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Objectives: In silico pharmacokinetic/pharmacodynamic (PK/PD) models can be developed based on data from
in vitro time–kill experiments and can provide valuable information to guide dosing of antibiotics. The aim was to
develop a mechanism-based in silico model that can describe in vitro time–kill experiments of Escherichia coli
MG1655 WT and six isogenic mutants exposed to ciprofloxacin and to identify relationships that may be used
to simplify future characterizations in a similar setting.

Methods: In this study, we developed a mechanism-based PK/PD model describing killing kinetics for E. coli fol-
lowing exposure to ciprofloxacin. WT and six well-characterized mutants, with one to four clinically relevant
resistance mutations each, were exposed to a wide range of static ciprofloxacin concentrations.

Results: The developed model includes susceptible growing bacteria, less susceptible (pre-existing resistant)
growing bacteria, non-susceptible non-growing bacteria and non-colony-forming non-growing bacteria. The
non-colony-forming state was likely due to formation of filaments and was needed to describe data close to
the MIC. A common model structure with different potency for bacterial killing (EC50) for each strain successfully
characterized the time–kill curves for both WT and the six E. coli mutants.

Conclusions: The model-derived mutant-specific EC50 estimates were highly correlated (r2¼0.99) with the
experimentally determined MICs, implying that the in vitro time–kill profile of a mutant strain is reasonably
well predictable by the MIC alone based on the model.

Introduction

The increasing problem of antibiotic resistance due to overuse and
misuse of antibiotics is threatening to return us to a pre-antibiotic
era.1 – 3 In combating existing resistance and limiting the enrich-
ment of resistant bacteria during treatment, it is essential to
understand the relationship between common resistance muta-
tions and the time profile of bacterial growth and death when
exposed to antibiotics.4 Relevant information to predict optimal
dosing strategies for antibiotics can be obtained from pharmaco-
kinetic/pharmacodynamic (PK/PD) in silico models based on
in vitro time–kill experiments.5 – 8 By predicting the bacterial killing
following different doses and dosing intervals from such models,
drug development could be guided in the selection between can-
didate drugs and current dosing schemes could be optimized, not
only to increase efficacy but also to limit resistance development.
For the last decade, model-based drug development has been
recommended by the regulatory agencies to strengthen the sci-
entific evidence to base key decisions on9,10 and PK/PD models
have lately gained increased attention from the pharmaceutical

industry for this purpose. A framework, aiming to be able to
make reasonable predictions based on a limited number of future
experiments, is of high value for making drug development more
efficient.

In silico PK/PD models have been developed for different bac-
terial strains and antibiotics.4,6,11 – 17 The aim of the models may
differ, however. For example, some models focus on evaluating
mechanism-based theory on the data and some models focus
more on making drug development more efficient, e.g. for fore-
casting unstudied outcomes based on limited new information
or predictions of different dosing regimens in the presence of
less susceptible bacteria. From a mechanism-based PK/PD
model, we can explore different dosing regimens in the presence
of resistant mutants to investigate how resistance selection can
be reduced or overcome. For a model to be applicable for drug
development, a general basis for the model structure is desirable.
Nielsen et al.5 have previously developed a mechanism-based in silico
model describing the in vitro time–kill profiles for Streptococcus pyo-
genes exposed to antibiotics of different classes. The model fitted
data well from both static and dynamic time–kill experiments18
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and predicted the in vivo determined categories and magnitudes
of PK/PD indices.16 Further, the Nielsen model has been shown to
provide a useful base structure that allows for extension with
structural elements that describe adaptive resistance, e.g. as
observed in experiments of Escherichia coli exposed to gentami-
cin11 and Pseudomonas aeruginosa exposed to colistin.12

In this study, we have developed the Nielsen model further for
the study of E. coli exposed to a fluoroquinolone. Fluoroquinolones
are an important class of antibiotics that are commonly used
against Gram-negative infections. Resistance to fluoroquinolones,
however, has been reported as increasing worldwide over the last
decade.19,20 Ciprofloxacin is a fluoroquinolone that acts by inhibit-
ing DNA gyrase and topoisomerase IV, which leads to inhibition of
cell division and bacterial death.21,22 Common mutations in E. coli
leading to ciprofloxacin resistance include mutations in gyrA1,
gyrA2 (DNA gyrase), parC (topoisomerase IV) and marR (repressor
of efflux system AcrAB). These mutations are typically associated
with higher MIC values compared with WT23 and may also reduce
bacterial fitness.24 How these mutations affect the parameters
describing the PK/PD relationships and hence the time course of
bacterial killing after drug exposure is of interest, since such infor-
mation can provide valuable information for the design of future
studies and in development of dosing regimens.

