIV
Given an initial approximationξ0 of 1/b̂, the Newton-Raphson formula

ξi = ξi−1(2− b̂ξi−1)

gives a converging sequence of approximationsξ1, ξ2, . . . The relative error ofξi is∣∣∣∣∣
1/b̂ − ξi

1/b̂

∣∣∣∣∣ = |1− b̂ξi |.

Thus, the following lemma (which is proved by simple arithmetic) shows that this sequence
is quadratically convergent.

Lemma 4.7. Letb, x ∈ Q and lety = x(2− bx). Then1− by = (1− bx)2.

Using Lemma4.7, we shall derive an error estimate forq̂ as an approximation of̂a/b̂.
First, we prove the following technical lemma.

Lemma 4.8. Assumêq is (µ+ 1)-exact, whereµ > 1, andq̂ 6= 0. Letζ ∈ Q satisfy

expo(ζ )6 expo(̂q),

|q̂ − ζ | 6 2expo(ζ )−µ−1,

and

|â/b̂ − ζ | < 2expo(̂a/b̂)−µ−2.

Then

|q̂ − â/b̂| < 2min(expo(̂q),expo(̂a/b̂))−µ.

Proof. First note that|q̂| > 3
4|ζ | > 9

16|â/b̂|, hence expo(̂q) > expo(̂a/b̂)− 1. Since

|q̂ − â/b̂| 6 |q̂ − ζ | + |â/b̂ − ζ | < 2expo(̂q)−µ−1+ 2expo(̂q)−µ−1 = 2expo(̂q)−µ,

we may assume expo(â/b̂) < expo(̂q). But|â/b̂| > |q̂|/2, hence expo(â/b̂) = expo(̂q)−1.
We may also assume expo(ζ )= expo(̂q), for otherwise expo(ζ )6 expo(̂a/b̂) and

|q̂ − â/b̂| 6 |q̂ − ζ | + |â/b̂ − ζ | < 2expo(ζ )−µ−1+ 2expo(̂a/b̂)−µ−1 6 2expo(̂a/b̂)−µ.
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If |q̂| > 2expo(̂q), then|q̂| > 2expo(̂q) + 2expo(̂q)−µ by Lemma2.13, and

|q̂ − â/b̂| > |q̂| − |â/b̂| > 2expo(̂q) + 2expo(̂q)−µ − 2expo(̂a/b̂)+1 = 2expo(̂q)−µ.

Therefore,|q̂| = 2expo(̂q), which implies|ζ | > |q̂| and

|q − â/b̂| = |q̂| − |â/b̂| 6 |ζ | − |â/b̂| 6 |ζ − â/b̂| < 2expo(̂a/b̂)−µ.

We shall assume here thatâ andb̂ are both positive; this assumption will be relieved as
in the proof of Theorem1 .

Lemma 4.9. Assumeop = OP-DIV, â > 0, b̂ > 0, expo(̂b) 6 217 − 2, 3 · 2−217
<

|â/b̂| < 3 · 2217−1, andmbits(pc)= µ. Thenq is normal,q̂ is (µ+ 1)-exact and

|q̂ − â/b̂| < 2min(expo(̂q),expo(̂a/b̂))−µ.

Proof. Let α = 2−M , β = 2expo(̂a/b̂), andε = 3/216. We define a sequence of approxima-
tionsξi of â/b̂ by

ξi =
{

x̂0 if i = 0
ξi−1(2− b̂ξi−1) if i > 0.

Sinceâ andb̂ are positive, so are theξi , as well as every product computed byFPU-MUL.
By Lemmas4.5and4.7,|1− b̂ξi | < ε2i

for all i. Thus,b̂ξi < 1+ε2i
and 2− b̂ξi < 1+ε2i

.
We also have

âξi = (â/b̂)(b̂ξi) < 2β(1+ ε2i

)

and

|â/b̂ − âξi | = (â/b̂)|1− b̂ξi | < (â/b̂)ε2i

< 2βε2i

.

By Theorem1, d̂0 = near(b̂x̂0, M) = near(b̂ξ0, M); hence by Lemma2.26,

|d̂0 − b̂ξ0| 6 2expo(̂bξ0)−M 6 2−M = α.

Note that our bounds for|â/b̂| ensure that the hypotheses of Theorem1 are satisfied by
x = a andy = x0. Thus,

|n̂0 − âξ0| 6 2expo(̂aξ0)−M 6 2expo(̂a/b̂)+1−M = 2αβ,

and by Lemma3.5(the hypotheses of which are ensured by Lemma4.5),

0 < 2− b̂ξ0 − 2α 6 r̂0 < 2− b̂ξ0.

Therefore,

n̂0r̂0 < (âξ0 + 2αβ)(2− b̂ξ0) = âξ1+ 2αβ(2− b̂ξ0) < âξ1+ 2αβ(1+ ε)

< âξ1+ 2αβ + 2−13αβ,

n̂0r̂0 > (âξ0 − 2αβ)(2− b̂ξ0 − 2α) = âξ1− 2αβ(2− b̂ξ0)− 2αâξ0 + 4α2β

> âξ1− 2αβ(1+ ε)− 2α2β(1+ ε) > âξ1− 6αβ − 2−12αβ,
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and

|n̂0r̂0 − â/b̂| 6 |n̂0r̂0 − âξ1| + |âξ1− â/b̂| < 7αβ + 2βε2

< (7 · 2−75+ 9 · 2−31)β < 2−27β

= 2expo(̂a/b̂)−27.

Suppose pc= PC-32. Then µ = 24 and

|n̂0r̂0 − â/b̂| < 2expo(̂a/b̂)−27 < 2expo(̂a/b̂)−µ−2.

By Lemma3.7,q̂ is(µ+1)-exact, expo(̂n0r̂0) 6 expo(̂q), and|n̂0r̂0−q̂| 6 2expo(n̂0r̂0)−µ−1.
We may now invoke Lemma4.8with ζ = n̂0r̂0, which yields the desired inequality.

