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Abstract Many developmental systems are organised via the action of graded
distributions of morphogens. In the Drosophila wing disc, for example, recent
experimental evidence has shown that graded expression of the morphogen Dpp
controls cell proliferation and hence disc growth. Our goal is to explore a sim-
ple model for regulation of wing growth via the Dpp gradient: we use a system
of reaction-diffusion equations to model the dynamics of Dpp and its receptor
Tkv, with advection arising as a result of the flow generated by cell proliferation.
We analyse the model both numerically and analytically, showing that uniform
domain growth across the disc produces an exponentially growing wing disc.

Keywords Drosophila · Domain growth · Morphogen gradient ·
Mathematical model

1 Introduction

The development of any organism begins with a handful of cell types arranged
in a crude manner. As development proceeds these cells divide, differentiate
and migrate, eventually producing a highly-organised system comprising many
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different cell types, each with specialised function. Much experimental and the-
oretical research has been dedicated to elucidating the mechanisms underlying
development: such mechanisms must be sufficiently robust to cope with genetic
variation and environmental noise; yet able to create the kind of fine-detailed
patterning observed in the fully-developed embryo.

The role of morphogens in development has been long since documented:
a widely accepted definition of a morphogen is that of a diffusible substance
which provides spatial and temporal information during development via a
concentration gradient. Wolpert [28] first proposed this mechanism for pattern-
ing in 1969 using his positional information model: he supposes a morphogen
produced at a localised source diffuses across a target field to set up an extracel-
lular gradient. Cells determine their position within the field by interpretation
of the morphogen gradient, activating specific programs of differentiation at
discrete morphogen thresholds. In this way we see that pattern formation using
positional information relies on two mechanisms: (i) specification of the posi-
tional information via a morphogen gradient; (ii) interpretation of the positional
information by cells in the morphogenetic field [29].

Morphogen gradients play important roles in numerous developmental
mechanisms: neuronal cell fate in the developing central nervous system (CNS)
is controlled by gradients of Sonic Hedgehog (Shh) [3]; formation of the
dorsal–ventral (DV) axis in Drosophila is controlled by gradients of Screw
(Scw) and Decapentaplegic (Dpp) [8,17,27]; antero-posterior (AP) patterning
in the chick wing is controlled by a gradient of Shh arising from a polarising
region at the posterior edge of the limb bud [24]; to name but a few.

Much of our knowledge about morphogen gradients has come from exper-
imental observations on the invertebrate Drosophila and several morphogen
gradients have been identified as crucial to Drosophila development. Alongside
the aforementioned role of Dpp: Bicoid is known to be the primary determi-
nant of anterior body pattern [14]; Hunchback has been shown to play a role in
inducing striped gene expression in the posterior half of the embryo [14]; and
Dpp has been shown to act in a concentration-dependent manner to activate
various target genes in the Drosophila wing disc [26].

Correspondingly there has been much theoretical investigation of the forma-
tion and robustness of morphogen gradients in Drosophila (see, for theoretical
models, [2,7,10,11,13]). In particular, Lander and co-workers [12,13] discuss
the mechanisms via which a stable gradient of Dpp may be maintained in the
wing disc, exploring the possible roles of receptor binding, internalisation and
endocytosis, and ligand diffusion in creating long range gradients.

More recently, it has been demonstrated that a gradient of Dpp is respon-
sible for controlling growth in the Drosophila wing disc [19,18,21] and it is
this phenomenon in which we will be interested in this paper. In [21], Rogulja
and co-workers report on the use of two mechanisms for controlling domain
growth: the first relies on the juxtaposition of cells with different levels of Dpp
activity, so that cell proliferation only occurs in a region where the Dpp gradi-
ent is suitably steep; the second relies on reduced Dpp activity (away from the
morphogen source) and the corresponding upregulation of brinker [18].
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1.1 Aims and outline

Although there have been many models describing Dpp gradient formation
and maintenance, we are not familiar with any which address the role of this
morphogen in driving cell proliferation and hence domain growth. The aim
of this paper is to establish an initial model to describe Dpp activity in the
Drosophila wing disc and the resulting growth of the disc. The mathematical
framework developed in this paper will, in the future, allow us to investigate
key unanswered questions surrounding this mechanism of domain growth and
to make experimental predictions which could be used to further understanding
in the area.

To model the phenomena outlined above we will use a system of reaction-
diffusion equations, with advection arising as a result of the flow generated by
cell proliferation in the wing. In Sect. 2 we outline the experimental evidence:
detailing the biochemical pathways which are involved in Dpp gradient forma-
tion and maintenance, and the mechanisms via which this gradient leads to cell
proliferation. In Sect. 3 we outline the main mathematical techniques that will
be used to model the Dpp gradient in Sect. 4. We solve the model numerically
and in Sect. 5 we make some simplifying approximations which allow us to apply
analytical techniques to the model. We conclude in Sect. 6 with a discussion of
the model and outline future work and ideas.

2 The role of Dpp in Drosophila wing growth

The Drosophila wing begins life as a disc of about 40 cells which grows, over the
span of about four days, into a monolayered epithelial sac consisting of around
50,000 cells [21]. A number of genes are known to play roles in patterning and
shaping the disc and one such gene is Dpp [6,18,19,22].

Dpp is produced along the AP compartment boundary (see Fig. 1) and it
spreads out from its site of synthesis, thereby forming a gradient. As mentioned
in Sect. 1, this Dpp gradient has recently been shown to control cell proliferation
in the wing: in medial regions of the wing, close to the AP compartment bound-
ary, the gradient of Dpp activity is steep and Rogulja and co-workers report
that this juxtaposition of cells experiencing different levels of Dpp activity is
necessary and sufficient for cell proliferation [21]. In more lateral regions of the
wing, low levels of Dpp are unable to repress brinker activity and this also leads
to cell proliferation [18,21]. It has been shown that: growth occurs uniformly
across the wing; Dpp mutants show severly impaired growth; overexpression of
Dpp promotes wing overgrowth; and clonal activation can change the growth
regions within the disc [21].

