
1

Abstract

We develop a microprocessor design that tolerates hard

faults, including fabrication defects and in-field faults,

by leveraging existing microprocessor redundancy. To

do this, we must: detect and correct errors, diagnose

hard faults at the field deconfigurable unit (FDU) gran-

ularity, and deconfigure FDUs with hard faults. In our

reliable microprocessor design, we use DIVA dynamic

verification to detect and correct errors. Our new

scheme for diagnosing hard faults tracks instructions’

core structure occupancy from decode until commit. If a

DIVA checker detects an error in an instruction, it incre-

ments a small saturating error counter for every FDU

used by that instruction, including that DIVA checker. A

hard fault in an FDU quickly leads to an above-thresh-

old error counter for that FDU and thus diagnoses the

fault. For deconfiguration, we use previously developed

schemes for functional units and buffers, and we present

a scheme for deconfiguring DIVA checkers. Experimen-

tal results show that our reliable microprocessor quickly

and accurately diagnoses each hard fault that is injected

and continues to function, albeit with somewhat

degraded performance.

1 Introduction

As technological trends continue to lead toward

smaller device and wire dimensions in integrated cir-

cuits, the probability of hard (permanent) faults in

microprocessors increases. These faults may be intro-

duced during fabrication, as defects, or they may occur

during the operational lifetime of the microprocessor.

Well-known physical phenomena that lead to opera-

tional hard faults are gate oxide breakdown, electromi-

gration, and thermal cycling. Microprocessors become

more susceptible to all of these phenomena as device

dimensions shrink [28], and the semiconductor indus-

try’s roadmap has identified both operational hard faults

and fabrication defects (which we will collectively refer

to as “hard faults”) as critical challenges [13]. In the

near future, it may no longer be a cost-effective strategy

to discard a microprocessor with one or more hard

faults, which is what, for the most part, we do today.

Traditional approaches to tolerating hard faults have

masked them using macro-scale redundancy, such as tri-

ple modular redundancy (TMR). TMR is an effective

approach, but it incurs a 200% overhead in terms of

hardware and power consumption. There are some

other, lightweight approaches that use marginal amounts

of redundancy to protect specific portions of the micro-

processor, such as the cache [36, 18] or buffers [5], but

none of these are comprehensive.

Our goal in this work is to create a microprocessor

design that can tolerate hard faults without adding sig-

nificant redundancy. The key observation, made also by

previous research [25, 27, 29], is that modern supersca-

lar microprocessors, particularly simultaneously multi-

threaded (SMT) microprocessors [32], already contain

significant amounts of redundancy for purposes of

exploiting ILP and enhancing performance. We want to

use this redundancy to mask hard faults, at the cost of a

graceful degradation in performance for microproces-

sors with hard faults. In this paper, we do not consider

adding extra redundancy strictly for fault tolerance,

because cost is such an important factor for commodity

microprocessors. The viability of our approach depends

only on whether, given a faulty microprocessor, being

able to use it with somewhat degraded performance pro-

vides any utility over having to discard it.

To achieve our goal, the microprocessor must be

able to do three things while it is running.

• It must detect and correct errors caused by faults

(both hard and transient).

• It must diagnose where a hard fault is, at the granu-

larity of the field deconfigurable unit (FDU).

• It must deconfigure a faulty FDU in order to prevent

its fault from being exercised.

A Mechanism for Online Diagnosis of

Hard Faults in Microprocessors

Fred A. Bower1,3, Daniel J. Sorin2, and Sule Ozev2

1Department of Computer Science, Duke University

2Department of Electrical and Computer Engineering, Duke University

3IBM, Research Triangle Park

Appears in the 38th Annual International Symposium on Microarchitecture (MICRO)

Barcelona, Spain, November, 2005

2

While previous work in this area has explored

aspects of this problem, none has developed an inte-

grated solution. Some work has used deconfiguration to

tolerate strictly fabrication defects and thus assumed

pre-shipment testing instead of online error detection

and diagnosis [25]. Other work has explored deconfigu-

ration and has left detection and diagnosis as open prob-

lems [29].

In this paper, we discuss integrated design options

for microprocessors that achieve all three of these goals,

and we present one particular microprocessor in this

design space. First, our microprocessor detects and cor-

rects errors, due to both transient faults and hard faults,

using previously developed DIVA-style [2] dynamic

verification. Second, it uses a newly developed mecha-

nism to diagnose hard faults as the system is running.