The aim was to develop a mechanism-based in silico model
that can describe in vitro time–kill experiments of E. coli MG1655
WT and six isogenic mutants exposed to ciprofloxacin and to iden-
tify relationships that could be used to simplify future characteriza-
tions in a similar setting. The effects of specific mutations on model
parameters describing the time course of bacterial killing for differ-
ent ciprofloxacin concentrations were investigated and a common
PK/PD model structure was developed.

Material and methods

In vitro experiments

E. coli strains and antibiotic used

The strains were isogenic, only differing in the mutation(s) outlined in
Table 1. Their MICs (Etest) and fitness values (as determined by growth
competition assays in tubes) have been reported earlier.24 Ciprofloxacin
from Sigma –Aldrich (17850-5G-F) was used in all experiments. The

antibiotic was dissolved in 0.1 M HCl as recommended by the supplier,
either freshly dissolved or from a 10 mg/mL stock solution not older
than 4 weeks (stored at +48C). Further dilutions were made in Mueller–
Hinton II (MHII) broth (BD BBLTM).

MIC determination

The previously reported MIC values were determined using Etest
(Table 1).24 In our study, the MICs were determined by macrodilution in
MHII broth in order to reflect the MIC in the time–kill experiments. The
macrodilution MICs (reported as modal MICs) for all strains were evaluated
for a minimum of 6 times on different occasions and in different labs
(Table 1). The experiments were performed with 2 mL of MHII and a start-
ing inoculum of 2×105 cfu/mL. A 2-fold half dilution scheme was used and
the results were read at 24 h. To investigate if resistant bacteria were
selected during the experiment, the MIC was determined in some
0.5–1×MIC experiments for WT bacteria and for one of the mutants.

Time–kill experiments

Time–kill experiments were performed in at least triplicate for all seven
strains. At least one replicate for each strain was tested at three different
laboratories working in a joint consortium to increase the robustness of
the results by showing reproducibility of the experiments. There was no
obvious trend for systematic differences between laboratories. The high
variability at concentrations between 0.25× and 1× MIC is likely due to
biological random variability (e.g. influencing the starting inocula) in com-
bination with small experimental variations (e.g. temperature fluctua-
tions). Interlaboratory variation was minimized by strictly following a
detailed standard protocol. All incubations were made at 378C (liquid
cultures in a rocking water bath at 150 rpm) and dilutions were made
into pre-warmed MHII broth. From single colonies, overnight cultures
(15–17 h) were prepared in 2 mL of MHII and then diluted 1 : 100 in
2 mL of MHII broth. A second dilution (1:100 in 2 mL of MHII broth) was
made after 1.5 h when the culture had reached log phase (OD600¼0.1–0.3,
�107 –108 cfu/mL) to achieve a starting inoculum of �106 cfu/mL.
After an initial bacterial sample was extracted, antibiotic was added to
obtain a concentration of 0×, 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×
and 8× MIC for the strain (MICs from macrodilution were used, see
Table 1). Additional samples were removed at 1, 2, 4, 6, 9, 12 and 24 h
after the addition of the antibiotic. Different dilutions were prepared in
sterile 0.9% NaCl and plated for each sampling timepoint.

The samples were spread by glass beads (five beads, Hecht 1401/6)
onto MHII agar plates. Colonies were counted manually after �20 h. The
limit of detection (LOD) for viable counts was 10 cfu/mL. Antibiotic

Table 1. Mutations, relative fitness compared with LM347 and measured MICs for the different E. coli MG1655 strains used in the experiments

Strain GyrA1 GyrA2 MarR ParC Relative fitnessa

MIC (mg/L)

Etestb macrodilutionc

LM347 (WT) — — — — 1.0 0.016 0.023
LM202 — — D — 0.83 0.032 0.047
LM378 S83L — — — 1.01 0.38 0.38
LM534 — D87N — — 0.99 0.25 0.25
LM625 S83L D87N — — 0.97 0.38 0.50
LM693 S83L D87N — S80I 1.01 32 32
LM707 S83L D87N D S80I 0.89 32 48

aMean fitness per generation, relative to WT from Marcusson et al.24

bThe MIC was determined by Etest on Mueller–Hinton II agar plates incubated for 16–18 h at 378C as described by Marcusson et al.24 and is summarized
as modal MIC.
cThe MIC was determined by macrodilution in Mueller–Hinton II broth incubated for 24 h at 378C in this study and is summarized as modal MIC.
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carry-over was handled by adding the sample to one side of the plate,
allowing the antibiotic to sink into the agar before spreading out the bac-
teria. When counting colonies, a visual inspection of the distribution of col-
onies on the plate was conducted and if a clear zone was present on the
plate, the plate was divided into two and only the zone that the sample
was not added to was counted, with the count being doubled to represent
the whole plate.

Particle size in culture

To determine the degree of filamentation in our time–kill assay, flow cyto-
metry was used to study the bacteria particle size over time. A GFP gene-
labelled analogue of LM347 that can be measured with flow cytometry
was used. This strain has previously been constructed and studied by
Gullberg et al.25 and we used an identical analogue. Overnight cultures
were grown in 2 mL of MHII broth. The next day, 20 mL of the culture
was transferred to 2 mL of fresh pre-warmed MHII broth using the same
procedure as in the time–kill experiments. Ciprofloxacin was added to
each tube to final concentrations of 0×, 0.5× and 1× MIC. Samples were
taken at 1, 2, 4, 6, 9 and 24 h after the antibiotic was added. From the
tube without antibiotic, 5 mL of culture was sampled at each timepoint
and diluted with 500 mL of sterile-filtered 0.9% NaCl. From the tubes
with ciprofloxacin, between 5 mL and 1 mL of sample was taken at each
timepoint. To obtain an appropriate concentration of �106 cfu/mL, cells
were either diluted in 0.9% NaCl or concentrated by spinning at
5000 rpm for 6 min and resuspended in 0.9% NaCl. For each sample, 105

cells were analysed. After removal of the supernatant, sufficient volumes of
PBS were added to resuspend the cell pellet. The samples were vortexed for
5 s before being analysed by flow cytometry (BD FACS Aria Cell Sorter). The
fluorescence (Blue 488 nm laser) was detected by FITC-filter (502 nm Long
pass filter, 530/30 nm band pass). We first gated away noise and debris
based on side-scatter light height (SSC-H) and only analysed cells with
yellow fluorescence. There was a clear separation between fluorescent
cells and non-fluorescent cells and debris. We gated only fluorescent
cells. At least 100000 events were recorded for each sample.

oCelloScope experiments

Cell morphology at 0.5× MIC was monitored over time using an
oCelloScopeTM (Unisensor, Allerod, Denmark). Bacterial inocula were pre-
pared as above in pre-warmed MHII broth, except that the second dilution
was done 1:50 to make a further 1 :2 dilution into the microtitre plate
(96-well microtitre plate with lid; Thermo Scientific Nunc, cat. no.
10378937) already containing 100 mL of MHII with ciprofloxacin at differ-
ent concentrations. Representative images of filamentation were chosen
by zooming into the best-focused section and exporting to bitmap.

In silico modelling

Mechanism-based PK/PD model

The general mechanism-based PK/PD model previously developed for
S. pyogenes by Nielsen et al.5 was used as the starting point for model
development. During development of the ciprofloxacin– E. coli model,
different structural models were tested, including the characterization of
pre-existing subpopulations with different drug susceptibility, subpopula-
tions of non-colony-forming bacteria and adaptive resistance mechan-
isms.11,12 A parsimonious model with a common structure for all seven
strains was searched for.

Ciprofloxacin has been reported to be stable in culture media26,27 and
was shown to be stable over 24 h at 378C in pilot studies; hence, the
concentration was assumed to be constant during the 24 h time –kill
experiments. The time during which some of the bacteria in the system
were transferred into the non-colony-forming state was estimated by
application of the MTIME function in NONMEM.

Data analysis

The typical model parameters and the residual errors were estimated
simultaneously based on all data in NONMEM 7;28 thus, all strains were
fitted using the same model. The Laplacian estimation method and
ADVAN13 were used. When selecting between nested models, the differ-
ence in objective function value (OFV) was used. In NONMEM, the OFV is
22 times the log of the likelihood. The more complex model was selected
when the reduction in OFV was ≥10.83 corresponding to a P value of
,0.001 for 1 degree of freedom. Baseline variability in the starting inocula
was handled using the B2 method,29 where the observed starting inocu-
lum was treated as a covariate associated with a residual error having the
same estimated residual variability as the other bacterial counts.
All detectable bacterial counts (n¼3438) from all experiments were
included in the analysis and there were generally between one and
three observations (dilutions) per sample timepoint and experiment. All
bacterial counts were transformed into natural logarithms prior to data
analysis. Typical parameter values and residual errors were estimated.
No between-experiment variability was estimated. When tested, inclusion
of interexperimental variability resulted in misspecification of the baseline
value and overestimated the variability. The residual error was additive on
the logarithmic scale. To avoid bias due to correlations between replicate
samples, the residual error was estimated as one residual common for all
replicates of the same timepoint in an experiment and one residual that
was replicate specific.5

Model performance was evaluated with visual predictive check (VPC)
plots by simulating 1000 replicates of the dataset from the developed
model and its parameter estimates (without uncertainty) and construct-
ing an 80% prediction interval based on the simulated data.30 – 32 The VPC
was stratified by bacterial strain and drug concentration. The model pre-
dictions and calculations to produce the VPCs were performed using
PsN,33 visualized using Xpose version 4.4.2.234 and R 2.10 (www.
R-project.org). For samples taken at the same timepoint, where all dilu-
tions were below the LOD, the M3 method35,36 was used to estimate the
probability for the observation to be below the LOD. It has been shown that
acknowledging the presence of LOD data reduces the bias in parameter
estimates.28,35

Results

Time–kill profiles

The time – kill curves for WT and mutant bacteria had similar
shapes when normalizing the ciprofloxacin concentration to
the MIC for each strain (Figure 1). For all strains, most variability
between experiments was observed at concentrations of
0.25 – 1× MIC. The triple (LM693) and quadruple mutants
(LM707) had the highest MICs (32 and 48 mg/L, respectively)
and also the highest experimental variability at concentrations
around the MIC.

It was observed that at 3–6 h after initial killing, regrowth
occurred in all experiments with a ciprofloxacin concentration of
0.5× MIC (Figure 1). For higher ciprofloxacin concentrations,
regrowth at the end of the experiment was observed in some,
but not all experiments. For the same multiple of MIC, regrowth
was more frequently observed in experiments with WT bacteria
compared with any of the mutants. An increase in the MIC at
later timepoints was noted in some of the investigated experi-
ments with regrowth. Due to technical difficulties with ciprofloxa-
cin concentrations .48 mg/L, no data were generated for .1×
MIC for LM693 (gyrA S83L, gyrA D87N and parC S80I) or LM707
(gyrA S83L, gyrA D87N, parC S80I and DmarR).

PK/PD model allows prediction of antibiotic effect

3053

JAC
D

ow
nloaded from

 https://academ
ic.oup.com

/jac/article/70/11/3051/2363985 by guest on 21 August 2022

http://www.R-project.org
http://www.R-project.org
http://www.R-project.org


LM347

MIC

0.023 mg/L

LM202

MIC

0.047 mg/L

LM378

MIC

0.38 mg/L

LM534

MIC

0.50 mg/L

LM625

MIC

0.25 mg/L

LM693

MIC

32 mg/L

LM707

MIC

48 mg/L

Observations

Median

80% prediction interval

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC

LM347

MIC

0.023 mg/L

LM202

MIC

0.047 mg/L

LM378

MIC

0.38 mg/L

LM534

MIC

0.50 mg/L

LM625

MIC

0.25 mg/L

LM693

MIC

32 mg/L

LM707

MIC

48 mg/L

Observations

Median

80% prediction interval

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC 2xMIC 4xMIC 8xMIC

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC

Time (h)

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

0 6 121824 0 6 121824 0 6 121824 0 6 121824 0 6 121824 0 6 121824

Time (h)
0 6 121824 0 6 121824 0 6 121824 0 6 121824 0 6 121824 0 6 121824

0xMIC 0.06xMIC 0.13xMIC 0.25xMIC 0.5xMIC 1xMIC

(a)

(b)

L
o

g
 c

fu
/m

L
L

o
g

 c
fu

/m
L

Figure 1. VPCs for E. coli MG1655 WT and six well-characterized mutants thereof. (a) Model fit for full model and (b) model fit for the EC50/MIC correlation
model. Each panel includes all observations (o), i.e. at least three different experiments with all dilutions of detectable bacteria, the black continuous line
represents the simulated median. Observations below the dashed grey line are observations below the LOD and are plotted as 0.15×LOD (1.5). One
thousand simulations from the final model were performed to construct 80% prediction intervals, representing estimated and thereby expected
experimental variability.
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PK/PD modelling

Model structure

The mechanism-based model by Nielsen et al.,5 in its original ver-
sion, could satisfactorily characterize the initial killing rate at high
drug concentrations and the maximum bacterial load in the sys-
tem, but did not describe the initial killing and regrowth observed
at concentrations of �0.5× MIC, nor the slow regrowth at later
timepoints mainly seen for WT bacteria. Therefore, the model
structure was further developed: the final model structure
includes compartments for drug-susceptible growing bacteria
(S), resting non-growing bacteria (R) and non-colony-forming
drug-susceptible bacteria (Nc) that are rendered non-growing
under the influence of ciprofloxacin and unable to grow on agar
plates (Figure 2). Bacteria were also divided into two subpopula-
tions, Subpopulation 1 (S1, R1 and Nc1) and Subpopulation 2
(S2, R2 and Nc2). Subpopulation 2 is representing less susceptible
pre-existing resistant bacteria (Figure 2) describing the slow
regrowth seen in some experiments. The inclusion of compart-
ments of non-colony-forming bacteria satisfactorily described
the initial killing and regrowth at �0.5×MIC. The final model suc-
cessfully fitted the data from all experiments as shown in the VPCs
(Figure 1). The model performed better at lower and higher drug
concentrations, while the observed bacterial counts at concentra-
tions of �0.25–1× MIC varied more within and between experi-
ments and were consequently not as well predicted.

The structure and assumptions that created the best model
are as follows. At the start of each experiment, all bacteria were
assigned to be drug susceptible (S1 or S2). The change in bacterial
load for susceptible bacteria (equation 1) was affected by rate
constants describing bacterial replication (kgrowth), natural kill

(kdeath), drug effect (kDRUG) and transfer (kdeath) from S to R as
well as transformation into (kSNc) and from (kNcS), the non-
colony-forming state:

dS
dt

= kgrowth × S − kdeath × S − kDRUG × S − kSR × S − kSNc × S

+ kNcS × Nc

(1)

The change in bacterial load for the non-susceptible non-growing
bacteria (equation 2) was affected by the transfer from S to R (kSR)
as well as the natural kill rate (kdeath):

dR
dt

= kSR × S − kdeath × R (2)

The rate constant of bacterial transfer from the S state to the R
state (kSR) was dependent on an estimated proportionality con-
stant (PC) and the total amount of bacteria in the system (equa-
tion 3), i.e. the more bacteria in the culture, the higher the rate of
transfer from S to R. This structure has previously been shown to
describe stationary-phase data well.5,11,12 The transfer from the
non-growing phase (R) back to the growing phase (S) was in
these experiments assumed to be negligible as there is no infor-
mation about this transformation in our data, thus making R1 and
R2 identical. However, R1 and R2 may in reality be able to transfer
back to S1 and S2 if ciprofloxacin is removed or if stationary-phase
bacteria are diluted in new media. When only the S and Nc states
were assumed to affect kSR, the model fit was worse (the OFV
increased by 30 U).

kSR = PC × (S1 + R1 + Nc1 + S2 + R2 + Nc2) (3)

In the model, susceptible bacteria can transfer into the
non-colony-forming state. Non-colony-forming bacteria are also
affected by drug effect, but can recover and transfer back to the
susceptible growing state. Rates of change of the non-colony-
forming bacteria were described by equation 4:

dNc
dt

= kSNc × S − kNcS × Nc − kdeath × Nc − kDRUG × Nc (4)

Within strains, different EC50 (antibiotic concentration that results
in 50% of the maximum kill rate) values for susceptible bacteria
(EC50,1) were allowed to be estimated (Table 2).

The rate constant for transformation from susceptible to
non-colony-forming bacteria was described by a function that
approaches a maximum rate (kSNc,max) at high ciprofloxacin con-
centrations (C) (equation 5). The driver for the transformation was
a ratio of the antibiotic concentration divided by the estimated
EC50 for the drug effect for each mutant. tr50 is the sensitivity par-
ameter (resulting in 50% of the maximum rate) and gNc is the esti-
mated Hill factor for this function. This allowed the same
parameters to be used for all mutants. It was observed that gNc

was estimated by the model to a very high value with high uncer-
tainty. Therefore, it was fixed to the value of 20, which was the
lowest value not resulting in a significantly reduced fit of the
data. A high value of gNc predicts that kSNc rapidly changes from
a value of 0 to kSNc,max around tr50 (estimated at �0.25× EC50).

kSNc = kSNc,max × (C/EC50)gNc

trgNc
50 + (C/EC50)gNc

(5)

Bacterial system

S1 + R1 + S2 + R2 + Nc1 + Nc2

S1 + R2 + S2 + R2 + Nc1 + Nc2

Pharmacokinetics

S1

Nc1

R1

S2 R2

kSR

k
SNc1

k
SNc2

kDRUG1

kDRUG2

k
NcS1

k
NcS2

kdeath

kdeath

kgrowth2

kgrowth1

Nc2

kSR

kdeath

kdeath

+

+C

Figure 2. Mechanism-based PK/PD model developed for ciprofloxacin and
E. coli MG1655 WT and six well-characterized mutants exposed to
ciprofloxacin. S1, susceptible bacteria; R1, resting/non-susceptible,
non-growing bacteria; Nc1, non-colony-forming bacteria for Subpopulation
1. Subpopulation 2 represents pre-existing resistant bacteria (S2, R2
and Nc2).
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The transfer back to S from Nc was also dependent on the scaled
ciprofloxacin concentration (equation 6) multiplied by an esti-
mated scale factor sfNcS. The inverse relationship to C indicates
that the higher the drug concentration, the lower is the rate of
recovery back to the susceptible state from the non-colony-forming
state. C was set to a very low value for control experiments to avoid
division by 0.

kNcS = sfNcS ×
EC50

C

( )
(6)

The time during which some of the bacteria in the system were
transferred into the non-colony-forming state (tNc) was estimated
to be 5.3 h after the start of drug exposure. At this estimated time-
point, the transfer rate constant from the S to the Nc compartment
(kSNc) was switched off and set to 0. By adding Nc compartments,
the initial decline and subsequent regrowth observed for ciprofloxa-
cin concentrations at �0.5× MIC were adequately described and
improved the model fit by resulting in a decrease in OFV of 650 U.
When a third subpopulation was evaluated to describe the transient
decline, the OFV was 564 U higher compared with the final model.