Thus, we may assume that pc6= PC-32. Now

d̂0r̂0 < (b̂ξ0 + α)(2− b̂ξ0) = b̂ξ1+ α(2− b̂ξ0) < b̂ξ1+ α + 2−14α,

d̂0r̂0 > (b̂ξ0 − α)(2− b̂ξ0 − 2α) = b̂ξ1− 2αb̂ξ0 − α(2− b̂ξ0)+ 2α2

> b̂ξ1− 2α(1+ ε)− α(1+ ε) > b̂ξ1− 3α− 2−13α,

and Lemma2.26implies

|d̂1− d̂0r̂0| 6 2expo(d̂0r̂0)−M 6 α;
hence

d̂1 6 d̂0r̂0 + α < b̂ξ1+ 2α + 2−14α

and

d̂1 > d̂0r̂0 − α > b̂ξ1− 4α − 2−13α.

By Lemmas3.5and3.6,

r̂1 < 2− d̂0r̂0 < (2− b̂ξ1)+ 3α+ 2−13α

and

r̂1 > 2− d̂0r̂0 − 2α > (2− b̂ξ1)− 3α− 2−14α > 0.

Continuing in this manner, we have

|n̂1− n̂0r̂0| 6 2expo(n̂0r̂0)−M 6 2αβ,

n̂1 6 n̂0r̂0 + 2αβ < âξ1+ 4αβ + 2−13αβ,

n̂1 > n̂0r̂0 − 2αβ > âξ1− 8αβ − 2−12αβ,

n̂1r̂1 < (âξ1+ 4αβ + 2−13αβ)((2− b̂ξ1)+ 3α+ 2−13α)

< âξ2+ (4αβ + 2−13αβ)(1+ ε2)+ 2β(1+ ε2)(3α+ 2−13α)

+(4αβ + 2−13αβ)(3α+ 2−13α)

< âξ2+ 10αβ + 2−11αβ,

n̂1r̂1 > (âξ1− 8αβ − 2−12αβ)((2− b̂ξ1)− 3α+ 2−14α)

> âξ2− (8αβ + 2−12αβ)(1+ ε2)− 2β(1+ ε2)(3α+ 2−14α)

> âξ2− 14αβ − 2−11αβ,
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and

|n̂1r̂1− â/b̂| 6 |n̂1r̂1− âξ2| + |âξ2− â/b̂| < 15αβ+ 2−11αβ + 2βε4

< (15 · 2−75+ 81 · 2−63)β < 2−56β

= 2expo(̂a/b̂)−56.

Suppose pc= PC-64, and thereforeµ = 53. Then

|n̂1r̂1− â/b̂| < 2expo(̂a/b̂)−56 < 2expo(̂a/b̂)−µ−2.

The remaining hypotheses of Lemma4.8, with n̂1r̂1 substituted forζ , again follow from
Lemma3.7, and the desired inequality follows.

Thus, we may assume pc= PC-80 or pc= PC-87. Continuing, we have

d̂1r̂1 < (b̂ξ1+ 2α + 2−14α)((2− b̂ξ1)+ 3α+ 2−13α)

< b̂ξ2+ (2α + 2−14α)(1+ ε2)+ (3α+ 2−13α)(1+ ε2)

+(2α + 2−14α)(3α+ 2−13α)

< b̂ξ2+ 5α+ 2−12α,

d̂1r̂1 > (b̂ξ1− 4α − 2−13α)((2− b̂ξ1)− 3α− 2−14α)

> b̂ξ2− (4α + 2−13α)(1+ ε2)− (1+ ε2)(3α+ 2−14α)

> b̂ξ2− 7α− 2−12α,

r̂2 < 2− d̂1r̂1 < (2− b̂ξ2)+ 7α+ 2−12α,

r̂2 > 2− d̂1r̂1− 2α > (2− b̂ξ2)− 7α− 2−12α > 0,

|n̂2− n̂1r̂1| 6 2expo(n̂1r̂1)−M 6 2αβ,

n̂2 6 n̂1r̂1+ 2αβ < âξ2+ 12αβ + 2−11αβ,

n̂2 > n̂1r̂1− 2αβ > âξ2− 16αβ− 2−11αβ,

n̂2r̂2 < (âξ2+ 12αβ + 2−11αβ)((2− b̂ξ2)+ 7α+ 2−12α)

< âξ3+ (12αβ + 2−11αβ)(1+ ε4)+ 2β(1+ ε4)(7α+ 2−12α)

+(12αβ + 2−11αβ)(7α+ 2−12α)

< âξ3+ 26αβ+ 2−9αβ,

and

n̂2r̂2 > (âξ2− 16αβ− 2−11αβ)((2− b̂ξ2)− 7α+ 2−12α)

> âξ3− (16αβ+ 2−11αβ)(1+ ε4)− 2β(1+ ε4)(7α2+ 2−12α)

> âξ3− 30αβ − 2−9αβ.

Finally, sinceµ 6 68,

|n̂2r̂2− â/b̂| 6 |n̂2r̂2− âξ3| + |âξ3− â/b̂| < 31αβ+ 2βε8

< (30 · 2−75+ 81 · 2−110)β < 2−70β

6 2expo(̂a/b̂)−µ−2,
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and the lemma follows from Lemma4.8, withζ = n̂2r̂2.

4.4. The operationOP-SQRT

The Newton-Raphson formula for approximating 1/
√

b̂ is

ξi = ξi−1

2
(3− b̂ξ2

i−1).

Since the relative error of this approximation is∣∣∣∣∣
ξi − 1/

√
b̂

1/
√

b̂

∣∣∣∣∣ = |
√

b̂ξi − 1|< |
√

b̂ξi − 1||
√

b̂ξi + 1| = |b̂ξ2− 1|,

convergence is established by the following lemma, which is proved in [8].