The Dpp receptor, Thickveins (Tkv), has been shown to play a role in shaping
the Dpp gradient: Dpp binds reversibly to Tkv and once bound it is unable to
diffuse but can be internalised and degraded, or subject to endocytotic traffick-
ing [9,23]. Dpp, on the other hand, has been shown to negatively regulate Tkv
receptor expression [15]. Tkv also plays a major role in transducing the Dpp
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Fig. 1 An illustration of the Drosophila wing disc. The AP compartment boundary is indicated by
the dashed line and the source of Dpp by the shaded strip following the compartment boundary.
Dpp diffuses from its site of synthesis into both compartments, in a medial to lateral direction. The
anterior compartment lies to the left-hand side of the boundary and the posterior compartment to
the right-hand side. x marks the growth axis considered in Sect. 3.3 and l(t) marks the position of
the disc boundary

signal by phosphorylating the major signal transducer Mothers against Dpp
(Mad), which then translocates into the nucleus [9,22,25].

Opposing views exist as to the importance of diffusion versus endocytotic
trafficking and the rate of gradient formation (possibly limited due to space
constrictions and the level of Tkv receptors). The implications of these factors
with respect to modelling this phenomena will be discussed in Sect. 6.

3 Modelling reaction-diffusion systems on growing domains

Here we outline some of the main mathematical techniques that will be used to
model the Dpp gradient in this work. We will use a system of partial differential
equations (PDEs) to describe the dynamics of the ligand Dpp, and the free and
bound forms of its receptor, Tkv. We will outline derivation of the flow gener-
ated in the wing disc due to growth and suggest a suitable frame of reference
for analysing our models.

3.1 Derivation of evolution equations

Following Crampin and co-workers [4], we consider the evolution of n chemical
species c1, . . . , cn reacting and diffusing on a time-varying domain �(t). For any
elemental volume V(t) in the domain �(t) we can write down the following
system of conservation equations:

d
dt

∫

V(t)

c(x, t)dx =
∫

V(t)

[
−∇.j + R(c)

]
dx, (1)
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where c is a column vector of length n representing chemicals c1, . . . , cn. j is
the flux and R the reaction term, which includes production and decay as well
as interactions between the individual chemicals. Via the Reynolds Transport
Theorem [1], the left-hand side of Eq. (1) can be evaluated to give

d
dt

∫

V(t)

c(x, t)dx =
∫

V(t)

[
∂c
∂t

+ ∇.(a c)
]

dx, (2)

where a(x, t) is the flow due to domain growth.
These results hold for any elemental volume V(t) moving in the flow and so

we argue that they must hold everywhere in the volume �(t). Assuming Fickian
flux, j = −D∇c where D is a diagonal matrix representing the diffusivities of
individual chemicals, we arrive at the following system of evolution equations:

∂c
∂t

+ ∇.(a c) = D∇2c + R(c), x ∈ �(t), t ∈ [0, ∞). (3)

The system is closed by specifying initial and boundary conditions of the form

c(x, 0) = c0(x) and �(x, t)
∂c
∂n

+ �(x, t)c = �(x, t) for x ∈ ∂�(t), (4)

where ∂c/∂n = n̂.∇c and n̂ is the unit normal to the boundary ∂�(t).
In Eq. (3) we see that the effect of domain growth is to introduce two extra

terms into the problem: a.∇c, an advection term representing the transport of
material around �(t) at a rate determined by the flow a; and c∇.a, a diluting (or
concentrating) term due to local volume expansion (contraction) [5].

3.2 Determination of the flow and the Lagrangian formulation

In some cases the flow may be specified directly, see for example [4], but in the
biological context under consideration here, the growth (and hence flow) rate
will depend on local values of the chemical constituents reacting on the domain.
Crampin and co-workers [4,5] demonstrate that the Lagrangian description is
particularly suitable for this purpose: it allows for the tracking of elemental vol-
umes throughout the tissue. We choose to work with Lagrangian coordinates
(X, t), such that X is the initial position of an element moving in the flow, a, and
use a growth function which is directly related to the Lagrangian description:

x = �(X, t), x ∈ �(t), (5)

with an initial condition given by �(X, 0) = X. Since solid body rotations and
translations do not alter growth rates we ignore them, allowing us to specify
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�(0, t) = 0. The local flow is then given by

a(X, t) = ∂x
∂t

= ∂�

∂t
. (6)

Local growth The deformation due to growth can be described by the local
stress tensor Lij [4,5,16]. Here we will ignore the antisymmetric part, Wij, of Lij
which corresponds to rigid body rotations and as such has no effect on the chem-
ical pattern, and concentrate on the symmetric part, Dij, which corresponds to
the rate of strain tensor. The diagonal elements represent the rate of extension
along axis xi and the off-diagonal elements the rate of shear between axes. The
rate of volume expansion in n spatial dimensions is given by [4,5]:

n∑
i=1

Dii = ∇.a = S(X, t). (7)

Following [5] we take

Dij = ∂ai

∂xj
⇒ ∂2�i

∂t∂Xk
=

n∑
j=1

∂ai

∂xj

∂�j

∂Xk
, (8)

which allows calculation of �(X, t) and a(X, t).

3.3 Domain growth in one spatial dimension

In one spatial dimension the problem simplifies somewhat: we have x = �(X, t)
and

∂2�

∂t∂X
= ∂a

∂x
∂�

∂X
= S(X, t)

∂�

∂X
. (9)

The original model, given by Eq. (3), reduces to the following:

∂c
∂t

+ a(X(x, t), t)
∂c
∂x

= D ∂2c
∂x2 + R(c) − S(X(x, t), t)c, (10)

∂2�

∂t∂X
= S(X, t)

∂�

∂X
. (11)

The solution is defined for x ∈ [0, l(t)] where l(t) = �(l(0), t).

3.4 Lagrangian coordinate system in one spatial dimension

Inherent in the above formulation is the fact that we are able to invert �(X, t) in
order to calculate a(X(x, t), t) and S(X(x, t), t) (See Eqs. (3) and (10)). In many
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such systems this may not be possible and it may be much simpler to carry out
analysis in the Lagrangian coordinate system [4,5]. Letting (x, t) �→ (X, t) the
one-dimensional system becomes

∂c
∂t

= D 1
�X

∂

∂X

(
1

�X

∂c
∂X

)
+ R(c) − S(X, t)c, (12)

∂2�

∂t∂X
= S(X, t)

∂�

∂X
, (13)

where the solution is defined for X ∈ [0, l(0)]. Initial conditions are of the form

c(0, t) = c0, �(X, 0) = X, (14)

and boundary conditions

�(x, t)
∂c
∂n

+ �(x, t).c = �(x, t), �(0, t) = 0. (15)

The solution can be recovered on the growing domain by scaling the solution
along the trajectories �(X, t).

