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ABSTRACT 

The design of the buffer manager in a Relational 
Database Management System can significantly affect the 
overall performance of the system. Thrashing is a common 
phenomenon that occurs in these systems due to the 
combination of a regular pattern of accesses made by a 
process and the competing requests for buffer resources 
made by concurrently executing processes. In this paper, 
we present a buffer management algorithm based on a 
model of database requests. A discussion of problems 
encountered by traditional methods for buffer management 
as well as extensions to the algorithm are also presented. 

1. TRADITIONAL METHODS 
FOR BUFFER MANAGEMENT 

Database Systems typically use an LRU replacement 
technique [LANG771 to manage their internal buffer(s). 
The LRU technique has proved to be more efficient than 
other methods in reducing the amount of paging that occurs 
in these systems. Also, the technique is relatively simple to 
implement, something that is highly desirable in a high 
performance system. However, as the following examples 
show, there are many cases where serious problems occur. 

1. If one of the processes is running a batch like job, i.e., 
one that performs a long sequential scan on the data 
while at the same time requesting pages very rapidly, 
the pages referenced by it will tend to go to the top of 
the stack, causing the pages used by other processes to 
be flushed out of the buffer. This causes the batch 
like process to take precedence over the other 
processes. If these are short, fast transactions, the 
situation becomes intolerable. 

2. Another case where LRU behaves very badly is when 
a process cycles through a set of pages, which is larger 
than the set of pages that can fit in the buffer. In this 
case, every new reference to a page causes a fault. 
This effect is called internal thrashing. 

3. A more serious problem that occurs in multiuser 
systems is that one process may use pages more 
rapidly than another one that has a looping behavior 
as it references pages. In this case, even if the set of 
pages that are rereferenced inside the loop may be 
smaller than the buffer size, the “stealing” of pages by 
the first process effectively reduces the available 
frames in the buffer for the second process. This 
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reduction can be such that the second process 
generates a page fault on every request. In this case 
we say that there is external thrashing. 

Mechanisms for dealing with thrashing have been 
developed in Operating Systems. The most well known of 
these uses the principle of the Working Set 
Model [DENN68]. A buffer manager using this model 
defines a window r and observes the average number of 
different pages that are requested by a process in a period 
equal to 7. This number is called the working set size of the 
process, a. A scheduler then ensures that while this process 
is running, at least [I pages are allocated to it. 
Alternatively, the buffer manager can give different 
priorities to page requests from the various processes, 
depending on their working set size. Processes with a large 
working set size will get more buffer frames allocated to 
them. In high performance Database Management Systems, 
this last mechanism has several drawbacks. In the case of a 
process, like the batch process described in case 1 above or 
the one described in case 3, the Working Set Model tries to 
give to this process many buffer frames, causing external 
thrashing of other processes. If a process loops over a 
number of pages larger than the window size r, as in case 2, 
the working set mechanism will attempt to reserve T frames 
for this process in the buffer, where having just one frame. 
associated to it would have caused the same level of faults 
to occur. Thus the buffer frames are poorly utilized. 
Finally, in the case of a process with a looping behavior, as 
it goes from one loop of pages to the next, the working set 
size will temporarily increase causing this process to get 
more frames assigned to it. As before, this causes external 
thrashing. All of the above cases may also cause scheduling 
problems if processes are scheduled considering their 
working set size requirements. Moreover, the working set 
model is expensive to implement, in terms of instructions 
executed, a fact that has discouraged its use in high 
performance database systems. 

2. THE HOT SET MODEL 

Relational Database Management Systems have high 
level language interfaces allowing their users to state their 
processing requirements without specifying how the required 
data should be accessed. The system has internal 
mechanisms that decide on the best strategy to access the 
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data. We call these strategies access plans. In System R1, 
the internal mechanism is called the Optimizer [SELI79]. 
Since the access plan is generated by the system, it turns 
out that the pattern of data pages that are referenced can be 
predicted at the time the access plan is generated. It is not 
hard to see that for all plans, the pattern of accesses 
involves looping through sets of pages2 This fact has led to 
the introduction of the Hot Set Model [SACC82] to study 
this behavior. A set of pages over which there is a looping 
behavior is called a hot set. If the access plan is executed 
within a buffer whose size exceeds the size of the hot sets, 
processing will be fast, as the pages that are rereferenced in 
a loop will stay in the buffer. On the other hand, if the 
buffer size is below the value required to contain a hot set, 
the number of page faults required grows rapidly. 

This effect can be observed in Figures l-3 where the 
total number of page references made while processing 
different queries is shown as a function of the buffer size. 
As can be seen from these figures, there may be more than 
one looping pattern, causing several discontinuities to occur 
in this curve. Each one of these discontinuities is called a 
hot point. Also, there is a minimum buffer size under which 
the query cannot run. This is a particular characteristic of 
System R. When processing a request, System R forces 
some pages to remain in the buffer pool, independently of 
what the LRU algorithm would call for [LORI77]. (A page 
that is forced to remain in the buffer pool is called fixed. 
Because pages are fixed, System R does not implement a 
true LRU mechanism for managing its buffer ~001.~) This 
last discontinuity is also referred to as a hot point. The 
largest hot point smaller than the available buffer size is 
called the hot set size. for the query. In particular, the hot 
set size could correspond to the number of pages a process 
could keep fixed at the same time. Examples of hot set 
sizes for various queries are shown in Figures l-3, using a 
buffer size of 20 pages. These figures show that running a 
query without a number of pages in the buffer equal to the 
hot set size is very expensive. Moreover, when the 
processing of the request is done under these conditions, the 
behavior of the Optimizer as presented in [SELI79] is 
questionable. In fact, if processing is done with a buffer size 
smaller than the hot set size determined for the access plan, 
another access plan, with a smaller hot set size might be the 
best plan to take. Thus, in this situation, the optimizer 
ncorrectly generates the first access plan. 

An example of this situation is shown in Figure 4. 
For a buffer size larger than 10, the cheapest path is to use 
EMP as an outer relation, at a cost of 5,000 cost units. 
However if that many frames are not available in the buffer 

IIn this paper, we use System R [ASTR76,BLAS79] as a 
model of a relational database management system. The 
ideas presented here carry over other relational DBMS. 

ZNote that even for the case of a relation scan, there is a 
loop between a control page and a data page. 

jFixing pages is done for performance reasons. We expect 
that any high performance relational DBMS will have this 
feature. The buffer management schema presented below 
assumes that this is done by introducing a special case in 
sten 3b2. If no uages are fixed, steps 4 and 5 of the 
schema do not exist aid step 3b2 can be simplified. 
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pool at the time the query is processed, then the cost of 
using this plan goes up to 44,000 cost units. In this case , 
accessing DEPT as outer would have been preferable, at a 
cost of 31,000 units of cost. (If there are more than 20 
buffer frames at the time the query is processed, the cost 
for this plan goes down to 13,000 cost units. 

The above discussion suggests that the hot set size 
should be determined, and used, when deciding on the best 
access plan [SACC82]. Examples of hot set size formulas 
for some access plans that are examined by the System R 
optimizer are given at the end. Note that the formulas 
predict the average size of a hot set. This effect is also 
considered in the schema presented in the next section. 

3. A BUFFER MANAGEMENT SCHEMA 
BASED ON THE HOT SET MODEL 

The basic idea for the buffer management schema is 
to try to ensure that requests are run with an “effective” 
buffer of size equal to their hot set size. To do this, we 
maintain separate LRU chains, one for each process. Each 
chain has a maximum size equal to the hot set size for the 
request being serviced by that process. The buffer frames 
not associated with any process are collected into a separate 
LRU list, called the free list. Each LRU list has 2 numbers 
associated to it: numref, the number of frames that are 
requested by the process, and mnnall, the actual number of 
buffer frames in the LRU list. Numref is equal to the hot 
set size of the process. Numall can be different from 
numref if at the time the process requests an LRU stack of 
size u, the size of the free list is less than u. In this case, 
the entire contents of the free list are assigned to the LRU 
stack of the requesting process (see step 2b below.) When 
this happens, we say that the list is deficient. 

When a process requests a page, the content of the 
entire buffer is examined to determine if the page is there.4 

If the page is found, then if the page is also in the 
local LRU stack of the process, the local stack is updated. 
When a page is found, a process may fix the page to ensure 
it will not be flushed out of the buffer pool while the 
process is actively working on it. Each page has a reference 
counter for the purpose of keeping track of the number of 
times it has been fixed. When a process fixes a page, its 
reference counter is incremented by one. 

If the page is not found, then the least referenced 
page in the local stack, whose reference count is zero, is 
flushed out of the buffer pool and replaced by the requested 
page5 

‘This can be done efficiently using a hashing technique. 
This is a well known method for a search a buffer pool. 

SFor simplicity, we do not examine the actions to be taken if 
a page in the buffer has been modified by a process. 
Usually, these pages are less preferable as candidates to be 
flushed out since their replacement involves a write 
operation to secondary storage. 
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When a process unfixes a page, the reference count of 
the page is decreased by one. 

When a process terminates, the pages of its stack are 
allocated to processes whose LRU stack are deficient. This 
allocation is done by finding a deficient LRU stack and 
giving it as many free frames as required to complete the 
number of pages in its hot set size u. If there are still free 
pages left, another deficient process is found and frames 
allocated to it as before. If there are no more deficient 
processes and there are still free frames left, they go to the 
free list. 