Lemma 4.10. Letb, x ∈ Q with 0 6 bx2 6 4 and lety = x
2(3− bx2). Then

0 6 1− by2 6 (1− bx2)2.

We shall use Lemma4.10to derive an error estimate forq in theOP-SQRTcase.

Lemma 4.11. For all i ∈ N, let ξi be defined by

ξi =
{

x̂0 if i = 0
ξi−1

2 (3− b̂ξ2
i−1) if i > 0,

and letε = 3/216. Assume that̂q > 0 and q̂ is (µ+ 1)-exact, whereµ > 24.
Let `, h ∈ Q such that0 6 ` 6 h and`2 6 b̂ 6 h2. Let ζ, η ∈ Q+ and i ∈ Z+ such

that

expo(ζ )6 expo(̂q),

|q̂ − ζ | 6 2expo(ζ )−µ−1,

|b̂ξi − ζ | < 2bexpo(̂b)/2cη,

and

2η + 8ε2i 6 2−µ−1.

Then

h > q − 2min(expo(̂q),expo(h))−µ

and

` < q + 2min(expo(̂q),expo(`))−µ.

Proof. By Lemmas4.6and4.10, 06 1− b̂ξ2
i < ε2i

, whereε = 3/216, and hence

(b̂ξi)
2 = b̂(b̂ξ2

i ) > b̂(1− ε2i

) > 2expo(̂b)−1 > (2bexpo(̂b)/2c−1)2

andb̂ξi > 2bexpo(̂b)/2c−1.
Since|q̂ − ζ | 6 2expo(ζ )−µ−16 ζ/4, q̂ > 3

4ζ . Sinceη < 2−µ−2,

|b̂ξi − ζ | < 2bexpo(̂b)/2c−µ−2 < b̂ξi2
−µ−1 6 b̂ξi/4,
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and hencêq > 3
4ζ > 9

16b̂ξi , which implies

q̂2 >
81

256
(b̂ξi)

2 >
81

256
b̂(1− ε2i

) > b̂/4.

It follows that expo(̂q) > bexpo(̂b)/2c − 1.
Sinceh2 > b̂ > b̂(b̂ξ2

i ) = (b̂ξi)
2,

h > b̂ξi > q̂ − (|q̂ − ζ | + |b̂ξi − ζ |)
> q̂ − (2expo(ζ )−µ−1+ 2expo(̂q)−µ−1) > q̂ − 2expo(̂q)−µ.

Therefore, we may assume expo(h) <expo(̂q). But |h| > |q̂|/2; hence expo(h) =
expo(̂q)− 1. Also note that expo(h)> bexpo(̂b)/2c, for otherwiseh < 2bexpo(̂b)/2c and

b̂ 6 h2 < 22bexpo(̂b)/2c 6 2expo(̂b).

We may further assume expo(ζ )= expo(̂q), for otherwise expo(ζ )6 expo(h)and

h > b̂ξi > q̂ − (|q̂ − ζ | + |b̂ξi − ζ |)
> q̂ − (2expo(ζ )−µ−1+ 2bexpo(̂b)/2c−µ−2) > q̂ − 2expo(h)−µ.

If q̂ > 2expo(̂q), thenq̂ > 2expo(̂q) + 2expo(̂q)−µ by Lemma2.13, and

h > q̂ − 2expo(̂q)−µ > 2expo(̂q) = 2expo(h)+1.

Therefore,q̂ = 2expo(̂q), which impliesζ > q̂ and

h > b̂ξi = q̂ − (q̂ − b̂ξi) > q̂ − (ζ − b̂ξi) > q̂ − 2bexpo(̂b)/2c−µ−2 > q̂ − 2expo(h)−µ.

In order to derive the bound for̀, we may assume expo(q̂) 6 expo(`), for otherwise
` < q̂ and the inequality holds trivially. Since(b̂ξi)

2 > b̂(1− ε2i
),

`2 6 b̂ < (b̂ξi)
2/(1− ε2i

) < [b̂ξi/(1− ε2i

)]2,
and hence

` < b̂ξi/(1− ε2i

) < b̂ξi(1+ 2ε2i

).

Recall that expo(̂q) > bexpo(̂b)/2c − 1 andq̂ > 9
16b̂ξi ; henceb̂ξi < 2expo(̂q)+2. Thus,

` < b̂ξi(1+ 2ε2i

) < b̂ξi + 8ε2i

2expo(̂q) 6 q̂ + |q̂ − ζ | + |ζ − b̂ξi | + 8ε2i

2expo(̂q)

< q̂ + 2expo(̂q)−µ−1+ 2bexpo(̂b)/2cη + 8ε2i

2expo(̂q) 6 q̂ + 2expo(̂q)(2−µ−1+ 2η + 8ε2i

)

6 q̂ + 2expo(̂q)(2−µ−1+ 2−µ−1) = q̂ + 2expo(̂q)−µ.

We shall also require the following lemma, in order to invoke Lemma3.8.

Lemma 4.12. Under the hypothesis of Lemma4.11,|q̂2− b̂| < 2expo(̂b)−3.

Proof. Since expo(̂b) 6 2bexpo(̂b)/2c + 1, b̂ < 2expo(̂b)+1 6 (2bexpo(̂b)/2c+1)2. Thus,

(b̂ξi)
2 = b̂(b̂ξ2

i ) 6 b̂ < (2bexpo(̂b)/2c+1)2

andb̂ξi < 2bexpo(̂b)/2c+1. Now since

|q̂ − b̂ξi | 6 |q̂ − ζ | + |b̂ξi − ζ | < 2expo(̂q)−µ 6 2bexpo(̂b)/2c+1−µ
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and

|q̂ + b̂ξi | 6 2b̂ξi + |q̂ − b̂ξi | < 2bexpo(̂b)/2c+2+ 2bexpo(̂b)/2c+1−µ < 2bexpo(̂b)/2c+3,

we have

|q̂2− (b̂ξi)
2| = |q̂ − b̂ξi ||q̂ + b̂ξi | < 22bexpo(̂b)/2c+4−µ 6 b̂24−µ.