4 Initial Dpp model

As outlined in Sect. 1.1, we will be interested in modelling the interaction of
the ligand Dpp with its receptor Tkv, and we will use the observations and
techniques outlined in Sects. 2 and 3 to do this. Following the experimental
observations outlined in Sect. 2, we will assume that Dpp is secreted at the AP
compartment boundary of the wing, whereupon it diffuses, creating a gradient
in Dpp concentration along the medial-lateral axis of the wing (See Fig. 1).
Dpp binds to Tkv receptors on the cell surface, and in this bound state it can-
not diffuse. Here we will ignore endocytotic trafficking but assume that in its
bound state (Dpp–Tkv) the receptor may be internalised and undergo decay.
The association and dissociation rates of Dpp and Tkv binding are assumed to
follow the Law of Mass action such that:

Dpp + Tkv
k1�

k−1

Dpp–Tkv. (16)

Growth of the wing results from cell proliferation, which is controlled by a
combination of the concentrations of Dpp ligand and free Tkv receptors. Let-
ting d denote Dpp concentration, r denote Tkv concentration and b denote
Dpp–Tkv concentration we propose the following model to describe Dpp and
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Tkv dynamics in the wing:

∂d
∂t

+ ∇.(ad) = D∇2d − k1dr + k−1b − αd, (17)

∂r
∂t

+ ∇.(ar) = −k1dr + k−1b + f (r, b, d) − g(r, b, d), (18)

∂b
∂t

+ ∇.(ab) = k1dr − k−1b − γ b, (19)

where D, k1, k−1, α and γ are positive constants and a describes the flow due
to growth. Both d and b are assumed to undergo linear decay. The terms f and
g describe the production and decay rates of the receptor, Tkv, and possible
forms for these will be suggested in Sect. 4.1. The system holds for x ∈ �(t) with
initial conditions

d(x, 0) = d0(x), r(x, 0) = r0(x), b(x, 0) = b0(x), (20)

and boundary conditions of the form

�(x, t)
∂d
∂n

+ �(x, t)d = �(x, t),
∂b
∂n

= 0 and
∂r
∂n

= 0 on ∂�(t). (21)

The boundary condition for d is chosen such that d takes a constant value, d1,
along the AP edge of the wing and satisfies zero flux boundary conditions on
the remainder of the domain.

4.1 Growth rates

Following [21] we suppose that there are two mechanisms via which cell divi-
sion (and hence wing growth) may occur. Rogulja and co-workers observe
experimentally that the juxtaposition of cells which have different levels of
Dpp activity is necessary and sufficient for cell proliferation in the Drosophila
wing [21]. We therefore suppose that the magnitude of the gradient of Dpp
must lie above a certain threshold level in order to initiate cell proliferation.
This suggests that the mechanism will only promote growth in medial regions
of the wing, where the gradient of Dpp activity is likely to be steeper.

The second observation made in [21] is that Dpp activity can also promote
cell proliferation in a cell autonomous manner, and they suggest that this is
via the Brinker pathway. They observe that the response is localised to lateral
regions of the wing where the level of Dpp activity is low. We therefore suggest
that cell proliferation will also be promoted by a high level of unbound Tkv
receptor (as this will correspond with a low Dpp activity level).

Taking the above experimental evidence into account, we suggest the follow-
ing form for the local strain rate, in n spatial dimensions and in (x, t) coordinates:
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S(x, t) =
n∑

i=1

εd,iH
(

− ∂d
∂xi

(x, t) − d∗
)

+ εr,iH
(
r(x, t) − r∗) , (22)

where εd,i, εr,i (for i = 1, . . . , n), d∗ and r∗ are positive constants and H is the
Heaviside function. In other words, we see growth only if either the gradient
in Dpp is above a threshold level or if the concentration of unbound recep-
tors is above a threshold level. These correspond to the positional information
thresholds specified in Wolpert’s model [28]. In one spatial dimension we can
transform to Lagrangian coordinates so that:

S(X, t) = εdH(−dX(X, t)/�X(X, t) − d∗) + εrH(r(X, t) − r∗). (23)

We note here that there may be a limiting strain rate, arising from a biological
constraint such as cell cycle time, for the rate of cell proliferation. In this way, if
the sum of the strain rates εd + εr is greater than this limiting rate, it would be
more realistic to take some other form for S (such as the maximal strain rate,
for example). Although not considered here, this will be taken into account in
future work and when considering biologically realistic parameters.

4.2 Functional forms for f and g

We assume that Tkv receptor production displays an inverse relationship to the
number of receptors present on a cell. Hence possible forms for f are

f (r, b, d) = ρRn1
max

(b + r)n1 + Rn1
max

and f (r, b, d) = ρ

(
1 − b + r

2Rmax

)
, (24)

where ρ, Rmax and n1 are positive constants. In both cases f is a decreasing func-
tion of r and b. The factor of two in the second option is chosen for comparison:
b + r = Rmax ⇒ f = ρ/2 in each case. Plots of f are shown in Fig. 2a.

It has also been shown experimentally [15] that Dpp enhances the degrada-
tion of the ligand Tkv. In this way we suggest the following forms for g:

g(r, b, d) = βr
(

1 + σdn2

hn2 + dn2

)
and g(r, b, d) = βr

(
1 + σ

2h
d
)

, (25)

where σ , β, h and n2 are positive constants. In contrast, g is an increasing func-
tion of d. We retain the factor of two to ensure that in each case d = h ⇒
f = βr (1 + σ/2). We make the short note here that it may be more biologically
realistic to suppose that the bound form of Dpp enhances the degradation of
Tkv: in this case b should replace d in Eq. (25). This will be investigated in
future work, but in any case, should not make a significant difference to the
model results. Plots of g are shown in Fig. 2b.
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Fig. 2 a The possible forms for f given in Eq. (24). The dashed line represents the first choice for
f with n1 = 4.0, the dash-dotted line represents the first choice for f with n1 = 16.0 and the solid
line represents the second choice for f . Parameters are as follows: ρ = 0.5 and Rmax = 0.5. b The
possible forms for g given in Eq. (25). The dashed line represents the first choice for g with n2 = 4.0,
the dash-dotted line represents the first choice for g with n2 = 16.0 and the solid line represents the
second choice for g. Parameters are as follows: β = 1.0, r = 0.5, σ = 1.0 and h = 0.5

