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ABSTRACT OF THE DISSERTATION
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Subjected to Saccadic Movement
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Dissertation Director:

Prof. William J. Bottega

In the human eye, the detachment behavior of the vitreous cortex from the sensory retina

is clinically significant as this pathology is highly correlated with rhegmatogenous retinal

detachment, a serious eye condition that can result in vision loss. A mechanics based math-

ematical model for vitreo-retinal detachment in the human eye when subjected to saccadic

eye motion is presented in this dissertation. The problem is formulated as a two-dimensional

propagating boundary value viscoelasticity problem in the calculus of variations. This for-

mulation yields the governing equations of the vitreous body, boundary conditions, match-

ing conditions and a transversality condition which, in turn, yields the detachment criterion

during a saccade.

The first part of the dissertation studies a constrained two-dimensional model where only

the dominant motion of the vitreous is considered. Closed form analytical solutions of the

coupled set of partial differential equations are obtained via modal analysis of a vibrating

two-dimensional continuum with non-periodic loading. Results of numerical simulations

are presented, ultimately revealing the evolution of the detachment of the vitreo-retinal

interface.
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In the second part of the dissertation, fully two-dimensional motion of the vitreous is

considered. A semi-analytical solution is obtained via the Rayleigh-Ritz method in com-

bination with modal analysis. Results are compared to the constrained two-dimensional

model, as well as to clinically observed data and previously published experimental and nu-

merical studies. The material properties of the human vitreous are both difficult to study,

and change significantly with age and other factors. The effects of these properties on the

motion of the vitreous and the detachment behavior of the vitreo-retinal interface are stud-

ied. The results of the present study indicate that if a saccade is large enough to cause

further detachment of the vitreous from the retina, then the detachment will progress until

it reaches a point of abnormal vitreo-retinal adhesion.
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Chapter 1

The Problem of Vitreous Detachment

1.1 Anatomy of the Vitreous Body

The vitreous humor is a clear connective gel-like tissue that occupies the majority of the

central portion of the human eye, as shown in Figure 1.1. It is composed of at least

98 − 99% water by mass [24]. The rest is primarily composed of collagen and hyaluronic

acid, a stabilizing hydrophilic polymer and complex sugar [3] [45] [47]. About 65% of the

Figure 1.1: Horizontal cross-section of the human eye. Artwork by Holly Fischer [CC BY
3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.
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collagen exists as a hydrated double-network of randomly oriented type II collagen fibrils,

while type IX non-fibril collagen accounts for up to 25% of the collagen in the vitreous

[8] [13]. The vitreous humor is encased in a membrane known as the vitreous cortex or

hyaloid membrane. This membrane is composed of high concentrations of the collagen

fibrils within the vitreous, in addition to other cells not found in the rest of the vitreous

that are associated exclusively with the interface of the posterior vitreous cortex and the

inner limiting layer of the sensory retina [46]. In young healthy eyes, the vitreous fills the

entire vitreous cavity and the vitreous cortex is fully attached to the retina, suspensory

ligaments, ciliary body, and posterior portion of the crystalline lens.

The vitreous has several functions. It maintains a constant pressure, and thus provides

added structural stability for the entire eye, particularly for the surrounding layers including

the retina, choroid, and sclera [21]. This pressure also helps regulate the growth and shape

of the eye during development [26]. The gel-like vitreous also serves as a barrier preventing

the diffusion of large macromolecules, which also helps to maintain its transparency [9]. This

transparent nature of the vitreous humor allows 90% of light with wavelengths between 300

and 1400 nm to pass through from the lens and become focused on the posterior retina

allowing the eye to see [10]. In addition, the gel-like vitreous regulates oxygen levels in

the retina and lens, which protects against cataracts [28]. It is also hypothesized that the

vitreous regulates fluid levels as some portion of aqueous solution secreted by the ciliary

body diffuses into the vitreous cavity, at which point it is flushed out posteriorly across the

retina to the choroid [21].

The vitreous is most firmly attached to its surrounding structures at the vitreous base,

a circumferential area that straddles the anterior edge of the retina, as well as the pars

plana, a portion of the ciliary body. The vitreous base is generally 2 to 6 mm wide. The

fibrils inside the vitreous firmly attach themselves in an interwoven manner to the cells in

the adjacent retina and ciliary body. The vitreous base is not a fixed region. It grows with

advancing age, and the posterior edge of the vitreous base continually extends toward the

equator of the eye [49].
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1.2 Posterior Vitreous Detachment (PVD)

It is well documented that the structure of the vitreous body changes with age among other

factors such as trauma, high myopia, ocular disease, and irregular vascular passageways [1]

[31]. Le Goff and Bishop (2008) [36] provide a detailed summary of the age related bio-

chemical changes in the vitreous body. Due to a loss of type IX collagen from the surface

of the type II collagen fibrils, the fibrils begin to aggregate in a mostly anteroposterior

orientation resulting in the development of aqueous pockets, as well as other regions more

densely packed with fibrils. The volume of the liquid portion of the vitreous increases over

time (synchisis), while the volume of the gel-like portion decreases and shrinks (syneresis)

[44].

It has been long been observed clinically that there exists a correlation between vitreous

liquefaction and posterior vitreous detachment (PVD), in which the vitreous cortex first

detaches from the inner layer of the sensory retina in the posterior portion of the eye,

after which the detachment progresses. Foos and Wheeler (1982) [20] first documented

the statistical correlation between the two phenomena. Sebag (1987) [44] describes two

possible mechanisms by which syneresis causes PVD: (1) shortening and condensation of

the vitreous fibrils causing separation of the vitreous cortex from the retina; (2) dissolution

of the posterior vitreous cortex adhesion to the retina at the posterior pole.

Some form of vitreous detachment is seen in at least one eye in 27% of people in their

seventh decade, and in 63% of people over the age of 70 [20]. It is often unaccompanied

by easily detected symptoms, nor does it cause serious side effects. PVD, however, can

progress either suddenly or over a longer time scale until it reaches a point of abnormally

strong vitreo-retinal adhesion. Retinal detachment, a very serious condition associated

with possible vision loss, is strongly correlated to PVD of this type [42] [45] [49]. Complete

PVD has occurred once the vitreo-retinal detachment extends to the posterior edge of the

vitreous base. The vitreo-retinal attachment is much stronger in this region, and only

in cases of trauma will separation occur at, or anterior to, the vitreous base. The more

common scenario is one where the traction from the vitreous during an eye movement is

not strong enough to break this bond, but is strong enough to cause a tear in the retina.
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Rhegmatogenous retinal detachment (RRD) then occurs, whereby the liquefied vitreous

enters the subretinal space via the retinal tear. Fluid pressure between the layers of the

retina then contributes to propagation of retinal detachment.

1.3 Saccadic Motion

It has been hypothesized that saccadic eye movements can be responsible for causing large

enough traction from the detached vitreous on the retina to cause a retinal tear. David et

al. (1997) [17] used thin isotropic spherical shell theory to model the eye wall in order to

analyze the anti-symmetric response of the eye due to saccadic motion. In this study, the

extraocular muscles responsible for moving the eye during a saccade were modeled as an

axisymmetric band centered on the equator, and the forcing was modeled as a step function.

Their results showed that the resultant stress on the eye wall increased for larger eyes and

thinner eye walls. A further study by David et al. (1998) [18], which used both analytical

and numerical techniques, advanced upon the prior model by filling the vitreous cavity with

a viscoelastic fluid. These results suggest that a time-dependent shear force due to saccadic

motion of the eye could be responsible for retinal tears.

Repetto et al. (2004) [40] and Repetto et al. (2005) [41] sought to experimentally validate

the results determined by David et al. (1998). Studying small sinusoidal saccades, the

2004 work represented the vitreous by an incompressible Newtonian fluid, restricted from

rotational motion in a spherical cavity representing the vitreous cavity, whereas the 2005

experiment expanded on the model and filled the cavity with a highly viscous Newtonian

fluid using both sinusoidal and polynomial excitation. The polynomial forcing was chosen to

more accurately represent the motion of the eye during a saccade. The experiments showed

that maximum shear stress on the retinal wall did not strongly correspond to saccade size.

The authors therefore hypothesize that small saccades can be just as damaging in the sense

of the prevalence of them causing a retinal tear.

In order to further quantify the traction caused by saccadic motion on the retinal walls,

Repetto et al. (2011) [42] developed a two-dimensional planar model of the vitreous with

PVD. The gel-like vitreous was modeled as a hybrid Neo-Hookean incompressible solid with
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Newtonian fluid-like dissipation, while the liquefied vitreous was modeled as a Newtonian

incompressible fluid. Finite element simulations showed that, even for saccades as small as

10◦, both the normal and tangential components of traction on the retina at the attachment

point of the vitreous achieve a maximum value on the same order of magnitude as the retinal

adhesive force measured by Kita and Marmor (1992) [32].

More recently, Bonfiglio et al. (2015) [12] conducted an experimental study on the ro-

tation of a spherical cavity filled with an artificial vitreous humor, which has viscoelastic

mechanical properties similar to the real vitreous. The spherical cavity was subject to

sinusoidal motion. Results showed that resonant excitation of the fluid can occur within

the range of possible saccades. The authors, therefore, suggest that saccades which cause

resonant excitation of the vitreous fluid will in turn cause large stresses on the retina that

lead to tears.

While it is now largely agreed that saccadic motion in the case of total PVD can be

responsible for retinal tears, little is known about the effects saccadic motion can have on the

detachment progression in the case of partial PVD. To this point, the progression of PVD

has been studied from bio-chemical and rheological standpoints [27] [44]. In these studies,

the amount of detachment is thought to be correlated with the amount of synchysis. Another

hypothesis suggests that the bond between the vitreous and retina dissolves with synchysis,

and that liquid vitreous enters the retrocortical space (between the vitreous cortex and the

retina) causing further detachment between the vitreous cortex and the inner layer of the

retina [19] [44].

In contrast, the fundamental hypothesis of the present study is that saccadic movement

of the eye can play a role in the evolution of vitreo-retinal detachment, progressing from

partial to total PVD. To the author’s knowledge, no analytical study addressing the effects

of saccadic movement on the progression of PVD exists in the literature to date.

1.4 Outline of the Dissertation

The dissertation is presented in five chapters. Chapter 2 describes a mechanics based

mathematical model for vitreo-retinal detachment based on energy conditions. The problem
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is formulated as a two-dimensional propagating boundary value problem in the calculus

of variations, in the spirit of Bottega (1983) [14], as well as for an eye encircled by a

scleral buckle as seen in Ge et al. (2016) [22] and Ge et al. (2017) [23]. This type of

formulation has been proven to be successful for predicting the behavior and evolution of

retinal detachment as seen in Bottega et al. (2013) [16] and Lakawicz et al. (2015) [33]. The

variational formulation yields self-consistent governing equations and boundary conditions

for the motion of the vitreous body under saccadic movement. By allowing the boundaries

of detachment to propagate, the variational formulation also yields a self-consistent energy

release rate that governs detachment of the vitreous from the retina, as well as yielding an

iterative formula for determining a critical saccade amplitude that will cause detachment

to progress.

In Chapter 3, the model presented in Chapter 2 is simplified so as to only consider

circumferential motion of the vitreous, as it is anticipated that this will be the dominant

motion of the vitreous when subject to a horizontal saccade, as this is the direction of rota-

tion. The corresponding coupled partial differential equations of motion are solved exactly

using modal analysis. The resultant displacement and stress-fields are then presented and

analyzed. Detachment behavior is predicted by the transversality condition containing the

energy release rate of the detaching vitreous cortex, which comes about as a consequence of

the variational principle when allowing the detachment boundaries to propagate. Threshold

paths are presented, which determine the minimum saccade amplitude necessary to cause

vitreo-retinal detachment to progress as a function of detachment size. This allows for

prediction of evolution of vitreo-retinal detachment.

Chapter 4 presents the solution to the full 2D model developed in Chapter 2. The radial

constraint on the response of the vitreous implicitly imposed in Chapter 3 is relaxed. The

governing equations of motion are solved quasi-analytically via the Rayleigh-Ritz Method

and modal analysis. Results for the vitreous response fields are presented and compared

to those for the circumferential motion model of Chapter 3. Detachment behavior is deter-

mined and again compared to that of the circumferential motion model. Results show that

the full model solution is more susceptible to saccade driven vitreo-retinal detachment.
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Chapter 5 summarizes the results of the present study. The results of the two models are

compared to each other, and to clinically observed behavior. Implications of these models

are then presented. Finally, further problems involving the behavior of the retina in which

this model is applicable are presented.
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Chapter 2

Model of the Vitreous Body

In this chapter, a two-dimensional dynamic mathematical model for determining the motion

and detachment progression of an eye with partial PVD subject to saccadic eye movement is

formulated. The vitreous is comprised of two separate phases as shown in Figure 2.1a. The

lighter shade represents the gel-like vitreous, while the darker shade represents the liquefied

vitreous. The boundary between them represents the detached vitreous cortex. When

subject to a single saccade, the gel-like portion will swing while the liquefied portion will

slosh. The shape of the detached vitreous cortex will be changing and evolving constantly.

Kakehashi et al. (1997) [31] noted the detached shape of the vitreous cortex can vary

significantly. Accordingly, they classify the detachment as PVD with collapse and PVD

without collapse, where collapse implies a change in the concavity of the detached vitreous

cortex. Since it is impossible to know the exact shape of the detached vitreous at all points

(a) One such possible configuration of the vit-
reous cavity.

(b) Model of the vitreous cavity.

Figure 2.1: Model of Region S2 as a homogeneous medium.
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in time, in the present work, the properties are dispersed uniformly as shown in Figure

2.1b. It is felt that the bulk motion of the vitreous will predominate in its detachment from

the sensory retina, and this model will capture the same inertial effect without having to

assume a shape for the detached vitreous cortex.

2.1 Geometry of the Model

The vitreous detachment is assumed to be symmetric about the anteroposterior center-line

of the eye. The vitreous is divided into two regions, S1 and S2, as shown in Figure 2.1b.

Region S1 is composed of the gel-like portion of the vitreous body. The anterior portion

of this region is adhered to the ciliary body and crystalline lens, while on its lateral and

medial edges it is adhered to the retinal walls. Region S2 is comprised of gel-like vitreous,

the detached vitreous cortex, and the liquefied portion of the vitreous represented as a

homogeneous region. Region S2 represents the portion of the vitreous inside the vitreous

cavity beyond the point where the vitreous cortex has detached from the retina.

Figure 2.2 shows the relevant geometry of the model. The eye of radius R is subject

to horizontal saccadic motion, whereby the eye rotates about its geometric center. Polar

coordinates (r, φ) emanate from the posterior surface of the crystalline lens, point O, in the

Figure 2.2: Geometry of the problem statement.
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horizontal plane passing through the center of the eye whose normal vector points in the

superior direction. The distance between the geometric center of the eye and the origin of

the coordinate system, point O, is denoted as d0. Region S1, the gel-like portion, is fixed to

the ciliary body and crystalline lens along boundary C1, while it is adhered to the retinal

walls along boundaries C2 and C3. Region S2 is bounded by surfaces C2 and C3, which

represent the retinal wall.

The two regions are separated by the boundary C4, which is located a uniform radial

distance, Rd from point O. The maximum radius of boundary C4 allowable is denoted

R0 = R + d0, which is the radius that corresponds to a fully intact vitreous. As the vit-

reous detachment from the sensory retina progresses in the anterior direction, Region S1

shrinks, while region S2 grows. Detachment occurs along the boundaries C2 and C3. The

boundary C4 will therefore recede while, for the current idealization, preserving a uniform

radial shape. In Figure 2.2, point a represents the detachment point along boundary C2,

while point b represents the detachment point along boundary C3. These points are not

fixed but, rather, propagate in the anterior direction as detachment progresses, as shown

in Figure 2.3. Further justification and limitations of this geometry will be explained when

discussing the kinematic and constitutive relations later in this chapter.

(a) Geometry of the vitreous at some time, t0. (b) Geometry of the vitreous at a later time,
t0+∆t, after vitreous detachment has progressed.

Figure 2.3: Evolution of the detachment boundaries.
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2.2 Normalization of Parameters

Human eyes vary in size. They grow with age, and an individual can have two eyes of

different size at any given time. To this end, it is advantageous to formulate the model for

vitreous detachment in non-dimensional units. This allows the model to predict essential

qualitative behavior that is applicable to a wide range of configurations.

Length scales and displacements are normalized by the dimensional radius of the eye, R.