Thus,

|q̂2− b̂| 6 |q̂2− (b̂ξi)
2| + b̂|1− b̂ξ2

i | < b̂25−µ < 2expo(̂b)+6−µ.

Lemma 4.13. Assumeop= OP-SQRT,b̂ > 0, expo(̂b) 6 217−2, and letmbits(pc)= µ.
Let`, h ∈ Q such that0 6 ` 6 h and`2 6 b̂ 6 h2. Thenq is normal,q̂ is (µ+ 1)-exact,

` < q̂ + 2min(expo(̂q),expo(`))−µ,

h > q̂ − 2min(expo(̂q),expo(h))−µ,

and

|q̂2− b̂| < 2expo(̂b)−3.

Proof. Let α = 2−M , β = 2bexpo(̂b)/2c, andε = 3/216. For i ∈ N, let ξi be defined as in
Lemma4.11. Thenb̂ < 4β2 and|1− b̂ξ2

i | < ε2i
. For i >0, b̂ξ2

i 6 1 andb̂ξi < 2β, which

implies 2expo(̂bξi ) 6 β. On the other hand,

(b̂ξ0)
2 = b̂(b̂ξ2

0 ) < 4β2(1+ ε) < (2β(1+ ε))2;
henceb̂ξ0 < 2β(1+ ε) < 4β, which implies 2expo(̂bξ0) 6 2β. Also note that for alli,

(3− b̂ξ2
i )/2= 1+ (1− b̂ξ2

i )/2 < 1+ ε2i

/2.

We proceed as in the proof of Lemma4.9, invoking Lemmas4.11 and4.12 in each
of several cases. According to Lemma4.6(c), the hypothesis of Theorem1 is satisfied by
x = y = x̂0. Thus,

t̂0 = near(x̂0
2
, M) = x̂0

2 = ξ2
0 .

Similarly,

d̂0 = near(b̂ξ0, M)

and

n̂0 = near(b̂t̂0, M) = near(b̂ξ2
0 , M).

Therefore, by Lemma2.26,

|d̂0 − b̂ξ0| 6 2expo(̂bξ0)−M 6 2αβ

and

|n̂0 − b̂ξ2
0 | 6 2expo(̂bξ2

0 )−M 6 α.

By Lemmas3.5and4.6,

(3− b̂ξ2
0 )/2− 2α 6 r̂0 < (3− b̂ξ2

0 )/2.
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Thus,

d̂0r̂0 < (b̂ξ0 + 2αβ)(3− b̂ξ2
0 )/2 < b̂ξ1+ 2αβ(1+ ε/2) < b̂ξ1+ 2αβ + 2−14αβ

and

d̂0r̂0 > (b̂ξ0 − 2αβ)((3− b̂ξ2
0 )/2− 2α) > b̂ξ1− 2αβ(1+ ε/2)− 2β(1+ ε)2α

> b̂ξ1− 6αβ − 2−12αβ.

Suppose pc= PC-32 andµ = 24. We shall apply Lemmas4.11and4.12with ζ = d̂0r̂0,
i = 1, andη = 7α. Under these substitutions, we have

|b̂ξi − ζ | < 7αβ = 2bexpo(̂b)/2cη

and

2η + 8ε2i = 14 · 2−M + 8ε2 6 14 · 2−75+ 9 · 2−29 < 2−25 = 2−µ−1.

The remaining hypotheses of Lemma4.11are ensured by Lemma3.7, and the conclusion
follows.

Thus, we may assume pc6= PC-32. Now we havet̂1 = near(r̂0
2
, M); hence|t̂1− r̂0

2| 6
α, which implies

t̂1 6 (3− b̂ξ2
0 )2/4+ α

and

t̂1 > ((3− b̂ξ2
0 )/2− 2α)2− α

> (3− b̂ξ2
0 )2/4− 4α(1+ ε/2)− α

> (3− b̂ξ2
0 )2/4− 5α− 2−13α.

Consequently,

n̂0t̂1 6 (bξ2
0 + α)((3− b̂ξ2

0 )2/4+ α) < b̂ξ2
1 + (1+ ε)α + α(1+ ε/2)2+ α2

< b̂ξ2
1 + 2α + 2−13α

and

n̂0t̂1 > (bξ2
0 − α)((3− b̂ξ2

0 )2/4− 5α− 2−13α)

> b̂ξ2
1 − (1+ ε)(5α+ 2−13α)− α(1+ ε/2)2 > b̂ξ2

1 − 6α− 2−11α.

Sinced̂1 = near(d̂0r̂0, M), |d̂1− d̂0r̂0| 6 2expo(d̂0r̂0)−M 6 2αβ; hence

b̂ξ1− 8αβ − 2−12αβ < d̂1 < b̂ξ1+ 4αβ + 2−14αβ.

Similarly, n̂1 = near(n̂0t̂1, M), |n̂1− n̂0t̂1| 6 2expo(n̂0t̂1)−M 6 α, and

b̂ξ2
1 − 7α− 2−11α < n̂1 < b̂ξ2

1 + 3α+ 2−13α.

By Lemmas3.5and3.6,

r̂1 < (3− n̂0t̂1)/2 < (3− b̂ξ2
1 )/2+ 3α+ 2−10α

and

r̂1 > (3− n̂0t̂1)/2− 2α > (3− b̂ξ2
1 )/2− 3α− 2−12α.
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Thus,

d̂1r̂1 < (b̂ξ1+ 4αβ + 2−14αβ)((3− b̂ξ2
1 )/2+ 3α+ 2−10α)

< b̂ξ2+ 2β(3α+ 2−10α)+ (4αβ + 2−14αβ)(1+ ε2/2)

+(3α+ 2−10α)(4αβ + 2−14αβ)

< b̂ξ2+ 10αβ + 2−8αβ

and

d̂1r̂1 > (b̂ξ1− 8αβ − 2−12αβ)((3− b̂ξ2
1 )/2− 3α− 2−12α)

> b̂ξ2− 2β(3α+ 2−12α)− (8αβ + 2−12αβ)(1+ ε2/2)

> b̂ξ2− 14αβ − 2−10αβ.