4.3 Reduction of the model

The Drosophila wing disc consists of a monolayered epithelial sac of cells
[21,29]. Dpp is secreted uniformly along the AP compartment boundary in a
stripe running in a DV direction [23], See Fig. 1. We ignore the axis running
perpendicular to the surface shown in Fig. 1 as the wing consists of a single
layer of cells in this direction. Since Dpp is also expressed in a stripe along
the DV axis, we assume that there will be little change in Dpp activity in the
DV direction and so we also ignore this axis. Along the AP axis, the domain is
almost symmetric about the AP compartment boundary and Dpp is secreted
into both compartments. In this way we will model Tkv activity in one spatial
dimension; out from the AP compartment boundary, in a posterior direction,
along the AP axis. We can consider growth in the anterior compartment as
mirroring growth in the posterior compartment. The region close to the AP
compartment boundary is known as the medial region, and that close to the
edge of the wing disc as the lateral region.

Equations (17)–(19) can therefore be written

∂d
∂t

+ ∂(ad)

∂x
= D ∂2d

∂x2 − k1dr + k−1b − αd, (26)

∂r
∂t

+ ∂(ar)
∂x

= −k1dr + k−1b + f (r, b, d) − g(r, b, d), (27)

∂b
∂t

+ ∂(ab)

∂x
= k1dr − k−1b − γ b, (28)

for x ∈ �(t), where �(t) = [0, l(t)]. The spatial axis and l(t) are clearly marked
in Fig. 1.



A mechanism for morphogen-controlled domain growth 607

4.3.1 Boundary conditions

We take boundary conditions of the form

d(0, t) = d1 and
∂r
∂x

= 0,
∂b
∂x

= 0 for x = 0. (29)

∂d
∂x

= 0,
∂r
∂x

= 0,
∂b
∂x

= 0 for x = l(t). (30)

4.3.2 Initial conditions

We take initial conditions of the form

d(x, 0) = 0 for x ∈ (0, l(t)], r(x, 0) = 0, b(x, 0) = 0 for x ∈ [0, l(t)]. (31)

4.3.3 Non-dimensionalisation

We non-dimensionalise by taking:

d = d1d̂, r = Rmaxr̂, b = Rmaxb̂, x = l(0)x̂, t = t̂
γ

, (32)

D̂ = D
l(0)2γ

, ρ̂ = ρ

γ Rmax
, β̂ = β

γ
, σ̂ = σ , ĥ = h

d0
, (33)

α̂ = α

γ
, â = a

l(0)γ
, ε = Rmax

d0
, k̂1 = k1d0

γ
, k̂−1 = k−1

γ
. (34)

Dropping theˆ’s we arrive at the resulting system of non-dimensional equations

∂d
∂t

+ ∂(ad)

∂x
= D ∂2d

∂x2 + ε(−k1dr + k−1b) − αd, (35)

∂r
∂t

+ ∂(ar)
∂x

= −k1dr + k−1b + f (r, b, d) − g(r, b, d), (36)

∂b
∂t

+ ∂(ab)

∂x
= k1dr − k−1b − b, (37)

for x ∈ �(t), where �(t) = [0, l(t)] and l(0) = 1. The functions f and g are now
given by

f (r, b, d) = ρ

(b + r)n1 + 1
and f (r, b, d) = ρ

(
1 − b + r

2

)
, (38)

and

g(r, b, d) = βr
(

1 + σdn2

hn2 + dn2

)
and g(r, b, d) = βr

(
1 + σ

2h
d
)

. (39)
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The boundary conditions become

d(0, t) = 1 and
∂r
∂x

= 0,
∂b
∂x

= 0 for x = 0. (40)

∂d
∂x

= 0,
∂r
∂x

= 0,
∂b
∂x

= 0 for x = l(t), (41)

and the initial conditions

d(x, 0) = 0 for x ∈ (0, l(t)], r(x, 0) = 0, b(x, 0) = 0 for x ∈ [0, l(t)]. (42)

From Eq. (22) we take d̂∗ = d∗l(0)/Rmax and r̂∗ = r∗/Rmax. Dropping the ˆ ’s
the non-dimensional strain rate in one spatial dimension then becomes

S(x, t) = εdH(−dx(x, t) − d∗) + εrH(r(x, t) − r∗), (43)

and hence

S(X, t) = εdH(−dX(X, t)/�X(X, t) − d∗) + εrH(r(X, t) − r∗). (44)

4.4 Numerical solution

In the system given by Eqs. (35)–(37) the local strain rate (and hence the
flow rate a) is specified by Eq. (44). In this case we cannot determine �(X, t)
analytically and it becomes simpler to compute the numerical solution by trans-
forming the system to Lagrangian coordinates, as discussed in Sect. 3.4. In this
case we have

∂d
∂t

= D 1
�X

∂

∂X

(
1

�X

∂d
∂X

)
+ ε(−k1dr + k−1b) − αd − S(X, t)d, (45)

∂r
∂t

= −k1dr + k−1b + f (r, b, d) − g(r, b, d) − S(X, t)r, (46)

∂b
∂t

= k1dr − k−1b − b − S(X, t)b, (47)

∂

∂t

(
∂�

∂X

)
= S(X, t)

∂�

∂X
, (48)

where S(X, t) is given by Eq. (44).
The above system can be solved by converting to a system of first order PDEs

in d, dX , r, b, � and �X and employing the NAG routine D03PEF. The routine
uses a Keller box scheme for the spatial discretisation and the resulting system
of equations is solved using a Backward Differentiation Formula method [20].
The solutions may be transformed onto the growing domain using the Matlab
function interp.
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4.5 Results