Material properties in either region, namely the elastic and shear moduli, are normalized

with respect to the dimensional shear modulus in Region S1, G1. In addition, the mass

density in either region is normalized by the dimensional mass density in Region S1, ρ1. In

a manner consistent with the above normalization, time is non-dimensionalized with respect

to the dimensional shear wave speed,
√
G1/ρ1, in Region S1, as well as the dimensional

radius of the eye, R. The normalized time is thus expressed as

t =
t

R

√
G1

ρ1
, (2.1)

where t is the dimensional time.

2.3 Kinematic and Constitutive Relations

Small deformations are assumed for the model, and thus the (infinitesimal) strain-displacement

equations take the form

ε(j)rr =
∂uj
∂r

(j = 1, 2) , (2.2a)

ε
(j)
φφ =

1

r

(
∂vj
∂φ

+ uj

)
(j = 1, 2) , (2.2b)

ε
(j)
rφ =

1

2

(
1

r

∂uj
∂φ

+
∂vj
∂r

− vj
r

)
(j = 1, 2) , (2.2c)

where uj and vj represent normalized radial and circumferential displacement of the vit-

reous, respectively, in Region Sj , ε
(j)
rr and ε

(j)
φφ are the normal strains in the radial and

circumferential directions in Region Sj , respectively, and ε
(j)
rφ is the in-plane shear strain in

Region Sj for j = 1, 2.
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The vitreous is modeled as randomly-oriented elastic fibrils embedded in a fluid matrix.

Since the fibrils are mostly randomly-oriented (though some have bound together during

syneresis), they are modeled as an elastic isotropic solid. The aqueous solution is modeled as

a fluid matrix, which imposes a hydrodynamic drag, effectively dampening the motion of the

vitreous. This damping factor is naturally proportional to the elastic parameter. Therefore,

the state of stress at any point in the vitreous can be decomposed into two parts: elastic

stress associated with the fibrils, and viscous stress associated with the damping due to the

fluid matrix. The elastic portion of the constitutive relations are further broken down into

two components: one that is due to the dynamic motion of the system, and another that

is due to the intraocular pressure (IOP) in the vitreous. The IOP is due to the hydrostatic

pressure of the aqueous solution in the eye. The state of stress within the vitreous can thus

be expressed as

σ(T ;j)
rr = σ(K;j)

rr + σ(V ;j)
rr − p (j = 1, 2) , (2.3a)

σ
(T ;j)
φφ = σ

(K;j)
φφ + σ

(V ;j)
φφ − p (j = 1, 2) , (2.3b)

σ
(T ;j)
rφ = σ

(K;j)
rφ + σ

(V ;j)
rφ (j = 1, 2) , (2.3c)

where σ
(T ;j)
rr and σ

(T ;j)
φφ are the normalized total normal stresses in the radial and circumfer-

ential directions, respectively, and σ
(T ;j)
rφ is the normalized total shear stress in either region.

σ
(K;j)
rr and σ

(K;j)
φφ are the normalized dynamic normal stresses in the radial and circumfer-

ential directions, respectively, and σ
(K;j)
rφ is the normalized dynamic shear stress in either

region. σ
(V ;j)
rr and σ

(V ;j)
φφ are the normalized components of normal stresses in the radial

and circumferential directions due solely to the hydrodynamic drag of the fluid matrix, re-

spectively, and σ
(V ;j)
rφ is the normalized component of shear stress due to the hydrodynamic

drag of the fluid matrix, in either region. Lastly, p represents the IOP in the vitreous.
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The dynamic components of stress in Region S1 are related to the strain by the isotropic

plane strain constitutive equations, which take the following form

σ(K;1)
rr =

E1

(1 + ν1)(1− 2ν1)

[
(1− ν1) ε

(1)
rr + ν1ε

(1)
φφ

]

=
2G1

(1− 2ν1)

[
(1− ν1) ε

(1)
rr + ν1ε

(1)
φφ

]
,

(2.4a)

σ
(K;1)
φφ =

E1

(1 + ν1)(1− 2ν1)

[
(1− ν1) ε

(1)
φφ + ν1ε

(1)
rr

]

=
2G1

(1− 2ν1)

[
(1− ν1) ε

(1)
φφ + ν1ε

(1)
rr

]
,

(2.4b)

σ
(K;1)
rφ = 2G1ε

(1)
rφ , (2.4c)

where E1 is the normalized elastic modulus, G1 is the normalized shear modulus, and ν1 is

Poisson’s ratio in Region S1.

As stated earlier, Region S2 consists of three phases: the gel-like vitreous, the detached

vitreous cortex, and the liquefied vitreous. Physically, these portions move with greater

freedom than Region S1, as there are no longer any fibrils that are embedded into the

sensory retina in this region. Thus it is a hypothesis of this work that the inertia of this

region during a saccade that will contribute to the spreading of PVD. Region S2 is therefore

modeled in such a way that it captures the inertial effects of the vitreous beyond r = Rd.

This is accounted for by using an analogous constitutive model to that for Region S1 but

with vanishing elastic modulus, E2, as the fibrils are not constrained to be embedded into

the sensory retina in this region. This causes Region S2 to be less constrained than Region

S1 (but still allows for an analytical solution for the governing equations). The dynamic

components of stress in Region S2 are therefore related to the strain as follows

σ(K;2)
rr = 0, (2.5a)

σ
(K;2)
φφ = 0, (2.5b)

σ
(K;2)
rφ = 2G2ε

(2)
rφ . (2.5c)

The viscous portion of stress is due to the hydrodynamic drag caused by the fluid

medium. Therefore, the viscous stress is modeled as being proportional to the velocity of
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the vitreous continuum, and take the following forms in each region

σ(V ;j)
rr =

cj
(1 + νj)(1− 2νj)


(1− νj)

∂ε
(j)
rr

∂t
+ νj

∂ε
(j)
φφ

∂t


 (j = 1, 2) , (2.6a)

σ
(V ;j)
φφ =

cj
(1 + νj)(1− 2νj)


(1− νj)

∂ε
(1)
φφ

∂t
+ νj

∂ε
(j)
rr

∂t


 (j = 1, 2) , (2.6b)

σ
(V ;1)
rφ =

cj
(1 + ν1)

∂ε
(1)
rφ

∂t
(j = 1, 2) , (2.6c)

where c1 and c2 are the damping coefficients in Regions S1 and S2, respectively.

2.4 Typical Saccades

This study considers the dynamic response of the vitreous subject to a single horizontal

saccade. To characterize saccadic motion, the present study adopts the model employed by

Repetto et al. (2005) [41], and originally developed by Becker (1989) [5]. In this model, the

angular displacement of a typical saccade in the range of 10◦ to 50◦ as a function of time

is modeled as a fifth-order polynomial that depends on three factors: (1) the amplitude, A,

of the saccade, (2) the duration of the saccade, ts, and (3) the peak angular velocity of the

saccade, Ωp.

In the range of saccades considered here (10◦ to 50◦), the duration of the saccade, ts, is

described accurately by the following linear function of the saccade amplitude

ts = 0.0025A+ 0.025. (2.7)

Equation (2.7) is based on experimental studies including those of Bahill, Brockenbrough,

and Troost (1981) [2], Baloh et al. (1975) [4], and Robinson (1964) [43]. It has also been

shown experimentally by the aforementioned studies, as well as Boghen et al. (1974) [11]

and Inchingolo and Spanio (1985)[30], that the time to peak velocity, tp, depends on the

saccade amplitude and the duration of the saccade as given by the formula

tp
ts

= 0.5− 0.005A. (2.8)

Since the saccade duration was shown to be solely dependent on the saccade amplitude, the

saccadic motion of the eye can be characterized solely by the amplitude, A.
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The angular displacement, ψ, of the eye during a typical 10◦ to 50◦ saccade is given as

a function of time by the relation

ψ(t) =
(
c0 + c1t+ c2t

2 + c3t
3 + c4t

4 + c5t
5
)
[H (t)−H (t− ts)] +AH (t− ts) , (2.9)

where H (t) is the Heaviside step function, and the coefficients c0 through c5 are determined

by the following conditions:

ψ(0) = 0, (2.10a)

ψ(ts) = A, (2.10b)

∂

∂t
ψ(0) = 0, (2.10c)

∂

∂t
ψ(ts) = 0, (2.10d)

∂

∂t
ψ(tp) = Ωp, (2.10e)

∂2

∂t2
ψ(tp) = 0. (2.10f)

The dimensional angular displacement and dimensional angular velocity of the eye during

the saccade are shown in Figure 2.4 (a reproduction of Figure 1 from Repetto et al. (2005)

[41] but extended herein to include 50◦ saccades) as functions of the dimensional time during

saccades ranging from 10◦ to 50◦.
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(a) Dimensional angular displacement of the
eye as a function of time during various sac-
cades.

0 0.05 0.1 0.15 0.2

t (sec)

0

100

200

300

400

500

600

ψ̇
( t
)
(d
eg
/s
ec
)

(b) Dimensional angular velocity of the eye as
a function of time during various saccades.

Figure 2.4: Angular displacement and angular velocity for a variety of saccades.
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As shown by Equation (2.8), and as seen in Figure 2.4b, the angular velocity is not

symmetric with respect to time, especially for larger saccades. Therefore, the polynomial

gives a more accurate representation of true saccadic motion as opposed to modeling the

angular velocity as a sinusoidal wave, as is common practice such as in the works of David

(1998) [18], Meskauskas et al. (2012) [37], Bonfiglio et al. (2015) [12], and Modarreszadeh

and Abouali (2014) [38] among others.

2.5 Problem Formulation

The problem of the vitreous dynamics and the evolution of vitreous detachment during

saccadic motion is approached as a moving boundary problem in the calculus of variations,

and the uniform radius of the boundary C4 between the two regions is allowed to vary

arbitrarily, in addition to the displacements, u1, u2, v1, and v2. The action integral (per

unit depth), Π, is formulated next and yields the governing equations of motion, the asso-

ciated boundary conditions, and a transversality condition upon application of Hamilton’s

Principle. Hence,

Π = T (1) + T (2) − U (1) − U (2) +W(1)
V +W(2)

V − EF , (2.11)

where T (1) and T (2) are the kinetic energy per unit depth in Regions S1 and S2, respectively,

U (1) and U (2) are the strain energy per unit depth in Regions S1 and S2, respectively, W(1)
V

and W(2)
V are the virtual work per unit depth of the viscous damping forces of the fluid

medium in Regions S1 and S2, respectively, and EF represents the energy per unit depth

absorbed during detachment.

Upon saccadic motion, point O, the point on the vitreous body that is attached to the

posterior edge of the lens and is the origin of the coordinate system, rotates about the center

of the eye with normalized velocity of magnitude

∂uo
∂t

= d0
∂

∂t
ψ (t) , (2.12)

with respect to a fixed reference frame with origin at the center of the eye, where uo is the

displacement of point O in this fixed reference frame. Therefore, the absolute velocity of

any point in the vitreous during a saccade is the vector sum of its relative velocity with
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respect to point O and the aforementioned velocity of point O with respect to the fixed

reference frame. The kinetic energy per unit depth in Regions S1 and S2 measured from

the fixed reference frame, therefore, take the following forms

T (1) =
1

2

∫∫

A1

ρ1

[(
∂u1
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v1
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2

 dA,

(2.13a)

T (2) =
1

2

∫∫

A2

ρ2

[(
∂u2
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v2
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2

 dA,

(2.13b)

where A1 and A2 are the planar areas of Regions S1 and S2, respectively.

The elastic strain energy per unit depth in each region is given by

U (j) =
1

2

∫∫

Aj

[(
σ(K;j)
rr − p

)
ε(j)rr +

(
σ
(K;j)
φφ − p

)
ε
(j)
φφ + 2σ

(K;j)
rφ ε

(j)
rφ

]
dA (j = 1, 2) . (2.14)

Substitution of Equations (2.2), (2.4), and (2.5) into Equation (2.14) yields the strain energy

per unit depth expressed in terms of displacements. Hence,

U (1) =
1

2

∫∫

A1

{
2G1

1− 2ν1

[
(1− ν1)

∂u1
∂r

+
ν1
r

(
∂v1
∂φ

+ u1

)]
∂u1
∂r

+
2G1

1− 2ν1

[
(1− ν1)

r

(
∂v1
∂φ

+ u1

)
+ ν1

∂u1
∂r

]
1

r

(
∂v1
∂φ

+ u1

)

+G1

(
1

r

∂u1
∂φ

+
∂v1
∂r

− v1
r

)2

− p

[
∂u1
∂r

+
1

r

(
∂v1
∂φ

+ u1

)]}
dA,

(2.15a)

U (2) =
1

2

∫∫

A2

{
G2

(
1

r

∂u2
∂φ

+
∂v2
∂r

− v2
r

)2

− p

[
∂u2
∂r

+
1

r

(
∂v2
∂φ

+ u2

)]}
dA. (2.15b)

In addition to the kinetic and potential energies of the system, the virtual work of the

viscous damping of the fluid medium must be added to the formulation, and are expressed
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as follows

W(1)
V =

1

2

∫∫

A1

{
c1

(1 + ν1)(1− 2ν1)

[
(1− ν1)

∂2u1
∂t∂r

+
ν1
r

(
∂2v1
∂t∂φ

+
∂u1
∂t

)]
∂u1
∂r

+
c1

(1 + ν1)(1− 2ν1)

[
(1− ν1)

r

(
∂2v1
∂t∂φ

+
∂u1
∂t

)
+ ν1

∂2u1
∂t∂r

]
1

r

(
∂v1
∂φ

+ u1

)

+
c1

1 + ν1

(
1

r

∂2u1
∂t∂φ

+
∂2v1
∂t∂r

− 1

r

∂v1
∂t

)(
1

r

∂u1
∂φ

+
∂v1
∂r

− 1

r
v1

)}
dA,

(2.16a)

W(2)
V =

1

2

∫∫

A2

c2
1 + ν2

(
1

r

∂2u2
∂t∂φ

+
∂2v2
∂t∂r

− 1

r

∂v2
∂t

)(
1

r

∂u2
∂φ

+
∂v2
∂r

− 1

r
v2

)
dA. (2.16b)

Lastly, EF , the energy per unit depth absorbed by the vitreo-retinal interface during the

growth of the detachment at points a and b, is given by

EF = 2γ (a0 − a) + 2γ (b0 − b) , (2.17)

where γ is the energy per unit depth required to produce a unit area of detachment, a

material property of the vitreo-retinal interface, and a0 and b0 correspond to some initial

values of a and b, respectively.

