
A MECHANISM FOR MANAGING THE BUFFER POOL IN A RELATIONAL
DATABASE SYSTEM USING THE HOT SET MODEL

Giovanni Maria Sacco and Mario Schkolnick

IBM Research Laboratory
San Jose, California 95193

ABSTRACT

The design of the buffer manager in a Relational
Database Management System can significantly affect the
overall performance of the system. Thrashing is a common
phenomenon that occurs in these systems due to the
combination of a regular pattern of accesses made by a
process and the competing requests for buffer resources
made by concurrently executing processes. In this paper,
we present a buffer management algorithm based on a
model of database requests. A discussion of problems
encountered by traditional methods for buffer management
as well as extensions to the algorithm are also presented.

1. TRADITIONAL METHODS
FOR BUFFER MANAGEMENT

Database Systems typically use an LRU replacement
technique [LANG771 to manage their internal buffer(s).
The LRU technique has proved to be more efficient than
other methods in reducing the amount of paging that occurs
in these systems. Also, the technique is relatively simple to
implement, something that is highly desirable in a high
performance system. However, as the following examples
show, there are many cases where serious problems occur.

1. If one of the processes is running a batch like job, i.e.,
one that performs a long sequential scan on the data
while at the same time requesting pages very rapidly,
the pages referenced by it will tend to go to the top of
the stack, causing the pages used by other processes to
be flushed out of the buffer. This causes the batch
like process to take precedence over the other
processes. If these are short, fast transactions, the
situation becomes intolerable.

2. Another case where LRU behaves very badly is when
a process cycles through a set of pages, which is larger
than the set of pages that can fit in the buffer. In this
case, every new reference to a page causes a fault.
This effect is called internal thrashing.

3. A more serious problem that occurs in multiuser
systems is that one process may use pages more
rapidly than another one that has a looping behavior
as it references pages. In this case, even if the set of
pages that are rereferenced inside the loop may be
smaller than the buffer size, the “stealing” of pages by
the first process effectively reduces the available
frames in the buffer for the second process. This

Proceedings of the Eighth International Conference
on Very Large Data Bases

reduction can be such that the second process
generates a page fault on every request. In this case
we say that there is external thrashing.

Mechanisms for dealing with thrashing have been
developed in Operating Systems. The most well known of
these uses the principle of the Working Set
Model [DENN68]. A buffer manager using this model
defines a window r and observes the average number of
different pages that are requested by a process in a period
equal to 7. This number is called the working set size of the
process, a. A scheduler then ensures that while this process
is running, at least [I pages are allocated to it.
Alternatively, the buffer manager can give different
priorities to page requests from the various processes,
depending on their working set size. Processes with a large
working set size will get more buffer frames allocated to
them. In high performance Database Management Systems,
this last mechanism has several drawbacks. In the case of a
process, like the batch process described in case 1 above or
the one described in case 3, the Working Set Model tries to
give to this process many buffer frames, causing external
thrashing of other processes. If a process loops over a
number of pages larger than the window size r, as in case 2,
the working set mechanism will attempt to reserve T frames
for this process in the buffer, where having just one frame.
associated to it would have caused the same level of faults
to occur. Thus the buffer frames are poorly utilized.
Finally, in the case of a process with a looping behavior, as
it goes from one loop of pages to the next, the working set
size will temporarily increase causing this process to get
more frames assigned to it. As before, this causes external
thrashing. All of the above cases may also cause scheduling
problems if processes are scheduled considering their
working set size requirements. Moreover, the working set
model is expensive to implement, in terms of instructions
executed, a fact that has discouraged its use in high
performance database systems.

2. THE HOT SET MODEL

Relational Database Management Systems have high
level language interfaces allowing their users to state their
processing requirements without specifying how the required
data should be accessed. The system has internal
mechanisms that decide on the best strategy to access the

Mexico City, September, 1982

data. We call these strategies access plans. In System R1,
the internal mechanism is called the Optimizer [SELI79].
Since the access plan is generated by the system, it turns
out that the pattern of data pages that are referenced can be
predicted at the time the access plan is generated. It is not
hard to see that for all plans, the pattern of accesses
involves looping through sets of pages2 This fact has led to
the introduction of the Hot Set Model [SACC82] to study
this behavior. A set of pages over which there is a looping
behavior is called a hot set. If the access plan is executed
within a buffer whose size exceeds the size of the hot sets,
processing will be fast, as the pages that are rereferenced in
a loop will stay in the buffer. On the other hand, if the
buffer size is below the value required to contain a hot set,
the number of page faults required grows rapidly.

This effect can be observed in Figures l-3 where the
total number of page references made while processing
different queries is shown as a function of the buffer size.
As can be seen from these figures, there may be more than
one looping pattern, causing several discontinuities to occur
in this curve. Each one of these discontinuities is called a
hot point. Also, there is a minimum buffer size under which
the query cannot run. This is a particular characteristic of
System R. When processing a request, System R forces
some pages to remain in the buffer pool, independently of
what the LRU algorithm would call for [LORI77]. (A page
that is forced to remain in the buffer pool is called fixed.
Because pages are fixed, System R does not implement a
true LRU mechanism for managing its buffer ~001.~) This
last discontinuity is also referred to as a hot point. The
largest hot point smaller than the available buffer size is
called the hot set size. for the query. In particular, the hot
set size could correspond to the number of pages a process
could keep fixed at the same time. Examples of hot set
sizes for various queries are shown in Figures l-3, using a
buffer size of 20 pages. These figures show that running a
query without a number of pages in the buffer equal to the
hot set size is very expensive. Moreover, when the
processing of the request is done under these conditions, the
behavior of the Optimizer as presented in [SELI79] is
questionable. In fact, if processing is done with a buffer size
smaller than the hot set size determined for the access plan,
another access plan, with a smaller hot set size might be the
best plan to take. Thus, in this situation, the optimizer
ncorrectly generates the first access plan.

An example of this situation is shown in Figure 4.
For a buffer size larger than 10, the cheapest path is to use
EMP as an outer relation, at a cost of 5,000 cost units.
However if that many frames are not available in the buffer

IIn this paper, we use System R [ASTR76,BLAS79] as a
model of a relational database management system. The
ideas presented here carry over other relational DBMS.

ZNote that even for the case of a relation scan, there is a
loop between a control page and a data page.

jFixing pages is done for performance reasons. We expect
that any high performance relational DBMS will have this
feature. The buffer management schema presented below
assumes that this is done by introducing a special case in
sten 3b2. If no uages are fixed, steps 4 and 5 of the
schema do not exist aid step 3b2 can be simplified.

Proceedings of the Eighth International Conference
on Very Large Data Bases

pool at the time the query is processed, then the cost of
using this plan goes up to 44,000 cost units. In this case ,
accessing DEPT as outer would have been preferable, at a
cost of 31,000 units of cost. (If there are more than 20
buffer frames at the time the query is processed, the cost
for this plan goes down to 13,000 cost units.

The above discussion suggests that the hot set size
should be determined, and used, when deciding on the best
access plan [SACC82]. Examples of hot set size formulas
for some access plans that are examined by the System R
optimizer are given at the end. Note that the formulas
predict the average size of a hot set. This effect is also
considered in the schema presented in the next section.

3. A BUFFER MANAGEMENT SCHEMA
BASED ON THE HOT SET MODEL

The basic idea for the buffer management schema is
to try to ensure that requests are run with an “effective”
buffer of size equal to their hot set size. To do this, we
maintain separate LRU chains, one for each process. Each
chain has a maximum size equal to the hot set size for the
request being serviced by that process. The buffer frames
not associated with any process are collected into a separate
LRU list, called the free list. Each LRU list has 2 numbers
associated to it: numref, the number of frames that are
requested by the process, and mnnall, the actual number of
buffer frames in the LRU list. Numref is equal to the hot
set size of the process. Numall can be different from
numref if at the time the process requests an LRU stack of
size u, the size of the free list is less than u. In this case,
the entire contents of the free list are assigned to the LRU
stack of the requesting process (see step 2b below.) When
this happens, we say that the list is deficient.

When a process requests a page, the content of the
entire buffer is examined to determine if the page is there.4

If the page is found, then if the page is also in the
local LRU stack of the process, the local stack is updated.
When a page is found, a process may fix the page to ensure
it will not be flushed out of the buffer pool while the
process is actively working on it. Each page has a reference
counter for the purpose of keeping track of the number of
times it has been fixed. When a process fixes a page, its
reference counter is incremented by one.

If the page is not found, then the least referenced
page in the local stack, whose reference count is zero, is
flushed out of the buffer pool and replaced by the requested
page5

‘This can be done efficiently using a hashing technique.
This is a well known method for a search a buffer pool.

SFor simplicity, we do not examine the actions to be taken if
a page in the buffer has been modified by a process.
Usually, these pages are less preferable as candidates to be
flushed out since their replacement involves a write
operation to secondary storage.

Mexico City, September, 1982

When a process unfixes a page, the reference count of
the page is decreased by one.

When a process terminates, the pages of its stack are
allocated to processes whose LRU stack are deficient. This
allocation is done by finding a deficient LRU stack and
giving it as many free frames as required to complete the
number of pages in its hot set size u. If there are still free
pages left, another deficient process is found and frames
allocated to it as before. If there are no more deficient
processes and there are still free frames left, they go to the
free list.

A step by step description of the buffer management
schema follows:

Initialize: Assign to the free list all the buffer frames.
Set New process arrives: Allocate empty LRU list.

numref=a and numall=O. Get as many as u pages
from the free list. Set numall to be the number of
pages that were actually obtained (if the free list size
is less than u then numall will be be less than u and
the free list becomes empty.)
Process requests a w: Search for a page in the
buffer pool.
a. Page found. If page is in local LRU stack,

update local stack; else do nothing.
b. Page not found. A page fault occurs. Have to

determine a page to be flushed out of the buffer
pool. There are two cases to consider:
1. If the local stack contains unfixed pages

then flush out the least recently used (i.e.,
use the modified LRU algorithm.)

2. If the local stack contains only fixed pages
then get a frame from the free list, if it is
not empty (and flush the corresponding
page). If the free list is empty, get a
frame from another LRU stack containing
an unfixed page. Stacks that are deficient
are to be preferred. Increase numall by 1.
Note that numall may become larger than
numref in this case.

Process fixes a m: --- Increase reference count by
one.
Process unfixes a w: Decrease reference count by ---
one.
Process releases a w Do nothing. ---
Process terminates: RealGate the LRU stack among
deficient processes, trying to satisfy completely a
process before satisfying another one. If no deficient
process exists, return frames to the free list.

4. COMMENTS ON BUFFER
MANAGEMENT ALGORITHM

The above schema presents the basic components of a
buffer management schema based on the idea of the hot set
size. We now discuss the behavior of the algorithm under
different situations:

1. The various hot sets scanned during the evaluation of
the request need not be all of the same size. The
optimizer only computes an average number for the
hot set size, based on available statistics such as the
sizes of the relations involved, the cardinalities of

Proceedings of the Eighth International Conference
on Very Large Data Bases 259

different columns, the filter-factors of predicates, etc.
Thus during execution, a process may loop over a set
of pages larger than this hot set size. Assuming that
numref is larger than the maximum number of pages
that the process simultaneously maintains fixed, then
step 3b2 will not be executed on its behalf. Thus, its
LRU stack will never be increased and internal
thrashing will occur as the process steals pages from
step 3b2 makes sure that the process gets another
page. The issue of what happens when all the pages
in the buffer are fixed and a request for another one is
itself. Note however, that there will not be any
external thrashing. To accommodate for this situation,
the optimizer could request a hot set size greater than
the average it computed. However, this leads to
underutilization of the buffer pool. Another
possibility is to dynamically increase the allocation of
frames to this process if the free list is not empty.
These frames would be released if another process
requested frames from the free list and found it empty
(i.e., consider the extra frames obtained by the first
process to be an extension of the free list.) Although
this change could be incorporated into the buffer
manager, the solution presented in the previous
section appears to be a good balance between
simplicity and performance.

2. If the hot set size for a process is equal to the average
number of fixed pages that it requires, then a situation
can occur where more pages than the allocated
number have to be simultaneously fixed. In this case,
made is outside the scope of this paper. Solutions that
have been adopted in this case include bringing down
the system or dynamically extending the buffer.

3. To make sure that the number of deficient processes is
kept to a minimum, one can schedule the requests so
that the sum total of the hot set sizes of the processes
that are being serviced is less than or equal to the size
of the buffer pool. The question of scheduling is not
considered here. However we note that this kind of
scheduling may lead to deadlock problems that are
hard to manage [OBER80]. To avoid the deadlock
problem one can restrict the set of concurrent
processes (i.e., reduce the multiprogramming level).
Although this does not eliminate the possibility of
processes running with stacks that are deficient it does
eliminate the issue of deadlock related to buffer
requests and considerably reduces the occurrence of
internal thrashing. Moreover, knowledge of the hot
set sizes of the request issued by processes can be
used to decide on an appropriate multiprogramming
level. Thus, the restriction on the multiprogramming
level appears to be a suitable ccmplement to the
algorithm presented here.