Numerical approximations to the system for the first suggested forms of f and
g can be seen in Fig. 3 and for the second forms in Fig. 4: we note that results
of the numerical computations are similar for both forms of f and g. A Dpp
gradient is maintained across the wing disc: high in the medial region close to
the source, and decreasing in a lateral direction. The Dpp gradient is mirrored
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Fig. 3 Numerical solutions for the Dpp–Tkv model as given by Eqs. (44) and (45)–(48). Here we
use the first forms for f and g from Eqs. (38) and (39). a Plot of the trajectories, �(X, t), along
with the Dpp gradient. The initial points of the trajectories are evenly spaced along the interval
[0, 1]. b Concentration profiles at time t = 200. Solid line - d; Dashed line - r; Dash-dotted line -
b. Parameters are as follows: D = 1.0, k1 = 5.0, k−1 = 0.1, ε = 1.0, α = 10.0, ρ = 0.8, β = 0.5,
σ = 10.0, h = 20, d∗ = 0.8, r∗ = 0.5, εd = 0.005, εr = 0.005, n1 = 4.0 and n2 = 4.0
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Fig. 4 Numerical solutions for the Dpp–Tkv model as given by Eqs. (44) and (45)–(48). Here we
use the second forms for f and g from Eqs. (38) and (39). a Plot of the trajectories, �(X, t), along
with the Dpp gradient. The initial points of the trajectories are evenly spaced along the interval
[0, 1]. b Concentration profiles at time t = 200. Solid line - d; Dashed line - r; Dash-dotted line -
b. Parameters are as follows: D = 1.0, k1 = 5.0, k−1 = 0.1, ε = 1.0, α = 10.0, ρ = 0.8, β = 0.2,
σ = 10.0, h = 0.5, d∗ = 0.8, r∗ = 0.5, εd = 0.005 and εr = 0.005
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Fig. 5 Numerical solutions for the Dpp–Tkv model as given by Eqs. (44) and (45)–(48). a Growth
due to the absolute level of Dpp. The bottom three trajectories remain horizontal indicating zero
growth in a region close to x = 0. The curvature of the fourth trajectory indicates that the boundary
of the growth region lies approximately between x = 0.5 and x = 0.625. In this case εd = 0.0.
b Growth due to the gradient in Dpp. A linear trajectory indicates a region in which local domain
growth is not occurring. In this case we see that growth occurs initially throughout the domain,
but as the domain expands lateral areas leave the growing region. Here εr = 0.0. In both cases
the initial points of the trajectories are evenly spaced along the interval [0, 1]. Here we use the
first forms for f and g from Eqs. (38) and (39). Unless otherwise stated parameters are as follows:
D = 1.0, k1 = 5.0, k−1 = 0.1, ε = 1.0, α = 10.0, ρ = 0.8, β = 0.2, σ = 10.0, h = 0.5, d∗ = 0.01,
r∗ = 0.9, εd = 0.005 and εr = 0.005

by the number of bound Tkv receptors and opposed by a gradient of unbound
Tkv receptors, as observed experimentally.

Figure 5 shows numerical approximations of the model, with growth due
to the absolute level and growth due to the gradient considered separately.
Figure 5a demonstrates domain growth arising with growth due to the level
of Dpp. The bottom three trajectories are horizontal showing the absence of
growth in a region close to x = 0. Figure 5b demonstrates domain growth aris-
ing due to the gradient of Dpp activity. The upper trajectories quickly become
parallel to one another indicating that lateral regions of the disc quickly move
out of the region where growth occurs, whilst regions initially lying close to
x = 0 continue to expand over a much longer time period.

Inherent in our construction of the model is the assumption that growth,
when it does occur, is regionally uniform at either rate 0, εd, εr or εd + εr,
depending on the region of the wing in which a cell is sitting. Experimental
observations suggest that domain growth is uniform across the wing disc [21]
and in turn, this suggests that growth due to the gradient in Dpp must occur at
a similar rate to growth due to the level of Tkv receptors. Hence in our model
we have assumed that the parameters εd and εr have similar magnitudes. We
also note here that, at present, none of our parameter choices are informed by
experimental data. One objective for the future is to obtain, as a far as possible,
experimentally measured parameter values.

Numerical simulations of the model suggest that such growth results in an
exponentially increasing domain size. One observation that should be noted is
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that if there is no growth due to the level of unbound Tkv receptors, only due
to the Dpp gradient, then after an initial period, the global (rather than local)
growth of the disc occurs at a uniform rate: cells proliferate and are displaced
(due to growth) at an exponential rate until they reach the region where the
Dpp gradient is no longer steep enough to stimulate proliferation. The result
is that the lateral boundary of the wing moves at a constant rate. At this point,
a trajectory becomes a straight line in (x, t)-space, parallel to the trajectories
preceding it: this is an indication of zero growth in a region. We also note that
uniform growth across the disc will obviously only be achieved if there is a
near correlation in the boundaries of the regions in which growth due to each
mechanism occurs. We will discuss these matters further in Sect. 5.

5 Simplification of the model

Although the model developed in the Sect. 4 displays the behaviour observed
in vivo for the parameter values listed in Figs. 3 and 4, and for a range of other
values not shown here, the system is not particularly amenable to analytical
exploration and as such it is difficult to gain further insight into the growth
processes involved. In the absence of any approximate parameter values/ratios
with which to simplify the model, we make some heuristic approximations (See
Sect. 6 for more discussion of these matters). Firstly, we note that the gradient
in Dpp decays exponentially across the wing disc, that this gradient is mirrored
by a gradient in bound receptor Dpp–Tkv, and is opposite to the gradient of
unbound receptor, Tkv. Therefore we propose a model in which a Dpp concen-
tration gradient regulates both types of growth, i.e. where the slope of the Dpp
gradient regulates growth in medial regions of the disc and the absolute value
of Dpp regulates growth laterally.

In order to do this, we consider the evolution of a single chemical, c, on a
one-dimensional, growing domain in which growth is controlled by c itself. In
line with the previous system, we suppose that c is secreted at the boundary
of the domain given by x = 0 and that within the domain, it diffuses and
undergoes linear decay. We consider the following non-dimensional evolution
equation for c:

∂c
∂t

+ ∂(ac)
∂x

= D ∂2c
∂x2 − λc, (49)

for x ∈ [0, l(t)], with boundary conditions: c(0, t) = 1 and ∂c/∂x(1, t) = 0. The
initial conditions are l(0) = 1 and c(x, 0) = c0(x). c0(x) is found by considering
the steady state gradient formed on a static domain of length l(0) = 1:

c0(x) = 1
eβ + e−β

[
eβ(x−1) + e−β(x−1)

]
, x ∈ [0, 1], (50)

where β = √
λ/D.
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Here the local rate of volume expansion is given in (x, t) coordinates by

S(x, t) = αgH(−cx(x, t) − cg) + αaH(1 − c(x, t) − ca), (51)

i.e. growth occurs in the medial region (close to the AP compartment boundary)
due to a gradient in the chemical above a threshold, cg, and in the lateral region
(away from the AP compartment boundary) due to the chemical falling below
a threshold value, 1 − ca. The former corresponds to growth due to a gradient
in d above the threshold and the latter due to r levels remaining above the
threshold.

