
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Zammit, Vincent  (1996) A Mechanisation of Computability Theory in HOL.    In: von Wright,
Joakim and Grundy, Jim and Harrison, John, eds. Proceedings of the 9th International Conference
on Theorem Proving in Higher Order Logics.  Lecture Notes in Computer Science, 1125. Springer-Verlag,
Turku, Finland  pp. 431-446. ISBN 3-540-61587-3.

DOI

Link to record in KAR

https://kar.kent.ac.uk/21347/

Document Version

UNSPECIFIED



A Mechanisation of Computability Theory in

HOL

Vincent Zammit

Computer Laboratory� University of Kent� United Kingdom

Abstract� This paper describes a mechanisation of computability the�
ory in HOL using the Unlimited Register Machine �URM� model of com�
putation� The URM model is �rst speci�ed as a rudimentary machine
language and then the notion of a computable function is derived� This
is followed by an illustration of the proof of a number of basic results
of computability which include various closure properties of computable
functions� These are used in the implementation of a mechanism which
partly automates the proof of the computability of functions and a num�
ber of functions are then proved to be computable� This work forms part
of a comparative study of di�erent theorem proving approaches and a
brief discussion regarding theorem proving in HOL follows the descrip�
tion of the mechanisation�

� Introduction

The theory of computation is a �eld which has been widely explored in mathe�
matical and computer science literature ��� ��� �	
 and several approaches to a
standard model of computation have been attempted� However� each exposition
of the theory centres on the basic notion of a computable function� and as such�
one of the main objectives of a mechanisation of computability in a theorem
prover is the formal de�nition of such functions� The mechanisation illustrated
in this paper includes also the proof of a number of basic results of the the�
ory and the implementation of conversions and other veri�cation tools which
simplify further development of the mechanisation�

This work is part of a comparative study of an LCF ��
 style theorem proof
assistant namely the HOL system ��� �
�� and a non�LCF style theorem proving
environment based on constructive type theory such as the ALF system ��� �

and the Coq proof assistant �	
�� The de�nitions and proofs of even the most
trivial results of computability tend to be of a very technical nature much similar
to the proofs of theorems one �nds in mathematical texts� and thus this theory
o�ers an extensive case study for the analysis of the two approaches of mechan�
ical veri�cation� The veri�cation styles are also compared to the way proofs of
mathematical results are represented in texts� It is expected that this compara�
tive study will contribute to the identi�cation of possible enhancements to the
theorem proving styles� Although it is not the scope of this paper to give full
details of this comparative study� a brief discussion regarding theorem proving
in HOL is given after the description of the implementation�



This particular mechanisation of the theory is based on the URM model ���

of computation and much of the implementation is based on the de�nitions and
results described in ��
� The next section gives a brief discussion on URM com�
putability� however it is strongly suggested that the interested reader consults
the literature ��� ��� �	
�� The rest of the paper illustrates the actual mecha�
nisation and includes the speci�cation of the notion of a computable function
in HOL� the proof of a number of results of computability and a mechanism for
constructing and proving the computability of functions�

� The URM Model of Computation

An Unlimited Register Machine URM� consists of a countably in�nite set of
registers� usually referred to as the memory or store� each containing a natural
number� The registers are numbered R�� R�� � � � � Rn� � � � � and the value stored
in Rn is speci�ed by rn� A URM executes a �nite program constructed from the
following four di�erent types of instructions�

Zero� ZR n sets rn to ��
Successor� SC n increments rn�
Transfer� TF n m copies rn to Rm�
Jump� JP n m p jumps to the pth instruction starting from ��

of the program if rn � rm�

A program counter keeps track of the current point in program execution�
and the con�guration of a URM is given by a pair p� r� consisting of the program
counter and the current store� A con�guration is said to be initial if the program
counter is set to the index of the �rst instruction� and it is said to be �nal if the
program counter exceeds the index of the last instruction�

Given a program P and an initial con�guration c�� a computation is achieved
by executing the instructions of the program one by one altering the URM
con�guration at each step� An execution step of a URM with a �nal con�guration
has no e�ect on the current con�guration� A computation is thus an in�nite
sequence of con�gurations hc�� c�� c�� � � �i and is denoted by P hc�i� or simply
by P r� where c� � �� r�� The store r is usually represented by a sequence
of register values r�� r�� � � �� and a �nite sequence r�� r�� � � � � rn� represents the
store where the �rst n�� registers are given by the sequence and the rest contain
the value �� which is the initial value held in each register� We use the notation
P hci �n c� to express that P alters the URM state from c to c� in n steps�

A computation is said to converge if it reaches a �nal con�guration� otherwise
it is said to diverge� The value of a convergent computation is given by the
contents of the �rst register R� of the �nal con�guration�

The computation of a program can be used to de�ne an n�ary partial function
by placing the parameters in the �rst n registers of a cleared� URM store and
then executing the program returning the contents of the �rst register as the
function value� Formally� a program P is said to compute an n�ary function f

� all registers containing 	�



if� for every a�� � � � � an�� and v� P a�� � � � � an��� converges to v if and only if
fa�� � � � � an��� � v� This de�nition implies that P a�� � � � � an��� diverges if and
only if fa�� � � � � an��� is unde�ned� A function is said to be URM�computable if
there is a program which computes it�

The URM model of computation is proved to be equivalent to the numerous
alternative models such as the Turing machine model� the G�odel�Kleene partial
recursive functions model� and Church�s lambda calculus ��� ��
 in the sense
that the set of URM computable functions is identical to the set of the functions
computed by any other model�

� Mechanisation of URM Computability

An Unlimited Register Machine can be regarded as a simple machine language
and as such its formal speci�cation in HOL is similar to that of real world
architectures ���
�

��� The URM Instruction Set

A URM store can be represented as a function from natural numbers to natural
numbers and con�gurations as pairs consisting of a natural number signifying
the program counter and a store�

store �� �num � num

config �� �num � store

The syntax of the URM instruction set is speci�ed through the de�nition of
the type �instruction using the type de�nition package ��
 of HOL

instruction ��� ZR num

� SC num

� TF num � num

� JP num � num � num

and programs are de�ned as lists of instructions�
The semantics of the instruction set is then speci�ed through the de�nition of

a function exec�instruction� instruction �� config �� config such that given
an instruction i and a con�guration c� exec�instruction i c returns the con�g�
uration achieved by executing i in con�guration c�

�def ��n c� exec�instruction �ZR n� c

� �SUC �FST c�	��x� �x � n� � 
 � �SND c x���� �
��n c� exec�instruction �SC n� c

� �SUC �FST c�	

��x� �x � n� � �SUC �SND c n�� � �SND c x���� �
��n m c� exec�instruction �TF n m� c

� �SUC �FST c�	��x� �x � m� � �SND c n� � �SND c x���� �
��n m p� c� exec�instruction �JP n m p�� c

� ���SND c n � SND c m� � p� � �SUC �FST c���	SND c��



The execution of a number of steps of a URM program is then given by the
primitive recursive function EXEC�STEPS� num �� program �� config �� config�
such that EXEC�STEPS n P c� � c� if and only if P hc�i �n c�

�def ��P c� EXEC�STEPS 
 P c � c� �
��n P c� EXEC�STEPS �SUC n� P c

� EXEC�STEPS n P �EXEC�STEP P c��

where EXEC�STEP� program �� config �� config represents one step execution of
a given program�

�def �P c� EXEC�STEP P c

� ��Final P c� � c � �exec�instruction �EL �FST c� P� c��

and the predicate Final� program �� config �� bool holds for �nal con�gura�
tions�

��� Computations

A �nite list of natural numbers is transformed into an initial URM con�gu�
ration by the function set�init�conf� �num list� �� config� and CONVERGES�

program �� �num list� �� num �� bool and DIVERGES� program �� �num list� ��

bool represent converging and diverging computations respectively� It is shown
that a program converges to a unique value unless it diverges�

� �P l� ���v� CONVERGES P l v� � DIVERGES P l

��� Computable Functions

Since the functions which are considered are not necessarily total� a polymorphic
type of possibly unde�ned values is de�ned� Elements of this type are either
unde�ned or have a single value�

�a PP ��� Undef

� Value �a

The domain of functions is then chosen to be the type of possibly partial
numbers� Since the functions have di�erent arities� the codomain is chosen to be
the type of lists of numbers� where the length of the list represents the function�s
arity�

pfunc �� �num list � num PP

A program computes a function if and only if it converges to the value of the
application of the function whenever this is de�ned�

�def �n P f� COMPUTES n P f

� ��l v� �LENGTH l � n� 	
�CONVERGES P l v � �f l � Value v���

such that COMPUTES n P f holds if P computes the n�ary function f � Finally� a
function is computable if there is a program which computes it�

�def �n f� COMPUTABLE n f � ��P� COMPUTES n P f�



��� Manipulating URM Programs

The proof that a particular function is computable usually involves the con�
struction of a URM program which computes it� The URM instruction set is
rudimentary and it would be impractical as a general purpose programming lan�
guage without a mechanism for concatenating program segments� and without
a number of program modules performing simple but often used tasks�

An operatord�� can be de�ned such that� given two programs P� and P��
the computation of P�d��P� is given by the individual computation of the two
programs� This is achieved by �rst adding the length of P� to the destination
of the jumps in P� and then appending the two programs together using the
normal list concatenation function� The destination of the jumps in P� need
to be altered since URM jump instructions are absolute� rather than relative�
However� in order that the required property is achieved� the programs must
be in standard form� in the sense that the destinations of all their jumps are
less than or equal to the length of the program� This is required so that the
program counter of any �nal con�guration is equal to the length of the program�
in particular the program counter of a �nal con�guration of P� is equal to its
length and thus the next instruction executed in the combined computation of
P�d��P� is the �rst one in P�� This does not constitute any restrictions since it
is proved that any program can be transformed into standard form by setting
the destination of out of range jumps to the length of the program� Moreover� it
can be proved that P�d��P� diverges if one of the component programs diverges�

The transformation of programs into standard form is given by the function
SF� program �� program and the proof that for any program P � its behaviour is
equivalent to SF P is done by �rst showing that after a single step of the execution
of both programs the resulting con�gurations are equivalent� Two con�gurations
are equivalent either if they are the same� or both are �nal and have the same
store� This result is then extended for any number of execution steps and �nally
it is proved that

� �P l v� CONVERGE �SF P� l v � CONVERGE P l v

by showing that if one program converges in a number of steps then the other
converges in the same number of steps�

The concatenation operator d�� is de�ned in HOL as the function SAPP�

program �� program �� program� and since it is often required to concatenate
more than two programs� a function SAPPL� program list �� program which con�
catenates a given list of programs is de�ned as well�

The following three simple program modules which are used quite often in
the construction of general URM programs�

� SET�FST�ZERO n stores the value � in the registers R�� R�� � � � � Rn��
� TRANSFER�FROM p n stores rp� rp��� � � � � rp�n��� into R�� R�� � � � � Rn����
� TRANSFER�TO p n store r�� r�� � � � � rn��� into Rp� Rp��� � � � Rp�n����

are de�ned as follows�



�def �n� SET�FST�ZERO n � GENLIST ZR �SUC n�

�def �p n� TRANSFER�FROM p n � GENLIST ��x� TF �p � x� x� n

�def �p n� TRANSFER�TO p n

� REVERSE �GENLIST ��x� TF x �p � x�� n�

where GENLIST and REVERSE are de�ned in the List theory of HOL� The programs
yielded by these functions are proved to converge and to convey their expected
behaviour by induction on the number of steps of execution of the programs�

Another program module� which is given by �P ps
n

� pv
� or by the term

PSHIFT P ps n pv� is de�ned� This program module executes P � taking its n
parameters from the memory segment at o�set ps rather than from the �rst n
registers� Also� this program stores the value of the computation in Rpv rather
than the �rst register� This is de�ned by�

�def �P ps n pv� PSHIFT P ps n pv

� SAPPL SET�FST�ZERO �MAXREG P��

TRANSFER�FROM p n�

P�

TF 
 pv��

where MAXREG P is the maximum register used by P and is denoted by �P ��

The proofs that �P ps
n

� pv
 diverges if and only if P diverges� and that if the

former converges it yields the expected con�guration� are done by applying the
result that the computation of programs constructed by d�� is made up from
the computations of the constructing programs�

� Constructing Computable Functions

In this section we show that a number of basic functions are computable and that
the family of computable functions is closed under the operations of substitution�
recursion and minimalisation� These results yield a mechanism for constructing
computable functions and automatically proving their computability� Moreover�
the set of functions which are constructed by the above operations� which is
called the set of partial recursive functions� is equal to the set of computable
functions ��� ��
� Thus particular functions can be proved to be computable by
proving their equality to some partial recursive function� However this process
is not decidable� nevertheless a number of symbolic animation tactics ��
 have
been implemented which simplify the proof of theorems stating such an equality�

The veri�cation of the closure properties involves the construction of a URM
program which is proved to compute the function constructed by the particular
operation being considered� Due to space limitations� only the proof of the closure
under recursion is illustrated in detail�



��� The Basic Functions

The following three basic functions are considered�

�� The zero functions each of di�erent arity� which return � for any input�
�n� x�� � � � � xn���Zx�� � � � � xn��� � ��

�� the successor function which increments its input by one� �x��Sx�� � x����
	� and projections� which return a particular component from a given vector�
�n� i � n� x�� � � � � xn���U

i
nx�� � � � � xn��� � xi�

These functions are de�ned in HOL as follows�

�def �l� ZERO l � Value 


�def �l� SUCC l

� ��LENGTH l � �� � �Value �SUC �HD l��� � Undef�

�def �i n l� PROJ i n l � ��i � n� � �Value �ZEL i l�� � Undef�

and are proved to be computable by showing that the programs 	ZR 
� and
	SC 
� compute Z and S respectively� and that the projection U i

n is computed
by 	TF i 
� for i � n and since it is unde�ned for i � n it is computed by
	JP 
 
 
�� The function ZEL i l returns the i � ��th element of l if i is less
than the length of l� otherwise it returns ��

��� Substitution

The substitution of k n�ary functions g � g�� � � � � gk��� into a k�ary function f

gives the n�ary function produced by applying f on the results of the applications
of g� That is�

f��gx�� � � � � xn��� �

fg�x�� � � � � xn���� � � � � gk��x�� � � � � xn�����

This is de�ned in HOL as the function FSUBS� pfunc �� pfunc list �� pfunc�

�def �f l� APPLY f l

� ��ALL�EL DEFINED l� � �f �MAP VALUE l�� � Undef�

�def �f gl l� FSUBS f gl l � APPLY f �MAP ��g� g l� gl�

In order to prove that computable functions are closed under substitution� it
is required to show that given the programs Pf � Pg� � � � � � Pgk�� which compute the
functions f� g�� � � � � gk�� respectively� a program Pf��g can be constructed which

computes f��g� Such a program is shown in Fig� �� The program parameters are
�rst transferred to some memory location at o�set ps� The programs Pgi for
i � k are then executed one at a time storing their results into another memory
segment starting at pv� and �nally Pf is executed on the results� The value of ps
is chosen to be maxn� k� �Pf � � ��max�Pg� �� � � � � �Pgk���� � �� so that the
contents of this memory segment is not altered during the program execution�
Similarly� pv is set to ps � n�



start� TRANSFER�TO ps n store parameters in �rps � � � � � rps�n���

inner� 
Pg� ps
n
�� pv�

��� for each i � k execute Pgi


Pgi ps
n
�� �pv � i�� storing its result in Rpv�i

���


Pgk�� ps
n
�� �pv � k � ��

outer� 
Pf pv
n
�� 	� execute Pf on the values returned by the Pgi �s

Fig� �� The program Pf��g

��� Recursion

Given an n�ary base case function � and an n� ���ary recursion step function
�� the n� ���ary recursive function R���� is de�ned as follows�

R������ x�� � � � � xn��� � �x�� � � � � xn���

R����x � �� x�� � � � � xn��� � �x�R����x� x� � � � � � xn���� x�� � � � � xn���

and is speci�ed in HOL as the function FREC� pfunc �� pfunc �� pfunc�

�def ��basis step l� RECURSION basis step 
 l � basis l� �
��basis step n l�

RECURSION basis step �SUC n� l �

�let r � RECURSION basis step n l in

�DEFINED r� � �step �CONS n �CONS �VALUE r� l���

� Undef��

�def �basis step l�

FREC basis step l �

��l � �� � �basis ��

� �RECURSION basis step �HD l� �TL l���

Given the programs P� and P� which compute the functions � and � re�
spectively� the program PR����� shown in Fig� � computes the recursive function
R����� The value of pc is chosen to be max�P�� � �� �P�� � �� n � �� so
that the registers starting at pc are not used by P� and P� � and the values
of pv � ps and px are chosen to be pc � �� pv � � and ps � n respectively� The
register Rpc is used to store a counter for the number of times the inner loop



start� TRANSFER�TO pv �n � � Store �x� x�� � � � � xn��� in �Rpv � Rps � � � � � Rps�n���
TF 
 px Set rpx to the value x


P� ps
n
�� pv� Execute P�

loop� JP pc px final While rpc � x


P� pc
n��
�� pv� Execute P�

SC pc Increment the counter rpc
JP 
 
 loop

final� TF pv 
 Return the �nal value rpv

Fig� �� The program PR�����

is executed� The value of each recursion step is stored at Rpv and the memory
segment Rps � � � � � Rps�n��� is used to store the function�s parameters� which are
transferred by the �rst step of the program� The register Rpx stores the depth
of the recursion such that the inner loop is repeated rpx times after the code

computing the base case function� �P� ps
n

� pv
� stores �x�� � � � � xn��� into

rpv � The �nal value of pv is then transferred into the �rst register R��
This program can be divided into three parts� which we call Pstart � Ploop and

P�nal � These are represented in HOL by the terms

Pstart � SAPPL TRANSFER�TO pv �n � ���

TF 
 px��

PSHIFT P� ps n pv�

Ploop � let Ps � PSHIFT P pc �n � �� pv in

APPEND �SAPP JP pc px �� � LENGTH Ps��

Ps�

SC pc�

JP 
 
 
�

Pfinal � TF pv 
�

and PR����� is then given by

SAPPL �Pstart� �Ploop� �Pfinal�

This program is then proved to compute the recursive function by considering
whether the base case function � and the step function � are de�ned�

� If �x�� � � � � xn��� is de�ned then



 P� converges� and so does �P� ps
n

� pv
� As a result Pstart converges

to a �nal con�guration containing the value of �x�� � � � � xn��� which
is equal to R������ x�� � � � � xn���� in the �rst register� the parameters
x�� � � � � xn��� stored in Rps � � � � � Rps�n��� and rpx set to the depth x�

 If� also the step function � is de�ned for all values of i � x then

� all programs �P� pc
n��

� pv
 converge for each value of the recursion

counter rpc � and hence Ploop converges� placing the �nal value of the
application of � which is equal toR����x� x� � � � � � xn���� in Rpv ��

� and �nally P�nal stores the value of R����x� x� � � � � � xn��� into the
�rst register� Thus� whenever R���� is de�ned� PR����� converges
to the required value�

 On the other hand� if � is unde�ned for some non�zero value i � x then

� the program �P� pc
n��

� pv
 diverges when rpc � i
 �� thus Ploop di�

verges and so does PR������ However� if the step function is unde�ned
then R���� is unde�ned as well� Hence� in this particular case� the
function is unde�ned and the program diverges as expected��

� Now� if the base case function � is unde�ned then

 P� diverges� As a result� all the programs constructed from it using thed�� operator diverge� In particular the programs �P� ps
n

� pv
� Pstart

and PR������ Also� given that � is unde�ned� then so is R����� and even
in this �nal case the recursive function is unde�ned and the program
diverges�

� Thus

�� PR����� converges to R������ x�� � � � � xn��� whenever the latter is de�
�ned� and

�� PR����� diverges whenever R������ x�� � � � � xn��� is unde�ned�

� So� PR����� computes R���� proving that the latter is computable�

The same method of considering whether the constituting functions of an
operation are de�ned or not� is used in the proofs that substitution and mini�
malisation of computable functions yield functions which are also computable�

��� Minimalisation

The unbounded minimalisation of an n����ary function f is the n�ary function
given by�

	xfx� x�� � � � � xn��� � �� �

����
���

the least x s�t� fx� x�� � � � � xn��� � �� and for
all x� � x fx�� x�� � � � � xn���
is de�ned

unde�ned if no such x exists�

This is formalised in HOL by the following de�nition�



�def �f l�

FMIN f l �

�let Z x � f �CONS x l� � Value 
 in

let n � FIRST�THAT Z in

�Z n �
��m� m � n 	
DEFINED �f �CONS m l���� � �Value n� � Undef�

where FIRST�THAT R returns the �rst natural number n such that Rn� holds� if
such an n exists� or any particular value otherwise�

�def �P� FIRST�THAT P � �
n� P n � ��m� P m 	 n � m��

Given that Pf computes f � the program P�x�f�x� ���� shown in Fig� 	 computes
the minimalisation function 	xfx� �� ��� This is done by executing Pf until
it returns the value �� The register at position pc is used as a counter which
is incremented each time Pf is executed and is returned by P�x�f�x����� if it
terminates� The value of pc is set to max�P � � �� n���� so that it will not be
used by Pf � also the parameters are stored at the memory segment starting at
ps which is set to pc��� The value of p� is chosen to be ps�n and is not altered
during program execution� so that rp� � ��

start� TRANSFER�TO ps n Store parameters in �Rps � � � � � Rps�n���

fetch� 
Pf pc
n��
�� 	� Execute Pf

JP 
 p� final Until it returns 	
SC pc Otherwise� increment rpc
JP 
 
 fetch Jump back to fetch

final� TF pc 
 Return rpc

Fig� �� The program P�x�f�x� ����

��� Proving the Computability of Particular Functions

The operations mentioned above make up the language of partial recursive func�
tions and are su�cient to build up the family of computable functions� A HOL
conversion simulating the application of function terms constructed using these
constructs is implemented� The three basic functions are automated by simply



Function Description Notation Partially recursive equivalent

Parameter rearrangement f � �i������in�� f����j�U
ij
n �

Identity � U�
�

One c S���Z�

Addition �c R���S � ���

Multiplication �c R�Z� �c � �����

Factorial factc R�c��c���S� ���

Predecessor predc R�Z�U�
� �

Subtraction ��

c R��� predc � ���
�c ��

c � ����
Power e�c R�c��c � �����

ec ec � ����
Conditional ifc R�U	


 �U
�
� �

Check if 	a is	 ifc �����Z� c� � ������
Check if non 	 non	 ifc ����� c�Z� � ������
Di�erence j �c �x�� x��j �c����

�

c��c�

Equality �c is	 �����x�� x���j �c �x�� x��j�

Inequality ��c is	 ����c�

Conjunction �c non	 ����c�

Disjunction �c non	 ����c�

Minimal inverse f�� �y����c ���f� �� � ������y� �� 	�

Fig� �� A list of computable functions

a can also be used as a negation operator

rewriting with the appropriate de�nitions� substitution is automated by �rst
evaluating each of the substituting functions and then evaluating the function
into which these functions are substituted� A function de�ned by recursion is
animated by evaluating either the base case function� or the step function recur�
sively� A function constructed by minimalisation� 	xfx� �� �� is animated by
�rst proving that if for some i� fi� � � and for all j � i� fj� is de�ned and is
greater than �� then 	xfx� �� �� � i� By evaluating fj�� for j � �� �� � � � one
can construct a thoerem which states that �j��j� � j 	 fj� � � until j � i and
thus fj� � �� This theorem and the evaluation of fi� are then used to prove
that 	xfx� �� �� � i� thus evaluating the minimalisation function�

This conversion is used to prove that particular functions are equal to some
speci�ed partial recursive function� In general an equality to a function con�
structed by substitution is proved by applying this conversion on the functional



application term and then proving the equality of the resulting terms often by
simple rewriting of the de�nitions�� and equality to a function de�ned by recur�
sion is proved by mathematical induction and then applying this conversion on
the base case and induction step subgoals� Since the simulation of minimalisation
involves a possibly non�terminating fetching process when the function is total
and never returns �� the execution of this conversion may diverge� in such case
this conversion cannot be used in the required proof� although if the fetching pro�
cess terminates the proof of the equality of functions de�ned by minimalisation
is otherwise relatively straightforward�

Moreover� since partial recursive functions are constructed from three basic
functions which are proved to be computable and by three operators which are
proved to preserve computability� the process of proving that such functions
are computable can be automated� Given a conversion which automates this
mechanism� the proof that a function is computable simply involves showing
that it is equal to some partial recursive function� Figure � lists a number of
functions which are proved to be computable�

� Theorem Proving in HOL

The proofs of most of the results in this mechanisation tend to be quite elaborate
and involve the consideration of details which are often omitted in the proofs
given in mathematical texts� This is often the case with mechanical veri�cation
since most of the de�nitions and proofs done by hand and represented in texts
omit a number of steps which are considered to be trivial or not interesting to
the reader� For example the proof that for every URM program one can con�
struct a program in standard form which has an equivalent behaviour Sect� 	���
is considered to be trivial in ��
� although it requires a considerate number of
lemmas concerning the behaviour of executing URM programs in general and
programs transformed into standard form by the function SF� Also� in the proofs
that computable functions are closed under the operations of substitution� re�
cursion and minimalisation� little or no attention is given in showing that the
program constructed to compute the required function diverges whenever the
function is unde�ned� probably because this part of the proof is considered un�
interesting� It is to note� however� that such proofs usually o�er an interesting
challenge in a mechanisation�

However� an advantage of theorem proving in HOL and other LCF style
theorem provers is the availability of a �exible general purpose meta�language
which can be used in the implementation of program modules which simulate
the behaviour of the formal de�nitions as well as intelligent algorithms which
automate parts of the veri�cation process� In this particular implementation�
such a mechanism is found to be quite useful in the veri�cation of general com�
putable functions� On the other hand� theorem proving in Coq is usually done
by applying tactics through the speci�cation language Gallina� This o�ers the
advantage that unless a number of specialised tactics need to be implemented�
the user does not need any knowledge on how the actual terms and theorem are



represented in the implementation of the theorem prover and is thus easier to
learn than HOL� Another advantage of having a speci�cation language which
bridges the user from the meta�language is that proofs can be easily represented
as lists� or trees of tactics in a format which can be read by the user� How�
ever such an approach has the disadvantage that it reduces the �exibility of the
system and discourages the user from implementing his or her own tactics�

Type theories allow the de�nition of dependent types where a type can be
parametrised by other types� and thus o�er a more powerful and �exible type
de�nition mechanism than the one available in HOL� For example� the type
of functions which are considered for computability are de�ned as mappings
from lists of numbers to possibly partial numbers Sect� 	�	� and the type itself
contains no information regarding the function�s arity� In an implementation in
Coq� an n�ary partial function is de�ned as a single valued relation between
vectors of n elements and natural numbers� Vectors are de�ned as the following
inductive dependent type�

Inductive vector A� Set�� nat � Set

�� Vnil� �vector A O�

� Vcons� �n� nat�A � �vector A n� � �vector A �S n���

and partial functions as a record with two �elds�

Record pfunc arity� nat� � Type �� mk�pfunc

f reln� �Rel �vector nat arity� nat��

One�valued� �one�valued �vector nat arity� nat reln� g�

The �rst �eld reln represents the function as a relation and the second �eld
One�valued is a theorem which states that reln is single valued� Relations are
de�ned by�

Definition Rel �� A	B� Set�A � B � Prop�

and the predicate one�valued by�

Definition one�valued

�� A	B� Set�R� �Rel A B���a� A��b�	 b�� B�

�R a b�� � �R a b�� � �b� � b���

Finally the type of all partial functions is de�ned as the dependent product

Inductive pfuncs� Type

�� Pfuncs� �n� nat��pfunc n� � pfuncs�

Possible enhancements to theorem proving in the HOL system include mech�
anisms for naming or numbering assumptions in a goal�directed proof� for allow�
ing constant rede�nition and the declaration of local de�nitions� Proofs found
in mathematical texts often contain de�nitions which are only used in showing
a number of particular results� Such de�nitions can be made local to the results
which require them� For example� in the proof that computable functions are



closed under recursion Sect� ��	� the constants Pstart� Ploop and Pfinal are
used only in obtaining this particular results� Such constants are de�ned as lo�
cal meta�language variable de�nitions� however a more elegant approach would
involve a theory structure mechanism where constants can be de�ned local to a
theory module and made invisible outside their scope�

� Conclusion

The mechanisation of computability theory discussed above includes the de��
nition of a computable function according to the URM model and the proof
of various results of the theory of which we have given particular attention to
the closure property of computable functions under the operations of substitu�
tion� recursion and minimalisation� This result is used in the implementation
of a process which automates the proof of the computability of functions con�
structed from these operations and a number of basic computable functions� In
the future� it is expected that the theory will be extended through the proof of a
number of theorems including the denumerability of computable functions� the
Smn theorem and the universal program theorem�

A mechanisation of computability theory is also being implemented in the
Coq proof assistant� This implementation uses the partial recursive function
model of computation and will include the proof of the results mentioned in the
previous paragraph� These two implementations and other work in Alf are ex�
pected to yield a comparative study of the di�erent theorem proving approaches�

� Acknowledgements

I thank my supervisor� Simon Thompson� for his continuous support and for his
comments on the material presented in this paper� as well as the anonymous
referees for their constructive comments on the �rst draft of this paper�

References

� Thorsten Altenkirch� Veronica Gaspes� Bengt Nordstr�om� and Bj�orn von Sydow�
A User�s Guide to ALF� Chalmers University of Technology� Sweden� May ����

�� J� Camilleri and V� Zammit� Symbolic animation as a proof tool� In T�F� Melham
and J� Camilleri� editors� International Workshop on Higher Order Logic Theorem

Proving and its Applications� volume ��� of Lecture Notes in Computer Science�
pages ����� Malta� September ���� Springer�Verlag�

�� C� Cornes et al� The Coq Proof Assistant Reference Manual� Version ��	� Rap�
port technique RT�	��� INRIA� ����

�� N�J� Cutland� Computability� An introduction to recursive function theory� Cam�
bridge University Press� ��	�

�� M� Gordon� HOL a machine oriented formulation of higher order logic� Technical
Report TR���� Computer Laboratory� Cambridge University� July ����



�� M�J�C� Gordon and T�F� Melham� Introduction to HOL� a theorem proving envi�

ronment for higher order logic� Cambridge University Press� ����
�� Lena Magnusson and Bengt Nordstr�om� The ALF proof editor and its proof engine�

In Henk Barendregt and Tobias Nipkow� editors� Types for Proofs and Programs�
pages ������� Springer�Verlag LNCS �	�� ����

�� T�F� Melham� Using recursive types to reason about hardware and higher order
logic� In G�J� Milne� editor� International Workshop on Higher Order Logic Theo�

rem Proving and its Applications� pages ����	� Glasgow� Scotland� July ���� IFIP
WG 	��� North�Holland�

�� L�C� Paulson� Logic and computation � interactive proof with Cambridge LCF�
Cambridge tracts in theoretical computer science� ����

	� H� Rogers� Theory of recursive functions and e�ective computability� McGraw�Hill�
����

� J�C� Shepherdson and H�E� Sturgis� Computability of recursive functions� Techni�
cal Report 	� J� Assoc� Computing Machinery� ����

�� R� Sommerhalder and S�C� van Westrhenen� The theory of computability� pro�

grams� machines� e�ectiveness and feasibility� Addison�Wesley publishing com�
pany� ����

�� G�J� Tourlakis� Computability� Reston Publishing Company� ����
�� P�J� Windley� Specifying instruction�set architectures in HOL� A primer� In T�F�

Melham and J� Camilleri� editors� International Workshop on Higher Order Logic

Theorem Proving and its Applications� volume ��� of Lecture Notes in Computer

Science� pages ��	����� Malta� September ���� Springer�Verlag�


