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1 Introduction 
Parking presents a major challenge in metropolitan areas, where the supply of physical parking 

infrastructure is often constrained by available land vis-à-vis the extent of business, commercial, and 

other activities. As a result, arriving drivers spend many minutes searching for available parking space, 

which constitutes an important yet often ignored source of congestion. Previous research concludes that 

the average search time for parking in large cities is 8.1 min per vehicle; in addition, 30% of city road 

traffic is cruising for parking (Shoup, 2006). Putting this in aggregate, parking space search in the city of 

Chicago resulted in 63 million vehicle-miles-traveled, 3.1 million gallons of gasoline consumption, and 

48,000 tons of CO2 emissions per year (Ayala et al., 2011). Given that the possibility of increasing 

parking supply is limited, solving the urban parking problem often requires a demand management 

perspective. 

Allocation of parking resources using existing infrastructure is being made increasingly efficient 

thanks to recent technological advances in sensing to collect real-time information on parking availability 

(Park et al., 2008, Panja et al., 2011) and infrastructure-to-vehicle communications to disseminate parking 

availability information to drivers. Examples of the latter are: data access via a peer-to-peer (P2P) 

environment (Wolfson et al., 2004; Kokolaki et al., 2011); coupled open space detection with information 

sharing (Mathur et al., 2010); and wireless ad-hoc networking for data sharing (Verroios et al., 2011). 

These new technologies enable real-time allocation of parking slots to demanding drivers. 

New vehicle-to-infrastructure communication technologies further allow private information from 

drivers to be sent to the parking manager. For a driver, her parking-related information can include how 

much she values parking, when she arrives, how late she could stay and wait to be assigned, and the time 

of departure from the parking. Smartphone applications today have made information submission from 

drivers to the parking manager in real time and at almost no cost. Exchange of information on parking 

availability and demanding drivers between the parking manager and drivers promotes the development 

of disaggregate, agent-based parking slot assignment. A public parking manager, for example, can assign 

parking slots based on the information he has to achieve desired system-wide outcomes, such as 

maximizing social welfare. 

A number of recent studies have looked into parking management in the context of a centralized 

authority and with information technologies. The relationship between parking price and real-time 

parking occupancy is investigated in Qian and Rajagopal (2014) under user equilibrium. Qian and 

Rajagopal (2013) consider information provision and pricing jointly as an efficient way of managing 

parking traffic. Caicedo (2010) develops a demand assignment model to evaluate the benefits of 

manipulating information to reduce time and distance involved in search of parking space. Ayala et al. 

(2011) present a slot assignment model that maximizes social welfare and investigate the price of anarchy. 

In Ayala et al. (2012), a parking pricing authority uses information about parking availability and drivers' 

natural cost to set charges in order to entice drivers and minimize total vehicle driving distance. An 

auction-based and a vehicle-specific pricing algorithms are further proposed to move Nash equilibrium to 

system optimum.  

In the above studies, the objective of a parking manager/pricing authority, if there exists, is to 

minimize system-wide parking-related costs. The costs are calculated based on drivers' distance to the 

parking garage, parking price, and in some cases cruising time for parking. However, the heterogeneity of 

parking benefits across drivers has rarely been considered. Different drivers also have non-identical 

value-of-travel-time and thus the cost of driving/cruising for the same amount of time will be different. 

From the economic efficiency perspective, the best assignment should give available parking slots to 

drivers who value the slots most.  

One fundamental assumption underlying centralized parking slot assignment problems is that truthful 

information of drivers is readily available to the parking manager. However, having the truthful private 

information relies on the goodwill of drivers who fully cooperate with the parking manager. The reality is 
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often different, since drivers are inherently selfish. With knowledge about how slots are assigned and 

information on parking slot availability, a driver can misreport private information in order to maximize 

her own utility. Given untruthful driver private information, suboptimal system-wide allocation will result. 

To prevent this, appropriate mechanisms must be in place that incentivize drivers to report truthful private 

information. Such mechanisms need to align the selfish behavior of drivers with the system objective, so 

that optimal allocation of parking resources can be achieved under an intervened driver equilibrium. 

This paper contributes to the parking literature by introducing mechanism design principles to parking 

management in an environment empowered by parking sensing, infrastructure-to-vehicle, and vehicle-to-

infrastructure communications. Both drivers and the parking manager will be informed of parking slot 

availability in real time. The parking facility in our study is publicly owned, with the objective of the 

parking manager being maximizing social welfare, which is characterized by the sum of drivers’ net 

utilities gained from using the parking facility. We consider both static and dynamic parking slot 

assignments, and show that truth telling is unlikely to hold absent intervention due to the intrinsic 

selfishness of drivers. We develop mechanisms that blend slot allocation with pricing rules such that 

drivers' utility-maximizing decisions are incentive compatible, i.e., revealing their true information is the 

best action to take for each driver.
1
 The mechanisms developed in this study fall into the category of 

―direct mechanisms‖, in which drivers are asked to reveal their preference parameters (i.e., valuation). In 

contrast to this are indirect mechanisms (Nisan et al., 2007), which this paper does not deal with. The 

pricing scheme in our mechanisms aligns drivers' selfish behavior with the objective of the public parking 

manager, so that optimal allocation of parking resources is achieved. We show that implementing the 

proposed mechanisms can increase parking efficiency in the real world.  

We begin with an overview of mechanism design in Section 2, followed by discussion on a static 

parking slot assignment mechanism in Section 3. The case of dynamic parking is presented in Section 4, 

where we describe the base mechanism, provide the formal proof that the mechanism is incentive 

compatible, and explore other properties of the mechanism and its variant. To further examine the 

dynamic parking slot assignment, numerical experiments are performed in Section 5. Section 6 offers 

conclusions and directions for future research. 

2 An overview of mechanism design with a simple example 
According to Hartline (2013), mechanism design gives a theory for the design of protocols, services, 

laws, or other ―rules of interaction‖ in which selfish behavior leads to good outcomes. ―Selfish behavior‖ 

means that each agent in the mechanism individually tries to maximize her own utility. Such behavior is 

defined as rational. ―Leads‖ means in equilibrium. A set of agent strategies is in equilibrium if no agent 

wants to change her strategy unilaterally. ―Good‖-ness of an outcome is assessed with respect to the 

criteria or goals of the designer. A natural economic criterion is social welfare, the sum of utilities of all 

agents. An alternative criterion can be profit, which is the total payment made by agents to the mechanism 

less any cost of providing the mechanism. Therefore, mechanism design intends to align agents’ best 

strategies under the rational behavior assumption with the achievement of good outcomes, as desired by 

the mechanism designer. Mechanism design is also viewed as reverse game theory, in which the outcome 

of the game is predefined and the agents are expected to take their strategies to attain the pre-defined 

outcome. 

Research on mechanism design originates from the seminal work of William Vickery and James 

Mirrlees, on seemingly disparate issues where information asymmetries are a key component. Vickery’s 

research concerns properties of different types of auctions, and how they can be best designed to generate 

economic efficiency (Vickery, 1961, 1962). Mirrlees (1971) extends Vickery’s early formulation on 

income taxation design and finds the optimal income taxes. Because of their contribution to the theories 

of auctions, incentives, and income taxation, William Vickrey and James Mirrless were awarded the 

                                                      
1
 In this paper we interchangeably use the terms "truth telling" and "incentive compatible". 
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Nobel Prize on Economics in 1996. Later in 2007, Leonid Hurwicz, Eric Maskin, and Roger Myerson 

jointly received the same Prize for their contribution to the theory of mechanism design. First applications 

of mechanism design appeared around 1993-1994, when the design and operation of the radio spectrum 

auctions was implemented in the US and then spread to the rest of the world (Milgrom, 2004; McMillan, 

1994). Since then, mechanism design has been put into practice for auctions of electric power, CO2 

abatement, timber, freight logistics, and various assets (Milgrom, 2004; Caplice and Sheffi, 2006).  

In our context of parking slot assignment, the mechanism designer and agents correspond to the public 

parking manager and drivers respectively. In order to maximize social welfare from parking slot 

assignment, the parking manager needs to find out drivers’ valuation (i.e., utility) for parking, which is a 

priori only known to each driver him/herself. As the mechanism designer, the parking manager attempts 

to elicit such private, hidden information from drivers such that drivers, under an appropriate mechanism 

setting, find it their best interest to truthfully report their private information.  

Before delving into detailed parking slot assignment mechanisms, we first demonstrate a simple, 

second price auction example to give the reader a conceptual understanding about mechanism design. The 

major purpose is to show that the equilibrium strategy of an agent is to express her true private value. 

Consider an auction that two agents expressing their values (bidding) for a single item. The true values 

of the two agents are   and   . The mechanism designer wants the agent with the higher valuation to get 

the item, which essentially maximizes social welfare in the system. To this end, the rule of the auction is 

that the agents with higher bid wins and pays the other agent’s bid. Consequently the net utility (i.e., 

payoff) received by the winning agent is the difference between her true valuation and the price she pays. 

For illustration we focus on the strategy of agent 1, and assume that agent 2 truthfully reports her value   . 

Agent 1 can express her bid   ̂, which can be greater than, equal to or less than   . Without knowing the 

  , agent 1 will ponder over all possible cases: 

1)      . 

Table 1: Possible strategies of agent 1 and associated payoff when       

Strategy for agent 1 
Agent 1’s payoff if she wins  

(if   ̂    )
2
 

Agent 1’s payoff if she loses 

(if   ̂    ) 

Bid   ̂              Not possible 

Bid   ̂              Not possible 

Bid   ̂              0 

 

In this case, the strategies   ̂     result in equal outcome for agent 1, and are superior to the strategy 

  ̂    , because the latter may result in zero net utility.  

2)      .  

Table 2: Possible strategies of agent 1 and associated payoff when       

Strategy for agent 1 
Agent 1’s payoff if she wins  

(if   ̂    ) 

Agent 1’s payoff if she loses 

(if   ̂    ) 

Bid   ̂     Not possible 0 

Bid   ̂              0 

Bid   ̂     Not possible 0 

 

In this case, the strategies   ̂     result in equal outcome for agent 1, and are superior to the strategy 

  ̂    , because the latter may result in negative net utility.  

                                                      
2
 For simplicity, we assume that when   ̂    , the item is allocated to agent 1. 
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3)      . No matter what agent 1 bids and whether she gets the item, her utility is always zero. 

Therefore, agent 1 is indifferent to the three bidding strategies. 

The above simple example makes it clear that the overall best strategy for agent 1 is to bid truthfully 

(i.e.,   ̂    ). Therefore, the mechanism of second price auction elicits truthful value reporting from 

agent 1. 

3 Static parking case 
We start with discussion of static parking slot assignment in order to gain basic insights about how 

truth telling can be elicited through appropriate allocation and pricing schemes. The objective of the 

public parking manager is to maximize social welfare by allocating slots to drivers. We assume fixed cost 

associated with administration and wear-and-tear expenses of the parking infrastructure. Therefore, social 

welfare maximization is equivalent to matching drivers with available slots such that the sum of their 

received values from using the parking slots is maximized. Note that the parking assignment problem we 

consider here is general: it does not have to be all from the same parking facility (e.g., a parking garage). 

The model framework also applies to assigning parking slots from multiple facilities to drivers—as long 

as all slots are under the control of a single public authority.  

To set up, let us consider a public parking system which has   available slots to accommodate demand 

from a maximum of   drivers. Each driver has the following utility form: 

  ( )  ∑    ( )      
 
     (1) 

 

where     is the positive valuation of driver   from using parking slot  ;    is the payment made by driver 

 ;     is a 0-1 indicator of whether slot   is assigned to driver  .   is the vector of resource allocation 

results:   (              ). 

Because the parking manager attempts to maximize total welfare of all drivers by assigning slots, the 

allocation outcome   depends upon the valuation information submitted by drivers    's. Each     could 

be considered as the net of multiple pieces of information, including for example the benefits received by 

driver   from using parking slot   and the associated cost (e.g., "ordinary" parking ticket price, as is 

charged in real world systems without imposing mechanism design), but excluding mechanism-specific 

payment   . Given the drivers' submitted valuation information, the optimal allocation   is obtained by 

solving the following integer program: 

           ∑ ∑    ( )   
 
   

 
        (2.1) 

s.t.     {
                                       
                                                         

         *     +    *     + (2.2) 

      ∑    
 
              *     +  (2.3) 

      ∑    
 
              *     +  (2.4) 

 

The objective function (2.1) solves for allocation outcome   (                    )  which 

comes from maximizing total social welfare. Each element    (               ) takes a 0-1 value, 

indicating whether slot   is allocated to driver  , as specified in (2.2).   is the set of all possible 

assignments. In this paper, we consider the possibility of drivers deliberately misreporting their valuation 

   , because doing so can give her higher net utility than telling the truth, assuming that they know the 

allocation and payment rules. Therefore, each driver's reported value    is determined based on the 

allocation and payment rules, which are implicitly reflected by the allocation outcome, i.e.,        ( ). 

Constraint (2.3) assumes that each driver will be assigned at most one parking slot, and it is possible that 

one is not allocated a slot. Constraint (2.4) stipulates that a parking slot can be used by at most one driver.  
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It is evident that program (2.1)-(2.4) alone, which intends to achieve system optimum allocation 

outcome, is different from each individual driver's selfish objective, which is to maximize her own net 

utility. In effect, the latter leads to gaming among the drivers. In our context, each driver understands the 

rule but does not know exactly the valuation of other drivers. Without other intervention, each driver may 

report her    to be an as large as possible value in order to increase her chance of getting the most desired 

slot, as doing so increases her importance in the allocation process. An appropriate payment scheme 

needs to be imposed together with the above allocation rule to ensure that the parking manager can induce 

truthful information from drivers while performing slot allocation and determining payment. In other 

words, individuals' selfish behavior, under the allocation scheme and with the payment, will be aligned 

with the parking manager's intent to maximize social welfare. It is worth mentioning that payment from 

drivers to the parking manager is only internal money transfer, and does not affect the calculation of 

overall social welfare. We consider the following payment scheme: 

   ∑ ∑    ( )   
 
       ∑ ∑    ( )   

 
        (3) 

 

where   is obtained by solving a similar problem to (2) but driver   is absent: 

           ∑ ∑    ( )   
 
           (4.1) 

s.t.     {
                                       
                                                         

     *               +    *     + (4.2) 

      ∑    
 
              *               +  (4.3) 

      ∑                  *     + (4.4) 

 

Clearly,   does not depend on driver  's reporting   . The first term of the right hand side of (3), 

∑ ∑    ( )   
 
      , can be viewed by driver   as a constant, no matter what she reports to the parking 

manager about her own valuation   . As shown in (4.1)-(4.4), this term gives the maximum social welfare 

from parking slot allocation when   does not participate. Note that the allocation outcome   still involves 

driver   (because    ), but the allocation of driver   is arbitrary after total welfare of the other drivers is 

maximized. When no slot is left after maximizing total welfare of the other drivers,         . The 

second summation term on the right hand side of (3), ∑ ∑    ( )   
 
      , represents the maximum 

social welfare of all drivers other than  , when   partakes in the parking slot assignment. As a 

consequence,    can be interpreted as the externality caused by driver   to all other drivers. In the special 

case that driver   is not assigned a slot in  , the allocation outcome for all other drivers will be the same in 

  and  : ∑ ∑    ( )   
 
       ∑ ∑    ( )   

 
      . Consequently no payment will incur to the driver. 

Substituting (3) for (1), the utility received by driver   is equal to: 

  ( )  ∑ ∑    ( )   
 
   

 
     ∑ ∑    ( )   

 
       (5) 

 

where the first term is the maximum social welfare which is achieved under allocation  . Note that 

∑ ∑    ( )   
 
       is independent of   . Therefore, the payment scheme aligns each driver's utility 

maximization with the system welfare maximization objective. The combination of allocation rule (2) and 

payment scheme (3) comprises the parking slot assignment mechanism  (   ), where   (       ). 
In Proposition 1 below, we show that mechanism  (   ) induces truth telling of drivers. 

Proposition 1. Mechanism  (   ) induces truth telling of drivers. In other words, the drivers cannot 

be better off by not declaring their true valuation  . 

Proof. For a given driver  , we fix     (                   ). Consider two scenarios: in the 

first one driver   submits her true valuation   ; in the second one a different valuation     is declared by 
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driver  . The utility received by driver   when reporting the truth is expressed in Equation (5). When     is 

declared, the utility received by driver   would become  

  (  )  ∑ ∑    (  )   
  

   
 
     ∑ ∑    ( )   

 
       (6) 

 

where allocation    comes from solving the following problem: 

    (       )           (∑     ( )   
 
    ∑ ∑    ( )   

 
      )     (7.1) 

s.t.     {
                                       
                                                         

         *     +    *     + (7.2) 

      ∑    
 
              *     +  (7.3) 

      ∑    
 
              *     + (7.4) 

 

Recall that   represents the best parking allocation outcome with true valuation: 

∑ ∑     ( )   
 
   

 
    ∑ ∑     (  )   

  
   

 
   . Because of this and the fact that ∑ ∑     ( )   

 
       is a 

common term in (5) and (6) and only a constant for driver  ,   ( )    (  ), i.e., reporting the true 

valuation is the best thing to do for driver  . The same is for all other drivers. Therefore, mechanism 

 (   ) induces truth-telling.   

We have hence shown that the net utility of drivers when expressing their true valuation is no less than 

the net utility while expressing any other valuation. Indeed, this holds true even when other drivers report 

untrue valuations. The induced game then has a (weakly) dominant strategy equilibrium. Mechanism 

 (   ) is dominant strategy incentive compatible (DSIC): irrespective of what other drivers report, it is 

always best for a driver to express her true value. 

The objective of maximizing individual utility implicitly assumes that each driver behaves rationally. 

Another aspect of being rational is that drivers can opt out if one has to pay a higher price than the 

valuation gained from using the slot. A nice property of mechanism  (   ) is that each driver always 

receives non-negative utility with the payment. In addition, under  (   ) drivers never receive money 

from the parking manager, i.e., the parking authority is guaranteed to collect non-negative revenue from 

the users. Below we summarize the properties and provide brief proofs. 

Proposition 2. All drivers are willing to participate in the parking slot assignment under  (   ), as 

 (   ) gives drivers non-negative utility. 

Proof. Recall from (5) that for driver         : 

  ( )  ∑ ∑    ( )   
 
   

 
    ∑ ∑    ( )   

 
        

                   ∑ ∑    ( )   
 
   

 
    ∑ ∑    ( )   

 
       ∑    ( )   

 
     

                   ∑ ∑    ( )   
 
   

 
    ∑ ∑    ( )   

 
   

 
       

In the second line above, driver   will be assigned to any remaining slot available as mentioned before 

(if no slot is left, then         ). Given    , allocation outcome   maximizes the overall welfare. 

Therefore, ∑ ∑    ( )   
 
   

 
    ∑ ∑    ( )   

 
   

 
   . In other words, each driver always receives non-

negative utility with  (   ).   

The non-negative utility resulting from implementing  (   )  implies that drivers will have the 

incentive to partake in the parking slot assignment process. On the other hand, the parking manager 

should also be willing to implement  (   ), if non-negative revenue can be generated. This is indeed the 

case, as shown in Proposition 3. 

Proposition 3. The parking manager always collects non-negative revenue from each of the 

participating drivers under  (   ).  
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Proof. Recall that the amount paid by driver   under  (   )  is:    ∑ ∑    ( )   
 
       

∑ ∑    ( )   
 
      , where            ∑ ∑    ( )   

 
      . Therefore ∑ ∑    ( )   

 
       

∑ ∑    ( )   
 
      , i.e.,     .   

The proposed static parking slot allocation mechanism is, in effect, a generalization of the Vickery-

Clarke-Grove (VCG) mechanism with Clarke pivotal rule (Nisan, 2007) in that our setting allows the 

most general valuation reporting: each driver can value each parking slot differently and consequently 

report   distinct values. Like the VCG mechanism, the price-to-pay for each driver in order to induce truth 

telling is equal to the externality the driver imposes on her peers, when the allocation objective is to 

maximize social welfare. This very general heterogeneous valuation is plausible when the parking slot 

assignment is performed in a reserved or other similar setting, where drivers have sufficient time to figure 

out their true valuation for different parking places in a parking facility. On the other hand, when the 

decision time is limited, as is often the case in real-time parking, it is more likely that each driver comes 

up with a single value for being able to park. In this case, the static parking slot allocation mechanism will 

collapse to the classic VCG mechanism. The remaining part of this study focuses on the real-time parking 

case. However, the fact that drivers come and go dynamically makes direct application of the static 

mechanism to the dynamic case not incentive compatible. New mechanisms need to be devised to elicit 

truthful information from drivers.  

4 Dynamic parking case 

4.1 The mechanism  
In the dynamic setting, we consider that the parking manager would ask drivers to report not only their 

valuation but also time related information, such as when to arrive and depart, and how long one can, 

after arrival, wait to be assigned a parking slot. We term the collective information the type of driver 

 ,    (           ), where          and    denote respectively the reported arrival time, latest waiting, 

departure time, and slot valuation by driver  . Note that, as is argued at the end of Section 2, the driver's 

valuation will be better represented by a single scalar    in the real-time dynamic setting. Similar to the 

static case, each    should be interpreted as the net of benefits received by driver   from parking and the 

associated cost (e.g., parking duration related cost) excluding mechanism-specific payment. We consider 

a time horizon, e.g., a day, for which the dynamic parking slot allocation is performed. Because of the 

discrete nature of the assignment problem, the time horizon is decomposed into a series of equal-length 

time intervals. At any given time, the parking manager will assign available slots to waiting drivers who 

submitted their type information and are waiting to be assigned a parking slot. Each driver only submits 

her type information once. We assume that the parking manager does not have information about future 

arrivals of drivers and their type information—the parking manager performs "myopic" assignment in 

each period based on the information he has received so far.
3
  

It may be tempting to consider direct implementation of the static parking slot assignment mechanism 

 (   ), which collapses into VCG mechanism with Clark pivotal rule when    is a scalar for each driver 

 , in each time period in the dynamic environment. Specifically, if   vacant slots are to be assigned to 

more than   waiting drivers at a period, then those   drivers with   highest valuation will each be given a 

slot; the corresponding payment would become identical for all assigned drivers and equal the (   )th
 

highest valuation – the highest valuation among the unassigned drivers, which is the externality caused by 

an assigned driver (if an assigned driver were absent, then the driver with the (   )th
 highest valuation 

will be assigned to the vacated slot). However, truth telling would no longer hold. A driver can, for 

instance, delay her information reporting to a later period than her actual arrival time, so that she will face 

fewer competing drivers or only low-value drivers, when being assigned. By so doing the driver's 

                                                      
3
 Another approach is to assume that the parking manager has some a priori expectations of the future arrivals. 

See Parkes et al. (2003) as an example. 
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payment will be reduced. It may also be possible that a driver deliberately submits a lower than her true 

value in order to be assigned at a later period where she pays less.  

To illustrate this, let us consider a simple dynamic allocation of one parking slot with three demanding 

drivers (Table 3). At time    , drivers 1 and 2 are present, waiting to be assigned. Under the static 

assignment, driver 1 will be allocated a slot with payment of 80, which is the highest reported value from 

unassigned drivers (in this case, only driver 2). But driver 1 could do better by lying about    or   . If she 

instead reported that her arrival time     , then the slot will first be allocated to driver 2 with zero 

payment until    . Then after driver 2 leaves the slot driver 1 gets assigned with a payment at 60. 

Alternatively, to reduce her payment driver 1 could lower her reported valuation to 79 while declaring her 

true arrival time. This would lead to the same allocation outcome: driver 2 is assigned the slot at     

with payment 79 (the highest reported value from unassigned drivers, and there is only driver 1 left 

unassigned at    ) and driver 1 is assigned at time period 3 (after driver 1 leaves) with a payment of 60. 

In both cases, driver 1 gets better off than submitting her true type information, as she is able to park with 

a lower payment. Therefore, truth telling is not a dominant strategy for driver 1 and she has the incentive 

to report untruthful information. To prevent this, we shall consider a different mechanism to perform the 

dynamic parking slot assignment.  

 

Table 3: Illustrative example of untruthful reporting with implementation of  

the static assignment to dynamic parking 

Driver Arrival time    Latest waiting    Departure time    Valuation    

1 1 3 4 100 

2 1 2 3 80 

3 2 3 6 60 

 

To formally set up the dynamic parking slot assignment problem, let us consider   slots in a public 

parking facility to accommodate demand from   drivers over a finite horizon of   periods. At the 

beginning of each time period        , the parking manager updates information about the inventory 

of available parking slots. This can be realized by using a variety of existing technologies, such as 

ultrasonic sensors (Park et al., 2008) and wireless sensors (Panja et al., 2011). On the other hand, as long 

as truth telling is implementable, the parking inventory can also be updated with the user arrival and 

departure time information, and the outcome of the allocation thus far. 

Because the parking manager has no a priori information about future arrivals, the parking slot 

assignment will be performed based on the available information at hand—unassigned drivers who have 

sent requests and vacant slots, in order to maximize total welfare of assigned drivers in each period. We 

assume that only after a driver arrives in the parking area will she be able to report her type information 

   . This can be generalized to the case that the driver receives information submission request only when 

she is in close proximity to the parking facility, such that the in-vehicle device (or the driver's Smartphone 

apps) becomes active in communication with the parking manager. With this constraint, any reported 

arrival time   
  is assumed to be no earlier than the driver's true arrival time   .  