The natural death rate constant (kdeath) of the bacteria was
fixed to a value of 0.179 h21 as previously reported by Nielsen
et al.5 as there was little information in the current data for this
parameter. All bacteria, including the resting and non-colony-
forming bacteria, were assumed be affected by the natural
death rate. Fixing kdeath to 0.1 and 0.3 h21 resulted in an increase
in OFV of 28 and 5 U, respectively.

The rate constants determining the drug-induced bacterial
killing (kDRUG) of S and Nc were described with Emax models
(equation 7):

kDRUG = Emax × Cg

EC50
g + Cg (7)

As anticipated, the different strains had different susceptibility
to ciprofloxacin and consequently it was significant to esti-
mate different EC50 values for each strain (Table 2). When
the bacterial growth parameter (kgrowth1) was allowed to be strain
dependent, there was no significant improvement in the model fit.
kgrowth1 was hence a shared parameter for all strains.

The fraction of pre-existing less susceptible bacteria in the cul-
ture (S2) at the start of the experiment was estimated to be
0.82 cfu/mL per 106 cfu/mL in the starting inoculum as a com-
mon parameter for all experiments. Excluding pre-existing resist-
ant bacteria from the model structure generated an increased
OFV of 42 U with three fewer model parameters. The inclusion
of pre-existing resistant bacteria described the slow regrowth
seen mainly in the experiments with WT bacteria.

The pre-existing resistant subpopulations were assumed to
have different replication rates (kgrowth2) and EC50 (EC50,2) com-
pared with the susceptible populations; the EC50,2 was assumed
to be the same for all seven studied strains. The replication rate
constant for the pre-existing resistant bacteria (kgrowth2) was esti-
mated to be only one-fifth of the replication rate constant in
Subpopulation 1 (kgrowth1), while EC50,2 was higher than EC50,1

for five of the seven strains. There was limited information in
the data on Subpopulation 2 and drug effect parameters charac-
terizing the non-colony-forming bacteria were therefore assumed
to be the same as for the corresponding susceptible state (S1 to
Nc1 and S2 to Nc2).

EC50/MIC correlation model

The estimated EC50 values for the different strains were highly
correlated to the experimentally measured MICs with r2¼0.99
for the final model with shared Emax and kgrowth parameters
(Figure 3). Also, for a model where Emax and kgrowth parameters
were allowed to be strain specific, the EC50/MIC correlation was
0.99. A reduced, alternative model where the EC50 values for all

Table 2. Final model parameter estimates with relative standard error
(RSE%) for the full model and the EC50/MIC correlation model

Parameter Full model EC50/MIC correlation model

kgrowth1 (h21) 1.70 (2.1%) 1.73 (2.5%)
EC50,1 LM347 (mg/L) 0.0368 (3.7%) 0.030a

EC50,1 LM202 (mg/L) 0.0573 (5.1%) 0.061a

EC50,1 LM378 (mg/L) 0.654 (3.4%) 0.474a

EC50,1 LM534 (mg/L) 0.295 (4.1%) 0.314a

EC50,1 LM625 (mg/L) 1.00 (3.3%) 0.619a

EC50,1 LM693 (mg/L) 31.0 (3.3%) 36.2a

EC50,1 LM707 (mg/L) 91.6 (3.3%) 53.8a

Emax (h21) 5.24 (5.8%) 5.84 (7.2%)
g 1.98 (4.4%) 1.77 (4.6%)
S2 starting conc.

per 106 cfu/mL
0.819 (14%) 0.703 (16%)

kgrowth2 (h21) 0.344 (4.5%) 0.384 (3.5%)
EC50,2 (mg/L) 1.25 (12%) 1.15 (9.9%)
kSNc,max (h21) 5.83 (7.5%) 4.85 (9.8%)
sfNcS (h21) 0.174 (13%) 0.163 (22%)
tr50 0.240 (4.8%) 0.214 (6.9%)
PC (h21/cfu/mL) 1.86×1029 (7.5%) 1.72×1029 (9.5%)
tNc (h) 5.34 (2.8%) 3.37 (4.1%)

aEC50 for the EC50/MIC correlation model was estimated by two
parameters using MIC as covariate (1.22×MIC0.978) (RSE 4.5% and 0.2%,
respectively).
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Figure 3. EC50 as estimated by the full model versus experimentally
determined MICs by macrodilution.
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strains were forced to be related to their experimentally deter-
mined MIC was therefore evaluated and resulted in equation 8:

EC50 = 1.22 × MIC0.978 (8)

In this reduced model, only two parameters to describe EC50 for
all seven strains were hence estimated. The other parameters for
the reduced model were similar to the full model, e.g. kgrowth1

changed from 1.70 to 1.73 h21 and Emax changed from 5.24 to
5.84 h21 (Table 2). The reduced model satisfactorily described
the data, as depicted in the VPCs (Figure 1b). The full model
was, however, significantly better than the reduced model, with
a 432 U lower OFV.