Suppose pc= PC-64 andµ = 53. We shall again invoke Lemmas4.11and4.12, now
with ζ = d̂1r̂1, i = 2, andη = 15α. Thus

|b̂ξi − ζ | < 15αβ = 2bexpo(̂b)/2cη

and

2η + 8ε2i = 30 · 2−M + 8ε4 6 30 · 2−75+ 81 · 2−61 < 2−54 = 2−µ−1.

The remaining hyptheses of Lemma4.11are again ensured by Lemma3.7.
Thus, we may assume pc= PC-80 or pc= PC-87. Continuing in the same manner,

we have

|t̂2− r̂1
2| 6 2expo(r̂1

2)−M 6 α,

t̂2 < (3− b̂ξ2
1 )2/4+ 2(1+ ε2/2)2(3α+ 2−10α)+ (3α+ 2−10α)2+ α

< (3− b̂ξ2
1 )2/4+ 7α+ 2−8α,

t̂2 > (3− b̂ξ2
1 )2/4− 2(1+ ε2/2)2(3α+ 2−12α)− α

> (3− b̂ξ2
1 )2/4− 7α+ 2−10α,

|d̂2− d̂1r̂1| 6 2expo(d̂1r̂1)−M 6 2αβ,

b̂ξ2− 16αβ− 2−10αβ < d̂2 < b̂ξ2+ 12αβ + 2−8αβ,

n̂1t̂2 < (b̂ξ2
1 + 3α+ 2−13α)((3− b̂ξ2

1 )2/4+ 7α+ 2−8α)

< b̂ξ2
2 + (7α+ 2−8α)+ (1+ ε2/2)2(3α+ 2−13α)

+(3α+ 2−13α)(7α+ 2−8α)

< b̂ξ2
1 + 10α + 2−7α,

n̂1t̂2 > (b̂ξ2
1 − 7α− 2−11α)((3− b̂ξ2

1 )2/4− 7α+ 2−10α)

> b̂ξ2
2 − (7α+ 2−10α)− (1+ ε2/2)2(7α+ 2−11α)

> b̂ξ2
1 − 14α − 2−9α,

r̂2 < (3− n̂1t̂2)/2 < (3− b̂ξ2
2 )/2+ 7α+ 2−10α,
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r̂2 > (3− n̂1t̂2)/2− 2α > (3− b̂ξ2
2 )/2− 7α− 2−8α,

d̂2r̂2 < (b̂ξ2+ 12αβ + 2−8αβ)((3− b̂ξ2
2 )/2+ 7α+ 2−10α)

< b̂ξ3+ 2β(7α+ 2−10α)+ (1+ ε4/2)(12αβ + 2−8αβ)

+(12αβ + 2−8αβ)(7α+ 2−10α)

< b̂ξ3+ 26αβ+ 2−7αβ,

and

d̂2r̂2 > (b̂ξ2− 16αβ− 2−10αβ)((3− b̂ξ2
2 )/2− 7α+ 2−8α)

> b̂ξ3− 2β(7α+ 2−8α)− (1+ ε4/2)(16αβ+ 2−10αβ)

> b̂ξ3− 30αβ − 2−6αβ.

Finally, we apply Lemmas4.11and4.12with ζ = d̂2r̂2, i = 3, andη = 31α. Thus,

|b̂ξi − ζ | < 31αβ = 2bexpo(̂b)/2cη,

and sinceµ 6 68,

2η + 8ε2i = 62 · 2−M + 8ε8 6 62 · 2−75+ 2−112 < 2−69 6 2−µ−1.

The proof is completed by invoking Lemmas3.7and4.11.

4.5. Final rounding
The remaining analysis pertains to the latter part ofFPU-DIV-SQRT, in which the ap-

proximationq is adjusted to produce the correctly rounded result.
The significance of the variablesq-guardandq-lsb is given by the following.

Lemma 4.14. Assume that q is normal and̂q is (µ+ 1)-exact, whereµ = mbits(pc).
(a)q-guard= 0⇔ q̂ is µ-exact;
(b) q-lsb= 0⇔ trunc(q̂, µ) is (µ− 1)-exact.

Proof. (a) Letm = get-man(q). Thenm is (µ+ 1)-exact, i.e,

m2µ−expo(m)= m2µ+1−M ∈ Z

and

q-guard= m[M − µ− 1] = rem(bm2µ+1−Mc, 2) = rem(m2µ+1−M, 2).

But

m is µ-exact⇔ m2µ−M ∈ Z⇔ m2µ+1−M is even⇔ q-guard= 0.

(b)q-lsb= m[M−µ] = rem(bm2µ−Mc, 2) and trunc(m, µ)= bm2µ−Mc2M−µ. Thus,

trunc(m, µ) is (µ− 1)-exact⇔ bm2µ−Mc2M−µ2(µ−1)−1−(M−1) = bm2µ−Mc/2 ∈ Z

⇔ bm2µ−Mc is even

⇔ q-lsb= 0.

The correctness proof for division will be based on the following.
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Lemma 4.15. Letµ = mbits(pc). Suppose q is normal,q̂ is (µ+ 1)-exact,sign= 0, and
21−217

< q̂ < 2217
(2− 21−µ). Letx ∈ Q such that

(a) |x − q̂| < 2min(expo(̂q),expo(x))−µ;
(b) if rem-neg= 1, thenq̂ > x;
(c) if rem-pos= 1, thenq̂ < x;
(d) if rem-zero= 1, thenq̂ = x.

Then z is normal andrnd(x, rc,pc)= ẑ.