For the problem at hand, Hamilton’s Principle takes the form

δ

t2∫

t1

Πdt = 0. (2.18)

Substitution of Equation (2.11) into Equation (2.18), and performing the variations yields

governing equations of the form

mm1
∂2uu1
∂t2

+ cc1
∂uu1
∂t

+ kk1uu1 = FF1, (2.19a)

mm2
∂2uu2
∂t2

+ cc2
∂uu2
∂t

+ kk2uu2 = FF2, (2.19b)

where

uuj =


uj(r, φ, t)

vj(r, φ, t)


 (j = 1, 2) . (2.20a)
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The parameters mmj , ccj , and kkj (j = 1, 2) represent the mass, damping, and stiffness differ-

ential operators for each region, respectively. They take the following forms

mm1 =


ρ1 0

0 ρ1


 , (2.21a)

mm2 =


ρ2 0

0 ρ2


 , (2.21b)

kk1 =


kk

(1,1)
1 kk

(1,2)
1

kk
(2,1)
1 kk

(2,2)
1


 , (2.22a)

kk2 =


kk

(1,1)
2 kk

(1,2)
2

kk
(2,1)
2 kk

(2,2)
2


 , (2.22b)

cc1 =


cc

(1,1)
1 cc

(1,2)
1

cc
(2,1)
1 cc

(2,2)
1


 , (2.23a)

cc2 =


cc

(1,1)
2 cc

(1,2)
2

cc
(2,1)
2 cc

(2,2)
2


 , (2.23b)

FF1 =



− ρ1d0 sinφ√

r2+d20−2rd0 cosφ

∂2uo

∂t2

− ρ1(r−d0 cosφ)√
r2+d20−2rd0 cosφ

∂2uo

∂t2
,


 , (2.24a)

FF2 =



− ρ2d0 sinφ√

r2+d20−2rd0 cosφ

∂2uo

∂t2

− ρ2(r−d0 cosφ)√
r2+d20−2rd0 cosφ

∂2uo

∂t2
,


 , (2.24b)

where

kk
(1,1)
1 = −2G1 (1− ν1)

1− 2ν1

[
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

]
− G1

r2
∂2

∂φ2
, (2.25a)

kk
(1,2)
1 =

2G1

1− 2ν1

1

r

[
1− ν1
r

∂

∂φ
− ν1

∂2

∂r∂φ

]
− G1

r

[
∂2

∂r∂φ
− 1

r

∂

∂φ

]
, (2.25b)

kk
(2,1)
1 = − 2G1

1− 2ν1

1

r

[
1− ν1
r

∂

∂φ
+ ν1

∂2

∂r∂φ

]
− G1

r

[
1

r

∂

∂φ
+

∂2

∂r∂φ

]
, (2.25c)

kk
(2,2)
1 = −2G1 (1− ν1)

1− 2ν1

1

r2
∂2

∂φ2
−G1

[
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

]
, (2.25d)
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kk
(1,1)
2 = −G2

r2
∂2

∂φ2
, (2.26a)

kk
(1,2)
2 = −G2

r

[
∂2

∂r∂φ
− 1

r

∂

∂φ

]
, (2.26b)

kk
(2,1)
2 = −G2

r

[
1

r

∂

∂φ
+

∂2

∂r∂φ

]
, (2.26c)

kk
(2,2)
2 = −G2

[
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

]
, (2.26d)

cc
(1,1)
1 =

c1
2G1(1 + ν1)

kk
(1,1)
1 , (2.27a)

cc
(1,2)
1 =

c1
2G1(1 + ν1)

kk
(1,2)
1 , (2.27b)

cc
(2,1)
1 =

c1
2G1(1 + ν1)

kk
(2,1)
1 , (2.27c)

cc
(2,2)
1 =

c1
2G1(1 + ν1)

kk
(2,2)
1 , (2.27d)

cc
(1,1)
2 =

c2
2G2(1 + ν2)

kk
(1,1)
2 , (2.28a)

cc
(1,2)
2 =

c2
2G2(1 + ν2)

kk
(1,2)
2 , (2.28b)

cc
(2,1)
2 =

c2
2G2(1 + ν2)

kk
(2,1)
2 , (2.28c)

cc
(2,2)
2 =

c2
2G2(1 + ν2)

kk
(2,2)
2 . (2.28d)

It can be seen by Equations (2.27a) – (2.28d) that the differential damping operator in

each region is proportional to the differential stiffness operator in each region. The propor-

tionality constants for each region are defined as µ1 and µ2, respectively, and are identified

as

µ1 =
c1
E1

=
c1

2G1(1 + ν1)
, (2.29a)

µ2 =
c2

2G2(1 + ν2)
. (2.29b)

This makes physical sense, as the system is macroscopically isotropic, and therefore the

coefficients associated with the damping on the fibrils caused by the fluid medium are

naturally proportional to the elastic parameters at each point in the vitreous continuum.
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The boundary conditions for Region S1 are similarly obtained from the variational prin-

ciple, Equation (2.18), and take the form

u
(n)
1 = 0 on C1 in S1, (2.30a)

u
(t)
1 = 0 on C1 in S1, (2.30b)

u
(n)
1 = 0 on C2 in S1, (2.31a)

u
(t)
1 = 0 on C2 in S1, (2.31b)

u
(n)
1 = 0 on C3 in S1, (2.32a)

u
(t)
1 = 0 on C3 in S1, (2.32b)

where u
(n)
1 and u

(t)
1 represent the displacements normal to and tangential to the boundaries,

respectively. Since the components of the displacement of the vitreous in both the normal

and tangential directions vanish in Region S1, we can restate these boundary conditions as

follows

u1 = 0 on C1 in S1, (2.30a′)

v1 = 0 on C1 in S1, (2.30b′)

u1 = 0 on C2 in S1, (2.31a′)

v1 = 0 on C2 in S1, (2.31b′)

u1 = 0 on C3 in S1, (2.32a′)

v1 = 0 on C3 in S1. (2.32b′)

Likewise, the matching boundary conditions across C4, the propagating boundary be-

tween the two regions, are obtained and take the form

u1 = u2 on C4, (2.33a)

v1 = v2 on C4, (2.33b)

σ
(T ;1)
rφ = σ

(T ;2)
rφ on C4, (2.33c)

u1 = 0 on C4. (2.33d)
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Finally, the boundary conditions for Region S2 on the boundaries C2 and C3 are as

follows

σ
(T ;2)
nt = 0 on C2 in S2, (2.34)

σ
(T ;2)
nt = 0 on C3 in S2, (2.35)

where σ
(T ;2)
nt represents the components of the total stress tangential to the boundary. Since

normal stress vanishes by definition in Region S2, Equations (2.34) and (2.35) reduce to

σ
(T ;2)
rφ = 0 on C2 in S2. (2.34′)

σ
(T ;2)
rφ = 0 on C3 in S2, (2.35′)

respectively. There is also an additional boundary condition on boundaries C2 and C3 in

Region S2 that states that the normal stress is equal to the IOP of the vitreous. This

pressure will not cause deformation of the retina because the stress is balanced by equal

stress on the outside of the retina from the choroid. The choroid is a highly vascular tissue,

and the blood pressure that flows through it is equivalent to the IOP inside the vitreous

cavity [7].

As previously stated, the boundary points a and b along C2 and C3, respectively, are

not stationary, but rather are allowed to evolve causing C4 to recede. The model assumes

symmetric detachment meaning boundary C4 is at a uniform radius, Rd, from the origin.

This implies that points a and b detach at the same rate. The variations of these parameters

are related in the following way

δRd = [δa ~et · −~er]|a = [δb ~et · −~er]|b , (2.36)

where ~et is the unit vector tangent to the boundary C2 or C3, and ~er is the unit vector in

the radial direction. Allowing for variation of these points yields a transversality condition,

which governs the location of the boundary C4 at r = Rd, and thus of points a and b. The

resulting condition takes the following form

G{Rd; a, b} = 2γ|a + 2γ|b (2.37)

where G{Rd; a, b} is identified as the energy release rate per unit depth of the detaching

vitreous. This is the energy per unit depth released per unit increase of detachment area.
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The explicit form of G is found to be

G{Rd; a, b} =

{
1

2

[
σ(T ;1)
rr ε(1)rr + σ

(T ;1)
φφ ε

(1)
φφ + 2

(
σ
(T ;1)
rφ ε

(1)
rφ − σ

(T ;2)
rφ ε

(2)
rφ

)]
− σ

(T ;1)
nt

∂u
(t)
1

∂s

+ σ
(T ;2)
nt

∂u
(t)
2

∂s
− ρ1

2

[(
∂u1
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v1
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2



+
ρ2
2

[(
∂u2
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v2
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2







∣∣∣∣∣∣
a

+

{
1

2

[
σ(T ;1)
rr ε(1)rr + σ

(T ;1)
φφ ε

(1)
φφ + 2

(
σ
(T ;1)
rφ ε

(1)
rφ − σ

(T ;2)
rφ ε

(2)
rφ

)]
− σ

(T ;1)
nt

∂u
(t)
1

∂s

+ σ
(T ;2)
nt

∂u
(t)
2

∂s
− ρ1

2

[(
∂u1
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v1
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2



+
ρ2
2

[(
∂u2
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v2
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2







∣∣∣∣∣∣
b

+ [~et · −~er]|(a or b)

∫

C4

σ(T ;1)
rr

∂u1
∂r

ds

(2.38)

where s is the path coordinate along boundary C4.

Detachment progression will be based upon a Griffith-type detachment criterion [25]. If

the energy release rate per unit depth gets large enough such that G{a; b;Rd} ≥ 2γ|a+ 2γ|b,

the detachment will propagate until the inequality no longer holds. The boundaries will

remain fixed when G{Rd; a, b} < 2γ|a + 2γ|b.
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To summarize, the motion of the vitreous is Regions S1 as S2 are determined as solu-

tions to the propagating boundary value problem with governing equations formally stated

by Equations (2.19a) and (2.19b), and boundary conditions given by Equations (2.30a′),

(2.30b′), (2.31a′), (2.31b′), (2.32a′), (2.32b′), (2.33a), (2.33b), (2.33c), (2.33d), (2.34′), and

(2.35′). In addition, the locations of the point of detachment of the vitreous cortex from the

sensory retina are determined by the transversality condition given by Equation (2.37). The

next two chapters in this dissertation are concerned with solving this propagating boundary

value problem, and analyzing the results, first for purely circumferential displacement, and

second for full two-dimensional motion.
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Chapter 3

Constrained 2D Model

As discussed in Chapter 1, it is widely believed that the separation of liquid from the gel-

like vitreous initiates the onset of PVD. (See, for example, Foos and Wheeler (1982) [20]

and Sebag (1987) [44].) This syneresis implies that some fibrils in the gel-like vitreous have

attached themselves in an anteroposterior orientation [44]. The effect of these fibril chains

can be incorporated into the model by imposing a constraint on the motion of the vitreous

in the r-direction. Furthermore, the rotation of the eye is about its geometric center, and

therefore it may be anticipated that the dominant motion of the vitreous in response to a

single saccade will be in the φ-direction. Thus in this chapter, the simplifying assumption is

made that displacement of the vitreous in the r-direction can be neglected when compared

with that in the φ-direction.

3.1 Constraint on Motion

By neglecting the radial components of displacement, the motion of the vitreous is effectively

constrained in the radial direction. The problem is formulated as a constrained problem to

characterize the body force necessary to restrain the deformation. In doing so, this inherent

constraining force serves as a relative measure of the omission of radial displacement.

This constraint is handled formally by amending the action integral per unit depth, Π,

given by Equation (2.11), to include a constraint functional, Λ, which restricts displacement

in the r-direction. The total potential energy functional per unit depth becomes

Π = T (1) + T (2) − U (1) − U (2) +W(1)
V +W(2)

V − EF − Λ, (3.1)

where

Λ = Λ(1) + Λ(2) =

∫∫

A1

λ1u1dA+

∫∫

A2

λ2u2dA, (3.2)
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where the Lagrange multipliers λ1 and λ2 represent the force per unit volume (i.e. body

force) in Region S1 and Region S2, respectively, that constrains the displacement in the

r-direction. All other parameters in Equation (3.1) remain unchanged.

Invoking Hamilton’s Principle for the constrained problem yields a self-consistent set

of governing equations of motion, external boundary conditions, matching boundary condi-

tions, transversality conditions to locate boundaries a and b, as well as differential constraint

equations that determine λ1 and λ2.

Substitution of Equation (3.1) into Equation (2.18), and performing the variations yields

the formal statement of constraint on displacement, namely

u1 ≡ 0, (3.3a)

u2 ≡ 0. (3.3b)

The governing equations of motion are likewise obtained and take the forms

ρ1
∂2v1
∂t2

+ µ1G1

[
− 2(1− ν1)

1− 2ν1

1

r2
∂2

∂φ2
− ∂2

∂r2
−1

r

∂

∂r
+

1

r2

]
∂v1
∂t

+G1

[
− 2(1− ν1)

1− 2ν1

1

r2
∂2

∂φ2
− ∂2

∂r2
−1

r

∂

∂r
+

1

r2

]
v1

=− ρ1 (r − d0 cosφ)√
r2 + d20 − 2rd0 cosφ

∂2uo
∂t2

,

(3.4a)

ρ2
∂2v2
∂t2

− µ2G2

[
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

]
∂v2
∂t

−G2

[
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

]
v2

=− ρ2 (r − d0 cosφ)√
r2 + d20 − 2rd0 cosφ

∂2uo
∂t2

.

(3.4b)

The boundary conditions in Region S1 follow as

v1 = 0 on C1 in S1, (3.5a)

v1 = 0 on C2 in S1, (3.5b)

v1 = 0 on C3 in S1, (3.5c)
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Likewise, the matching boundary conditions across C4, the propagating boundary be-

tween the two regions, are obtained and take the form

v1 = v2 on C4, (3.6a)

σ
(T ;1)
rφ = σ

(T ;2)
rφ on C4. (3.6b)

Finally, the boundary conditions for Region S2 on the boundaries C2 and C3 are as

follows

σ
(T ;2)
nt = 0 on C2 in S2, (3.7)

σ
(T ;2)
nt = 0 on C2 in S2. (3.8)

Since normal stress vanishes by definition in Region S2, Equations (3.7) and (3.8) reduce to

σ
(T ;2)
rφ = 0 on C2 in S2, (3.7′)

σ
(T ;2)
rφ = 0 on C3 in S2, (3.8′)

respectively.

In addition, the differential constraint equations are

λ1 =
µ1G1

1− 2ν1

1

r

[
(3− 4ν1)

1

r

∂

∂φ
− ∂2

∂r∂φ

]
∂v1
∂t

+
G1

1− 2ν1

1

r

[
(3− 4ν1)

1

r

∂

∂φ
− ∂2

∂r∂φ

]
v1 +

ρ1d0 sinφ√
r2 + d20 − 2rd0 cosφ

∂2uo
∂t2

,

(3.9a)

λ2 =
µ2G2

r2

(
∂2

∂r∂φ
− ∂

∂φ

)
∂v2
∂t

+
G2

r2

(
∂2

∂r∂φ
− ∂

∂φ

)
v2 +

ρ2d0 sinφ√
r2 + d20 − 2rd0 cosφ

∂2uo
∂t2

.

(3.9b)

Equations (3.9a) and (3.9b) are used to determine λ1 and λ2 once the governing equations

of motion, Equations (3.4a) and (3.4b), have been solved for v1 and v2.

The transversality condition, which governs the location of points a and b take the same

general form as the unconstrained equation. That is

G{Rd; a, b} = 2γ|a + 2γ|b . (3.10)
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However, the energy release rate per unit depth term, G{Rd; a, b}, now reduces to the

following form

G{Rd; a, b} =

{
1

2

[
σ
(T ;1)
φφ ε

(1)
φφ + 2

(
σ
(T ;1)
rφ ε

(1)
rφ − σ

(T ;2)
rφ ε

(2)
rφ

)]
− σ

(T ;1)
nt

∂u
(t)
1

∂s
+ σ

(T ;2)
nt

∂u
(t)
2

∂s

− ρ1
2

[(
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v1
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2



+
ρ2
2

[(
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v2
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2







∣∣∣∣∣∣
a

+

{
1

2

[
σ
(T ;1)
φφ ε

(1)
φφ + 2

(
σ
(T ;1)
rφ ε

(1)
rφ − σ

(T ;2)
rφ ε

(2)
rφ

)]
− σ

(T ;1)
nt

∂u
(t)
1

∂s
+ σ

(T ;2)
nt

∂u
(t)
2

∂s

− ρ1
2

[(
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v1
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2



+
ρ2
2

[(
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v2
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2







∣∣∣∣∣∣
b

.

(3.11)

If the energy release rate per unit depth gets large enough such that G{Rd; a, b} ≥ 2γ|a +

2γ|b, the detachment will propagate until the inequality no longer holds. The boundaries

will remain fixed when G{Rd; a, b} < 2γ|a + 2γ|b.

3.2 Solution Procedure

The mathematical problem is formally stated by Equations (3.4a), (3.4b), (3.5a), (3.5b),

(3.5c), (3.6a), (3.6b), (3.7′), (3.8′), (3.9a), (3.9b), (3.10), and (3.11). These equations

represent a forced vibration problem for a composite domain with an internal boundary

whose location is to be determined as part of the solution. This problem will be solved via

modal analysis. Since the damping operator is proportional to the stiffness operator, the

vitreous is subject to Rayleigh damping, which allows the forced vibration solution to be

expressed as a linear combination of the undamped free vibration modes. (See, for example,

Bottega (2015) [15].)
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3.2.1 Undamped Free Vibration Analysis

The undamped free vibration problem is obtained by removing the forcing function and

damping operator from Equations (3.4a) and (3.4b). The corresponding equations of motion

take the following form

ρ1
∂2v1
∂t2

+G1

[
−2(1− ν1)

1− 2ν1

1

r2
∂2

∂φ2
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

]
v1 = 0, (3.12a)

ρ2
∂2v2
∂t2

+G2

[
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

]
v2 = 0. (3.12b)

The above form does not admit a separable solution in its current form, as boundaries

C2 and C3 are neither constant-r nor constant-φ boundaries. The problem is therefore

transformed to a new domain where the φ-coordinate is mapped to a new coordinate φ∗ in

the following way

φ∗ =





φ,

π/2

cos−1

(

r2+d20−1

2rd0

)φ,

0 < r <
√
1− d20

√
1− d20 < r < 1 + d20

. (3.13)

The governing equations and boundary conditions are transformed accordingly, and take

the form

ρ1
∂2v1
∂t2

+G1


−

2(1− ν1)

1− 2ν1



cos−1

(
r2+d20−1

2rd0

)

π/2




2

1

r2
∂2

∂φ∗2
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2


 v1 = 0,

(3.14a)

ρ2
∂2v2
∂t2

+G2

[
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

]
v2 = 0. (3.14b)

The transformed boundary value problem admits separable solutions. A solution is found

in the (r, φ∗) domain, and is then transformed back into the original (r, φ) domain. The

solution is of the form

v1(r, φ, t) =
∞∑

n=1

∞∑

j=1

C(nj)V
(nj)
1 (r, φ)eiω

(nj)t, (3.15a)

v2(r, φ, t) =
∞∑

n=1

∞∑

j=1

C(nj)V
(nj)
2 (r, φ)eiω

(nj)t. (3.15b)
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where the modal functions are found to be

V
(nj)
1 (r, φ) =





Jξ(n)

(
α
(nj)
1 r

)
cos(nφ∗) (n ∼ odd; j = 1, 2, 3, ...)

Jξ(n)

(
α
(nj)
1 r

)
sin (nφ∗) (n ∼ even; j = 1, 2, 3, ...)

(3.16a)

V
(nj)
2 (r, φ) =





T (nj)
[
J1

(
α
(nj)
2 r

)
− S(nj)Y1

(
α
(nj)
2 r

)]
cos(nφ∗) (n ∼ odd; j = 1, 2, 3, ...)

T (nj)
[
J1

(
α
(nj)
2 r

)
− S(nj)Y1

(
α
(nj)
2 r

)]
sin (nφ∗) (n ∼ even; j = 1, 2, 3, ...).

(3.16b)

The modes corresponding to n ∼ odd (i.e. n = 1, 3, 5, ...) are symmetric about φ = 0 in the

φ-direction and the modes corresponding to n ∼ even (i.e. n = 2, 4, 6, ...) are anti-symmetric

about φ = 0 in the φ-direction. This means that for symmetric modes V (nj)(r0, φ0) =

V (nj)(r0,−φ0), and for anti-symmetric modes V (nj)(r0, φ0) = −V (nj)(r0,−φ0), where (r0, φ0)

are arbitrary points in the vitreous. Moreover, C(nj) are arbitrary constants that satisfy

initial conditions, and Ji and Yi are Bessel functions of the first and second kind, respec-

tively, of order i. The order of the Bessel function in Region S1 is unique for each mode,

and is given by

ξ(n) =

√

1 +
2(1− ν1)

1− 2ν1
n2 (n = 1, 2, 3, ...) . (3.17)

The radial wave number, α
(nj)
k (k = 1, 2) in each region associated with each mode is related

to the natural frequency, ω(nj), of the given mode as

α
(nj)
1 =

ω(nj)

√
G1/ρ1

(n, j = 1, 2, 3, ...) , (3.18a)

α
(nj)
2 =

ω(nj)

√
G2/ρ2

(n, j = 1, 2, 3, ...) . (3.18b)

The remaining terms in Equations (3.16a) and (3.16b) are defined as follows

S(nj) =
J1

(
α
(nj)
2 Rd

)

Y1

(
α
(nj)
2 Rd

) (n, j = 1, 2, 3, ...) , (3.19a)

T (nj) =
Jξ(n)

[
α
(nj)
1 (R+ d0)

]

J1

[
α
(nj)
2 (R+ d0)

]
− S(nj)Y1

[
α
(nj)
2 (R+ d0)

] (n, j = 1, 2, 3, ...) . (3.19b)

Substitution of Equations (3.15a) and (3.15b) into the remaining boundary condition,

the balance of shear stress along boundary C4 given by Equation (3.6b), yields the frequency



31

equation for the njth mode given by

G1

{
α
(nj)
1

2

[
Jξ(n)−1

(
α
(nj)
1 Rd

)
− Jξ(n)+1

(
α
(nj)
1 Rd

)]
− 1

Rd
Jξ(nj)

(
α
(nj)
1 Rd

)}

= G2T
(nj)

{
α
(nj)
2

2

[
J0

(
α
(nj)
2 Rd

)
− J2

(
α
(nj)
2 Rd

)]
− 1

Rd
J1

(
α
(nj)
2 Rd

)

− S(nj)α
(nj)
2

2

[
Y0

(
α
(nj)
2 Rd

)
− Y2

(
α
(nj)
2 Rd

)]
+ S(nj) 1

Rd
J1

(
α
(nj)
2 Rd

)}
.

(3.20)

The natural frequency, ω(nj), for each mode corresponds to a root of the frequency equation,

Equation (3.20). Each frequency is determined numerically using root solving techniques.

3.2.2 Modal Analysis

The free vibration modes for vanishing damping are given by Equations (3.16a) and (3.16b),

with the corresponding natural frequencies determined by Equation (3.20). Any two vibra-

tion modes are mutually orthogonal with respect to one another if they satisfy the following

condition

∫∫

A1

[V
(nj)
1 kk

(2,2)
1 V

(lp)
1 − V

(lp)
1 kk

(2,2)
1 V

(nj)
1 ]dA+

∫∫

A2

[V
(nj)
2 kk

(2,2)
2 V

(lp)
2 − V

(lp)
2 kk

(2,2)
2 V

(nj)
2 ]dA = 0,

(3.21)

where kk
(2,2)
1 and kk

(2,2)
2 are given by Equations (2.25d) and (2.26d), respectively, and corre-

spond to the stiffness operators of the free vibration equations given by Equations (3.12a)

and (3.12b). It can be shown that Equations (3.16a) and (3.16b) satisfy Equation (3.21),

proving that all the vibration modes are mutually orthogonal. Therefore, the modes pro-

vide an orthogonal basis on which the solution to Equations (3.4a) and (3.4b), the damped

forced vibration problem, can be expressed. The solution will be of the form

v1(r, φ, t) =
∞∑

n=1

∞∑

j=1

V
(nj)
1 (r, φ)η(nj)(t), (3.22a)

v2(r, φ, t) =
∞∑

n=1

∞∑

j=1

V
(nj)
2 (r, φ)η(nj)(t), (3.22b)

where η(nj)(t) represents the modal coordinates. Substitution of Equations (3.22a) and

(3.22b) into Equations (3.4a) and (3.4b), while exploiting the mutual orthogonality of the
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modes, reduces the system of coupled partial differential equations to one of uncoupled

ordinary differential equations, one for each mode. The modal equations take the form

m̃(nj)η̈(t) + c̃(nj)η̇(t) + k̃(nj)η(t) = F̃ (nj)(t) (n, j = 1, 2, 3, ...) , (3.23)

where

m̃(nj) =

∫∫

A1

V
(nj)
1 (r, φ)ρ1V

(nj)
1 (r, φ)dA+

∫∫

A2

V
(nj)
2 (r, φ)ρ2V

(nj)
2 (r, φ)dA (3.24a)

is the modal mass operator for the njth mode,

k̃(nj) =

∫∫

A1

V
(nj)
1 (r, φ)G1

[
−2(1− ν1)

1− 2ν1

1

r2
∂2

∂φ2
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

]
V

(nj)
1 (r, φ)dA

+

∫∫

A2

V
(nj)
2 (r, φ)G2

[
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

]
V

(nj)
2 (r, φ)dA

= k̃
(nj)
1 + k̃

(nj)
2

= ω(nj)2m̃(nj)

(3.24b)

is the modal stiffness operator for the njth mode,

c̃(nj) =

∫∫

A1

V
(nj)
1 (r, φ)µ1G1

[
−2(1− ν1)

1− 2ν1

1

r2
∂2

∂φ2
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

]
V

(nj)
1 (r, φ)dA

+

∫∫

A2

V
(nj)
2 (r, φ)µ2G2

[
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

]
V

(nj)
2 (r, φ)dA

= µ1k̃
(nj)
1 + µ2k̃

(nj)
2

(3.24c)

is the modal damping operator for the njth mode, and

F̃ (nj) = −
∫∫

A1

ρ1(r − d0 cosφ)√
r2 + d20 − 2rd0 cosφ

üoV
(nj)
1 (r, φ)dA

−
∫∫

A2

ρ2(r − d0 cosφ)√
r2 + d20 − 2rd0 cosφ

üoV
(nj)
2 (r, φ)dA

(3.24d)

is the modal force for the njth mode.

The solution to Equation (3.23) depends on whether the particular mode is overdamped

or underdamped. Depending on the values chosen for µ1 and µ2, some modes may be
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overdamped while others are underdamped. For an overdamped modal coordinate, η(nj)(t)

is expressed as the solution of a convolution integral in the form

η(nj)(t) = −
t∫

0

(
a
(nj)
0 + a

(nj)
1 τ + a

(nj)
2 τ2 + a

(nj)
3 τ3

)
e−ζ(nj)ω(nj)(t−τ) sinh

[
ω(nj)z(nj) (t− τ)

]

m̃(nj)ω(nj)z̃(nj)
dτ

−
t∫

t−ts

[
a
(nj)
0 + a

(nj)
1 (t− τ) + a

(nj)
2 (t− τ)2 + a

(nj)
3 (t− τ)3

]
e−ζ(nj)ω(nj)τ sinh

(
ω(nj)z(nj)τ

)

m̃(nj)ω(nj)z̃(nj)
dτ,

(3.25)

where

a
(nj)
0 = −2c2



∫∫

A1

ρ1(r − d0 cosφ)V
(nj)
1√

r2 + d20 − 2rd0 cosφ
dA+

∫∫

A2

ρ2(r − d0 cosφ)V
(nj)
2√

r2 + d20 − 2rd0 cosφ
dA


 , (3.26a)

a
(nj)
1 = −6c3



∫∫

A1

ρ1(r − d0 cosφ)V
(nj)
1√

r2 + d20 − 2rd0 cosφ
dA+

∫∫

A2

ρ2(r − d0 cosφ)V
(nj)
2√

r2 + d20 − 2rd0 cosφ
dA


 , (3.26b)

a
(nj)
2 = −12c4



∫∫

A1

ρ1(r − d0 cosφ)V
(nj)
1√

r2 + d20 − 2rd0 cosφ
dA+

∫∫

A2

ρ2(r − d0 cosφ)V
(nj)
2√

r2 + d20 − 2rd0 cosφ
dA


 , (3.26c)

a
(nj)
3 = −20c5



∫∫

A1

ρ1(r − d0 cosφ)V
(nj)
1√

r2 + d20 − 2rd0 cosφ
dA+

∫∫

A2

ρ2(r − d0 cosφ)V
(nj)
2√

r2 + d20 − 2rd0 cosφ
dA


 , (3.26d)

ζ̃(nj) =
c̃(nj)

2ω(nj)m̃(nj)
, (3.27a)

z̃(nj) =

√
ζ̃(nj)

2 − 1. (3.27b)

If, instead, the vibration mode of interest is underdamped, η(nj)(t) takes the form

η(nj)(t) = −
t∫

0

(
a
(nj)
0 + a

(nj)
1 τ + a

(nj)
2 τ2 + a

(nj)
3 τ3

)
e−ζ(nj)ω(nj)(t−τ)

sin
[
ω
(nj)
d (t− τ)

]

m̃(nj)ω
(nj)
d

dτ

−
t∫

t−ts

[
a
(nj)
0 + a

(nj)
1 (t− τ) + a

(nj)
2 (t− τ)2 + a

(nj)
3 (t− τ)3

]
e−ζ(nj)ω(nj)τ

sin
(
ω
(nj)
d τ

)

m̃(nj)ω
(nj)
d

dτ,

(3.28)

where

ω
(nj)
d =

√
1− ζ̃(nj)

2
. (3.29)
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The convolution integrals of Equations (3.25) and (3.28) are computed analytically. The

solutions are not shown for brevity.

The displacement of the vitreous subject to saccadic motion can now be expressed an-

alytically as a function of two spatial variables and time by Equations (3.22a) and (3.22b).

Substitution of these solutions into the strain-displacement relations and constitutive equa-

tions will yield the strain and stress at every point in the vitreous at all instances of time

during the saccade. Substitution of these equations into Equations (3.10) and (3.11) will

determine the location of the detachment boundaries a, and b. From this, the evolving

detachment behavior can be characterized.

3.3 Results and Discussion

Now that the solution has been determined for the circumferential motion model, attention

is turned to analyzing these results for typical scenarios. Geometric and material properties

are selected based on data available in the literature. Resultant displacement and stress

fields are presented, in addition to a lengthy discussion of detachment behavior. Where

there is ambiguity on material values, the results of parameter studies are presented to

demonstrate how the parameters affect the overall results.

3.3.1 Selection of Geometric and Material Properties

As previously mentioned, length scales are normalized by the dimensional radius of the

eye. Therefore, the results presented here are independent of the radius chosen. Wilkerson

and Rice (1997) [49] show the distance from the geometric center of a typical human eye

to the retinal wall as 11 mm, and the distance from the geometric center to the posterior

portion of the lens as 4.8 mm. Hence, d0, the normalized distance from the center of the

eye to the lens is chosen as d0 =
4.8 mm
11 mm = 0.436. The maximum radius of Region S2 is thus

R0 = R + d0 = 1.436. Detachment size is quantified as the difference between R0 and Rd,

where Rd is the radius of Region S1 as defined earlier.

Since water constitutes 98−99% of the mass of the vitreous, both ρ1 and ρ2 are taken to

be the same density as water, 1000 kg/m3. Hence, ρ1 = ρ2 = 1. Furthermore, since water is
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nearly incompressible, Poisson’s ratio is assumed the same for both regions, ν1 = ν2 = 0.49.

It is again noted that the material differences between these two regions is accounted for

by the constitutive relations given by Equations (2.4) and (2.5).

There is a large degree of difficulty in determining the rheological properties of the

vitreous. In studies by Lee at al. (1992 and 1994) [34] [35], ex vivo rheological experiments

are conducted on the vitreous of fresh bovine, porcine, and human eyes. The authors

determine that the viscoelastic characteristics of the central porcine vitreous closely resemble

those of the human vitreous. Due to the more readily available porcine eyes, most rheological

experimentation going forward have been conducted on the central portion of the porcine

vitreous. A further degree of uncertainty for rheological parameters is added by the fact

that Zimberlin et al. (2010) [50] have experimentally demonstrated that the mechanical

properties of the vitreous differ between in vivo measurements and ex vivo measurements.

The shear modulus decreases when removed from the eye, and decreases further when the

hyaloid membrane has been disrupted.

The values most commonly used in the literature are attributed to Nickerson et al.

(2008) [39] and Swindle, Hamilton, and Ravi (2008) [48]. In both studies, the values of the

dynamic shear moduli are determined by conducting an ex vivo oscillatory strain test of the

central portion of porcine vitreous. Nickerson et al. conclude that the storage modulus is

G
′

= 10± 1.9 N/m2, while the loss modulus is G
′′

= 3.9± 0.8 N/m2. In contrast, Swindle,

Hamilton, and Ravi conclude that the storage modulus is G
′

= 3.46± 0.30 N/m2, while the

loss modulus is G
′′

= 0.71 ± 0.12 N/m2. This work has been extended by Modarreszadeh

and Abouali [38] to determine the complex shear modulus for finite non-linear deformation,

which is not considered in the present study.

In the present study, the shear moduli for each region, G1 and G2, are akin to the

storage moduli of these tests, while the proportionality constants in each region, µ1 and

µ2, are determined from the loss moduli of these experiments. The present study adopts

the values of the dynamic moduli determined by Nickerson et al. as they utilized a novel

cleated rheometry fixture to correct for slippage at the boundary. However, a parameter

study is performed later due to the large uncertainty surrounding these values, and the

aforementioned difficulties in obtaining these properties. The values from Nickerson et al.
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correspond to the present study as G1 = G2 = 10 N/m2 and µ1 = µ2 = 0.354. Since G1

and G2 are both normalized by G1, G1 = G2 = 1. In this study, the shear moduli and

Poisson’s ratio of Regions S1 and S2 are kept the same. The material difference, as well as

the difference in compliance, is accounted for by the differing constitutive relations.

3.3.2 Natural Frequencies

The natural frequencies of the vitreous are determined by Equation (3.20). They change

with detachment size, and therefore during the process of detachment, as they are dependent

on the geometry of the two regions. Figure 3.1 shows how these frequencies vary as a

function of detachment. The lowest 18 frequencies are presented (nine associated with

symmetric modes and nine associated with anti-symmetric modes). Figure 3.2 shows the

same frequencies, but with only the symmetric frequencies displayed in Figure 3.2a and

only the anti-symmetric ones displayed in Figure 3.2b.
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Figure 3.1: Natural frequencies as a function of detachment size.
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As detachment increases, Region S2 grows while Region S1 shrinks. The detached region

(Region S2) is, of course, more compliant than the fully attached portion of the vitreous

(Region S1). Thus, the overall composite structure becomes more compliant as detachment

progresses. Figure 3.1 shows that the natural frequencies decrease with increasing detach-

ment, as may be anticipated for more compliant structures. Higher-order frequencies are

seen to plateau for smaller detachment sizes. In addition, there exists small oscillations for

the higher order frequencies at small detachment sizes. This is most likely a consequence

of the atypical geometry of the vitreous cavity.
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(a) Lowest nine symmetric mode natural frequencies as a
function of detachment size.
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(b) Lowest nine anti-symmetric mode natural frequencies as
a function of detachment size.