In Lagrangian coordinates, we have

∂c
∂t

= D 1
�X

∂

∂X

(
1

�X

∂c
∂X

)
− λc − S(X, t)c, (52)

∂

∂t

(
∂�

∂X

)
= S(X, t)

∂�

∂X
, (53)

where

S(X, t) = αgH(−cX(X, t)/�X − cg) + αaH(1 − c(X, t) − ca), (54)

and X ∈ [0, 1].
The numerical approximation can be found, as before, by employing the

NAG routine D03PEF and the results are shown in Fig. 6. The plots show sim-
ilar results to the full model: a chemical gradient across the domain results in
exponential growth of the domain. Although variation of cg and ca can result in
regions of the disc in which there is no growth, the trajectories in Fig. 6 indicate
that in this case growth occurs across most of the disc.
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Fig. 6 Numerical solution for the reduced model as given by Eqs. (52), (53) and (54). a Trajectories
and the chemical gradient (c). b The chemical profile at times t = 100, 200, 300. Parameters are as
follows: D = 10.0, λ = 20, αa = 0.005, αg = 0.005, ca = 0.6 and cg = 0.6
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5.1 Limiting case

As the domain continues to grow, and in the case where transport and dilution
of the chemical due to growth do not play a major role in shaping the gradient,
we expect that after a certain time the gradient will reach an approximately
steady state. This can be verified by numerical computation (not shown here)
and we will use this in order to facilitate analysis of the model.

The limiting case described above can be considered mathematically by
assuming that αa, αg, β 	 1. In this case we may assume that a(X, t), S(X, t) 	 1
and, from Eq. (50), that the chemical concentration is in a steady state which is
given approximately by

c(x, t) = e−βx. (55)

In order to calculate the rate of domain growth, we must therefore solve the
equation

∂

∂t

(
∂�

∂X

)
= S(X, t)

∂�

∂X
, (56)

with

S(X, t) = αgH(βe−β� − cg) + αaH(1 − e−β� − ca), (57)

and initial and boundary conditions �(X, 0) = X and �(0, t) = 0, respectively.
We first note that there are three regions, each with different growth rates,

and that we must solve in each region separately (See Fig. 7). Taking

xg = 1
β

log

(
β

cg

)
and xa = 1

β
log

(
1

1 − ca

)
, (58)

With overlapPerfect JoinNo overlap(a) (b) (c)

Fig. 7 The different possible regions of growth in the reduced model. a No overlap: growth occurs
in the region x < xg at rate αg and in the region x > xa at rate αa. b Perfect join: growth occurs in
the region x < xs at rate αg and in the region x > xs at rate αa. c With overlap: growth occurs in
the region x < xa at rate αg, in the region xa < x < xg at rate αa + αg and in the region x > xg at
rate αa
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then xg represents the point at which the gradient drops below the threshold
level, cg, needed for domain growth at rate αg and xa represents the point at
which c drops below the threshold level, 1 − ca, required for domain growth at
rate αa. As shown in Fig. 7, there are three different possibilities for the model
(depending on the values of ca and cg) and we discuss each below.

5.1.1 Case I

Initially we will assume that xg < xa as in Fig. 7a: in which case we have the
following

∂

∂t

(
∂�

∂X

)
=

⎧⎪⎨
⎪⎩

αg
∂�
∂X for �(X, t) < xg,

0 for xg < �(X, t) < xa,
αa

∂�
∂X for �(X, t) > xa.

(59)

Initially X < xg: Whilst �(X, 0) = X < xg

∂

∂t

(
∂�

∂X

)
= αg

∂�

∂X
, (60)

with �(X, 0) = X and �(0, t) = 0. This equation can be solved trivially to give

�(X, t) = Xeαgt, (61)

which holds until �(X, t) = xg, at time

t = tg(X) = 1
αg

log
(xg

X

)
. (62)

Whilst xg < �(X, t) < xa,

∂

∂t

(
∂�

∂X

)
= 0, (63)

with �(X, tg(X)) = xg. However, this equation as it stands cannot be solved
uniquely (as for the region X < xg) since we cannot specify a boundary condi-
tion. Instead we appeal to a solution from ‘first principles’: suppose we divide
the spatial region [0, xg] into N intervals of width δx and the temporal region
[tg, t] into i intervals of width δt. Over the first time step δt each region δx
expands to fill a region of width δx(1 + αgδt). Summing over all the regions δx
we see that at time t = tg + δt the point xg has moved to x′ = xg(1 + αgδt).
Applying this reasoning repeatedly we see the following mappings for the point
xg over successive time steps δt:
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xg �→ x′ = xg(1 + αgδt), (64)

x′ �→ x′′ = xg[1 + αgδt + αgδt], (65)
...

...

xi−1 �→ xi = xg[1 + iαgδt], (66)

where xk indicates the position of the point xg after k time steps of length δt.
Noting iδt = t − tg(X) and taking the limit as δt → 0 we see that

�(X, t) = xg + αgxg[t − tg(X)]. (67)

This holds until �(X, t) = xa, at time

t = ta(X) = tg(X) + 1
αgxg

(xa − xg). (68)

For �(X, t) > xa,

∂

∂t

(
∂�

∂X

)
= αa

∂�

∂X
, (69)

with �(X, ta(X)) = xa. Once again, we cannot specify a boundary condition
and so we derive a solution from ‘first principles’: initially dividing the temporal
region [ta, t] up into i intervals of width δt. Using the previous result we see that
over the first time step δt, xa is mapped to x′ = xa + αgxgδt.

For the next time step δt we divide the spatial region [xa, x′] up into N inter-
vals of width δx and note that each expands to width δx(1 + αaδt). In this way,
we see that

x′ �→x′′ = αa + αgxgδt + (x′ − xa)(1 + αaδt). (70)

This is shown in Fig. 8. Continuing in this manner, we have the following map-
pings:

xa �→ x′ = xa + αgxgδt, (71)

x′ �→ x′′ = xa + αgxgδt + αgxgδt(1 + αaδt), (72)
...