Proof. Note that the hypothesis implies thatẑ > 0 andx > 0.
Case 1.rc= RC-NEGor rc= RC-CHOP

In this case, rnd(x, rc,pc)= trunc(x, µ).
Subcase 1.1.q-guard= 0 and rem-neg= 1

By Lemma4.14,q̂ is µ-exact. Also,x < q̂. By Lemma2.24,

get-man(q) & (2M − 2M−µ) = trunc(get-man(q), µ) = get-man(q).

If get-man(q) = 2M−1, thenq̂ = 2expo(̂q), where by hypothesis, expo(q̂) > 1− 217. In
this case,̂z = (2− 21−µ)2expo(̂q)−1 and expo(̂z) = expo(̂q) − 1. In all other cases,̂q >
2expo(̂q)+21+expo(̂q)−µ, ẑ = q̂−21+expo(̂q)−µ, ẑ > 2expo(̂q), and expo(̂z) = expo(̂q). In any
case,̂z + 21+expo(̂z)−µ = q̂. Since trunc(x, µ)6 x < q̂, trunc(x, µ)6 ẑ by Lemma2.13.
Also, trunc(x, µ)> ẑ, for otherwise we would havex < ẑ, expo(x)6 expo(̂z), and

x > q̂ − 2expo(x)−µ > q̂ − 21+expo(̂z)−µ = ẑ.

Subcase 1.2.q-guard= 1
In this case,̂q is notµ-exact, and̂z = trunc(q̂, µ). By Lemma2.27,ẑ = q̂−2expo(̂q)−µ.

Therefore,

trunc(x, µ)6 x < q̂ + 2expo(̂q)−µ = ẑ+ 2expo(̂q)+1−µ = ẑ+ 2expo(̂z)+1−µ,

and hence trunc(x, µ)6 ẑ. But sincex > q̂−2expo(̂q)−µ = ẑ, trunc(x, µ)> trunc(̂z, µ) =
ẑ.
Subcase 1.3.q-guard= rem-neg= 0

q̂ is µ-exact,x > q̂, andẑ = trunc(q̂, µ) = q̂.
In this case,

trunc(x, µ)6 x < q̂ + 2expo(̂q)−µ = ẑ+ 2expo(̂z)−µ < ẑ+ 2expo(̂z)+1−µ,

which implies trunc(x, µ)6 ẑ. But x > q̂ = ẑ implies trunc(x, µ)> ẑ.
Case 2.rc= RC-POS

In this case, rnd(x, rc,pc)= away(x, µ).
Subcase 2.1.q-guard= 1

Here,q̂ is (µ+ 1)-exact but notµ-exact. By the same reasoning as used in Subcase 1.1,
we may show that

ẑ = trunc(q̂, µ)+ 2expo(̂q)+1−µ.

But then by Lemma2.27,

ẑ = q̂ − 2expo(̂q)−µ + 2expo(̂q)+1−µ = q̂ + 2expo(̂q)−µ = away(q̂, µ).

Sincex < q̂ + 2expo(̂q)−µ = ẑ, away(x, µ) 6 away(ẑ, µ) = ẑ. But x > q̂ − 2expo(̂q)−µ =
trunc(q̂, µ); hence away(x, µ) > trunc(q̂, µ)+ 2expo(̂q)+1−µ = ẑ.
Subcase 2.2.q-guard= 0 and rem-pos= 1.
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In this case,̂q is µ-exact,q̂ < x, and

ẑ = trunc(q̂, µ)+ 2expo(̂q)+1−µ = q̂ + 2expo(̂q)+1−µ.

Sincex < ẑ, away(x, µ) 6 away(ẑ, µ) = ẑ. But away(x, µ) > x > q̂, so away(x, µ) >
q̂ + 2expo(̂q)+1−µ = ẑ.
Subcase 2.3.q-guard= rem-pos= 0

q̂ is µ-exact,x 6 q̂, andẑ = trunc(q̂, µ) = q̂. Thus,

away(x, µ) 6 away(q̂, µ) = q̂ = ẑ.

Sincex > q − 2expo(x)−µ, away(x, µ) > near(x, µ) > q̂ by Lemma2.28.
Case 3.rc= RC-NEARandq-guard= 0

Here,q̂ is µ-exact, rnd(x, rc,pc)= near(x, µ), andẑ = trunc(q̂, µ) = q̂.
Sincex < q̂ + 2expo(̂q)−µ implies near(x, µ) 6 q̂ = ẑ by Lemma2.28(b). But since

x > q̂ − 2expo(x)−µ, near(x, µ) > q̂ by Lemma2.28(c).
Case 4.rc= RC-NEARandq-guard= 1

In this case,q̂ is (µ + 1)-exact but notµ-exact. Leta = q − 2expo(̂q)−µ and b =
q + 2expo(̂q)−µ. By Lemma2.27,a = trunc(q̂, µ) andb = away(q̂, µ).
Subcase 4.1.rem-pos= 1

In this case,̂z = b andq̂ < x. Sincex < q̂ + 2expo(̂q)−µ = b,

near(x, µ) 6 near(b, µ) = b = ẑ.

But x > q = b − 2expo(̂q)−µ > b − 2expo(x)−µ; hence near(x, µ) > b.
Subcase 4.2.rem-neg= 1

In this case,̂z = trunc(q̂, µ) = a andx < q̂; hence near(x, µ) 6 a = ẑ by Lemma2.28,
andx > q − 2expo(̂q)−µ = a implies near(x, µ) > near(a, µ) = a.
Subcase 4.3.rem-zero= 1

Here,x = q̂; hence near(x, µ) = near(q̂, µ). We shall show near(q̂, µ) = ẑ. Note that
by Lemma2.29, near(q̂, µ) is (µ− 1)-exact.

If q-lsb= 1, thenẑ = b anda = trunc(q̂, µ) is not(µ−1)-exact by Lemma4.14. Thus,
near(q̂, µ) 6= a, which implies near(q̂, µ) = b = ẑ.