Third, after diagnosing a hard fault, the microprocessor

deconfigures the faulty FDU in an FDU-specific fash-

ion. In this paper, we present and evaluate previously

developed deconfiguration schemes for functional units

and portions of array structures (e.g., reorder buffer,

load/store queue, etc.), and we show that our integrated

approach also enables the microprocessor to deconfig-

ure faulty DIVA checkers.

Our experimental results show that our new diagno-

sis mechanism quickly and accurately diagnoses hard

faults. Moreover, our reliable microprocessor can func-

tion quite capably in the presence of hard faults, despite

not using redundancy beyond that which is already

available in a modern microprocessor. This technique

can turn otherwise useless microprocessors into micro-

processors that can function at a gracefully degraded

level of performance. This capability can improve reli-

ability by tolerating operational hard faults. We can

improve yield by shipping microprocessors with defects

that we have tolerated—it is as if they are regular micro-

processors that will get “binned” into a lower perfor-

mance bin. Although binning is typically by clock

frequency, recent proposals have suggested more gen-

eral performance binning [25]. As long as these bins are

not so low-performing as to be useless, then our

improvement in yield is a benefit. Our scheme also

vastly outperforms a system with only DIVA or a com-

parable recovery-based scheme, since the performance

cost of recoveries is quite high for hard faults that get

exercised frequently; moreover, our scheme can tolerate

a hard fault in a DIVA checker.

The contributions of this work are:

•A dynamic, comprehensive hardware mechanism

for diagnosing hard faults in microprocessors,

including faults in DIVA checkers.

•A microprocessor design that integrates our new

hard fault diagnosis mechanism with DIVA error

detection and a mix of pre-existing and new decon-

figuration schemes.

•An experimental evaluation that demonstrates that a

microprocessor with our enhancements can tolerate

hard faults with a graceful degradation in perfor-

mance.

In Section 2, we discuss hard faults and why they

concern microarchitects. In Sections 3, 4, and 5, we

describe error detection and correction, hard fault diag-

nosis, and deconfiguration of faulty components,

respectively. Section 6 discusses the costs and limita-

tions of our particular implementation. Section 7 pre-

sents our experimental evaluation. We discuss related

work in Section 8 and conclude in Section 9.

2 Hard Faults in Microprocessors

In this section, we discuss the hard faults that moti-

vate this work. In particular, we focus on the technologi-

cal trends that are leading towards greater incidences of

these faults. With increasingly smaller device and wire

dimensions and higher temperatures, these trends lead

us to conclude that hard fault rates will increase.

There have been several recent studies of operational

hard faults [28, 14], that is, hard faults that occur over

the lifetime of the microprocessor. Srinivasan et al. [28]

determine that electromigration [31, 3] and gate oxide

breakdown [10] are likely to be the two dominant phe-

nomena that cause operational hard faults. Electromi-

gration results in highly resistive interconnects or

contacts and eventually leads to open circuits. Elec-

tromigration increases as wire dimensions shrink and as

temperatures increase. Gate oxide breakdown (OBD)

results in the malfunction of a single transistor due to

the creation of a highly conductive path between its gate

and its bulk. A newly manufactured oxide contains

inherent electron traps due to imperfections in the fabri-

cation process. Over the lifetime of the device, the num-

ber of such traps increases due to electric field stress and

electron tunneling. At some point, the electron traps

may line up and constitute a conductive path between

the gate and the bulk of the device, eventually leading to

OBD. OBD rates increase as oxide thicknesses shrink

and temperatures increase. Since OBD increases switch-

ing delay, it can lead to delay faults that manifest them-

selves as bit flips [6].

Defects introduced during chip fabrication are

another source of hard faults. Their causes differ from

those of operational hard faults, but they often manifest

themselves in a similar fashion. For example, a fabrica-

tion defect could result in a discontinuity in a wire,

3

which is equivalent to the situation in which electromi-

gration leads to an open circuit. A fabrication defect

could also lead to the growth of an insufficiently thick

gate oxide, which is functionally equivalent to OBD.

The impact of technology trends on fabrication defects

is less clear than it is for operational faults. In general,

though, smaller wire and device dimensions are more

prone to defects, since the margin for error is smaller.

3 Error Detection and Correction

There are numerous ways to detect and correct errors

in microprocessors. For our target design space, the best

error detection candidates are the recently developed

techniques that are both comprehensive (i.e., not tai-

lored to one specific error model) and less costly than

macro-scale redundancy (e.g., TMR). We do not claim

to innovate in this area; we simply seek to use a pre-

existing solution that is well-suited to our diagnosis and

deconfiguration mechanisms.