...

xi−1 �→ xi = xa + αgxgδt
i−1∑
k=0

(1 + αaδt)k. (73)

The summation can easily be evaluated to give

�(X, t) = lim
δt→0

{
xa + αgxg

αa

[
(1 + αaδt)(t−ta(X))/δt − 1

]}
, (74)
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Fig. 8 The solution from ‘first
principles’. Over the first time
step δt, the point xa is mapped
to xa + αgxgδt. The region
[x′, xa] is then divided into N
intervals of width δx: over the
time step δt each one grows to
fill a region of width
δx(1 + αaδt) etc

from which it can be shown that

�(X, t) = xa + αgxg

αa

[
eαa(t−ta(X)) − 1

]
. (75)

Initially xg < X < xa: Whilst �(X, t) < xa we follow along the same lines as
previously to get

�(X, t) = X + αgxgt. (76)

This holds until �(X, t) = xa, at time

t = ta(X) = 1
αgxg

(xa − X). (77)

For �(X, t) > xa

∂

∂t

(
∂�

∂X

)
= αa

∂�

∂X
, (78)

with �(X, ta(X)) = xa and, as previously, we can solve to get

�(X, t) = xa + αgxg

αa

[
eαa(t−ta(X)) − 1

]
. (79)

Initially X > xa: For all t > 0, �(X, t) satisfies the equation

∂

∂t

(
∂�

∂X

)
= αa

∂�

∂X
, (80)

with �(X, 0) = X. We divide the spatial interval [xa, X] into N intervals of
width δx and the temporal interval [0, t] into i intervals of width δt. Over the
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first time step δt each interval δx expands to width δx(1 + αaδt). Summing
over all the intervals δx we see that after time δt the point X has moved to
x′ = xa + αgxgδt + (x − xa)(1 + αaδt). Applying this reasoning repeatedly to
intervals [xa, x′], [xa, x′′] etc. we see the following mappings for the point X:

X �→ x′ = xa + αgxgδt + (x − xa)(1 + αaδt), (81)

x′ �→ x′′ = xa + αgxgδt + αgxgδt(1 + αaδt) + (x − xa)(1 + αaδt)2, (82)
...

...

xi−1 �→ xi = xa + αgxgδt
i−1∑
k=0

(1 + αaδt)k + (x − xa)(1 + αaδt)i. (83)

As before, we evaluate the summation and take the limit as δt → 0 to get the
result

�(X, t) = xa + αgxg

αa

[
eαat − 1

] + (x − xa)eαat. (84)

The results from these calculations are summarised in Table 1 and presented
graphically in Fig. 9. Figure 9a shows the trajectories given by the numerical
approximation whilst Fig. 9b shows the error between the analytical solution
(Table 1) and the numerical approximation to the system (Eqs. (52)–(54)). The
error is negative as the analytical approximation tends to over predict growth:
this will be discussed briefly in Sect. 5.2. The domain boundary is given by taking
�(X, 0) = �(1, 0) in Table 1 and hence we see that the domain length changes
according to the equation

l(t) = �(1, t) = xa + αgxg

αa

[
eαat − 1

] + (1 − xa)eαat. (85)

As predicted by earlier analysis, the domain length increases at an exponential
rate. We can also demonstrate what happens in the case that there is no cell

Table 1 Solution in the approximate case, given by Eqs. (55), (56) and (57), where xg < xa

Spatial region Temporal region Solution

0 ≤ �(X, 0)≤xg 0≤t < tg(X) �(X, t) = Xeαgt

tg(X)≤t < ta(X) �(X, t) = xg + αgxg[t − tg(X)]
t≥ta(X) �(X, t) = xa + αgxg

αa

[
eαa(t−ta(X)) − 1

]

tg(X) = 1
αg

log
( xg

X

)
and ta(X) = tg(X) + 1

αgxg

(
xa − xg

)
xg < �(X, 0)≤xa 0≤t < ta(X) �(X, t) = X + αgxgt

t≥ta(X) �(X, t) = xa + αgxg
αa

[
eαa(t−ta(X)) − 1

]
t = ta(X) = 1

αgxg
(xa − X)

�(X, 0) > xa ta(x)≤t �(X, t) = xa + αgxg
αa

[
eαat − 1

] + (X − xa)eαat
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Fig. 9 Analytical approximation (see Table 1 and Eqs. (55), (56) and (57)) for the reduced model
as given by Eqs. (52), (53) and (54). a Trajectories given by the approximation. b The deviation of
the approximation from the numerical solution (the error increases as �(X, 0) increases). We have
plotted the numerically computed solution minus the analytical approximation. Parameters are as
follows: D = 10.0, λ = 100, αa = 0.005, αg = 0.005, ca = 0.9 and cg = 0.7

Table 2 Solution in the approximate case, given by Eqs. (55), (56) and (57), where xg = xs = xa

Spatial region Temporal region Solution

0 ≤ �(X, 0)≤xs 0≤t < tg(X) �(X, t) = Xeαgt

t≥ts(X) �(X, t) = xs + αgxs
αa

[
eαa(t−ts(X)) − 1

]
ts(X) = 1

αg
log

( xs
X

)
�(X, 0) > xs t ≥ 0 �(X, t) = xs + αgxs

αa

[
eαat − 1

] + (X − xa)eαat

proliferation via the brinker pathway: we may just assume that l(t) < xa, ∀t in
which case we have:

�(X, t) = xg + αgxgt, (86)

and we see that the domain grows linearly. This can also be verified using
numerical computations (not shown here).

5.1.2 Cases II and III

The remaining cases complete the picture and can be dealt with in the same
manner as Case I. In Case II, Fig. 7b, cg = β(1−ca) so that xa = xs = xg and the
regions match exactly. The results for Case II are summarised in Table 2. In Case
III, Fig. 7(c), we have xa < xg so that there exists a region in which growth due
to both the gradient and the level of c is occurs; these results are summarised in
Table 3. In both cases the error between the analytical approximations (Tables 2
and 3) and the numerical approximations of the system (Eqs. (52)–(54)) remain
small (less marked than for Case 1).
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Table 3 Solution in the approximate case, given by Eqs. (55), (56) and (57), where xa < xg