Flow cytometry and cell morphology

Flow cytometry was used to study the bacteria particle size in the
culture over time for the control (no drug) and ciprofloxacin con-
centrations of 0.5× and 1× MIC. The results show that particle
sizes at 0.5× and 1× MIC were increased between 1 and 4 h

compared with control. At 0.5× MIC, particle sizes clearly
decreased again after 4 h, while at 1× MIC the particle size
decrease after 4 h was less pronounced (Figure 4a).

Cell morphology at 0.5× MIC was studied over 24 h using
oCelloScope and longer chains of E. coli indicating filamentation
were observed (Figure 4b).

Discussion
In this study, we developed a mechanism-based PK/PD model for
ciprofloxacin and E. coli. The developed model successfully
characterized the time–kill curves for both WT and six E. coli
mutants as depicted in the VPCs (Figure 1). The model structure
includes susceptible growing bacteria, resting non-growing bac-
teria and non-colony-forming non-growing bacteria, divided into
two subpopulations. Subpopulation 1 represents susceptible bac-
teria and Subpopulation 2 represents pre-existing resistant bac-
teria (Figure 2). These elements were needed to describe the
data, but to describe the full mechanism would be the scope of
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Figure 4. (a) Fluorescence-activated cell sorting results for strain LM347, with relative bacterial density on the y-axis and forward-scatter light height
(FSC-H) corresponding to size of the particles (bacteria) on the x-axis. (b) oCelloScope images showing cell morphology for strain LM347 over 24 h at 0.5×
MIC of ciprofloxacin.
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other studies aiming to elucidate these relationships. Here, simi-
larities of model parameters were observed across strains and
thus some parameters were shared between strains (Table 2).

In the time–kill data, an initial decline in bacterial load and a
fast rebound between 2 and 6 h was observed, primarily for con-
centrations of �0.5× MIC. This was in the model described by
inclusion of the non-colony-forming compartment, which sig-
nificantly improved the description of the data. There may be
additional variables affecting this, but a non-colony-forming com-
partment satisfactorily describes the outcome and is experimen-
tally supported. After an estimated time of 5.3 h, the transfer of
bacteria from the susceptible to the non-colony-forming com-
partment was switched off; this resulted in model predictions bet-
ter describing the observed time–kill profiles. It is well known that
filamentation occurs when E. coli is exposed to ciprofloxacin.21,37

The oCelloScopeTM results indicating filaments (Figure 4b) and the
flow cytometry results (Figure 4a) on particle sizes over time show
that the proportion of bacteria with a smaller cell size increases
again after 4–6 h, which strengthens the hypothesis that
non-colony-forming bacteria and filaments are highly associated.

It has been reported that bacteria undergoing filamentation
can either die or recover and become growing ‘plateable’ cells.21

The flow cytometry results indicate that at 0.5× MIC, filaments
form between 1 and 4 h and then cells recover and start to repli-
cate again because the ciprofloxacin concentration is not high
enough to kill the filaments (Figure 4a). For concentrations at
the MIC level, an increase in particle size similar to the increase
at 0.5× MIC was observed; however, recovery was less pro-
nounced. This indicates that more bacteria are killed around the
MIC and the filaments are less prone to recover and start growing.

Our mechanistic hypothesis is that bacteria become affected
by ciprofloxacin and form filaments but do not die. These bacteria
are not fully able to proliferate because they form filaments and if
the drug concentration is not sufficiently high to kill the filamen-
ted bacteria, they may recover and revert back to susceptible
growing bacteria in the model. It should, however, be acknowl-
edged that these experiments were not designed to fully charac-
terize the filamentation, but inclusion of the non-colony-forming
compartment significantly improved the description of the PK/PD
relationship for ciprofloxacin.

The mechanism-based model includes two subpopulations
with the second subpopulation hypothesized to represent a sub-
population of pre-existing resistant bacteria. In some experi-
ments, but not all, regrowth was observed at the end of the
experiments. The presence of subpopulations with lower suscep-
tibility to ciprofloxacin was experimentally supported by MIC mea-
surements in the case of regrowth. Because of limited information
in the data about these pre-existing resistant bacteria (the experi-
ments were not designed to characterize these bacteria), all
strains were in the final model assumed to share all the parameter
estimates specific to this bacterial population, including the frac-
tion of this population in the starting inocula, kgrowth2, and EC50,2.
Because EC50,2 was set to be the same for all strains, S2 was most
important for bacteria with low EC50 (i.e. the WT) and of less
importance for mutant strains with higher EC50. In addition,
there was no significant difference in Emax for the two subpopula-
tions. If the starting inoculum is high compared with the strains’
normal mutation rate, there is a high probability of having a less
susceptible subpopulation in the system. Here, we estimated a
starting concentration of 0.82 cfu/mL per 106 cfu/mL in the