We choose DIVA to comprehensively detect and cor-

rect errors using dynamic verification with checker pro-

cessors [2]. In a system with DIVA dynamic

verification, a total of n checkers are added at the com-

mit stage of the typical n-way superscalar processor

pipeline. These checkers are small, simple, in-order

cores. According to Weaver and Austin [34], a checker’s

size is less than 6% of an Alpha 21264 core, which is far

less than the 200% overhead of TMR. These checkers

re-execute each instruction and compare their results

with those of the superscalar core. The original DIVA

paper [2] assumes that the checkers, because of their

small size, can be made resilient to physical faults; thus,

a mismatch in the result of an instruction signifies an

error in the superscalar core and leads the checker to

correct the error by committing its results and squashing

the superscalar pipeline.

In the original DIVA design, a hard fault in a checker

is undetectable and uncorrectable—this is a limitation

that we overcome later in this paper by detecting and

diagnosing hard faults in checkers, so that a system can

stop producing erroneous results and, if backward error

recovery (BER) is available, recover from erroneous

data that was committed before the checker was diag-

nosed as faulty.

Other options besides DIVA exist, such as redundant

multithreading, and they present different engineering

tradeoffs. A thorough discussion of all of the alterna-

tives is outside the scope of this paper, but we provide a

summary of alternatives and their capabilities in

Section 8. We chose DIVA over the alternatives because

the opportunity cost and power consumption of using

the alternatives exceeded the small amount of overhead

introduced by DIVA. We also believe that DIVA check-

ers offer better hard fault correction capability. Detailed

studies of the implementation of DIVA dynamic verifi-

cation have shown it to provide performance nearly on

par with an unprotected processor in the error-free case,

with minor performance degradation until error rates

reach the error-per-thousand-instruction range [2].

4 Fault Diagnosis

DIVA checkers do not provide fault diagnosis. They

are only capable of detecting and correcting errors, not

determining their underlying causes. For transient faults,

this is appropriate, since the desired remedy never

involves altering the configuration of the core. For hard

faults, however, we show in Section 7 that it is often

desirable to deconfigure part of the superscalar core in

order to prevent frequent errors and the performance

penalty that frequent pipeline flushes from DIVA correc-

tions (or redundant thread corrections) would require.

We define sub-structures within the processor core

that we wish to be able to deconfigure as field deconfig-

urable units (FDUs). To diagnose hard faults in the pro-

cessor core, we first have to select the FDU granularity

at which we wish to be able to diagnose. Many struc-

tures are replicated within a typical superscalar core,

and the granularity of replication represents a natural

FDU granularity.

The choice of FDU is a design decision for a given

implementation. For the processor we model in our eval-

uation, the identified FDUs for which we track diagnosis

information are: individual entries in the instruction

fetch queue (IFQ), individual reservation stations (RS),

individual entries in the load-store queue (LSQ), indi-

vidual entries in the re-order buffer (ROB), individual

arithmetic logic units (ALU), and the individual DIVA

checkers. We have chosen a fairly fine FDU granularity,

but one could choose coarser or even finer granularities

if so desired; we discuss this engineering tradeoff later.

The hardware bounds of our diagnosis mechanism are

the components in which the selected error checker (in

our design, DIVA) can detect a fault. Therefore, we do

not consider the register file, because DIVA cannot

recover from errors in it.

4.1 A New Online Diagnosis Mechanism

We propose in this paper to dynamically attribute

errors to FDUs as the system is running. Given an error

detection mechanism, if an instruction (or micro-op, in

the case of IA-32) is determined to be in error, the sys-

tem records which FDUs that instruction used during its

lifetime. If, over a period of time, more than a pre-speci-

fied threshold of errors has been attributed to a given

FDU, it is very likely that this resource has a hard fault.

4

To track each instruction’s FDU usage, bits are car-

ried with each instruction from the point of FDU usage

to commit. For those structures that the instruction owns

at commit, this information is already implicitly avail-

able and no extra wires are needed to carry this resource

usage info through the pipeline. In our modeled proces-

sor, the ROB entries and DIVA checkers use implicit

tracking. For the remaining FDUs, the number of bits

required is a function of the size of the structure and the

granularity into which we are allowing it to be sub-

divided for later deconfiguration. This represents an

engineering trade-off in our design that will allow

implementations to select the appropriate FDU granu-

larity/overhead trade-off. With the configuration used in

our evaluation in Section 7, each instruction carries 19

bits of usage information: 5 bits for RS, 6 bits for LSQ,

6 bits for IFQ, and 2 bits for ALUs. Carrying these extra

bits through the pipeline incurs two costs: pipeline

latches will be marginally wider and there will be more

wires to route through the pipeline. However, compared

to the 64-bit operands that are carried through the pipe-

line, these extra 19 bits are a small addition, especially

since not all 19 bits need to traverse the whole pipeline.