A step by step description of the buffer management 
schema follows: 

Initialize: Assign to the free list all the buffer frames. 
Set New process arrives: Allocate empty LRU list. 

numref=a and numall=O. Get as many as u pages 
from the free list. Set numall to be the number of 
pages that were actually obtained (if the free list size 
is less than u then numall will be be less than u and 
the free list becomes empty.) 
Process requests a w: Search for a page in the 
buffer pool. 
a. Page found. If page is in local LRU stack, 

update local stack; else do nothing. 
b. Page not found. A page fault occurs. Have to 

determine a page to be flushed out of the buffer 
pool. There are two cases to consider: 
1. If the local stack contains unfixed pages 

then flush out the least recently used (i.e., 
use the modified LRU algorithm.) 

2. If the local stack contains only fixed pages 
then get a frame from the free list, if it is 
not empty (and flush the corresponding 
page). If the free list is empty, get a 
frame from another LRU stack containing 
an unfixed page. Stacks that are deficient 
are to be preferred. Increase numall by 1. 
Note that numall may become larger than 
numref in this case. 

Process fixes a m: --- Increase reference count by 
one. 
Process unfixes a w: Decrease reference count by --- 
one. 
Process releases a w Do nothing. --- 
Process terminates: RealGate the LRU stack among 
deficient processes, trying to satisfy completely a 
process before satisfying another one. If no deficient 
process exists, return frames to the free list. 

4. COMMENTS ON BUFFER 
MANAGEMENT ALGORITHM 

The above schema presents the basic components of a 
buffer management schema based on the idea of the hot set 
size. We now discuss the behavior of the algorithm under 
different situations: 

1. The various hot sets scanned during the evaluation of 
the request need not be all of the same size. The 
optimizer only computes an average number for the 
hot set size, based on available statistics such as the 
sizes of the relations involved, the cardinalities of 
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different columns, the filter-factors of predicates, etc. 
Thus during execution, a process may loop over a set 
of pages larger than this hot set size. Assuming that 
numref is larger than the maximum number of pages 
that the process simultaneously maintains fixed, then 
step 3b2 will not be executed on its behalf. Thus, its 
LRU stack will never be increased and internal 
thrashing will occur as the process steals pages from 
step 3b2 makes sure that the process gets another 
page. The issue of what happens when all the pages 
in the buffer are fixed and a request for another one is 
itself. Note however, that there will not be any 
external thrashing. To accommodate for this situation, 
the optimizer could request a hot set size greater than 
the average it computed. However, this leads to 
underutilization of the buffer pool. Another 
possibility is to dynamically increase the allocation of 
frames to this process if the free list is not empty. 
These frames would be released if another process 
requested frames from the free list and found it empty 
(i.e., consider the extra frames obtained by the first 
process to be an extension of the free list.) Although 
this change could be incorporated into the buffer 
manager, the solution presented in the previous 
section appears to be a good balance between 
simplicity and performance. 

2. If the hot set size for a process is equal to the average 
number of fixed pages that it requires, then a situation 
can occur where more pages than the allocated 
number have to be simultaneously fixed. In this case, 
made is outside the scope of this paper. Solutions that 
have been adopted in this case include bringing down 
the system or dynamically extending the buffer. 

3. To make sure that the number of deficient processes is 
kept to a minimum, one can schedule the requests so 
that the sum total of the hot set sizes of the processes 
that are being serviced is less than or equal to the size 
of the buffer pool. The question of scheduling is not 
considered here. However we note that this kind of 
scheduling may lead to deadlock problems that are 
hard to manage [OBER80]. To avoid the deadlock 
problem one can restrict the set of concurrent 
processes (i.e., reduce the multiprogramming level). 
Although this does not eliminate the possibility of 
processes running with stacks that are deficient it does 
eliminate the issue of deadlock related to buffer 
requests and considerably reduces the occurrence of 
internal thrashing. Moreover, knowledge of the hot 
set sizes of the request issued by processes can be 
used to decide on an appropriate multiprogramming 
level. Thus, the restriction on the multiprogramming 
level appears to be a suitable ccmplement to the 
algorithm presented here. 