Figure 3.2: Symmetric and anti-symmetric natural frequencies.
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3.3.3 Mode Shapes

The mutually orthogonal free vibration modes given by Equations (3.16a) and (3.16b) vary

as a function of detachment size, like the natural frequencies. Figures 3.3 and 3.4 show

these mode shapes for the case of partial detachment where R0 − Rd = 0.236. The green

shade represents the neutral position. The lighter yellow shading represents displacement

in the positive φ direction, whereas the darker blue shade represents displacement in the

negative φ direction. Boundary C4 is represented by the black curve across the figures. It

is apparent that, for most modes, the majority of the motion is concentrated in Region S2.

Figure 3.3: Lowest nine symmetric mode shapes.
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Figure 3.4: Lowest nine anti-symmetric mode shapes.

3.3.4 Relative Contribution of Modes

For the material properties selected, all vibration modes are overdamped. Thus, the con-

tribution of each mode, as a function of time, during a saccade is given by Equation (3.25),

where the integral has been evaluated analytically. It is worth noting that Equation (3.24d)

vanishes for all anti-symmetric modes (n = 2, 4, 6, ...). This means that during saccadic

motion, the anti-symmetric modes are not excited. Therefore the resultant motion of the

vitreous will be entirely symmetric. The modal amplitudes are calculated from Equation

(3.25), and are displayed graphically in Figures 3.5 – 3.7 for various detachment sizes and

saccade amplitudes. For all saccades and detachment sizes, the motion is seen to be dom-

inated by Mode (1, 1), the lowest symmetric natural frequency. As the detachment size

increases, the modal contribution, and thus the total motion of the vitreous increases, as
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the structure is less constrained. The relative contribution of Mode (1, 1) compared to the

next highest contributing mode, Mode (2, 1), remains relatively consistent throughout the

different cases. The overall contribution of each mode increases with saccade amplitude,

corresponding to larger motion.
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Figure 3.5: Modal contribution as a function of dimensional time for small detachment.
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Figure 3.6: Modal contribution as a function of dimensional time for medium detachment.
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Figure 3.7: Modal contribution as a function of dimensional time for large detachment.
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3.3.5 Vitreous Response Fields

The displacement response, v(r, φ, t), of the partially detached vitreous body subject to

saccadic motion is given by Equations (3.22a) and (3.22b). In this section, the response of

an eye with vitreous detachment size R0−Rd = 0.236 subject to a 20◦ saccade is presented.

This detachment size and saccade amplitude used here are chosen to be small enough so

that they will not cause detachment progression. The criteria that determines detachment

progression will be evaluated in the next section. The values chosen here demonstrate

typical vitreous response.

Figure 3.8 shows the displacement field at two instances in time. Figure 3.8a shows the

maximum displacement, which occurs at an instant just before the saccade is at its peak

acceleration. For the 20o saccade shown, this corresponds to t = 0.051 sec. Consequently

this time corresponds to the time of maximum normal and shear stress. Figure 3.8a looks

very similar to Mode (1, 1) because this is the dominant mode at this instance. Maximum

displacement is seen to occur near the center of the vitreous body near the boundary

between Region S1 and S2. Figure 3.8b shows the displacement at the instant the saccade

has finished, which for the 20◦ saccade corresponds to ts = 0.075 sec. The displacement

at this time is not zero, as Figure 3.6a showed that there is still responsive motion at this

instant, which is consistent with the experimental results observed by Zimmerman (1980)

[51] and Repetto et al. (2005) [41]. The response decays to near zero by t = 0.150 sec.

(a) Maximum displacement during the sac-
cade; t = 0.051 sec.

(b) Displacement at the instance the saccade
has finished; ts = 0.075 sec.

Figure 3.8: Displacement of vitreous during a 20◦ saccade with detachment size, R0−Rd =
0.236.
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Figures 3.9, 3.10, and 3.11 show the total stress during the saccade, but exclude the uni-

form stress due to IOP. The IOP is neglected in these plots because this pressure is equally

balanced on the other side of the retinal wall, and does not effect the detachment behavior,

which is studied next. Figures 3.9a and 3.10a show that normal stress is concentrated on

the boundaries C2 and C3, where the vitreous is attached to the retina. The stress tends

to be concentrated more towards the vitreous base, though there is still significant trac-

tion at detachment points a and b. Figure 3.11a shows the shear stress to be concentrated

towards the interior of the vitreous body, specifically along C4, the boundary between the

two regions. Figures 3.9b, 3.10b, and 3.11b demonstrate that, although the external eye

has stopped moving, there is still significant stress distributed throughout the vitreous, as

a consequence of the lagging motion.

(a) Maximum normal stress, σφφ, during the
saccade; t = 0.051 sec.

(b) Normal stress, σφφ, at the instance the
saccade has finished; ts = 0.075 sec.

Figure 3.9: Normal stress, σφφ, of the vitreous during a 20◦ saccade with detachment size,
R0 −Rd = 0.236.

(a) Maximum normal stress, σrr, during the
saccade; t = 0.051 sec.

(b) Normal stress, σrr, at the instance the
saccade has finished; ts = 0.075 sec.

Figure 3.10: Normal stress, σrr, of the vitreous during a 20◦ saccade with detachment size,
R0 −Rd = 0.236.
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(a) Maximum shear stress, σrφ, during the
saccade; t = 0.051 sec.

(b) Shear stress, σrφ, at the instance the sac-
cade has finished; ts = 0.075 sec.

Figure 3.11: Shear stress, σrφ, of vitreous during a 20◦ saccade with detachment size,
R0 −Rd = 0.236.

It must be kept in mind that, for this model, the radial displacement is neglected, and

so the vitreous is effectively “constrained.” Figure 3.12 shows the inherent constraining

force field that would have to be applied to the system to render the radial displacement to

vanish. This is a visualization of λ1 and λ2 as determined by Equations (3.9a) and (3.9b).

It is noteworthy that the constraint force is at its maximum value at the detachment points

a and b. Thus, more so than at any other location, the displacement and stress fields cannot

be fully trusted here.

(a) Maximum inherent constraint force per
unit volume, λ, during the saccade; t = 0.051
sec.

(b) Inherent constraint force per unit volume,
λ, at the instance the saccade has finished;
ts = 0.075 sec.

Figure 3.12: Inherent force per unit volume, λ, necessary to constrain the radial motion of
the vitreous to vanish during a 20◦ saccade with detachment size, R0 −Rd = 0.236.
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Figures 3.13 – 3.16 show the maximum resultant stress fields in the vitreous body for

the same detachment size, R0 −Rd = 0.236, but with increasing amplitude of the saccade.

Stresses σ
(T )
φφ , σ

(T )
rr , and σ

(T )
rφ all increase as the saccade amplitude increases. This agrees

with the numerical results of Repetto et al. (2011) [42], Meskauskas et al. (2012) [37], and

Modarreszadeh and Abouali (2014) [38], as well as the experimental results of Repetto et

al. (2005) [41].

It is seen with this current model that the order of magnitude of maximum stress near the

detachment points remains the same. In this context, the robustness of the model is demon-

strated. This is similar to what was determined by the two-dimensional computational

model of Repetto et al. (2011)), which considered the vitreous as a hybrid Neo-Hookean

incompressible solid with Newtonian fluid-like dissipation.

Figure 3.13: Maximum stress fields during a saccade of amplitude 10◦ with detachment
size, R0 −Rd = 0.236.

Figure 3.14: Maximum stress fields during a saccade of amplitude 20◦ with detachment
size, R0 −Rd = 0.236.
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Figure 3.15: Maximum stress fields during a saccade of amplitude 30◦ with detachment
size, R0 −Rd = 0.236.

Figure 3.16: Maximum stress fields during a saccade of amplitude 40◦ with detachment
size, R0 −Rd = 0.236.

3.3.6 Detachment Progression

The energy formulation gave way to a transversality condition, which predicts the vitreous

detachment behavior by locating boundaries a and b that correspond to configurations of the

evolving ocular system that satisfy the dynamic conditions. Upon substitution of bound-

ary conditions, along with the current selection of material properties, the transversality

condition given by Equations (3.10) and (3.11) reduces to

G{Rd; a, b} =

[
G1(1− ν1)

(1− 2ν1)

1

r

(
∂v1
∂φ

+ µ1
∂2v1
∂t∂φ

)
1

r

∂v1
∂φ

− σ
(T ;1)
nt

∂u
(t)
1

∂s
+ σ

(T ;2)
nt

∂u
(t)
2

∂s

]∣∣∣∣∣
a

+

[
G1(1− ν1)

(1− 2ν1)

1

r

(
∂v1
∂φ

+ µ1
∂2v1
∂t∂φ

)
1

r

∂v1
∂φ

− σ
(T ;1)
nt

∂u
(t)
1

∂s
+ σ

(T ;2)
nt

∂u
(t)
2

∂s

]∣∣∣∣∣
b

= 2γ|a + 2γ|b .

(3.30)
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The energy release rate per unit depth is depicted graphically as a function of time in

Figure 3.17 for saccades of various amplitudes, for three separate detachment sizes. The

energy release rate quantifies the amount of energy released by the system if detachment

occurs at a and b. These figures show that the energy release rate per unit depth increases

with saccade amplitude. They also show that the energy release rate per unit depth increases

with detachment size. The peak value of the energy release rate per unit depth occurs at

the same instance of time as maximum displacement and maximum stress. The peak time

increases with detachment size. If at any point during the saccade the energy release rate

per unit depth is greater than 2γ|a + 2γ|b, detachment will propagate.

It is instructive to see how the energy release rate per unit depth changes with detach-

ment size because if the energy release rate per unit depth exceeds 2γ|a + 2γ|b for a given

configuration, then detachment propagation occurs. It is assumed that the bond breaks

instantaneously. The configuration now changes, and the energy release rate per unit depth

needs to be evaluated at the next point, an infinitesimal distance away, to see if it exceeds

2γ|a+ 2γ|b, where a and b have moved to correspond to the new detachment size. If so, then

the bond between the vitreous and the sensory retina breaks at this point, and the process

is repeated at the next point and so on. Figure 3.18 shows the maximum energy release rate

per unit depth as a function of detachment size for saccades of various amplitudes. For small

detachment size, the curves all increase monotonically. However, when the detachment size

exceeds R0 − Rd = 0.240, it can be seen that the maximum energy release rate per unit

depth for the 10◦ saccade begins to level off. For larger detachment sizes, it can be seen

that the curves for larger saccades also begin to level off, and the maximum energy release

rate per unit depth for some higher amplitude saccades even begin to decrease slightly.

The data displayed in Figure 3.18 is used to create Figure 3.19, a threshold path for the

evolution of the propagating boundaries. This is a plot of the critical saccade amplitude

per unit bond energy, Ãcr, as a function of detachment size, where

Ãcr =
Acr

2γ|a + 2γ|b
, (3.31)

and Acr is the critical saccade amplitude—the amplitude required to precipitate detachment.

It is the saccade amplitude that causes G{Rd; a, b} ≥ 2γ|a + 2γ|b. Currently, there is no
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(a) Detachment size, R0 −Rd = 0.036.
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(b) Detachment size, R0 −Rd = 0.236.
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(c) Detachment size, R0 −Rd = 0.436.

Figure 3.17: Energy release rate per unit depth as a function of time for small, medium,
and large detachment sizes.
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available data in the literature that quantifies the strength of the bond between the vitreous

cortex and the sensory retina. To this end, the curve of Figure 3.19 is less quantitatively

important, but reveals very interesting qualitative information about the characteristics

of detachment propagation. The curve decreases monotonically until the detachment size

is greater than R0 − Rd = 0.397, after which point it increases slightly. The shape of

the threshold path for initial detachment in the range R0 − Rd < 0.397 implies that if a

saccade is large enough to cause detachment to occur at one point, the detachment will

grow continuously (catastrophically), assuming the bond strength is the same at all points.

For example, for initial detachment size of R0−Rd = 0.136, Ãcr = 28.08◦. If the saccade

has an amplitude this large (or larger), detachment will occur. It is seen that at the next

point, Ãcr is smaller. Thus, the current saccade has already surpassed the limit for this new

detachment size, and the detachment will grow unstable and catastrophically all the way

to the vitreous base or another point of abnormally strong adhesion between the vitreous

cortex and the sensory retina. However, the behavior is different after R0 − Rd > 0.397.

The curve begins to increase, which implies that a prior detachment of that size or larger

will progress in a stable manner, and thus will not progress without bound. This analysis
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Figure 3.18: Maximum energy release rate per unit depth as a function of detachment size
for saccades of nine different amplitudes.
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Figure 3.19: Critical saccade amplitude per unit bond energy as a function of detachment
size.

assumes that the bond strength is the same at all points, which is known to not be true.

It is, however, known that the bond is stronger near the vitreous base as well as at other

places, due to random abnormalities such as lattice degeneration, cystic retinal tufts, and

certain chorioretinal scars, including some photocoagulation scars. (Wilkerson and Rice)

[49]. Therefore, it can be said that if the saccade is large enough to cause detachment of

the vitreous from the sensory retina, the detachment will increase until either it reaches the

vitreous base or it encounters a point with an abnormally strong bond strength.

3.3.7 Parameter Study

As mentioned earlier, the experimental data for the shear modulus of the vitreous varies

significantly. In addition to not being able to measure the shear modulus in a healthy

human eye directly, this property varies significantly from individual to individual. To this

end, a parameter study on the influence of the shear modulus is presented.

Equation (3.20) shows that the natural frequencies of the system depend on two variable

parameters: the current detachment size, and the shear modulus. The variation of natural

frequency as a function of detachment size for a fixed shear modulus has already been
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presented in Figures 3.1, 3.2a, and 3.2b. The influence of shear modulus is demonstrated

in Figures 3.20a, 3.20b, and 3.20c. These figures show the symmetric natural frequencies

as a function of detachment size for various values of the shear modulus. Since it was

already shown that only the symmetric modes are excited by saccadic motion, Figures

3.20a – 3.20c only show the symmetric frequencies. It can be seen that there is a direct

relation between the shear modulus and the natural frequencies. A higher value of the shear

modulus corresponds to a higher value in natural frequency. This makes physical sense, as a

structure with a higher shear modulus is inherently stiffer, and therefore would oscillate at

a higher frequency. The corresponding figures are seen to all maintain the same qualitative

shape. The plateaus in the curves occur at the same points, and frequency branches cross at

the same detachment sizes. This shows that the shape of the natural frequency variations

are a function of geometry, and not a function of shear modulus.

Figures 3.21 – 3.23 show the maximum stress distributions during a typical 20◦ saccade,

but with different values of shear modulus. As was seen with the natural frequencies, the

qualitative behavior is not changed when varying the shear modulus. However, a larger

value of shear modulus corresponds to greater stress. This result is consistent with the

computational results of the study by Repetto et al. (2011) [42]. This increase in stress will

invariably lead to larger values of energy release rate per unit depth, which means lower

values of the critical saccade amplitude. Figures 3.24 and 3.25 confirm this. Figure 3.24

shows the maximum energy release rate per unit depth as a function of detachment size for

different values of the shear modulus. It can be seen that the for higher values of the shear

modulus, the curves increase monotonically for a larger amount of detachment. In addition,

the maximum values are increased as the shear modulus increases. Figure 3.25 shows the

normalized critical saccade amplitude as a function of detachment size for the different values

of the shear modulus. It is seen that the qualitative behavior is catastrophic detachment

for the majority of detachment sizes, until switching to weakly stable detachment. It is seen

that an increase in the shear modulus leads to an increased detachment size corresponding

to the change in qualitative detachment behavior. It is also shown that the critical saccade

amplitude is lowered for larger values of the shear modulus.
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(c) Lowest nine symmetric natural frequencies as a
function of detachment size for G1 = G2 = 2.0.

Figure 3.20: Lowest nine symmetric natural frequencies for different values of shear modulus.
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Figure 3.21: Maximum stress fields during a saccade of amplitude 20◦ with detachment
size, R0 −Rd = 0.236 where G1 = G2 = 0.5.

Figure 3.22: Maximum stress fields during a saccade of amplitude 20◦ with detachment
size, R0 −Rd = 0.236 where G1 = G2 = 1.0.