For each FDU we track, the processor maintains a small,

saturating error counter.

There are four challenges with this approach. First,

after the FDUs have been selected and configured for

diagnosis in an implementation of our mechanism, all

remaining logic for which the checker detects errors

must also be tracked by our diagnosis scheme. For our

design, this critical logic includes all logic that is not

within an FDU but that is in the portion of the supersca-

lar core for which DIVA is capable of detecting errors.

This includes instruction issue, any singleton arithmetic

logic units (ALUs) (for example, a floating point multi-

ply/divide unit), floating point ALUs, and any common

datapaths that all instructions must traverse while in-

flight.

Second, transient errors must not lead to above-

threshold error rates. Thus, we must have error counter

thresholds that are not too small, and the microprocessor

must periodically clear the error counters to prevent

transient errors from accumulating past the hard fault

threshold. The frequency of counter clearing is an

adjustable parameter that depends on expected transient

error rates. Counter clearing is a low-cost operation, so

we choose to clear the counters once per second in our

experiments, even though current terrestrial transient

fault rates do not approach this frequency. Also, if a hard

fault is detected and deconfiguration is activated, the

deconfiguration process clears the error counters.

Third, the error rate threshold for a resource must be

related to its usage. For example, a very high threshold

for a resource that is rarely used will preclude the sys-

tem from ever diagnosing a hard fault in it. Thus, for fre-

quently utilized FDUs, a larger counter value is required

to prevent the mis-diagnosis of a fault in an upstream or

downstream structure. In Table 1, we list the counter

thresholds for the FDUs we consider in this paper. For

resources that are very rarely used, such as the floating

point units, our mechanism might never be able to diag-

nose hard faults in them. However, any hard fault that

gets exercised so rarely as to not exceed our error

counter threshold is also so rare that it incurs little per-

formance penalty for its infrequent error recoveries. In

this situation, simply using DIVA to correct errors due

to a hard fault in a rarely used FDU is sufficient. Results

(not shown due to space constraints) confirm that, even

for the SPEC floating point benchmarks, a faulty FPU

does not significantly degrade performance. Thus, we do

not consider FPUs to be FDUs. The key observation is

that our scheme can diagnose hard faults in the highly

utilized resources, so that the microprocessor avoids fre-

quent recoveries.

The final challenge is that the resources must be

used reasonably independently. Otherwise, for example,

if every time an instruction uses resource A it also uses

resource B, then the diagnosis mechanism will not be

able to distinguish between a hard fault in A and a hard

fault in B. To guarantee that instructions take many dif-

ferent and independent paths through the pipeline, we

slightly change the scheduling of resources that are nor-

mally scheduled non-uniformly (e.g., higher priority for

ALU0) to add a “round-robin” aspect to it. For example,

instead of always allocating the lowest-numbered ALU

that is available, the microprocessor allocates available

ALUs in a round-robin fashion. Otherwise, the usage of

ALU0 could be significantly greater than that of other

ALUs and thus preclude hard faults in them from being

diagnosed (since the thresholds assume uniform utiliza-

Table 1. Error counter thresholds

FDU th
re

sh
o
ld

q
u

a
n

ti
ty

to
ta

l
b

it
s

u
se

d

instruction fetch queue entry 32 64 320

reservation station 32 32 160

reorder buffer entry 16 128 512

load/store queue entry 16 48 192

integer ALU 64 3 18

DIVA checker 64 3 18

critical logic (issue, etc.) 128 1 7

1227

5

tion). This scheduling modification is not necessary for

resources that are naturally scheduled uniformly, like

ROB entries. We found that round robin scheduling

alone does not avoid all lockstep allocation of resources,

though. For example, with three ALUs and three DIVA

checkers, we found that a long string of instructions that

all used ALUs led to undiagnosable errors. In one par-

ticular scenario, an instruction that used ALU0 always

used Checker1, ALU1 was perfectly correlated with

Checker2, and ALU2 was perfectly correlated with

Checker0. To avoid this lockstep allocation, we intro-

duced a small amount of pseudo-randomness into the

scheduling of checkers. Every cycle, the first checker to

be considered for allocation is determined based on

pseudo-random data (e.g., low order bits of the tick

counter), and then subsequent checkers are allocated

sequentially (mod 3) after the first one. This pseudo-ran-

domness, combined with round-robin scheduling, pre-

vents lockstep allocation and achieves reasonably

uniform utilization of each set of identical FDUs.