At the beginning of each time period  , the parking manager first updates the vacant slot inventory: 

  
    

      
   (8) 

 

where   
  is the number of available slots at the beginning of  , which equals the vacant slots at the end of 

the previous period    ,   
   , plus those that are just released due to the departure of some parked 

vehicles,   
 . The subscript   and   denote before and after assignment respectively. After the parking 

inventory is updated, the parking manager looks at the pool of drivers who submitted their type 

information (           ) and are waiting for assignment. We use   
  to denote the total number of such 
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drivers at time   prior to slot allocation.   
  consists of two groups of drivers: those who are "leftovers" 

from the previous period,   
   , and those who just arrived at  ,   :

4
 

  
    

        (9) 

 

The proposed parking slot allocation mechanism, which we term  (     ), consists of the following 

allocation and payment rules: 

Allocation rule 

At each time period        , the parking manager assigns     (  
    

 ) slots to the   
  unassigned, 

requesting drivers. If there is a shortage of slot supply as opposed to the number of requesting drivers, 

then only the first   
  drivers ordered by valuation will be given slots, which maximizes the total welfare 

of assigned drivers at  . Otherwise, there is no capacity shortage and every agent will be assigned a slot. 

The allocation at each   is mathematically formalized as follows: 

              ∑   ( 
 )  

   

      (10.1) 

s.t.    
  {

                                        
                                                        

         *      
 +   (10.2) 

      ∑   
   

        (  
    

 )   (10.3) 

 

where    is a 0-1 vector representing a possible allocation outcome at  . Each element   
  indicates 

whether driver   is assigned a slot.    is the set of all possible allocation outcomes.    (  
     

  
 
 ) 

gives the allocation outcome that maximizes total welfare.  

Once a driver   is assigned at a period, denoted by   
 , the driver will be out of the parking slot 

assignment process in the subsequent periods. Mechanism  (     ) stipulates that an assigned driver 

starts using the parking slot and makes payment at the end of   . At first sight, it may seem less intuitive 

that the assigned driver   has to waiting beyond   
  even after they are assigned a slot at   

 . However, this 

requirement is necessary and important to prevent lying of drivers, as we will show below. It is 

conceivable that  (     ) may not be well received by drivers when they are told to be assigned a slot 

but still have to wait till their submitted latest waiting. To overcome this, practical implementation may 

skip releasing the assignment time to drivers when they are assigned, but instead inform drivers only 

when they can actually use the assigned parking slots.   

Corresponding to the actual slot assignment time, the actual payment made by driver  , if assigned a 

slot, will also be made at   . Indeed, determination of drivers' payment under  (     ) will require 

calculation of payment at each of the time periods from   
  to   . We further assume that a driver will 

receive zero utility if: 1) a slot is assigned beyond her latest waiting   ; 2) the length of parking is shorter 

than her planned duration      . The former assumption is reasonable in that the driver would lose her 

maximum patience and already left the parking facility if the allocation were made beyond   . The latter 

assumption is justified on the ground that asking the driver to come back to get her car out of the parking 

facility earlier than her anticipated departure time will interrupt her planned activities in the trip. 

Translating them into reporting types, we only allow the reported latest waiting time   
  and departure 

time   
  to be no later and no earlier than the driver's respective truthful values    and   : 1)   

    ; 2) 

  
    . After the allocation decision is made, the parking inventory and the pool of unassigned drivers 

are updated: 

                                                      
4
 It is possible that not all arriving drivers will choose to stay upon arrival. If the parking manager makes 

available historic average waiting time information for assigned drivers, then those future-arriving drivers whose 

maximum waiting time (i.e.,      ) is much smaller than the historic average may decide not to choose the parking 

facility (i.e. submit type information and wait) in the first place. 
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      (  
    

 )  (11) 

  
    

      (  
    

 )  (12) 

 

The above allocation is accompanied by the following payment rule in order to elicit truthful 

information reporting: 

Payment rule 

As is already shown, drivers may lie about their type if simply imposing the static case payment to 

drivers in the dynamic parking slot assignment. To ensure that the allocation mechanism  (     ) is 

incentive compatible, an alternative payment rule needs to be devised. To this end, we first introduce the 

concepts of virtual and actual payments. 

Definition 1. Without loss of generality, we suppose that driver   with type    (           ) is 

allocated a slot at   
  (     

    ). Then virtual payment for driver   is defined as follows: 

1) At   
 , virtual payment is     

  
 

 ∑   .   
 
/  

  
 

    ∑   .   
 
/  

  
 

   , where    
 

and    
 

are, 

respectively, the allocation outcome by solving the same allocation problem (10.1)-(10.3) when driver   is 

excluded/included at   
 . The virtual payment for driver   is equal to the highest valuation among 

unallocated drivers, and is the same for all allocated drivers at   
 . 

2) At each   ,  
      -, virtual payment calculation is based on the following principle: we assume 

that driver   is kept unallocated until  . Conditional on this, we first identify the lowest value among 

assigned drivers in each    ,      -. That value is labeled  
       

  
. If at    no driver is allocated, then 

 
       

    , where   is a very big number. We then calculate the virtual payment for  ,     
 . Provided 

that   is allocated at  , we optimally allocate the remaining drivers to the available slots. The price each 

assigned driver pays is the valuation of the highest unassigned driver's, which we denote by       
 . If 

      
  is no greater than any of the  

       

  
 for    ,      -, then virtual payment     

  is equal to       
 . 

Otherwise, virtual payment     
  is equal to  . Mathematically, the virtual payment of   at   is: 

    
  {

      
                       

        ,      -         

  

                                                               
          ,  

      -          (13) 

 

When     
   , then (13) calculates, for each   between   

    and   , the minimum possible 

valuation driver   can have that enables her to obtain a slot at   but not before  . If     
   , it implies 

that driver   obtaining a slot at   but not before   is not possible. We add subscript   to subscript   in 

 
       

  
 and       

 , to reflect the fact that the corresponding allocations are virtual—driver   is assumed 

only present and "virtually" allocated a slot at  . Note that we do not consider virtual allocation of driver   

during the time interval ,     
   -, as in reality   will stay unassigned until   

 .   

From Definition 1 we can see that, once we know   
 , virtual payment in each period of [  

    ] is 

independent of   . Indeed, the calculation of virtual payment at   
  can be unified with that for [  

      ]. 

We present the independence feature as Lemma 1. As we shall see in sub-Section 3.2, independence is 

critical for eliciting truthful information reporting from drivers.  

Lemma 1. In the payment rule under  (     ), driver  's virtual payment for any given period in 

[  
    ] is independent of her reported valuation. 

Proof. See Definition 1.   
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The actual payment made by driver  , when assigned a slot, is the minimum of all virtual payments 

from   
  to   , as defined below. 

Definition 2. The actual payment of driver   with type    (           ) , provided that she is 

allocated a slot, is the minimum value of all virtual payments during ,  
    -:   

  
  {

     ,  
    -

    
                                      

    

                                                 

    (14) 

 

The essence of Equation (14) is to identify the minimum possible valuation of driver   such that the 

driver is allocated a slot, and that minimum possible valuation is the actual payment. Definitions 1 and 2 

suggest that, as long as the driver is assigned a slot, actual payment is always no greater than the driver's 

reported valuation. We formalize this as Lemma 2 below. 

Lemma 2. The payment rule under  (     ) guarantees non-negative net utility received by drivers 

participating in the dynamic parking slot assignment.  

Proof. For any driver  , if she is not assigned a slot, then no payment will be made and the driver will 

receive zero utility. If the driver is assigned a slot, then Equation (14) guarantees that the actual payment 

is no greater than the virtual payment at   
 . By Proposition 2, net utility received by driver   would be 

non-negative if the actual payment were the virtual payment at   
 . Therefore, the net utility based on the 

payment rule (14) must give the assigned driver non-negative net utility.   

It is worth mentioning that even if the driver is assigned a slot, her payment could still be zero, when 

there exists at least one zero virtual payment. This occurs when the number of parking slots is no fewer 

than the number of waiting drivers in the actual allocation at   
 , or in at least one virtual allocation in 

[  
      ]  When the first zero virtual payment appears for an assigned driver, the parking manager will 

be ensured that the driver will not pay anything for using the slot, and consequently there is no need to 

keep the driver waiting until   . The driver shall be informed at this time point and start using the 

assigned slot. This adjustment is incorporated into  (     ) in this study. The numerical analysis in 

Section 4 further investigates how much waiting time can be saved due to this adjustment. 

We again use the example in Table 3 to demonstrate how virtual and actual payments are calculated 

under  (     ). Let us focus on driver 1. At period 1, drivers 1 and 2 submit their type information. 