Figure 3.23: Maximum stress fields during a saccade of amplitude 20◦ with detachment
size, R0 −Rd = 0.236 where G1 = G2 = 2.0.
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(a) Energy release rate per unit depth as a function
of detachment size for various saccade amplitudes
taking G1 = G2 = 0.5.
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(b) Energy release rate per unit depth as a func-
tion of detachment size for various saccade ampli-
tudes taking G1 = G2 = 1.0.
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(c) Energy release rate per unit depth as a function
of detachment size for various saccade amplitudes
taking G1 = G2 = 2.0.

Figure 3.24: Energy release rate per unit depth as a function of detachment size for three
different values of shear modulus.
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(a) Critical saccade amplitude per unit bond en-
ergy as a function of detachment size for G1 =
G2 = 0.5.
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(b) Critical saccade amplitude per unit bond en-
ergy as a function of detachment size for G1 =
G2 = 1.0.
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(c) Critical saccade amplitude per unit bond en-
ergy as a function of detachment size for G1 =
G2 = 2.0.

Figure 3.25: Critical saccade amplitude per unit bond energy as a function of detachment
size for different values of shear modulus.
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3.4 Conclusions

A model of vitreous motion and detachment has been presented, and the response of the

vitreous when subject to a typical saccade has been analyzed based on this model. The

distribution of stress agrees qualitatively with what has been observed clinically and what

has been predicted by other analytical, numerical, and computational studies, namely that

the stress concentration is highest along the retinal walls. The detachment behavior of the

vitreous from the sensory retina has been determined analytically. It is has been shown

that the detachment will typically be catastrophic, meaning the detachment will continue

to progress until there is an abnormality in the strength of the bond between the vitreous

and the retina. This is consistent with what is observed, as partial posterior vitreous

detachments typically progress rapidly to become complete vitreous separations (Wilkerson

and Rice) [49].

The preceding analysis is based on the assumption that the radial motion can be ne-

glected when compared to the circumferential motion. It was shown in Figure 3.12 that this

is akin to applying an artificial constraint force per unit volume that is not negligible, and

that this force, in fact, is largest at the detachment points. Therefore this assumption is

dropped in the next chapter, and the problem is analyzed using a quasi-analytical method.
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Chapter 4

Full 2D Solution

Chapter 3 presented an analytical solution to the model of vitreous detachment proposed in

Chapter 2 by hypothesizing that the formation of long chains of collagen fibrils aligned in an

anteroposterior orientation effectively constrains the vitreous from deforming in the radial

direction. In this chapter, this constraint on the deformation of the vitreous is relaxed. The

governing equations for the current model do not lend themselves to an exact analytical

solution. A semi-analytical solution is developed and presented in which the deformation is

approximated by a Rayleigh-Ritz solution based on the modes of the constrained 2D model.

4.1 Solution Procedure

Recall, the equations governing the motion of the vitreous body during a typical saccade

derived in Chapter 2 are given by

mm1
∂2uu1
∂t2

+ cc1
∂uu1
∂t

+ kk1uu1 = FF1, (4.1a)

mm2
∂2uu2
∂t2

+ cc2
∂uu2
∂t

+ kk2uu2 = FF2, (4.1b)

where

uu1 =


u1(r, φ, t)

v1(r, φ, t)


 , (4.2a)

uu2 =


u2(r, φ, t)

u2(r, φ, t)


 , (4.2b)
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The boundary conditions and matching conditions for both regions take the following

forms

u1 = 0 on C1 in S1, (4.11a)

v1 = 0 on C1 in S1, (4.11b)

u1 = 0 on C2 in S1, (4.12a)

v1 = 0 on C2 in S1, (4.12b)

u1 = 0 on C3 in S1, (4.13a)

v1 = 0 on C3 in S1, (4.13b)
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u1 = u2 on C4, (4.13c)

v1 = v2 on C4, (4.13d)

σ
(T ;1)
rφ = σ

(T ;2)
rφ on C4, (4.13e)

u1 = 0 on C4, (4.13f)

σ
(T ;2)
rφ = 0 on C2 in S2, (4.13g)

σ
(T ;2)
rφ = 0 on C3 in S2. (4.13h)

The evolution of the detachment of the vitreous cortex from the sensory retina is determined

by the transversality condition which locates boundary C4, and consequently boundary

points a and b. The transversality condition is given by

G{Rd; a, b} = 2γ|a + 2γ|b , (4.14)
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where G is interpreted as the energy release rate, and is given by

G{Rd; a, b} =

{
1

2

[
σ(T ;1)
rr ε(1)rr + σ

(T ;1)
φφ ε

(1)
φφ + 2

(
σ
(T ;1)
rφ ε

(1)
rφ − σ

(T ;2)
rφ ε

(2)
rφ

)]
− σ

(T ;1)
nt

∂u
(t)
1

∂s

+ σ
(T ;2)
nt

∂u
(t)
2

∂s
− ρ1

2

[(
∂u1
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v1
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2



+
ρ2
2

[(
∂u2
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v2
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2







∣∣∣∣∣∣
a

+

{
1

2

[
σ(T ;1)
rr ε(1)rr + σ

(T ;1)
φφ ε

(1)
φφ + 2

(
σ
(T ;1)
rφ ε

(1)
rφ − σ

(T ;2)
rφ ε

(2)
rφ

)]
− σ

(T ;1)
nt

∂u
(t)
1

∂s

+ σ
(T ;2)
nt

∂u
(t)
2

∂s
− ρ1

2

[(
∂u1
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v1
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2



+
ρ2
2

[(
∂u2
∂t

+
∂uo
∂t

d0 sinφ√
r2 + d20 − 2rd0 cosφ

)2

+

(
∂v2
∂t

+
∂uo
∂t

r − d0 cosφ√
r2 + d20 − 2rd0 cosφ

)2







∣∣∣∣∣∣
b

+ [~et · −~er]|(a or b)

∫

C4

σ(T ;1)
rr

∂u1
∂r

ds.

(4.15)

As in the previous chapter, these equations represent a forced vibration problem for a

composite domain with an internal boundary whose location is to be determined as part

of the solution. This problem will again be solved via modal analysis where the forced

vibration response is expressed as a linear combination of the undamped free vibration
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modes. These modes are determined semi-analytically by way of using the Rayleigh-Ritz

method.

4.1.1 Undamped Free Vibration Response Using the Rayleigh-Ritz Method

Consider the undamped free vibration problem which determines the response modes of the

vitreous. The governing equations of motion in Regions S1 and S2 are given by

mm1
∂2uu1
∂t2

+ kk1uu1 = 00, (4.16a)

mm2
∂2uu2
∂t2

+ kk2uu2 = 00. (4.16b)

It is assumed that the response in each region will be of the form

u1(r, φ, t) =
∞∑

m=1

A(m)
u U

(m)
1 eiω

(m)t, (4.17a)

u2(r, φ, t) =
∞∑

m=1

A(m)
u U

(m)
2 eiω

(m)t, (4.17b)

v1(r, φ, t) =
∞∑

m=1

A(m)
v V

(m)
1 eiω

(m)t, (4.17c)

v2(r, φ, t) =

∞∑

m=1

A(m)
v V

(m)
2 eiω

(m)t, (4.17d)

where A
(m)
u and A

(m)
v are arbitrary constants that satisfy the initial conditions, and U

(m)
1 ,

U
(m)
2 , V

(m)
1 , and V

(m)
2 are the unknown modal functions associated with the (yet to be

determined) natural frequencies ω(m). Since the governing equations given by (4.16a) and

(4.16b) do not yield exact solutions for the natural frequencies and corresponding mode

shapes, the Rayleigh-Ritz method is used to approximate the unknown modal functions

and the associated natural frequencies.

The Rayleigh-Ritz method is an approximation method used in mathematics for solving

eigenvalue equations that may or may not have exact analytical solutions. This approach

is used in structural dynamics for determining the response of a vibrating system. The

development here follows that demonstrated by Ilanko et. al (2014) [29]. The theory is based

upon minimizing the Rayleigh quotient, R, of a vibrating system. The Rayleigh quotient,

by definition, is the ratio of the maximum of the potential energy to the maximum of the
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kinetic energy functionals. If the system is vibrating harmonically and the vibration mode

shape is known then the natural frequency at which it oscillates can be determined exactly

by the Rayleigh quotient. If the form of multiple modes are known, then the corresponding

natural frequency for each mode is determined by the Rayleigh quotient. For this specific

problem, the Rayleigh quotient takes the form

R[UU(m)(r, φ)] =
U (1)[UU(m)(r, φ)] + U (2)[UU(m)(r, φ)]

T (1)[UU(m)(r, φ)] + T (2)[UU(m)(r, φ)]
= ω(m)2 (4.18)

where

UU(m)(r, φ) = UU
(m)
1 (r, φ) + UU

(m)
2 (r, φ) =


U

(m)
1 (r, φ)

V
(m)
1 (r, φ)


+


U

(m)
2 (r, φ)

V
(m)
2 (r, φ)


 (4.19)

is a specific vibration mode.

If, however, the mode shapes and natural frequencies are unknown (as is the case here),

minimizing the Rayleigh quotient will determine approximate values of the natural frequen-

cies and mode shapes. This extension of Rayleigh’s quotient is known as the Rayleigh-Ritz

method. This involves expressing each vibration mode as a series of admissible functions,

each multiplied by a (yet to be determined) constant coefficient as shown here.

UU(m)(r, φ) =

N∑

n=1

J∑

j=1



C

(m;nj)
u

(
U

(nj)
1 (r, φ) + U

(nj)
2 (r, φ)

)

C
(m;nj)
v

(
V

(nj)
1 (r, φ) + V

(nj)
2 (r, φ)

)


 (4.20)

An admissible function is a continuous function, which is differentiable up to the order of the

highest derivative in the kinetic or potential energy functionals, and also satisfies all of the

kinematic boundary conditions of the system. In the context of the Rayleigh-Ritz method,

these admissible functions U
(nj)
1 , U

(nj)
2 , V

(nj)
1 , and V

(nj)
2 are referred to as trial functions.

Once these trial functions are chosen, the Rayleigh quotient can then be minimized with

respect to the unknown constants C
(m;nj)
p , where p = u, v. The Rayleigh quotient for each

mode is minimized by taking the partial derivative of each trial function with respect to

each unknown constant. If M modes are taken to solve the problem, and each mode is

assumed to consist of N × J trial functions for u and N × J trial functions for v, then the

minimization produces M × (2×N × J) coupled equations of the form

∂

∂C
(k;nj)
p

(
R
[
UU(m)(r, φ)

])
. (4.21)
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These equations are then solved simultaneously for the unknown constants and unknown

natural frequencies, ω(m). Since the problem is linear, each equation will be a linear function

of the unknown constants. If Equation (4.21) is expressed in terms of the potential and

kinetic energy functionals, it can be transformed into the following form

KKCC− ω2MMCC = 00 (4.22)

where

KK =




∂2U

∂C
(1;1,1)
u ∂C

(1;1,1)
u

. . . ∂2U

∂C
(1;1,1)
u ∂C

(M ;N,J)
u

∂2U

∂C
(1;1,1)
u ∂C

(1;1,1)
v

. . . ∂2U

∂C
(1;1,1)
u ∂C

(M ;N,J)
v

...
. . .

...
...

. . .
...

∂2U

∂C
(M ;N,J)
u ∂C

(1;1,1)
u

. . . ∂2U

∂C
(M ;N,J)
u ∂C

(M ;N,J)
u

∂2U

∂C
(M ;N,J)
u ∂C

(1;1,1)
v

. . . ∂2U

∂C
(M ;N,J)
u ∂C

(M ;N,J)
v

∂2U

∂C
(1;1,1)
v ∂C

(1;1,1)
u

. . . ∂2U

∂C
(1;1,1)
v ∂C

(M ;N,J)
u

∂2U

∂C
(1;1,1)
v ∂C

(1;1,1)
v

. . . ∂2U

∂C
(1;1,1)
v ∂C

(M ;N,J)
v

...
. . .

...
...

. . .
...

∂2U

∂C
(1;1,1)
v ∂C

(1;1,1)
u

. . . ∂2U

∂C
(1;1,1)
v ∂C

(M ;N,J)
u

∂2U

∂C
(1;1,1)
v ∂C

(1;1,1)
v

. . . ∂2U

∂C
(1;1,1)
v ∂C

(M ;N,J)
v




,

(4.23a)

MM =




∂2T

∂C
(1;1,1)
u ∂C

(1;1,1)
u

. . . ∂2T

∂C
(1;1,1)
u ∂C

(M ;N,J)
u

∂2T

∂C
(1;1,1)
u ∂C

(1;1,1)
v

. . . ∂2T

∂C
(1;1,1)
u ∂C

(M ;N,J)
v

...
. . .

...
...

. . .
...

∂2T

∂C
(M ;N,J)
u ∂C

(1;1,1)
u

. . . ∂2T

∂C
(M ;N,J)
u ∂C

(M ;N,J)
u

∂2T

∂C
(M ;N,J)
u ∂C

(1;1,1)
v

. . . ∂2T

∂C
(M ;N,J)
u ∂C

(M ;N,J)
v

∂2T

∂C
(1;1,1)
v ∂C

(1;1,1)
u

. . . ∂2T

∂C
(1;1,1)
v ∂C

(M ;N,J)
u

∂2T

∂C
(1;1,1)
v ∂C

(1;1,1)
v

. . . ∂2T

∂C
(1;1,1)
v ∂C

(M ;N,J)
v

...
. . .

...
...

. . .
...

∂2T

∂C
(1;1,1)
v ∂C

(1;1,1)
u

. . . ∂2T

∂C
(1;1,1)
v ∂C

(M ;N,J)
u

∂2T

∂C
(1;1,1)
v ∂C

(1;1,1)
v

. . . ∂2T

∂C
(1;1,1)
v ∂C

(M ;N,J)
v




,

(4.23b)

CC =
[
C(1;1,1)
u , . . . , C(M ;N,J)

u , C(1;1,1)
v . . . C(M ;N,J)

v

]T
, (4.23c)

and U = U (1) + U (2) and T = T (1) + T (2).

Equation (4.22) corresponds to an eigenvalue problem where the eigenvalues represent

the squares of the natural frequencies, and the eigenfunctions determine the unknown con-

stants of the trial functions. Equation (4.22) yields M distinct natural frequencies (one for

each mode), each associated with 2 ×N × J constants (one for each trial function in each

mode). More and more trial functions are added until both the natural frequencies and the

unknown coefficients converge to steady values.
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It is worth noting that the natural frequencies determined by the Rayleigh-Ritz method

will always converge from above, and thus provide an over-estimate of the natural frequen-

cies. (See, for example, Benaroya and Nagurka (2010) [6].) Also, when adding more trial

functions, the lowest natural frequency will converge to the exact value first, followed by

the second natural frequency, and so on. It is also worth noting that the mode shapes

will not converge as quickly as their corresponding natural frequencies. Thus, checking for

convergence of natural frequencies alone is not enough to accurately determine the response

field of the structure.

Any functions which are orthogonal to each other will suffice because they form an or-

thogonal basis upon which to expand the mode. The most common choice of trial functions

are polynomial or sinusoidal functions. However, to ensure quicker convergence and to mini-

mize computations, it is advantageous to choose trial functions that are the modal functions

of a similar structure. To this end, the modal functions for the radially constrained prob-

lem will serve as the trial functions for the displacement in the circumferential direction.

Therefore,

V
(nj)
1 (r, φ) = Jξ(n)

(
α
(nj)
1 r

)




cos(nφ∗) (n ∼ odd)

sin (nφ∗) (n ∼ even)
, (4.24)

V
(nj)
2 (r, φ) = T (nj)

[
J1

(
α
(nj)
2 r

)
− S(nj)Y1

(
α
(nj)
2 r

)]




cos(nφ∗) (n ∼ odd)

sin (nφ∗) (n ∼ even)
, (4.25)

where ξ(n) is given by Equation (3.17), α
(nj)
1 is given by Equation (3.18a), α

(nj)
2 is given

by Equation (3.18b), S(nj) is given by Equation (3.19a), and T (nj) is given by Equation

(3.19b).

Since there is no prior solution to use as trial functions for the displacement in the r-

direction, trigonometric trial functions are chosen so as to satisfy the kinematic boundary
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conditions. Therefore,

U
(nj)
1 (r, φ) = sin

(
jπr

Rd

)


cos(nφ∗) (n ∼ odd)

sin (nφ∗) (n ∼ even)
, (4.26)

U
(nj)
2 (r, φ) = sin

(
jπ (r −R0)

R0 −Rd

)


cos(nφ∗) (n ∼ odd)

sin (nφ∗) (n ∼ even)
. (4.27)

Convergence tests reveal that for the circumferential trial functions, V
(nj)
1 and V

(nj)
2 , taking

n = 6 and j = 3 and for the radial trial functions, U
(nj)
1 and U

(nj)
2 , taking n = 6 and j = 4

are sufficient for the solutions to converge when using the lowest 18 modes.