4. Note that in the schema presented above, a page in
the buffer appears in only one LRU chain. Thus, if a
page is shared by two processes, the first one
requesting it will put it on its own LRU chain.
Although this may seem arbitrary, there is no problem
in doing so. If the shared page remains active (e.g., a
control page in System R) it will remain high in the
LRU chain (i.e., it is unlikely that the page will be
flushed out.) On the other hand, if the cross reference
to the page is a sporadic event, the page wilI migrate
from one LRU stack to the other. This is not
important since these occurrences are infrequent.

Mexico City, September, 1982

minimum hot point (i.e., the mlmmum number DI
pages required to run). The schema presented here
guarantees that, if processing of this query is allowed,
it will not suffer external thrashing. (Note that for
these requests there can be no internal thrashing.) In
a high performance system, in order to insure that a
certain level of fast queries is active at the same time,
the buffer can be divided into two regions; one for
fast requests, the other for slow ones. (The
initialization step would create two free lists each
having the size of the respective region. A reasonable
choice is to have both regions of the same size.) The
fast requests are thus guaranteed a certain minimum
number of frames for them. In order to maintain
good utilization of the buffer pool, the free list for the
fast queries has to be allowed to take frames from the
free list for the slow queries (this will happen when
there are no slow queries present in the system.) As
before, adequate service can be maintained by
restricting the multiprogramming level.

6. The last comment has to do with contention problems
in the buffer manager. Clearly, the stack
manipulations that are performed on the free list in
steps 2 and 3 of the algorithm must be serialized.
Since the operations that are done are removal and
insertions of elements in LRU chains, the path length
through the critical region is no different than that
through the code of a standard buffer manager with
one LRU stack. Thus this algorithm should not
introduce additional serialization problems. In fact, it
may even decrease them as the manipulations of
private LRU chains need not be serialized.

5. EXAMPLES OF HOT SET
SIZE COMPUTATION

As an illustration of how the hot set size can be
estimated by the optimizer of a relational database
management system, we show some examples using System
R. For each two way join between relations Rl and R2,
assume Rl is the outer relation and R2 is the inner.
Control pages are not included m the expressions below.
The following terms are used below

dindex (R2)
ls(R2)

!(R2)

(R2) lsleaf

Number of pages for relation Rl.
Number of pages for relation R2.
Depth of the index on R2.
Number of pages in the inner loop for R2. It
is given by P(R2) divided by the number of
different values for the attribute upon which
the join is performed. This estimate is based
on the uniform distribution assumption.
Number of pages in the index used to access
R2.
Number of index leaf pages scanned on an
inner loop of R2.

Proceedings of the Eighth International Conference
on Very Large Data Bases

for a sequential scan on both Rl and R2,

hot point = 1 + P(R2)

for an index scan on Rl, sequential scan on R2,

hot point = 2 + P(R2)

for a sequential scan on Rl, index scan on R2 (smooth
discontinuity), interpolate between

and
1 + dindex(R2) + ls(R2)

1 + I(R2) + P(R2)

Example 1.

Type 2 join:

for a sequential scan on both Rl and R2,

hot point = 1 + ls(R2)

for a sequential scan on Rl, index scan on R2,

hot point = 1 + lsleaf(R2) + ls(R2)

where lsleaf(R2) is the number of leaf pages in the inner lo
For an index scan on Rl, sequential scan on R2,

hot point = 1 + dindex(R1) + ls(R2)

Example 2.

In Example 1, the first formula is derived by reserving
enough frames to contain the entire R2 relation, plus one
frame for a data page for Rl. If a frame for a data page of
Rl is not reserved the access to Rl causes the first page in
the R2 loop to be replaced, and consequently the entire set
of pages in the R2 loop to be lost. For the second formula,
an additional frame is reserved for the leaf pages of the
index, which is always accessed before accessing Rl data
pages. The third formula presents a smooth discontinuity.
The minimum number of faults is achieved when all the
access entities for R2 (index and data pages) completely fit
in the buffer. The number of faults will increase in a
roughly linear way, until only a number of frames sufficient
to hold an average loop on the second relation, is available.
This assumes substantial rereferences between succesive
inner loops. If the number of data pages in the referenced
relation is large, and the join filtering is high, data page
rereferencing will be very low. In this case, P(R2) is
substituted for ls(R2). The formulae in Example 2 are
derived using analogous considerations. Values for the
estimated number of hot set size obtained using these
expressions are shown in Figures 1-3.

The above formulae are easily generalizable to n-way
joins, and represent a conservative estimate of the hot
points. The number of hot points to be computed varies
from n-l to 3(n-1) (in the case of smooth discontinuities),
where n is the number of relations referenced in the query.

Mexico City, September, 1982

This is a worst-case figure. In general, only the maximum
hot point needs to be computed.

6. REFERENCES

[ASTR76] Astrahan, M. M., et al. “System R: A
Relational Approach to Database
Management,” ACM Trans. on Database
Systems, 1, 2, June 1976 (97-137).

[BLAS79] Blasgen, M. W., et al. “System R: An
Architectural Update,” IBM Research Report:
RJ2581, July 1979.

[DENN68] Denning, P. J. “The Working Set Model for
Program Behavior,” Comm. of the ACM, 11,
5, May 1968 (323-333).

[OBERSO] Obermark, R. “Giobal Deadlock Detection
Algorithm,” IBM Research Report RJ2845,
June 1980.

[SACC821 Sacco, G.M. and Schkolnick, M. “Buffer
Management in Relational Database
Management Systems,” in preparation.

[SEL179] Selinger, P. G., et al. “Access Path Selection
in a Relational Database Management
System”. Proc. of the 1979 SIGMGD
Conference.

[LANG771 Lang, T., et al. “Database Buffer Paging in
Virtual Storage Systems,” ACM Trans. on

[LORI77]
Database Systems, 2, 4, Dec. 1977 (339-351)
Lorie, R. “Physical Integrity in a Large
Segmented Database,” ACM Trans. on
Database Systems, 2, 1, Mar. 1977 (91-104)

* [Page Faults]

2000

1800 X

SELECT *
FROM BATTING X,PITCHING Y
WHERE X.GAMES=Y.WON;

Estimated Hot Set Size = 4
Actual Hot Set Size = 5

200

100 X

xxxxxx xxxxxxxxx
0 +

0 2 4 6 8 10 12 14 16 18 20
[Buffer Size]

Figure 1. Measured page faults versus Buffer Size for 2-way join query.

[Page Faults] *
900

800

700

600

X SELECT *
FROM DEPARTMENT X,ENROLLMENT Y,

STUDENTS W, COURSES Z
WHERE X.DEPTNO = Z.DEPTNO
AND Y.CNUM = Z.CNUM
AND W.STUDID = Y.STUDID

500

400

300

X Estimated Hot Set Size = 14
xx Actual Hot Set Size = 12

xx

200
xx

100
xxxxxxxx

0 +
0 2 4 6 8 10 12 14 16 18 20

[Buffer ,Size]

Figure 2. Measured page faults versus Buffer Size for 4-way join query.

Proceedings of the Eighth International Conference
on Wary Large Data Bases

261
Mexico City, September, 1982

3.80
xxxxxxxxxxxx

3.40

* [log Page Faults]

5.40

5.00

4.60

4.20

SELECT *
FROM PARTS X, ORDERS Y, QUOTES Z
WHERE X.PARTNO = Y.PARTNO
AND X.PARTNO = Z.PARTNO

X AND X.MINQ < X.QOH

X Estimated Hot Set Size = 8
X Actual Hot Set Size = 7

b 2 4 6
+

8 10 12 14 16 18 20
[Buffer Size]

Figure 3. Log (base 10) of measured page faults versus Buffer Size for 3-way join
query.

* [Access Path Cost, in thousands of units]

50 SELECT *
XXXXXXXXXX FROM DEPT X, EMP Y

40 WHERE X.PJNO = Y.PJNO
X AND Y.SAL + Y.COMM > 40,000

30 *********zx******************
X z

20 X * x:EMP is outer
X **** *:DEPT is outer

10 X

xxxxxxxxxxxx
0 , +

0 5 10 15 20 25
[Buffer Size]

Figure 4. Computed access path cost for two ways of performing 2-way join: in both
cases, an index scan on PJNO is used for both tables

Proceedings of the Eighth International Conference
on Very Large Data Bases 262 Mexico City, September, 1982