Spatial region Temporal region Solution

0 ≤ �(X, 0)≤xa 0≤t < ta(X) �(X, t) = Xeαgt

ta(X)≤t < tg(X) �(X, t) = xa + αgxa
αa+αg

[
e(αa+αg)(t−ta(X)) − 1

]

t≥tg(X) �(X, t) = xg + 1
αa

[
(αa + αg)xg − αaxa

] [
eαa(t−tg(X)) − 1

]

ta(X) = 1
αgxg

log
( xa

X
)

and tg(X) = ta(X) + 1
αa+αg

log
[

αa+αg
αgxa

(xg − xa) + 1
]

xa < �(X, 0)≤xg 0≤t < tg(X) xa + αgxa
αa+αg

[
e(αa+αg)t − 1

]
+ (X − xa)e(αa+αg)t

t≥tg(X) �(X, t) = xg + 1
αa

[
(αa + αg)xg − αaxa

] [
eαa(t−tg(X)) − 1

]

t = tg(X) = 1
αa+αg

log
[

(xg−xa)(αa+αg)+αgxa
(X−xa)(αa+αg)+αgxa

]

�(X, 0) > xa t ≥ 0 �(X, t) = xg + 1
αa

[
(αa + αg)xg − αaxa

] [
eαat − 1

]
+ (X − xg)eαat

5.2 Results

Our analysis of the reduced model allowed us find an analytical expression for
the path of cells through the domain and also to track the domain boundary.
The results of this analysis show that (under certain parameter conditions) after
an initial time period in which the chemical gradient reaches a ‘steady state’, we
expect growth of the domain to be exponential at a rate dependent on each of
the parameters xg, xa, αg and αa. We can also confirm that if there is only growth
due to the slope of the Dpp gradient then domain growth will in fact be linear.
It is only due to growth via the levels of unbound Tkv receptor that exponential
domain growth occurs: this is something that could be used to understand the
growth mechanisms more fully and we discuss this in Sect. 6.

It should also be noted that the approximations tend to slightly over predict
growth (See Fig. 9b). This result arises since our approximation assumes that
the gradient is in a steady state given by c(x) = exp(−βx), when in fact the
initial gradient is less steep, being given by Eq. (50). This leads to a slight over
prediction in the number of cells that are able to proliferate due to the gradient
in Dpp and hence over prediction of the domain size. The errors are less marked
in Case II and in Case III.

Finally, we remark that in order to achieve uniform domain growth through-
out the disc we have two crucial requirements: the first is that when cell
proliferation does occur, it does so at an almost constant rate (so that αa ≈ αg);
and the second is that ca and cg must be such that the disc remains close to Case
II (so that we have an almost perfect join between the regions).

6 Discussion

In this paper we have presented an initial model that can be used to study
growth of the Drosophila wing disc due to an activity gradient of Dpp. We have
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Fig. 10 Analytical approximations for the reduced model as given by Eqs. (52), (53) and (54).
a Case II (see Table 2 and Eqs. (55), (56) and (57)) b Case III (see Table 3 and Eqs. (55), (56) and
(57)). Parameters are as follows: D = 10.0, λ = 100, αa = 0.005 and αg = 0.005. Case II: cs = 0.8;
Case III: ca = 0.7, cg = 0.7

used a system of coupled reaction-diffusion equations with an advection term
that describes flow generated in the disc due to cell proliferation. We used a
Lagrangian formulation in order to approximate the model numerically and
showed that it can generate an exponentially growing wing disc (or in certain
cases, a linearly expanding disc). In order to facilitate further analysis, we sim-
plified the model, using a single equation to describe Dpp dynamics. Using this
model we were able to find analytical approximations for the rate of growth of
the disc and track the movement of cells within the growing domain.

The phenomena observed by Rogulja and co-workers [21] and modelled in
the present paper provides one of the most obvious examples in which devel-
opment is regulated by a threshold response to a morphogen concentration.
Although this is an initial model to explain the observed growth phenomena
it throws up a number of interesting questions for future work. We describe
below a number of avenues that we feel are worthy of future exploration.

Firstly, the extension of the disc boundary is an observable that should be
measurable at a number of points over the time scale of disc formation: these
data would suggest a qualitative growth law for the disc and could be com-
pared to our model results. Our model predicts either exponential or linear
growth rates and it would be interesting to see if this matches experimental
observations. Also, estimates of the levels of Dpp and the rates of diffusion and
gradient formation would allow for parametrisation of the model and further
validation against the observed growth rates.

Secondly, we also note that the system has been perturbed experimentally
and that the results of these perturbations may be used to validate the model.
Over expression of Dpp leads to increased wing growth, while clonal activation
leads to increased proliferation in certain regions of the disc [21]: it would be
interesting to see if our model could be adapted to replicate these results and
this will be the subject of future work.
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Thirdly, this work considers a very simplified model of a morphogen gradient:
without endocytotic trafficking and with very simple forms for terms such as the
rate of Dpp diffusion and the internalisation and subsequent decay of Dpp–Tkv.
These choices were made in order to build a simple, initial model which captured
the essential behaviour of the system: more complex models for Dpp gradient
formation and maintenance could of course be designed, but often creating
such a complex initial model makes it difficult to elucidate key behaviour and
properties, in the manner in which we were able to do so in Sect. 5.

We should also mention that in this work we have concentrated on model-
ling a Dpp gradient which establishes very quickly (Telemann and co-workers
suggest that the rate of gradient formation is about four hours: see, for example,
[23]), and where only small levels of flow result from the underlying growth.
This allowed us to make certain analytical approximations and also ensured
that we did not have problems with our numerical simulations: in mapping our
growing domain in x to the fixed domain in �, a fast growth rate results in our
effective numerical mesh size quickly increasing and as a result our numerical
accuracy decreasing.

Some authors have suggested an alternate view for gradient formation: that
in fact the rate of Dpp gradient formation is of the order of about two days; half
the time taken for growth of the wing disc [15]. They suggest that initially high
levels of unbound Tkv receptor prevent Dpp diffusion (resulting in a steep,
short range gradient), but that as Tkv expression is down-regulated a more
shallow, long range gradient of Dpp forms. This could also be investigated using
similar methods to those employed in Sect. 5 and it would be interesting to
see the resulting form of domain growth. We hope to present these results at a
later date.

The final question that we feel pertinent to this study is how growth of the
domain is regulated. In our model there is no mechanism for termination of
growth. It could simply be that cells along the AP segment boundary simply
stop expressing Dpp after a certain time, which would eventually dissolve the
Dpp gradient, but then we must ask what happens to growth via the brinker
pathway. These possibilities remain to be investigated.
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