starting inocula to be less susceptible. A pre-existing resistant sub-
population model structure has previously been used for model-
ling of ciprofloxacin.14 Bulitta et al.13 estimated a similar fraction,
0.03–0.7 cfu/mL per 106 cfu/mL, for the least susceptible popula-
tion in different P. aeruginosa strains treated with colistin. The esti-
mated replication rate of the pre-existing resistant bacteria was
much lower than the normal replication rate, indicating a high fit-
ness cost associated with resistance. However, since our experi-
ments were not designed to characterize this subpopulation
and the estimates are based on a few experiments and time-
points, they should be treated with caution.

The concept of relating PK/PD model parameters to the MIC
has been discussed before on a theoretical level.38 – 40 In our
work, the estimated model parameters for EC50 correlated well
with the experimentally determined MICs by macrodilution
(r2¼0.99) (Figure 3). The reduced EC50/MIC correlation model
uses MIC as a covariate for EC50 and therefore it may be possible
to predict the in vitro time–kill profile for a different E. coli strain by
measuring only the MIC experimentally and then applying the
here-developed model structure and model parameters for the
reduced EC50/MIC correlation model (Table 2). Yano et al.15 have
previously described an EC50/MIC correlation for meropenem,
imipenem, cefpirome and ceftazidime in E. coli, P. aeruginosa
and Staphylococcus aureus. Further, Katsube et al.41 applied
that correlation to estimate the EC50 using the MIC as a covariate
for P. aeruginosa treated with meropenem, doripenem and imipe-
nem. For predictions of new E. coli strains, the EC50/MIC correlation
model would hence be used inserting the MIC as a covariate when
performing simulations/predictions. When predicting bacterial
killing under new conditions for the here-studied strains, such as
higher starting inocula or from a dynamic drug concentration sys-
tem, the full model is however anticipated to give the best predic-
tion. If the replication rate is indicated to be lower than for the
here-studied strains, also a lower kgrowth may be considered to
fully describe the data.

Several of the EC50 values for the full model were highly (.95%)
correlated to each other with the highest correlation between
EC50 for LM693 and EC50 for LM707 (98%). This is indeed expected
when all data are modelled simultaneously and other parameters
are shared between the strains. Other parameters were less
correlated and estimated with reasonable precision.

A strength of our study is that we examined different well-
characterized strains with known single and multiple resistance
mutations. Our results show that all six E. coli mutants have simi-
lar replication rates as the WT bacteria as no significant differ-
ences in kgrowth could be estimated from the data in this study,
as was expected from the results of Marcusson et al.24 that has
previously shown that resistance mutations for E. coli MG1655
often only give a low or no fitness cost. When strain-specific rep-
lication rate constants were allowed, the range of kgrowth1 values
was between 1.58 and 1.71 h21 with LM707 having the lowest
kgrowth1 value, but the difference did not reach statistical
significance.

Our study also has limitations. Firstly, we did not study data
outside traditional static in vitro time–kill conditions, such as dif-
ferent starting inocula or dynamic ciprofloxacin concentrations.
Secondly, the studied strains are isogenic except for the resistance
mutations and no clinical isolates of E. coli were included. The
developed mechanism-based model’s predictive ability thus
needs to be evaluated for different E. coli strains including clinical

Khan et al.

3058

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/70/11/3051/2363985 by guest on 21 August 2022



strains and for other experimental conditions to better under-
stand its value for extrapolations and usefulness in drug develop-
ment. Thirdly, the experiments were not designed to fully
characterize the pre-existing resistant subpopulation or the
non-colony-forming bacteria. Finally, for strains LM693 and
LM707, we studied only concentrations up to 1×MIC due to tech-
nical difficulty in producing these data. Initial test experiments
indicated that there may be a paradoxical drug effect in these
experiments with higher concentrations of drug resulting in
lower drug effects (i.e. bacterial killing),42,43 possibly due to solu-
bility issues at concentrations .67 mg/L.44 Since the Cmax of
ciprofloxacin for a 500 mg oral dose is �2 mg/L,45 no further
evaluation of concentrations .48 mg/L was made.

In summary, we have shown that our model structure can be
applied to describe the time–kill profiles of seven different E. coli
MG1655 strains. The similarities in model parameters, including
same growth for all studied strains, indicate that the here-
investigated strains mainly differ in EC50 which is correlated to
the MIC. After further validation,46 – 48 e.g. with clinical strains,
dynamic concentration experiments and different starting inoc-
ula, this model may be a valuable tool in predicting improved dos-
ing strategies in a patient population to effectively treat infections
caused by WT and resistant E. coli. This experimental and model-
ling framework can then be used in the search for more effective
dosing regimens.
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