Because driver 1 has a higher valuation, she will be assigned the slot, i.e.,   
   . Driver 1's virtual 

payment at   
 ,     

 , is 80. Virtual payment calculation then moves to period 2. Because driver 1 could not 

be allocated at period 2 (no available slot), virtual payment of driver 1 at this period,     
 , is  . The 

calculation of virtual payment for driver 1 at period 3 is more complicated. First, we exclude driver 1 

from the waiting driver list for periods 1 and 2. Driver 2 will be first allocated the slot at period 1, and 

will start using the slot from the beginning of period 2 till the beginning of period 3. Then driver 2 leaves 

and the slot becomes vacant. Driver 1 will then be placed to the slot. The highest valuation among 

unassigned drivers (only driver 3 in this case),       
 , is 60. Note that we need to compare       

  with 

        
  and         

 . It can be easily seen that         
     and         

   . Since       
     

   (        
          

 )     (    )    , virtual payment at period 3     
        

    . The actual 

payment for driver 1,   
 , is equal to    (    

      
      

 )     (       )    . 

4.2 Truthfulness of the dynamic parking slot allocation mechanism 
With the exposition of the allocation and payment rules, we now turn to proving that  (     ) is 

incentive compatible. The proof takes advantage of the monotonicity property of the proposed allocation 

rule, which has been discussed in the general online mechanism literature (e.g., Parkes, 2007). To begin, 

let us first introduce the definition of monotonic allocation.  
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Definition 3. For any two drivers with types    (          ) and    (          ), driver 1 

arrives earlier, has a later latest waiting time, and has a higher valuation than driver 2, i.e.,      , 

     , and      . The monotonic allocation rule states that, if driver 2 is assigned a slot, then driver 

1 must also be assigned a slot if driver 1 replaces driver 2 in the allocation.  

It is not difficult to see that the allocation rule of  (     ) is monotonic. If driver 2 is allocated a slot 

at   
  ,     -, then at the very least driver 1 will be assigned a slot at the same time ceteris paribus. If 

driver 1 has a sufficiently larger valuation or gets involved in the allocation process significantly earlier 

than driver 2, it is possible that driver 1 will receive a parking place earlier than   
 . Note that the 

monotonicity rule governs not only the valuation but also the arrival and latest waiting times in a driver's 

type information. However, departure time is not involved. As shown later, truthfulness proof of a driver's 

departure time reporting is independent of the proof of the other three parameters.  

The proof of truthful information reporting is composed of three parts: 1) truth telling of the arrival-

latest waiting interval [     ]; 2) of the valuation   ; and 3) of the departure time   . We present proofs 

for 1)-3) below in order. In proving each part of the truthfulness, the implicit assumption is that all other 

drivers' reporting is held constant. We first show that, under  (     ), declaring the true arrival-latest 

waiting interval is the dominant strategy for any driver.  

Proposition 4. For any driver  , the utility received is non-increasing by reporting a different arrival-

latest waiting interval other than her true interval ,     - under  (     ). 

Proof. See Appendix A.   

We now proceed with the truthfulness of the valuation   . 

Proposition 5. For any driver  , reporting a different valuation other than    cannot improve the 

driver's utility under  (     ). 

Proof. See Appendix B.   

Finally, the truthfulness of    is presented in Proposition 6.  

Proposition 6. For any driver  , reporting a different than her true departure time does not give her 

additional utility under  (     ). 

Proof. For the departure time   , recall that a driver will receive zero utility if allocated a slot for a 

period that ends earlier than her true departure time   . In practice, heavy penalty should be implemented 

if a driver stays longer than her declared parking time. Therefore, the driver will not report a departure 

time earlier than   . On the other hand, if the driver reports a longer than her true length of parking, i.e., 

  
    , her net utility remains constant if she ends up leaving the parking facility at   . In addition, 

staying longer than the one's planned duration at the parking place does not increase her utility, but will 

make the driver miss other scheduled activities. Therefore, the driver has no incentive to report a longer 

than her true departure time either.   

Propositions 4-6 completes the proof of the truthfulness of driver information reporting. 

Proposition 7. The dynamic parking slot allocation mechanism  (     ) induces truth telling of 

drivers. In other words, for any driver  , she cannot be better off by not declaring her true type 

information   . 

Proof. Use Propositions 4, 5, and 6.   

4.3 Further discussions on the dynamic parking mechanism 
In addition to eliciting truthful information reporting, similar to the static case we are interested in 1) 

whether  (     ) always offers drivers non-negative utility; and 2) whether the payment is guaranteed to 

be non-negative. The first question is already answered by Lemma 2. Definition 2 further suggests that 
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payment made by an assigned driver is always non-negative. (Of course, payment will be zero if not 

allocated.) Thus non-negative payment also holds under  (     ).  

Because the times when a driver submits her type information and when she actually starts using the 

assigned slots are in general different, the valuation of parking may decrease between the two time points. 

Up to now value discounting is not explicitly dealt with in  (     ), which may be appropriate if: 1) 

discounting is really small and can be reasonably neglected; or 2) when reporting type, a given driver   is 

asked specifically to submit their valuation of parking at time   . The latter case implicitly incorporates 

the value discounting effect (from when the driver submits her type information to when she starts using 

the assigned slot). It can also be justified on the ground that, at any time point, the parking manager 

makes the slot allocation decision based on the actual utility drivers will receive when using the assigned 

slots in the future. One might think of an alternative mechanism that requires each driver to report her 

current valuation (i.e., valuation at the time of reporting) and her discount factor separately, while 

decision making is still based on the actual utility received by drivers. However, truth telling cannot be 

guaranteed because monotonicity of the allocation will be violated. For a given discount factor, reporting 

a later    also suggests a lower valuation at    due to further discounting. It therefore becomes 

indeterminate as to whether having a later    will increase the chance of being assigned a slot. 

Recall that under  (     ) a driver may be able to use the assigned parking slot earlier than   , if 

zero virtual payment is encountered prior to   . This will result in extra benefits to those drivers due to 

reduction in waiting and consequently value discounting, which is not anticipated and quantified by the 

parking manager when making assignment decisions, because at the time of assignment the parking 

manager does not have a priori knowledge about future driver arrivals. 

It is often customary to examine when total welfare obtained under a dynamic mechanism has a lower 

bound (sometimes referred to as the competitive ratio) with respect to the value from the corresponding 

offline, static mechanism (Parkes, 2007). Such a lower bound, however, does not exist for  (     ). The 

intuition is that if a large number of lower-value drivers arrive at the parking facility earlier enough than 

their higher-value fellow drivers, such that all slots are occupied by the low-value drivers. In addition, the 

low-value drivers plan to stay longer than the high-value drivers would. So by the time the unassigned 

high-value drivers have to leave, no vacant slots are available. With an offline parking slot assignment 

mechanism, slots will be first assigned to those high-value drivers. The ratio of welfare gains under the 

dynamic and static mechanisms will continuously decrease with increasing discrepancy of valuation 

between the high- and low-value drivers.  

A special case of the dynamic parking slot assignment is morning commuter parking, where ample 

parking slots exist at the beginning of the day. Commuting drivers continuously arrive at the parking 

facility during the morning peak hours, and each desires one parking slot for the rest of the day. Therefore, 

the pool of vacant parking slots is non-increasing throughout the morning peak. On the other hand, as 

long as excess supply of parking slots is present, payment will be zero, and persist until when the number 

of demanding drivers is greater than the number of empty slots. Only part of the demand can be 

accommodated and non-zero payment for the assigned drivers will result. Afterwards, the parking facility 

will stop accepting new arriving vehicles. The drivers who are left unassigned have to leave and search 

for available parking at other parking facilities.  

So far we have assumed that payment is not an explicit function of time. However, in real world 

parking management it may be that the mechanism-specific payment is designed based on the duration of 

parking. To this end, we also consider an extension of  (     ), termed   (     ), which asks drivers 

to submit their valuation information on a per unit time basis. Accordingly, total payment is calculated by 

multiplying the unit time payment by the reported length of parking (     ). Before presenting the 

formal proof of whether this new mechanism induces truth telling, we use a simple example to illustrate 

the difference in allocation outcome between lump sum (as in  (     )) and per unit time valuation 

reporting.  
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Consider three drivers who demand the use of two parking slots have the same actual arrival time 

(            ). Their types    differ in the latest waiting   , departure time   , and the valuation of 

parking slots     , as shown in Table 4 below. The numbers in parentheses in the last column are the 

corresponding total valuation.
5
 

 

Table 4: Drivers' type information 

Driver 
Arrival  

time    
Latest waiting 

   

Departure 

time    

Value per unit time       

(total value in parenthesis) 

1 1 2 12 30 (300) 

2 1 2 5 35 (105) 

3 1 3 9 20 (120) 

 

For now let us suppose that all reported information is truthful. Under  (     ), drivers 1 and 3 will 

be assigned slots at    . Because drivers 1 and 3 will stay beyond driver 2's latest waiting   , driver 2 

will leave the parking facility unassigned, although she has the highest unit time valuation. As a 

consequence,  (     ) could be unjust for drivers like driver 2 who have higher unit time valuation of 

parking slots but need to park for shorter periods of time.  