If q-lsb = 0, thenẑ = a, a is (µ − 1)-exact by Lemma4.14. It follows thatb is not
(µ− 1)-exact, and hence near(q̂, µ) = a.

We may now state the correctness theorem for division. Note that the bound on expo(b̂)

is required by Lemma4.4 and is therefore unavoidable. The other constraint states that
expo(̂a/b̂) may not assume either of the limiting values 1− 217 and 217. This is acceptable
since the hardware would never be expected to return a value with either of those exponents.
In particular, IEEE compliance only involves exponents that are accommodated by the 80-bit
(64, 15) format.

Theorem 2. Assumeop = OP-DIV, rc is a rounding control specifier, pc is an external
precision control specifier, and a and b are normal encodings such thatexpo(̂b) 6 217− 2
and2− 217 6 expo(̂a/b̂) 6 217− 1. Then z is a normal encoding and

ẑ = rnd(â/b̂, rc,pc).

Proof. By the same reasoning that was used in the proof of Theorem1, we may assume
that â > 0 andb̂ > 0. We need only show that the hypotheses of Lemma4.15are satisfied
by x = â/b̂.
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First note that our hypothesis regarding expo(â/b̂) yields the bounds on|â/b̂| that are
required by Lemma4.9, which implies that̂q is (µ+ 1)-exact and

|q̂ − â/b̂| < 2min(expo(̂q),expo(̂a/b̂))−µ.

This in turn implies the bounds on̂q that are required by Lemma4.15, as well aŝq > 0,
and hence get-sign(q) = sign= 0.

Next, we apply Lemma3.8with x = b, y = q, d = a, andz = rem, which implies that

|â/b̂| > |q̂| ⇔ |b̂q̂| < |â| ⇔ get-man(rem)[M − 2] = 1⇔ rem-pos= 1

and

â/b̂ = q̂ ⇔ b̂q̂ = â ⇔ get-man(rem)[M − 2 : 0] = inexact= 0⇔ rem-zero= 1.

But since exactly one of rem-pos, rem-zero, and rem-neg is nonzero, it follows that

|â/b̂| < |q̂| ⇔ rem-neg= 1,

and all hypotheses of Lemma4.15are satisfied.

In order to prove our correctness result for square root, a modification of Lemma4.16
will be required.

Lemma 4.16. Letµ = mbits(pc). Suppose q is normal,q̂ is (µ+ 1)-exact,sign= 0, and
21−217

< q̂ < 2217
(2− 21−µ). Let`, h ∈ Q such that

(a)`− 2min(expo(̂q),expo(`))−µ < q̂ < h+ 2min(expo(̂q),expo(h))−µ;
(b) if rem-neg= 1, thenq̂ > `;
(c) if rem-pos= 1, thenq̂ < h;
(d) if rem-zero= 1, then` 6 q̂ 6 h.

Then z is normal andrnd(`, rc,pc)6 ẑ 6 rnd(h, rc,pc).

Proof. We shall prove the first inequality; the proof of the second is similar.
Case 1. rem-neg= 1

Since` < q̂, we may findx such that̀ < x < q̂ andx > q̂ − 2min(expo(̂q),expo(x))−µ.
Then rnd(`, rc,pc)6 rnd(x, rc,pc), but by Lemma4.15, rnd(x, rc,pc)= ẑ.
Case 2. rem-pos= 1

Choosex so thatq̂ < x < q + 2min(expo(̂q),expo(x))−µ andx > `. Then rnd(`, rc,pc) 6
rnd(x, rc,pc), but by Lemma4.15, rnd(x, rc,pc)= ẑ.
Case 3. rem-zero= 1

Let x = q̂. Then` 6 x; hence rnd(`, rc,pc) 6 rnd(x, rc,pc), but by Lemma4.15,
rnd(x, rc,pc)= ẑ.

Theorem 3. Assumeop= OP-SQRT, rc is a rounding control specifier, pc is an external
precision control specifier, and b is a normal encoding such thatexpo(̂b) 6 217− 2. Let
`, h ∈ Q such that0 6 ` 6 h and`2 6 b̂ 6 h2. Then z is a normal encoding and

rnd(`, rc,pc)6 ẑ 6 rnd(h, rc,pc).

Proof. It suffices to show that the hypotheses of Lemmas4.16 are satisfied. First, by
Lemma4.13,q̂ is (µ+ 1)-exact,

` < q̂ + 2min(expo(̂q),expo(`))−µ,

197https://doi.org/10.1112/S1461157000000176 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000176


Proof of IEEE Compliance of the AMD-K7TM Processor

and

h > q̂ − 2min(expo(̂q),expo(h))−µ.

Substituting 2bexpo(̂b)/2c for ` in the same lemma, we have

q̂ > 2bexpo(̂b)/2c − 2bexpo(̂b)/2c−µ > 2bexpo(̂b)/2c−1 > 0;
hence

get-sign(q) = 0= sign.

Similarly, substituting 2bexpo(̂b)/2c+1 for h yields

q̂ < 2bexpo(̂b)/2c+1+ 2bexpo(̂b)/2c+1−µ < 2bexpo(̂b)/2c+2.

Thus,

22−217
< 2bexpo(̂b)/2c−1 6 q̂ < 2bexpo(̂b)/2c+2 < 2217

.

Finally, we apply Lemma3.8 with x = y = q, d = b, andz = rem, which yields the
following.

(1) if rem-neg= 1, thenq̂2 > b̂ > `2; henceq̂ > `;

(2) if rem-pos= 1, thenq̂2 < b̂ 6 h2; henceq̂ < h;

(3) if rem-zero= 1, thenq̂2 = b̂; hencè 6 q̂ 6 h.

Thus, all hypotheses of Lemmas4.16are satisfied.