4. Note that in the schema presented above, a page in 
the buffer appears in only one LRU chain. Thus, if a 
page is shared by two processes, the first one 
requesting it will put it on its own LRU chain. 
Although this may seem arbitrary, there is no problem 
in doing so. If the shared page remains active (e.g., a 
control page in System R) it will remain high in the 
LRU chain (i.e., it is unlikely that the page will be 
flushed out.) On the other hand, if the cross reference 
to the page is a sporadic event, the page wilI migrate 
from one LRU stack to the other. This is not 
important since these occurrences are infrequent. 
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minimum hot point (i.e., the mlmmum number DI 
pages required to run). The schema presented here 
guarantees that, if processing of this query is allowed, 
it will not suffer external thrashing. (Note that for 
these requests there can be no internal thrashing.) In 
a high performance system, in order to insure that a 
certain level of fast queries is active at the same time, 
the buffer can be divided into two regions; one for 
fast requests, the other for slow ones. (The 
initialization step would create two free lists each 
having the size of the respective region. A reasonable 
choice is to have both regions of the same size.) The 
fast requests are thus guaranteed a certain minimum 
number of frames for them. In order to maintain 
good utilization of the buffer pool, the free list for the 
fast queries has to be allowed to take frames from the 
free list for the slow queries (this will happen when 
there are no slow queries present in the system.) As 
before, adequate service can be maintained by 
restricting the multiprogramming level. 

6. The last comment has to do with contention problems 
in the buffer manager. Clearly, the stack 
manipulations that are performed on the free list in 
steps 2 and 3 of the algorithm must be serialized. 
Since the operations that are done are removal and 
insertions of elements in LRU chains, the path length 
through the critical region is no different than that 
through the code of a standard buffer manager with 
one LRU stack. Thus this algorithm should not 
introduce additional serialization problems. In fact, it 
may even decrease them as the manipulations of 
private LRU chains need not be serialized. 

5. EXAMPLES OF HOT SET 
SIZE COMPUTATION 

As an illustration of how the hot set size can be 
estimated by the optimizer of a relational database 
management system, we show some examples using System 
R. For each two way join between relations Rl and R2, 
assume Rl is the outer relation and R2 is the inner. 
Control pages are not included m the expressions below. 
The following terms are used below 

dindex (R2) 
ls(R2) 

!(R2) 

(R2) lsleaf 

Number of pages for relation Rl. 
Number of pages for relation R2. 
Depth of the index on R2. 
Number of pages in the inner loop for R2. It 
is given by P(R2) divided by the number of 
different values for the attribute upon which 
the join is performed. This estimate is based 
on the uniform distribution assumption. 
Number of pages in the index used to access 
R2. 
Number of index leaf pages scanned on an 
inner loop of R2. 
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for a sequential scan on both Rl and R2, 

hot point = 1 + P(R2) 

for an index scan on Rl, sequential scan on R2, 

hot point = 2 + P(R2) 

for a sequential scan on Rl, index scan on R2 (smooth 
discontinuity), interpolate between 

and 
1 + dindex(R2) + ls(R2) 

1 + I(R2) + P(R2) 

Example 1. 

Type 2 join: 

for a sequential scan on both Rl and R2, 

hot point = 1 + ls(R2) 

for a sequential scan on Rl, index scan on R2, 

hot point = 1 + lsleaf(R2) + ls(R2) 

where lsleaf(R2) is the number of leaf pages in the inner lo 
For an index scan on Rl, sequential scan on R2, 

hot point = 1 + dindex(R1) + ls(R2) 

Example 2. 

In Example 1, the first formula is derived by reserving 
enough frames to contain the entire R2 relation, plus one 
frame for a data page for Rl. If a frame for a data page of 
Rl is not reserved the access to Rl causes the first page in 
the R2 loop to be replaced, and consequently the entire set 
of pages in the R2 loop to be lost. For the second formula, 
an additional frame is reserved for the leaf pages of the 
index, which is always accessed before accessing Rl data 
pages. The third formula presents a smooth discontinuity. 
The minimum number of faults is achieved when all the 
access entities for R2 (index and data pages) completely fit 
in the buffer. The number of faults will increase in a 
roughly linear way, until only a number of frames sufficient 
to hold an average loop on the second relation, is available. 
This assumes substantial rereferences between succesive 
inner loops. If the number of data pages in the referenced 
relation is large, and the join filtering is high, data page 
rereferencing will be very low. In this case, P(R2) is 
substituted for ls(R2). The formulae in Example 2 are 
derived using analogous considerations. Values for the 
estimated number of hot set size obtained using these 
expressions are shown in Figures 1-3. 

The above formulae are easily generalizable to n-way 
joins, and represent a conservative estimate of the hot 
points. The number of hot points to be computed varies 
from n-l to 3(n-1) (in the case of smooth discontinuities), 
where n is the number of relations referenced in the query. 
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This is a worst-case figure. In general, only the maximum 
hot point needs to be computed. 
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Figure 1. Measured page faults versus Buffer Size for 2-way join query. 
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Figure 2. Measured page faults versus Buffer Size for 4-way join query. 
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Figure 3. Log (base 10) of measured page faults versus Buffer Size for 3-way join 
query. 
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Figure 4. Computed access path cost for two ways of performing 2-way join: in both 
cases, an index scan on PJNO is used for both tables 
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