The allocation rule under   (     ), which asks drivers to submit their valuation on a unit time basis, 

is to maximize the sum of unit valuations of assigned drivers in each period. If a driver   is allocated at   
 , 

her virtual payment at   
  will be the product of the highest unit time valuation among the unassigned 

drivers and the reported length of stay (     ). Similar modification will be made to virtual payments in 

(  
      -. Specifically, virtual payment at any   ,  

      - would be: 

    
  {

        
 (     )                       

        ,      -           

  

                                                                                        
          ,  

      -          (15) 

 

where         
  is the highest unit time value among unassigned drivers at   (with   guaranteed a slot); 

 
         

  
 the lowest unit time value among assigned drivers at    (with   excluded from the assignment).  

The actual payment for   is still the minimum of all virtual payments. Table 5 shows the actual payments 

for drivers in Example 1. Under  (     ), payment for the allocated drivers 1 and 3 is the same, equal to 

driver 2's total valuation, 105. When  (     ) is replaced by   (     ), at period 1 drivers 1 and 2 will 

be assigned slots, with virtual payment equal to the unit value of driver 3 times the reported length of stay 

of drivers 1 and 2, respectively:     
     (    )      and     

     (   )    . At period 2, 

driver 1 will not be allocated in the virtual allocation, because drivers 2 and 3 would be assigned in period 

1 and they occupy the parking slots beyond   . Therefore     
   . The actual payment for driver 1 is 

  
     (    

      
 )     (     )     . Similarly,     

   ; the actual payment for driver 2 is 

  
     (    

      
 )     (    )    . As a result, the parking manager will collect more revenue 

under   (     ) (Table 5). 

 

Table 5: Actual driver payment under  (     ) and   (     ) 

Driver Payment under  (     ) Payment under   (     ) 

1 105  200 (=20*(12-2)) 

2 0 (unassigned) 60 (=20*(5-2)) 

                                                      
5
 300 comes from 30 times 10, which is 12-2 (     )  
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3 105 0 (unassigned) 

Total 210 260 

 

Proposition 8. Mechanism   (     ) which implements unit time valuation reporting induces truth 

telling among drivers. 

Proof: The proof resembles that for Proposition 7. The monotonicity of the allocation rule, which now 

is based on the unit time valuation, remains valid. It is clear that truthfully reporting ,     -  still 

maximizes the chance of driver   being allocated, everything else being equal. The length of parking does 

not affect the truthfulness of a driver's valuation reporting     : if reporting      is better than reporting 

any untrue unit time valuation, then multiplying      by (     ) does not change the driver's value 

reporting behavior. Proof of truthfulness about    is also the same as for Proposition 6. Because now 

payment is a function of the length of parking, i.e.,      , which is basically a multiplier of the payment 

in a unit time period, drivers are further disincentivized to report earlier than latest waiting and later than 

the actual departure time.   

While both  (     ) and   (     ) are incentive compatible and implement parking slot assignment 

in a myopic way,   (     ) is even more myopic in that allocation is made based on valuation of the 

current period. This increases the chance of being assigned a slot for drivers who have a high value of 

time but demand relatively short use of parking. Consequently, there can be more slots made available in 

subsequent periods after those high-value-of-time drivers leave the parking facility. From the perspective 

of parking slot utilization efficiency,   (     ) could be welfare improving compared to  (     ). On 

the other hand,   (     ) focuses really just on welfare that occurs at the present time, therefore lacking 

a long-term view of the true utility drivers can derive from parking. We will investigate, through the 

ensuing numerical analysis, which of the two effects plays a more important role.  

5 Numerical analysis 

5.1 Setup 
This section implements the dynamic mechanims proposed in the previous section for a hypothetical 

parking assignment process. We consider 200 drivers arriving and leaving over a time horizon of 20 

periods. For a given driver  , her arrival time    is generated from a discrete uniform distribution between 

1 and 20. We also consider drivers' arrival time to follow Poisson distributions, with results reported in 

Appendix C. Given   , the latest waiting time of the driver,   , is randomly drawn from another discrete 

uniform distribution between the generated    and 20. Assuming that a driver will park for at least one 

period once starting using the assigned slot, the departure time    is drawn from a discrete uniform 

distribution between      and 21.
6
 At the end of the planning horizon all occupying drivers have to 

vacate their slots. The valuation of each driver is drawn from the discrete uniform distribution between 10 

and 40. The total number of parking slots is 100. All slots are empty at the beginning of the time horizon. 

In what follows, a Monte Carlo simulation approach is adopted to gain robust insights about  (     ) 
and   (     ). Under each meachnism, 50 simulation runs are performed. We choose box plots to 

present most of the results.
7
  

                                                      
6
 We set the latest departure time to be 21 while the arrival is limited to 20 to ensure that any randomly generated 

driver can park for at least one time period. 
7
 In each of the subsequent box plots, the two boundaries of a box denote the 25th and 75th percentile values; the 

red line the median. The whiskers extend to the most extreme data points that are not considered outliers, and 

outliers are plotted as red crosses individually. The maximum whisker length (between the whisker and the closer 

box boundary) is 1.5 times the length of the box.  
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5.2 Results with  (     ) 
This sub-section presents the results from simulating  (     ). The ratio of allocated drivers in total 

drivers by time of arrival is shown in Figure 1. The medians are equal to one for the first 10 periods, when 

sufficient capacity is present. Then capacity becomes constrained: only a portion of the arriving drivers 

can be allocated starting from the 11th period. The ratio decreases as the available slots become scarcer. 

However, with more drivers depart from the parking facility after the 13th period, a greater portion of 

newly arriving drivers will obtain slots, as manifested by the gradual increase of the ratios. At the 19
th
 and 

20
th
 periods, the medians of the ratio return to one as the number of available slots exceeds the number of 

waiting drivers at these periods.  

 

 
Figure 1: Ratio of allocated drivers in total drivers by time of arrival 

 

Figure 2 shows the number of drivers that are assigned a slot (panel (a)) and that actually start using a 

slot (panel (b)) in each period. In panel (a), the median of the number of assigned drivers is roughly 

constant from the first to the ninth period, during which sufficient slot supply persists. The median is 

around 10, which is consistent with the expected number of arrivals in each period (           ). 

Starting from the 10th period slot constraints become apparent, explaining the drop in the number of 

assigned drivers. After the 13th period, the number of assigned drivers starts increasing, because of more 

departures as shown in Figure 1. Near the end of the time horizon, much more slots become vacant, 

resulting in an even higher number of assigned drivers (which encompass both waiting drivers who 

arrived in earlier periods and new arrivals) than in the beginning.  

Panel (b) shows the number of drivers who actually start using the assigned slots (at their respective 

  's or at the time when they first encounter a zero virtual payment). Drivers who receive zero virtual 

payment at the time of allocation (i.e.,  
 ) do not need to wait to use the slot. This explains the same 

number of drivers in panels (a) and (b) for the first nine periods. Once parking demand exceeds slot 

supply, virtual payment becomes positive and the assigned drivers have to wait till   , or when a zero 

virtual payment appears. 
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   (a)              (b) 

Figure 2: Number of drivers who are assigned a slot (a) and start using the assigned slot (b) in each period 

 

Figure 3 presents the average waiting time prior to allocation (i.e.,   
    ) among assigned drivers, 

plotted against the time of arrival. In the first half of the time horizon, drivers do not have to wait to be 

assigned after arrival because there is ample supply of parking slots. For the other half, where parking 

supply encounters a shortage, non-zero pre-assignment waiting will occur. As more drivers leave the 

parking facility near the end of the time horizon, more slots become available to waiting drivers, which 

help reduce the average pre-assignment waiting for new arrivals.  

 

  
Figure 3: Average pre-assignment waiting time for drivers  

against drivers' time of arrival 

 

Figure 4 plots the average post-assignment waiting time among assigned drivers, by time of arrival. 

Under  (     ) the average post-assignment waiting time is always less than one period. For the first 

half of the time horizon, where excess capacity persists, drivers are assigned slots upon their arrival, and 

virtual payment at the arrival time is zero (due to excess capacity). Drivers will start using the assigned 

slots right away, with no payment. Comparing the post assignment time to pre-assignment time in Figure 

3 further reveals that the average time for post-assignment waiting is almost always shorter than for pre-

assignment waiting. 
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Figure 4: Drivers' post-assignment waiting time 

 

Besides waiting time, drivers' actual payment is also important. Figure 5 presents the average payment 

per assigned driver as a function of: drivers' arrival time (  ) and valuation (  ). In panel (a), the actual 

payments are zero in the first half of the time horizon when excess parking supply exists. Drivers start to 

pay for using slots when capacity constraints appear. With greater shortage of slots, high-value drivers are 

more likely to be left unassigned, which contributes to increase in payment. Near the end of the time 

horizon, more slots become available because of more departures; this mitigates the demand-supply 

imbalance and consequently reduces payment. In particular, ample capacity would most likely re-appear 

at period 20, leading to zero payment for new arriving drivers.  