5. Conclusion

As noted in the introduction, the practical value of formal verification has been illustrated
in this exercise by the detection of two design flaws. Both of these were in the definition
of the procedureFPU-MUL, but neither affected the results of multiplication. One was an
error in the specification of the parameterr in the rare case in which overflow= 0 and
round-carryout-no-overflow= 1, which would inevitably have led to erroneous quotients
and square roots for certain inputs. The other was in the calculation ofz in theOP-BACK
case, and might have led to improper rounding of square roots, although we were unable to
exhibit a concrete example of this behavior. It was not surprising that neither problem was
exposed by traditional testing methods. Once they had been identified, however, both were
easily corrected before the design was committed to silicon.

Aside from the correction of errors, formal analysis may also provide insight that allows
improvements in the efficiency of a design. For example, while the multiplier that was
originally presented to us had a width of 76 bits, we were able to show, by representing it
as an indefinite parameterM, that this width could effectively be reduced to 75 bits without
sacrificing the accuracy of any of the operations that the multiplier supports.

Although the functionality of a physical device cannot be absolutely guaranteed by the
properties of a mathematical model, a realistic model can provide a fairly high level of con-
fidence. In this case, our analysis was based on a register-transfer model, far less abstract
than the hardware models that are typically used in formal verification of floating point
algorithms. It must be noted, however, that the evidentiality of our mechanical verification
depends on the accuracy of several stages of manual translation. The original C encoding
of the design was translated by hand into a special-purpose hardware description language,
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from which a gate-level implementation was eventually constructed. Meanwhile, our verifi-
cation began with the pseudocode representation of the C program on which the lemmas and
theorems of this paper are based. After detailed proofs of all of these results were derived in-
formally (and this paper was essentially written), the pseudocode was translated into ACL2
along with the lemma statements. Finally, formal proofs of these statements were generated
mechanically by guiding the ACL2 prover through each step of the informal proofs.

Obviously, our confidence in the final product would be enhanced if we could eliminate
or mechanize any of the steps in these translations. This has been a focus of our more recent
work: we have implemented a mechanical translator from AMD’s hardware description
language directly to the logic of ACL2, thereby reducing the possibility of human error in
the formalization of hardware designs. In a report that is yet to be released, we describe the
use of this translator in the mechanical verification of the AMD-K7 floating point adder.

Of course, a successful formal verification project requires a significant investment. The
cost to AMD of the results presented here was five months of the author’s time, divided ap-
proximately equally between writing the informal proofs and checking them mechanically.
Much of this time, however, was spent developing general methods and results, especially
the theory of floating point arithmetic presented in Section2, which could be reused in
any floating point verification effort. We have already applied the same results to several
problems, and it is our hope that others will find them useful in similar projects. Thus, the
ACL2 formalization of this theory is included inAppendix B

Appendix A. Input to the ACL2 prover

This appendix is available to subscribers to the journal at:
http://www.lms.ac.uk/jcm/1/lms98001/appendix-a/.

Appendix B. An ACL2 library of floating point arithmetic

This appendix is available to subscribers to the journal at:
http://www.lms.ac.uk/jcm/1/lms98001/appendix-b/.

References

1. S.F.Anderson, J.G.Earle, R.E.Goldschmidt and D.M.Powers, ‘The IBM Sys-
tem/360 Model 91 Floating Point Execution Unit’,IBM Journal of Research and De-
velopment, 11 (January 1967) 34-53.179

2. R.S.Boyer and J.Moore, A computational logic handbook(Academic Press, Boston,
MA, 1988). 148

3. R.E. Bryant, ‘Verification of arithmetic functions with binary moment diagrams’,
Technical Report CMU-CS-94-160, School of Computer Science, Carnegie-Mellon
University, 1994. 148

4. E.M. Clarke and X.Zhao, ‘Word level symbolic model checking: a new approach for
verifying arithmetic circuits’, Technical Report CMU-CS-95-161, School of Computer
Science, Carnegie-Mellon University, 1995.148

5. Institute of Electrical and Electronic Engineers, ‘IEEE Standard for Binary
Floating Point Arithmetic’, Std. 754-1985, (IEEE, New York, NY, 1985).148,149

199https://doi.org/10.1112/S1461157000000176 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm/1/lms98001/appendix-a/
http://www.lms.ac.uk/jcm/1/lms98001/appendix-b/
https://doi.org/10.1112/S1461157000000176


Proof of IEEE Compliance of the AMD-K7TM Processor

6. J. Moore, T. Lynch and M.Kaufmann, ‘A mechanically checked proof of the cor-
rectness of the kernel of theAMD5K86 floating point division algorithm’,IEEE Trans-
actions on Computers, 47 (September, 1998).148

7. S.F. Oberman, ‘Division and square root for the AMD-K7 FPU’ (Advanced Micro
Devices, Milpitas, CA, March 1997).149

8. D.M. Russinoff, ‘A mechanically checked proof of IEEE compliance of the AMD-K5
floating point square root microcode’,Formal Methods in System Design, to appear.
http://www.onr.com/user/russ/david/fsqrt.html.148,149,150,150,157,159,189

9. G.L. Steele, Jr., Common Lisp The Language2nd edition (Digital Press, Waltham
MA, 1990). 149

David M. Russinoff david.russinoff@amd.com

Advanced Micro Devices, Inc.
5900 E. Ben White Blvd
MS 625
Austin, TX 78741
U.S.A.

200https://doi.org/10.1112/S1461157000000176 Published online by Cambridge University Press

mailto:david.russinoff@amd.com
https://doi.org/10.1112/S1461157000000176

	Introduction
	Floating point arithmetic
	Bit vectors
	Floating point representations
	Rounding

	Multiplication
	The program FPU-MUL
	Basic results
	The operations OP-MUL, OP-DIV, and OP-SQRT
	The operation OP-LAST
	The operation OP-BACK

	Division and square root
	The program FPU-DIV-SQRT
	Initial approximation
	The operation OP-DIV
	The operation OP-SQRT
	Final rounding

	Conclusion
	Input to the ACL2 prover
	An ACL2 library of floating point arithmetic