4.1.2 Modal Analysis

The Rayleigh-Ritz procedure gave way to the undamped free vibration modes and corre-

sponding natural frequencies. In order to apply modal analysis, the modes as given by

Equations (4.24), (4.25), (4.26), and (4.27) must be mutually orthogonal to one another so

that they provide an orthogonal basis on which the solution to the full problem can be ex-

pressed. Since the trial functions themselves were mutually orthogonal, the modes are also

mutually orthogonal, and therefore form an orthogonal basis. The solution to Equations

(4.1a) and (4.1b) can thus be expressed in the following form

uu1(r, φ, t) =

∞∑

m=1

UU
(m)
1 (r, φ)η(m)(t) (4.28a)

uu2(r, φ, t) =

∞∑

m=1

UU
(m)
2 (r, φ)η(m)(t) (4.28b)

where η(m)(t) represents the modal coordinates. Substitution of Equations (4.28a) and

(4.28b) into Equations (4.1a) and (4.1b), while exploiting the mutual orthogonality of the

modes, reduces the system of coupled partial differential equations to a system of uncoupled

ordinary differential equations; one for each mode. The reduced system of equations takes

the form

m̃(m)η̈(t) + c̃(m)η̇(t) + k̃(m)η(t) = F̃ (m)(t), (4.29)

where

m̃(m) =

∫∫

A1

UU
(m)
1

T
(r, φ)mm1UU

(m)
1 (r, φ)dA+

∫∫

A2

UU
(m)
2

T
(r, φ)mm2UU

(m)
2 (r, φ)dA (4.30a)
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is the modal mass for the mth mode,

k̃(m) =

∫∫

A1

UU
(m)
1

T
(r, φ)kk1UU

(m)
1 (r, φ)dA+

∫∫

A2

UU
(m)
2

T
(r, φ)kk2UU

(m)
2 (r, φ)dA

= k̃
(m)
1 + k̃

(m)
2

= ω(m)2m̃(m)

(4.30b)

is the modal stiffness for the mth mode,

c̃(m) =

∫∫

A1

UU
(m)
1

T
(r, φ)cc1UU

(m)
1 (r, φ)dA+

∫∫

A2

UU
(m)
2

T
(r, φ)cc2UU

(m)
2 (r, φ)dA

= µ1k̃
(m)
1 + µ2k̃

(m)
2

(4.30c)

is the modal damping factor for the mth mode, and

F̃ (m) =

∫∫

A1

UU
(m)
1

T
(r, φ)FF1(r, φ)dA+

∫∫

A2

UU
(m)
2

T
(r, φ)FF2(r, φ)dA (4.30d)

is the modal force for the mth mode.

The solution to Equation (4.29) depends on whether the particular mode is overdamped

or underdamped. For an overdamped mode, η(m)(t) takes the same form as Equation (3.25)

for the constrained 2D model:

η(m)(t) = −
t∫

0

(
a
(m)
0 + a

(m)
1 τ + a

(m)
2 τ2 + a

(m)
3 τ3

)
e−ζ(m)ω(m)(t−τ) sinh

[
ω(m)z(m) (t− τ)

]

m̃(m)ω(m)z̃(m)
dτ

−
t∫

t−ts

[
a
(m)
0 + a

(m)
1 (t− τ) + a

(m)
2 (t− τ)2 + a

(m)
3 (t− τ)3

]
e−ζ(m)ω(m)τ sinh

(
ω(m)z(m)τ

)

m̃(m)ω(m)z̃(m)
dτ,

(4.31)

where, for the present case,

a
(m)
0 = 2c2F̃

(m), (4.32a)

a
(m)
1 = 6c3F̃

(m), (4.32b)

a
(m)
2 = 12c4F̃

(m), (4.32c)

a
(m)
3 = 20c5F̃

(m), (4.32d)

ζ̃(m) =
c̃(m)

2ω(m)m̃(m)
, (4.33a)
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z̃(m) =

√
ζ̃(m) 2 − 1. (4.33b)

If, instead, the vibration mode of interest is underdamped, η(m)(t) takes the same form

as Equation (3.28) for the constrained 2D model:

η(m)(t) = −
t∫

0

(
a
(m)
0 + a

(m)
1 τ + a

(m)
2 τ2 + a

(m)
3 τ3

)
e−ζ(m)ω(m)(t−τ)

sin
[
ω
(m)
d (t− τ)

]

m̃(m)ω
(m)
d

dτ

−
t∫

t−ts

[
a
(m)
0 + a

(m)
1 (t− τ) + a

(m)
2 (t− τ)2 + a

(m)
3 (t− τ)3

]
e−ζ(m)ω(m)τ

sin
(
ω
(m)
d τ

)

m̃(m)ω
(m)
d

dτ,

(4.34)

where

ω
(m)
d =

√
1− ζ̃(m) 2. (4.35)

The displacement field can now be expressed semi-analytically by Equations (4.28a) and

(4.28b). Substitution of these equations into Equations (4.14) and (4.15) will determine the

location of boundary C4 and, consequently, of detachment points a and b.

4.2 Results and Discussion

With a robust quasi-analytical solution for the model of the vitreous during a typical saccade

having been determined, the results for typical scenarios are analyzed and compared to those

determined by the constrained 2D model. The same material and geometric properties of

the previous model are used. From this analysis, new light is shed on the behavior of the

vitreous during typical saccades. The two models are compared side-by-side. By doing this,

the more subtle implications of the constraint in the original model become illuminated.

4.2.1 Natural Frequencies

As previously shown, the natural frequencies of the vitreous body are determined as the real

square roots of the eigenvalues of Equation (4.22). As was the case with the constrained

2D model, the natural frequencies change as the system evolves. When the boundary C4

recedes, the system inherently becomes a new system, and therefore will oscillate at dif-

ferent natural frequencies. Figure 4.1b depicts the lowest eighteen natural frequencies as a
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function of detachment size for the current full 2D model. In Figure 4.1, these frequencies

are compared to those for the constrained 2D model of Chapter 3 (Figure 4.1a). It can be

seen that for the current full 2D model, the natural frequencies are always lower than their

counterpart for the constrained 2D model. The added degrees of freedom in the current

model allows the vitreous to be more compliant, and thus lowers the natural frequencies.

Similar qualitative behavior is observed between the two models, particularly for lower

natural frequencies and for larger detachment. For both models, the natural frequencies

converge towards one of three values for large detachment size. Once again, the frequen-

cies are lowered for larger detachment due to the structure becoming more compliant as

detachment progresses.
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(a) Constrained 2D Model. Determined numer-
ically as the solution to an analytical equation.
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(b) Full 2D Model. Determined numerically as
the solution to approximate equations determined
by use of the Rayleigh-Ritz Method.

Figure 4.1: Comparison of the natural frequencies as determined by the two models.
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4.2.2 Mode Shapes

Substitution of the natural frequencies, determined by the Rayleigh-Ritz method, back into

Equation (4.22) yields the values for the constants C
(m;nj)
p where p = u, v. Like the natural

frequencies, these constants which determine the relative contribution of each trial function

for each mode, change with detachment size. Appendix A shows the values of these constants

yielded by the Rayleigh-Ritz method for three different detachment sizes: small, medium,

and large. These constants are substituted into Equation (4.20) to yield the vibration modes

for the system. For a detachment size of R0−Rd = 0.236, the circumferential components of

the lowest eighteen modes are depicted by Figures 4.2 and 4.3, while the radial components

of these modes are shown in Figures 4.4 and 4.5.

Figure 4.2: Circumferential component of Modes 1 - 9.
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Figure 4.3: Circumferential component of Modes 10 - 18.
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Figure 4.4: Radial component of Modes 1 - 9.
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Figure 4.5: Radial component of Modes 10 - 18.
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Table A.2 shows the constants, C
(m;nj)
p , determined by the Rayleigh-Ritz method. The

dominant values are highlighted, and each correspond to a distinct trial function, which

corresponds to a distinct mode from the constrained 2D model. Thus, for the current full

2D model, the lowest eighteen modes each correspond most closely with one of the modes

determined by the constrained 2D model of Chapter 3. This shows that the assumption of

the constrained 2D model was valid—that circumferential motion is the dominant motion

of the vitreous during a saccade. In the full 2D model, the radial component for each

mode is much smaller than the circumferential component, however its contribution is not

insignificant. For the lowest eighteen modes of the full 2D model, Figures 4.6 – 4.23 show

a direct comparison between these full 2D modes and the dominant constrained 2D mode

for each full 2D mode. The circumferential modes are virtually identical, though some are

in the opposite direction due to the arbitrary constant associated with the mode shapes.

(a) Constrained 2D model (b) Full 2D model

Figure 4.6: Comparison of Mode 1 of the full 2D model with Mode (1,1) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.7: Comparison of Mode 2 of the full 2D model with Mode (2,1) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.
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(a) Constrained 2D model (b) Full 2D model

Figure 4.8: Comparison of Mode 3 of the full 2D model with Mode (3,1) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.9: Comparison of Mode 4 of the full 2D model with Mode (4,1) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.10: Comparison of Mode 5 of the full 2D model with Mode (5,1) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.11: Comparison of Mode 6 of the full 2D model with Mode (6,1) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.
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(a) Constrained 2D model (b) Full 2D model

Figure 4.12: Comparison of Mode 7 of the full 2D model with Mode (1,2) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.13: Comparison of Mode 8 of the full 2D model with Mode (2,2) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.14: Comparison of Mode 9 of the full 2D model with Mode (3,2) of the circumfer-
ential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.15: Comparison of Mode 10 of the full 2D model with Mode (4,2) of the circum-
ferential model for detachment size R0 −Rd = 0.236.
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(a) Constrained 2D model (b) Full 2D model

Figure 4.16: Comparison of Mode 11 of the full 2D model with Mode (5,2) of the circum-
ferential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.17: Comparison of Mode 12 of the full 2D model with Mode (6,2) of the circum-
ferential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.18: Comparison of Mode 13 of the full 2D model with Mode (1,3) of the circum-
ferential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.19: Comparison of Mode 14 of the full 2D model with Mode (2,3) of the circum-
ferential model for detachment size R0 −Rd = 0.236.
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(a) Constrained 2D model (b) Full 2D model

Figure 4.20: Comparison of Mode 15 of the full 2D model with Mode (3,3) of the circum-
ferential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.21: Comparison of Mode 16 of the full 2D model with Mode (4,3) of the circum-
ferential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.22: Comparison of Mode 17 of the full 2D model with Mode (5,3) of the circum-
ferential model for detachment size R0 −Rd = 0.236.

(a) Constrained 2D model (b) Full 2D model

Figure 4.23: Comparison of Mode 18 of the full 2D model with Mode (6,3) of the circum-
ferential model for detachment size R0 −Rd = 0.236.
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4.2.3 Relative Contribution of Modes

With the material properties being the same as those used in Chapter 3 for the constrained

2D model, the vibration modes are again all overdamped. Thus, the contribution of each

mode, as a function of time, during a saccade is given by Equation (4.31), where the integral

has been evaluated analytically. Figures 4.24 – 4.26 show the relative contribution of each

mode shape as a function of time for various detachment sizes and saccade amplitudes.

These figures show that contributions of the even numbered modes are negligible for all

saccades and detachment sizes. This is because the modal forces given by Equation (4.30d)

vanish for these modes. As was shown in the previous section, the even numbered modes

correspond with the anti-symmetric modes of the constrained 2D model, which are never

excited during saccadic motion. Just like what was observed for the constrained 2D model,

it is seen that in the full 2D model the motion is dominated by the fundamental mode.

The modal contributions, and thus the total motion of the vitreous increases with both

detachment size and saccade amplitude, as observed for the previous model.

Figure 4.27 compares the modal contribution between the full 2D model and the con-

strained 2D model for a 20◦ saccade with detachment size R0 − Rd = 0.036. It can be

seen that the full 2D model has slightly larger contributions from its modes compared to

the constrained 2D model. This corresponds to more motion, which makes sense as this

structure no longer has artificial constraints on its motion, and is thus more compliant. It is

interesting to note the order of relative model contribution. Figure 4.27b shows that Mode

1 contributes the most, followed by Mode 3, Mode 5, and then Mode 7, while contributions

from the rest are quite small in comparison. As was discussed in the previous section, these

modes would correspond in the constrained 2D model to Mode (1,1), Mode (3,1), Mode

(5,1), and Mode (1,2), respectively. However Figure 4.27a shows that the relative order

of contribution is Mode (1,1), Mode (3,1), Mode (1,2), and then Mode (5,1). That is to

say that the relative contribution of Mode (1,2) is larger than that of Mode (5,1) in the

constrained 2D model, but the opposite is true in the full 2D model.
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(a) Detachment size: R0 −Rd = 0.036;
Saccade amplitude: 20◦
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(b) Detachment size: R0 −Rd = 0.036;
Saccade amplitude: 40◦

Figure 4.24: Modal contribution as a function of dimensional time for small detachment.
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(a) Detachment size: R0 −Rd = 0.236;
Saccade amplitude: 20◦
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(b) Detachment size: R0 −Rd = 0.236;
Saccade amplitude: 40◦

Figure 4.25: Modal contribution as a function of dimensional time for medium detachment.
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(a) Detachment size: R0 −Rd = 0.436;
Saccade amplitude: 20◦
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(b) Detachment size: R0 −Rd = 0.436;
Saccade amplitude: 40◦

Figure 4.26: Modal contribution as a function of dimensional time for large detachment.
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(b) Full 2D Model

Figure 4.27: Comparison of the modal contribution between the two models for a 20◦

saccade with detachment size R0 −Rd = 0.236.

4.2.4 Vitreous Response Fields

The radial and circumferential components of the displacement response, u(r, φ, t) and

v(r, φ, t), respectively, of the partially detached vitreous body subject to saccadic motion

are given by Equations (4.28a) and (4.28b). The response of an eye with vitreous detachment

size R0 − Rd = 0.236 subject to a 20◦ saccade is presented, and compared to that of the

constrained 2D model. Figure 4.28b shows the maximum displacement field during the

saccade, which occurs at an instant just before the saccade is at its peak acceleration. For

the 20◦ saccade shown, this corresponds to t = 0.051 sec. It can be seen that the dominant

motion is in the circumferential direction, as the response is one order of magnitude larger

than the radial direction. This validates the original hypothesis of the constrained 2D

model. However, it can be seen when comparing the response to that of the constrained 2D

model, shown in Figure 4.28a, that the circumferential displacement response of the full 2D

model is significantly larger in Region S2. This is a consequence of the presence of artificial

constraining forces in the constrained 2D model necessary to prohibit radial motion. Not

only does the radial motion vanish in the constrained 2D model, but the circumferential

response is underestimated, as well. Figure 4.28b most closely resembles Mode 1, as this is

the dominant mode during motion.
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(a) Constrained 2D model (b) Full 2D Model

Figure 4.28: Comparison of maximum displacement of the vitreous during a 20◦ saccade
with detachment size R0 −Rd = 0.236 for the constrained 2D model to the full 2D model.

Figures 4.29, 4.30, and 4.31 compare the stress fields of the full 2D model to the con-

strained 2D model (both excluding the uniform stress due to the IOP), at the time of peak

response and at the end of the saccade. The effect of the artificial constraining force in the

constrained 2D model is even more apparent here. The total normal stresses, σ
(T )
φφ and σ

(T )
rr ,

are quite different between the two models. Figures 4.29b and 4.30b show that in the full

2D model the normal stress peaks at the detachment points a and b, as compared to the

constrained 2D model where normal stresses peak at the vitreous base, as shown in Figures

4.29a and 4.30a. This result is similar to the 2011 numerical study by Repetto et al. [42],

which observed maximum values of deviatoric stress near detachment points a and b. The

magnitude of maximum normal stress is also slightly larger in the full 2D model, though

the location of the stress differs. However, at the end of the saccade, the full 2D model

actually yields lower stress than the constrained 2D model, as seen by comparing Figures

4.29d and 4.30d to Figures 4.29c and 4.30c, respectively. This suggests that the response

dampens more quickly for the full 2D model.
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(a) Constrained 2D model. Maximum nor-
mal stress, σφφ, occurs at t = 0.051 sec.

(b) Full 2D model. Maximum normal stress,
σφφ, occurs at t = 0.051 sec.

(c) Constrained 2D model. Normal stress,
σφφ, at the end of the saccade: ts = 0.075 sec.

(d) Full 2D model. Normal stress, σφφ, at
the end of the saccade: ts = 0.075 sec.

Figure 4.29: Comparison of maximum normal stress, σφφ, during a 20◦ saccade with de-
tachment size, R0 −Rd = 0.236 for the constrained 2D model to the full 2D model.
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(a) Constrained 2D model. Maximum
normal stress, σrr, occurs at t = 0.051 sec.

(b) Full 2D model. Maximum normal
stress, σrr, occurs at t = 0.051 sec.

(c)Constrained 2D model. Normal stress,
σrr, at the end of the saccade: ts = 0.075 sec.

(d) Full 2D model. Normal stress, σrr, at
the end of the saccade: ts = 0.075 sec.

Figure 4.30: Comparison of normal stress, σrr, during a 20◦ saccade with detachment size,
R0 −Rd = 0.236 for the constrained 2D model to the full 2D model.

Figure 4.31 compares shear stress between the two models. Once again, the same be-

havior is seen as for the normal stresses where the peak value of the shear stress is slightly

larger for the full 2D model, but is lower at the end of the saccade. However, what is very

interesting is that the constrained model predicted that there is a large amount of shear

stress in the interior part of the vitreous that is not predicted by the full 2D model shown

in Figure 4.31b. This additional shear stress is therefore a consequence of the constraint on

the radial motion in the constrained 2D model. It is once again observed that, for both of

the models, the peak shear stress occurs along C4—the boundary between Region S1 and

Region S2.
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(a) Constrained 2D model. Maximum
shear stress, σrφ, occurs at t = 0.051 sec.

(b) Full 2D model. Maximum shear stress,
σrφ, occurs at t = 0.051 sec.

(c) Constrained 2D model. Shear stress,
σrφ, at the end of the saccade: ts = 0.075
sec.

(d) Full 2D model. Shear stress, σrφ, at
the end of the saccade: ts = 0.075 sec.

Figure 4.31: Comparison of shear stress, σrφ, during a 20◦ saccade with detachment size,
R0 −Rd = 0.236 for the constrained 2D model to the full 2D model.

The maximum resultant stress fields for detachment size, R0−Rd = 0.236 are plotted in

Figures 4.32 – 4.35 for increasing amplitude of the saccade. Stresses σ
(T )
φφ , σ

(T )
rr , and σ

(T )
rφ all

increase as the saccade amplitude increases, as was seen with the constrained 2D model of

Chapter 3. The general shape of the resultant stress fields remains the same for the current

model, just with increasing magnitude proportional to the saccade amplitude.
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Figure 4.32: Maximum stress fields during a saccade of amplitude 10◦ with detachment
size, R0 −Rd = 0.236 as predicted by the full 2D model.

Figure 4.33: Maximum stress fields during a saccade of amplitude 20◦ with detachment
size, R0 −Rd = 0.236 as predicted by the full 2D model.

Figure 4.34: Maximum stress fields during a saccade of amplitude 30◦ with detachment
size, R0 −Rd = 0.236 as predicted by the full 2D model.

Figure 4.35: Maximum stress fields during a saccade of amplitude 40◦ with detachment
size, R0 −Rd = 0.236 as predicted by the full 2D model.
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4.2.5 Detachment Progression

The pathology of the vitreo-retinal detachment boundary is governed by the transversality

condition given by Equations (2.37) and (2.38), which locates boundaries a and b that cor-

respond to configurations of the evolving ocular system that satisfy the dynamic conditions.

For the full 2D model, after substitution of boundary conditions, along with the current

selection of material properties, the transversality condition reduces to

G{Rd; a, b} =

[
G1(1− ν1)

(1− 2ν1)

1

r

(
∂v1
∂φ

+ µ1
∂2v1
∂t∂φ

)
1

r
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nt
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(t)
1
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2
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]∣∣∣∣∣
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+ [~et · −~er]|(a or b)

∫

C4

σ(T ;1)
rr

∂u1
∂r

ds = 2γ|a + 2γ|b .

(4.36)

Figure 4.36 compares the energy release rate per unit depth for both models as a function

of time for saccades of various amplitudes, for three separate detachment sizes. It can be

seen that the same trend exists for both models, where the amount of energy released during

a saccade increases with detachment size. The energy release rate for all detachment sizes

is shown as a function of detachment size in Figure 4.37. The energy release rate for the full

2D model is an order of magnitude larger than that of the constrained 2D model. There

are two reasons for this disparity. Firstly, when looking at the two equations that govern

energy release rate, it can be seen that the stresses at detachment boundaries a and b are a

driving factor. As was previously observed, the full 2D model predicts much higher stress

at a and b. Secondly, the transversality condition for the full 2D model given by (4.36), has

an extra term that is not included in the transversality condition for the constrained 2D

model given by Equation (3.30). This term represents the jump in energy across detached

boundary C4. This term is not included in the constrained 2D model because, as seen in

Equation (4.36), it depends on the displacement in the radial direction, which vanishes as

a result of the constraint. It is these two factors that cause the energy release rate to be

much higher during a saccade for the full 2D model.
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(a) Constrained 2D model.
. Detachment size, R0 −Rd = 0.036.
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(b) Full 2D model.
. Detachment size, R0 −Rd = 0.036.
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(c) Constrained 2D model.
. Detachment size, R0 −Rd = 0.236.
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(d) Full 2D model.
. Detachment size, R0 −Rd = 0.236.
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(e) Constrained 2D model.
. Detachment size, R0 −Rd = 0.436.
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(f) Full 2D model.
. Detachment size, R0 −Rd = 0.436.

Figure 4.36: Comparison of energy release rate per unit depth as a function of time between
the constrained 2D model and the full 2D model for small, medium, and large detachment
size.
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(a) Constrained 2D model.
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(b) Full 2D model

Figure 4.37: Comparison of the maximum energy release rate per unit depth as a function
of detachment size between the two models for saccades of nine different amplitudes.
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Figure 4.38 compares the threshold paths of the two models for the evolution of the

propagating detachment boundaries. Again, these are plots of the critical saccade amplitude

per unit bond energy, Ãcr, as a function of detachment size, where

Ãcr =
Acr

2γ|a + 2γ|b
, (4.37)

and Acr is the critical saccade amplitude—the amplitude required to precipitate detachment.

Figure 4.38 shows that for the full 2D model, the critical saccade amplitude is always lower

than that of the constrained 2D model. The threshold path for the full 2D model decreases

monotonically. This implies that, for any initial detachment size, if a saccade is large

enough to cause further detachment, the detachment will grow continuously (unstably)

until it reaches a point of abnormally strong adhesion between the vitreous cortex and the

sensory retina. This differs from what is predicted by the constrained 2D model where

detachment was seen to be stable (does not grow continuously) for large sized detachments.
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Figure 4.38: Comparison of the critical saccade amplitude per unit bond energy as a function
of detachment size between the two models.
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4.2.6 Parameter Study

Due to the large variance in the reported values of the shear modulus of the human vitreous,

in addition to the aforementioned difficulties associated with measuring this property in

vivo, a parameter study on the influence of the shear modulus on the behavior of the

system is presented. The results are again compared to those derived for the constrained

2D model of Chapter 3.

For the full 2D model used here, the natural frequencies are determined as the square

roots of the eigenvalues determined by Equation (4.22), the eigenvalue problem associated

with the Rayleigh-Ritz Method. Though it is not as explicitly clear to see as the frequency

equation for the full 2D model given by Equation (3.20), there is once again a dependence

upon both detachment size and shear modulus. The influence of shear modulus for the

full 2D model, as compared to the constrained 2D model, is demonstrated in Figure 4.39.

Figures 4.39b, 4.39d, and 4.39f show that, for the full 2D model, the natural frequencies

increase with shear modulus, as anticipated. The same qualitative shape is maintained for

each of the three ”branches“ that emerge , regardless of the value of the shear modulus.

The dependence on shear modulus is very similar to that seen in Figures 4.39a, 4.39c, and

4.39e for the constrained 2D model. The magnitudes of the frequencies are very similar for

each value of the shear modulus as well, with the full 2D model producing slightly lower

frequencies than the constrained 2D model due to the system being less constrained.
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(a) Constrained 2D model. G1 = G2 = 0.5.
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(b) Full 2D model. G1 = G2 = 0.5.
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(c) Constrained 2D model. G1 = G2 = 1.0.
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(d) Full 2D model. G1 = G2 = 1.0.
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(e) Constrained 2D model. G1 = G2 = 2.0.
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(f) Full 2D model. G1 = G2 = 2.0.

Figure 4.39: Comparison of natural frequencies for different values of shear modulus for the
two models.
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The effect the shear modulus has on the stress distribution throughout the vitreous is

presented in Figures 4.40 – 4.42. These figures, once again, also compare the results to those

of the constrained 2D model. It is seen that changing the value of the shear modulus only

changes the magnitude of the normal and shear stresses, but not the distribution of these

stresses throughout the vitreous. It is observed that a larger value of the shear modulus

corresponds to larger magnitudes of stress. It has already been noted that the full 2D

model results in significantly larger values of stress at the detachment points a and b. This

parameter study shows that varying the shear modulus drastically changes the magnitude

of stress at the detachment points, even more so than for the constrained 2D model.

(a) Constrained 2D model

(b) Full 2D model

Figure 4.40: Comparison of maximum stress fields during a saccade of amplitude 20◦ with
detachment size, R0 −Rd = 0.236 where G1 = G2 = 0.5 for the two models.
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(a) Constrained 2D model

(b) Full 2D model

Figure 4.41: Comparison of maximum stress fields during a saccade of amplitude 20◦ with
detachment size, R0 −Rd = 0.236 where G1 = G2 = 1.0 for the two models.

(a) Constrained 2D model

(b) Full 2D model

Figure 4.42: Comparison of maximum stress fields during a saccade of amplitude 20◦ with
detachment size, R0 −Rd = 0.236 where G1 = G2 = 2.0 for the two models.
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The magnitude of stress at the detachment points plays a significant role in predicting the

evolution of the detachment boundary during saccadic motion, as seen by the transversality

condition given by Equation (4.36). Figure 4.43 compares the maximum energy release rate

as a function of detachment size for both models for various values of the shear modulus.

Figures 4.43b, 4.43d, and 4.43f show the significant effect that the shear modulus plays on

the maximum energy release rate for the full 2D model. The maximum energy release rate

increases as the shear modulus increases, but to a much larger degree than was predicted by

the 2D constrained model. It can be noted that, unlike for the constrained 2D model, for the

the full 2D model the energy release rate curves always increase monotonically. This result

is important, and can be seen more clearly by the threshold curves presented in Figure 4.44.

For the full 2D model, the detachment is catastrophic for all values of the shear modulus.

Finally, it is seen that as the shear modulus increases, the critical saccade amplitude (per

unit bond energy) for detachment progression is lowered.

The implications of the parameter study of the shear modulus are clear. As the shear

modulus increases, the system response is qualitatively the same. However, stress at the

detachment boundary is largely a function of the shear modulus. With an increase in the

shear modulus, it is observed that stress increases, and thus the energy release rate increases,

and therefore catastrophic vitreo-retinal detachment occurs at saccades of lower amplitudes.
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(a) Constrained 2D model. G1 = G2 = 0.5.
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(b) Full 2D model. G1 = G2 = 0.5.
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(c) Constrained 2D model. G1 = G2 = 1.0.
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(d) Full 2D model. G1 = G2 = 1.0.
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(e) Constrained 2D model. G1 = G2 = 2.0.
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(f) Full 2D model. G1 = G2 = 2.0.

Figure 4.43: Comparison of energy release rate per unit depth as a function of detachment
size for three different values of shear modulus for the two models.
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Figure 4.44: Comparison of critical saccade amplitude per unit bond energy as a function
of detachment size for different values of shear modulus for the two models.
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4.3 Conclusions

The analysis of the full 2D model is now complete. This model improves upon the con-

strained 2D model. It is demonstrated that consideration of radial motion of the vitreous

is necessary to more accurately determine the pathology of the detaching vitreous when

subjected to saccadic motion. Results show the stress distribution during a saccade to be

different, with a larger concentration of stress at detachment points a and b. This is signifi-

cant, as the stress at points a and b, and along surface C4, factor largely into predicting the

pathology of vitreo-retinal detachment. It was observed that the constrained 2D model un-

derestimated the energy release rate during a saccade, and therefore predicted detachment

at a higher critical saccade amplitude. The full 2D model predicts catastrophic detachment

in all scenarios, whereas the constrained 2D model predicts a small range of stable detach-

ment. Therefore, the full 2D model is more conservative, as it predicts detachment from a

lower amplitude saccade.
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Chapter 5

Concluding Remarks

Two 2D models were developed for the partially detached vitreous body when subjected

to saccadic movements. The first model restricted the vitreous from moving in the radial

direction, while this constraint was relaxed in the second model. Corresponding governing

equations of motion, boundary and matching conditions, and a transversality condition

were derived using a variational formulation. For the constrained 2D model, a closed form

analytical solution was developed using modal analysis. For the full 2D model, a semi-

analytical solution was developed by employing the Rayleigh-Ritz method in conjunction

with modal analysis.

Numerical simulations were presented for both models and compared to one another.

It was observed that the constrained 2D model was not the conservative model that was

anticipated, but rather that this model underestimated the effects that saccadic motion had

on the stress distribution throughout the vitreous, as well as the behavior of the detachment

of the vitreo-retinal interface. Simulations from the full 2D model showed that while the

radial motion of the vitreous is indeed an order of magnitude less than the circumferential

motion, constraining the vitreous in this way largely affected the magnitude of the stress

distribution throughout the vitreous, and severely underestimated the energy release rate

during detachment. In addition, the full 2D model determined that detachment due to

saccadic motion would always be catastrophic, whereby once initially detached, the interface

would continue to detach until it reached a point of abnormal adhesion between the vitreous

and retina. While this was observed for most detachment sizes in the constrained 2D model,

for very large detachment sizes, it was observed that further detachment was stable, and

would not grow continuously.
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A parameter study was performed to determine the influence of the shear modulus on

the results, as this material property is very difficult to measure, and changes largely with

age and health factors. It was concluded that, for both models, the value of the shear

modulus affects the quantitative results for displacement, stress, and detachment behavior.

However, the studies showed that, qualitatively, all behavior was the same. The stress fields

were of the same form, and the threshold paths concluded the same type of detachment

behavior.

Prior to this work, only bio-chemical processes have been considered for understanding

the progression of vitreous detachment. In the current study, the effects of saccadic eye

movements on the progression of vitreous detachment in the human eye is analyzed from

a mechanical perspective. By doing so, this work supports the hypothesis that saccadic

movements can cause the spreading of PVD.

In determining a criterion for vitreous detachment progression, a model of the vitreous

body during saccadic motion was developed. From this, the stress distribution inside the

vitreous body and along the retinal walls was determined. The current study agrees quali-

tatively in large part with other experimental, computational, and analytical studies of the

vitreous when subjected to saccadic motion. Furthermore, prior analytical studies of the

vitreous subject to saccadic motion considered viscous fluids, and neglected the contribution

due to the solid portion of the vitreous gel. This analytical study considers both viscous

and elastic solid contributions, which has only been considered in computational studies.

However, the use of modal analysis in the current solution procedure yields the natural

modes of the vitreous body, and thus provides much greater insight into the fundamental

behavior of the gel-like vitreous.

The use of modal analysis is also beneficial for future work. Different loading situations

can be considered using the same model. The model can be amended to study the effects

of micro-saccades or extremely large saccades that usually coincide with head movement.

This model can also be amended to study the effects on PVD progression of impulsive or

shock loading due to blunt trauma to the head. Furthermore, the time-dependent stress

distribution along the retinal walls determined by this study can be used in a future study

of the progression of retinal detachment when subjected to saccadic motion.
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This work serves as a significant contribution towards the understanding of the funda-

mental behavior of the extremely complicated system that is the human eye. With greater

knowledge and understanding of the complexities of the eye, we can work towards having

ever greater preventative eye care, as well as improve surgical procedures and reduce eye

related health and vision issues.
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Appendix A

Constants as Determined by the Rayleigh-Ritz Method

The following tables display the constants determined by application of the Rayleigh-Ritz

method which determine the relative contribution of each trial function towards each mode

of the full 2D solution. The constants are determined as the eigenvectors of Equation (4.22).

Tables are presented for three separate detachment sizes: R0−Rd = 0.036, R0−Rd = 0.236,

and R0 −Rd = 0.436.
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