When the average payment is plotted against drivers' valuation, panel (b) shows two general trends: 1) 

the average (median) payment increases with valuation; 2) the dispersion of payment is more significant 

with higher valuation. These trends are not difficult to interpret: higher valuation allows more pricing 

room. If a driver really values parking, then she will be assigned with higher priority despite greater price 

to pay. As long as the price is below her valuation, it would be acceptable. On the other hand, higher 

valuation increases the chance of assignment at an earlier period, which can reduce the actual payment as 

the time interval for virtual payment calculation [  
    ] becomes longer. Wider scattering of payment 

then results due to the two effects.  

  
   (a)              (b) 

Figure 5: Average payment per assigned driver with respect to: a) time of arrival; b) valuation 

 

We sum up the payments and welfare gains across drivers by their time of assignment (  
 ) for each 

simulation run, calculate the ratio of total payment over total welfare gains for each period, and then take 
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the average over 50 simulation runs. The averaged ratio over periods is presented in Figure 6. Overall, the 

payment-welfare ratio is always less than 0.6, with the peak reached during the 13th-16th periods. During 

the earlier parts of the time horizon no payment occurs; the ratio is zero. More vacant slots appear in the 

ending periods, which reduce payment. The last bar in Figure 6 gives the average payment-welfare ratio 

at the system level. Overall, about 20% of welfare will be deprived from drivers in order to induce 

truthful information reporting under  (     ). 

 

 
Figure 6: Ratio of total payment over welfare gained by  

time of assignment, averaged over 50 runs 

 

We further investigate the effect of  (     ) on welfare distribution over different driver groups. In 

Figure 7 we divide drivers into six valuation groups and present two metrics: total payment-welfare ratio 

among assigned drivers and the percentage of assigned drivers. For each group, the metric values are the 

average over 50 runs. From panel (a), we observe that higher valuation is associated with larger payment-

valuation ratios (except for the last valuation group 35-40), which is consistent with the fact that higher-

value drivers can afford to pay more (and disproportionately so) in order to be assigned. Panel (b) 

suggests that higher-value drivers are more likely to receive slots: all drivers in the highest valuation 

group will get a parking slot; in contrast the portion will reduce to 70% for drivers in the lowest valuation 

group.  

 

 
   (a)              (b) 
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Figure 7: Ratio of payment/valuation and percentage of assigned drivers by valuation group 

 

5.3 Comparing  (     ) with   (     ) 
We have shown in sub-Section 3.3 that   (     ), a variant of  (     ) under which drivers report 

unit time valuation, is also incentive compatible. Using the same generated drivers, we compare the 

allocation outcomes from implementing  (     ) (lump sum valuation) and   (     ) (per unit time 

valuation). The distribution of total welfare, average payment per assigned driver, the number of drivers 

assigned, and total payment over 50 simulation runs are presented in Figure 8 (a)-(d). We observe lower 

medians for all four metrics under   (     ).  

As mentioned in sub-Section 3.3, the difference in total welfare between  (     ) and   (     ) is 

driven by two opposing forces: on the one hand, unit time valuation allows higher unit-time-value drivers 

to gain priority in the allocation. If the parking time of those drivers is relatively short, then more slots 

could be made available to other drivers in latter periods, thereby increasing total welfare. On the other 

hand, the objective of allocation under   (     ) is to maximize total valuation of assigned drivers only 

at the current period, which is not aligned with the drivers' true overall valuation of parking. This 

inconsistency leads to inferior welfare gains under   (     ). Our results suggest that the latter force is 

dominant, as shown in panel (a) of Figure 8.  

Under   (     ), drivers with higher unit time value and shorter stay are preferred to drivers with 

lower unit time value and longer stay. Because payment is based on the product of the unassigned drivers' 

lower unit time value and the assigned drivers' shorter duration of stay, a lower average payment would 

result, as shown in panel (b). Although under   (     ) each slot may be made available more frequently 

when preference is given to higher unit-time-value drivers whose stay is short, that particular type of 

drivers only accounts for a portion of the population. Panel (c) shows that the number of drivers that can 

be allocated with   (     ) would be indeed slightly lower than with  (     ). Due to the considerably 

lower average payment and the slightly smaller number of assigned drivers, total payment under 

  (     ) will also be substantially lower than under  (     ) (panel (d)). While individual assigned 

drivers may favor   (     ) given the lower amount to pay for one’s own parking, from the revenue 

generating perspective, the parking manager will strongly prefer  (     ).  

 

  
   (a)              (b) 
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   (c)              (d) 

Figure 8: Comparison of allocation outcomes under mechanism with  

lump sum and per unit time based valuation reporting 

 

5.4 Comparing  (     )  with the state-of-the-practice and full information 

optimum 
We compare the allocation outcome from  (     ) with the state-of-the-practice (SOTP) and the full 

information optimum. Under SOTP, drivers do not have to report type information. Allocation is based on 

a first-come-first-serve basis, and mechanism-specific payment is irrelevant. When abundant parking slot 

supply is present, there will be no difference between  (     ) and SOTP as everyone gets a slot. When 

there are more waiting drivers than available slots, waiting drivers will be randomly picked to fill the slots. 

Under the full information optimum, all drivers’ arrival, waiting and departure times are known to the 

parking manager in advance and the allocation is made at one shot. Figure 9 demonstrates the 

distributions of total welfare among assigned drivers with 50 simulation runs. On average,  (     ) 
yields $237 more total welfare (or $1.05/park) than SOTP, but $116 (or $0.65/park) less than the full 

information optimum. 

 

 
Figure 9: Comparison of total welfare under  (     ),SOTP,  

and the full information optimum 

 

5.5 Sensitivity of length of time period interval 
Finally, we perform sensitivity analysis with respect to the length of a unit period. We assume that the 

total number of drivers remains 200 and consider five choices of total periods: 5, 10, 20, 40, and 60. The 
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larger the total periods, the shorter the length of one unit period and the smaller the average number of 

arrivals per period. Results on total payment and welfare are shown in Figure 11, which are again 

averages over 50 simulation runs.  

One may expect that assignment with longer unit time period yields larger overall social welfare as the 

parking manager will have greater information about driver arrivals when performing assignment. The 

results, however, show that the reverse is true. This is because longer unit period leads to lower utilization 

of the parking slots (our results show that a lower portion of drivers ends up being assigned parking slots 

when the length of a period becomes small). The average payment per assigned driver is generally also 

higher when the length of a period is larger, plausibly because more drivers now will be waiting to be 

assigned in each period. Figure 12 further demonstrates the average value over 50 simulation runs of 

average payment per assigned driver by time of arrival, when 5, 10, 40, and 60 periods are considered. 

From both the shape of the pricing curves and the standard deviation statistics, it is evident that the 

change in price is more gradual with more periods, thereby increasing its acceptability by drivers. 

Therefore, as long as it is operationally feasible, more frequent assignments (i.e., smaller length of a unit 

period) would be desirable from both social welfare and individual driver perspectives. 

 
Figure 11: Sensitivity of average payment and total  

welfare to the number of time periods 

 

    
    (a)              (b) 
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     (c)              (d) 

Figure 12: Sensitivity of average payment variation  

to the number of time periods 

 

6 Conclusion 
This study investigated agent-based parking slot assignment enabled by recent advances in sensing, 

infrastructure-to-vehicle, and vehicle-to-infrastructure communication technologies to improve social 

welfare. An important part in the assignment process is information collection from drivers by the parking 

manager. The parking manager needs to guard against drivers' strategically misreporting private 

information, which would deviate the allocation outcome from social optimum. To this end, this paper 

introduced mechanism design principles to allocating parking slots to heterogeneous demanding drivers.  

We started with static allocation, where drivers value the same slot differently and any two slots can 

be valued differently by the same driver. We showed that welfare-maximizing allocation coupled with 

payment equivalent to a driver's externality induces truth telling and achieves the social optimum 

allocation outcome. The investigation was then extended to dynamic parking slot assignment, where each 

driver is assumed to report arrival, latest waiting, and departure times in addition to valuation. Assuming 

that the parking manager does not have information about future arrivals, a myopic optimal allocation rule 

and a new price scheme were put forward to elicit truthful information reporting from drivers. A variant 

of the dynamic mechanism when valuation was reported on a per-unit-time basis was further considered, 

for which we showed that drivers' truth telling holds as well. Under the proposed mechanisms, each 

assigned driver pays a non-negative amount to the parking manager, and drivers’ net utility is always non-

negative. Extensive numerical experiments were performed to gain further insights into implementation 

of the dynamic mechanisms. 

For future research, we recommend a few directions. First, this paper does not explicitly consider what 

drivers would do if unassigned, which is particularly relevant to low-value drivers. Learning that there is 

small chance of getting a parking slot, low-value drivers may end up not considering the parking facility. 

Given the public nature of the parking management, addressing the equity issue is important for practical 

implementation of the mechanisms. Second, in urban areas competition among multiple parking facilities 

is not uncommon. Consequently a driver may submit parking requests to more than one facility to 

maximize her chance of parking. To model the parking manager-driver interactions, a game theoretic 

framework may be further coupled with the mechanisms proposed in the present study. Third, the 

mechanisms introduced here belong to the category of direct mechanisms, in which drivers are asked to 

report their complete private information. Although direct mechanisms are more intuitive, privacy 

concerns may arise. Indirect mechanisms that avoid full revealing of private information could be an 

alternative to achieve the same allocation outcome. Fourth, uncertainties are often involved in parking, for 
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example, the time to depart from the occupied parking slot (e.g., if one needs to wait for a doctor). Future 

studies may explicitly model how drivers with different characteristics (e.g., risk averse vs. risk seeking) 

would report their valuation which would be an explicit function of parking time. Lastly, the present study 

focuses on public parking ownership. It would be interesting to explore private parking management 

which may start introducing informed parking mechanisms in conjunction with revenue management. 
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Appendix A: Proof of Proposition 4. 
Suppose that driver   has true type    (           ) . Now driver   reports instead     

(             ). Recall that a driver has only limited misreporting about arrival time and latest waiting 

time:        and       . Three allocation outcomes are possible with untruthful reporting: 

1) Driver   is not allocated with either ,     - or ,       -. Evidently there is no payment and the 

driver receives zero utility in both cases. 

2) Driver   is assigned a slot with both ,     - and ,       -. Suppose that the actual payment of driver 

  when reporting ,       - is   ,       -

 , which is the lowest possible valuation   could report to obtain a slot. 

When driver   reports [     ], having   ,       -

  still guarantees her a slot. The allocation could occur either 

at the same time point as with ,       -, or at an earlier time point in ,     
 ). However,   ,       -

  would be 

only an upper bound of the driver's minimum valuation when reporting [     ]. Driver   may be allocated 

a slot at interval [      ) or (  
    ] with an even lower valuation. Therefore, the actual payment of driver 

  by reporting ,     - is no greater than the actual payment with ,       -. 

3) Driver   is assigned a slot when reporting ,     -, but would end up being unallocated if reporting a 

tighter interval ,       -. The utility received by the driver by misreporting, which would be zero, is not 

utility improving compared to the utility when declaring the truth.   

Summing up, truth telling of ,     - is a dominant strategy for the driver.   

Appendix B: Proof of Proposition 5.  
We demonstrate the truthfulness of valuation reporting by case analysis:  

1) Driver   is not allocated a parking slot when reporting   . The highest valuation among unassigned 

drivers in all   ,     - must be no less than   . Driver   may have done two things: 

1a)   may have reported a false valuation   
    , which results in the driver being assigned a slot at 

   
 . The consequence must be that some other driver, who would have been assigned at    

 , is "kicked out" 

and left unassigned at    
 . The virtual payment at    

  is the valuation of the "kicked-out" driver, because 

that driver has the highest valuation among unassigned drivers, and is no less than   . If   also gets 

assigned in the virtual allocation at some of the subsequent periods in ,   
      -, with virtual payment 

less than  , then by similar logic the virtual payment at such period(s) will be no less than   .
8
 Therefore, 

the actual payment of driver  , which is the minimum of virtual payments in [   
    ], is no less than   . 

Reporting a higher than one's true valuation always gives a non-positive net utility if assigned.  

1b)   may have reported a false valuation   
    . By monotonicity of the allocation rule, driver   will 

remain unassigned, i.e., no improvement in the driver's utility. 

2) Driver   is allocated a parking slot when reporting   . In this case driver   may have done two things: 

2a)   may have reported a false valuation   
    . By monotonicity of the allocation rule,   will remain 

assigned. Suppose that the time of allocation for   is     
 , which may be identical to or earlier than   

  

(    
    

 ). Below we consider two scenarios: 

i. There is no change in the period (termed          ) from which the minimum of virtual 

payments is chosen as the actual payment in (14). Then by Lemma 2 virtual payment at  

          can only be the maximum valuation among the unassigned drivers (and cannot 

                                                      
8
 Of course, if virtual payment is  , the statement still holds, as     . 
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be   ). In addition, Lemma 1 indicates that the virtual payment at           is identical 

whether driver   reports   
  or   . Consequently the actual payment remains unchanged. 

ii. The period from which the minimum of virtual payments is chosen as the actual payment in 

(14) is different. It can only be that the driver is allocated at an earlier period     
    

 . When 

    
    

  the payment of driver   at     
  is no less than    as some other driver with valuation 

greater than    has to be kicked out at     
 . For all the time periods [    

      
   ] the virtual 

payment for driver   would be no lesser than   . However, by Lemma 1, virtual payments 

from   
  to    when reporting   

  will be the same as when   reports   , and we know at least at 

  
  the virtual payment is no greater than   . It then becomes clear that the actual payment, 

which is the minimum of all virtual payments, will not be affected by the virtual payments 

prior to   
  when   reports   

 , and remains the same as when   reports   . 

Overall, the driver has no incentive to report a higher valuation. 

2b)   may have reported a false valuation   
    . If   

  is sufficiently low such that   becomes 

unassigned, evidently this is not utility-improving. If   
  is lower than    and keeps   receiving a parking 

slot, then analogous to 2a) two possibilities need to be discussed. When the time of allocation      
    

 , 

the  

i. The period from which the minimum of virtual payments is chosen as the actual payment in 

Equation (14) does not change. Same as in 2a)-i., the virtual payment of driver   at that period 

is the same whether reporting    or   
 , and is less than  .  

ii. The period from which the minimum of virtual payments is chosen as the actual payment in 

(14) is different. It can only be that the driver is allocated at a later period      
     

 . By 

Lemma 1, virtual payments in [     
    ] are invariant to valuation reporting. But fewer terms 

are now involved in the min operator in Equation (14), and consequently driver  's actual 

payment is equal to      ,     
    -

    
       ,  

    -
    
    

 . The driver has no incentive to 

misreport a lower value than   . 

Overall, the driver has no incentive to report a lower valuation. 

Based on the above case analysis, we conclude that driver   has no incentive to misreport her true 

valuation.   

Appendix C: Implementing  (     ) with Poisson arrivals  
Here we consider Poisson distribution of drivers' arrival. The mean rate of arrival (𝛌) is as assumed to 

be 9. To maintain consistency with the analysis in Section 4, we truncate the lower limit of arrival time in 

the Poisson distribution at 1 and the upper limit at 20. Given   , generation of the a driver's latest waiting 

time, departure time, and valuation is the same as in sub-Section 4.1. The total number of parking slots, 

which are all made available at the beginning, is 100. Again, 50 simulation runs are executed. 

Figure C.1 presents the number of assigned drivers over time. All drivers are immediately assigned 

slots upon their arrivals from the 1st until the 8
th
 period, when excess supply presents. Consequently the 

distribution of the number of assigned drivers during this interval resembles the corresponding part of the 

Poisson distribution used to generate arrivals. Once the parking facility is full, the number of assigned 

drivers drops and equals the number of departures with capacity constraints. Similar to Figure 2a, the 

number of assigned drivers increases as more occupying drivers leave the parking facility in latter periods. 

There will be very few new arrivals near the end, and all previously waiting drivers have already been 

assigned. This explains drop of assigned drivers in the 19th and 20th periods.  
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Figure C.1: Number of assigned drivers over time 

 

The average payment per assigned driver, which is shown in Figure C.2, is similar to what we see in 

Figure 5a. Due to ample capacity drivers arriving before the 8
th
 period do not pay anything under 

 (     ). Then as capacity becomes constrained positive payment persists from the 9
th
 to the 18

th
 period. 

After the 18
th
 period, payment falls back to zero, because of fewer new arrivals and more drivers vacating 

their occupied slots. 

 

 
Figure C.2: Average payment per assigned drivers by their arrival time 

 

The ratio of drivers' total payment over welfare also resembles that when a uniform arrival distribution 

is assumed (Figure C.3 vs. Figure 6). At the highest, about half of drivers' welfare will be transferred to 

the parking manager in the form of mechanism-specific payment. On average, payment captures about 18% 

of drivers' total welfare. 
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Figure C.3: Ratio of total payment over welfare gained  

by drivers, averaged over 50 runs 

 

To sum up, the general insights gained from implementing  (     ) do not change whether assuming 

a uniform or a Poisson distribution for drivers' arrival. 