We include the DIVA checkers in the error diagnosis

design, so that we can enable the microprocessor to tol-

erate hard faults in the checkers. Since a k-way super-

scalar microprocessor requires approximately k

checkers to avoid having the checkers become a bottle-

neck, we would like to be able to tolerate a hard fault in

one of them by leveraging their redundancy.

Using DIVA for error detection and correction pro-

vides three unique issues related to diagnosis and decon-

figuration of a hard-faulted unit. First, uncached loads

and stores commit without any redundant check of the

operation, making them undiagnosable. A fault affecting

the logic unique to these operations will not be covered

by our mechanism. The system will perform exactly as

it would if it only had DIVA checkers active. Second,

the microprocessor is vulnerable to transient errors in

DIVA checkers, but DIVA assumes that small checkers

can be designed to be more resilient to transient faults

by using more robust feature sizes. Third, because the

microprocessor trusts a DIVA checker until its error

counter exceeds its threshold, the microprocessor is vul-

nerable to incorrect execution in the window between

when a hard fault occurs in a checker and when it diag-

noses that the checker is the culprit. We further discuss

this window of vulnerability in Section 6.2.

4.2 Alternative Design Options

There exist other ways to perform fault diagnosis.

The most obvious approach is to use TMR—if two mod-

ules produce one result and the third module produces a

different result, then the system diagnoses the third

module as faulty (assuming a single-fault model). TMR,

however, has a 200% hardware and power overhead.

Another well-known diagnosis approach is built-in

self-test (BIST). After detecting an error and determin-

ing that it is due to a hard fault (e.g., by detecting it

repeatedly), systems with dedicated BIST hardware can

test themselves in order to diagnose the location of the

hard fault. To its advantage, unlike our new diagnosis

mechanism, BIST does not have to worry about the sta-

tistical nature of online error counting. BIST can be

applied to a microprocessor like the ones we study, and

one concurrent BIST mechanism can be used for all

components in the path, although the number of BIST

test vectors to generate—either deterministically or

pseudo-randomly—would be extremely large. The

BIST-based scheme cannot be applied to single modules

such as the instruction queue or the decode logic, since

taking these structures offline for testing would leave the

microprocessor temporarily unable to function. More-

over, online error counting has the advantage over BIST

of diagnosing faults via the observation of the execution

of actual software and not needing to analyze test out-

puts. BIST also adds performance overhead due to the

extra multiplexers that choose between normal inputs

and BIST inputs.

5 Deconfiguring Faulty Components

After an FDU has been diagnosed as having a hard

fault present, deconfiguring the faulty FDU is desired to

avoid the frequent pipeline flushes that DIVA would

trigger due to continued manifestation of the fault. In

this section, we describe several pre-existing methods

for deconfiguring typical microprocessor structures,

plus a new way to deconfigure a faulty DIVA checker.

For circular access array structures—such as the

instruction fetch queue (IFQ), reorder buffer (ROB), and

load/store queue (LSQ)—previous work has shown how

to add a level of indirection to allow for de-configura-

tion of a single entry with little additional latency added

to access time for the structure [5, 25]. In the method by

Bower et al. [5], each structure maintains a fault map.

This fault map information feeds into the head and tail

pointer advancement logic, causing the advancement

logic to skip an entry that is marked as faulty. If cold

spares are available, as assumed by Bower et al. and

shown in Figure 1, the structure size can be maintained

at the original processor design point. If no spares are

provisioned, which is what we assume in this paper,

then the structure size must be updated when the fault

map is updated.

For some tabular (i.e., directly addressed) struc-

tures—such as reservation stations, register files, etc.—a

simple solution is to permanently mark the resource as

in-use, thus removing it from further operation [25].

Once again, Bower et al. [5] assume that cold spares

6

may be available, and we illustrate this previously devel-

oped design in Figure 2, even though we assume no pro-

visioning of cold spares in this paper.

For a functional unit (ALU, etc.), similar to a reser-

vation station, we can mark the resource as permanently

busy, preventing further instructions from issuing to it

[25]. Cold sparing of functional units is possible, but it

may require too much die space, as functional units are

relatively large compared to individual ROB entries or

reservation stations. We focus on using existing redun-

dancy, since the cost of adding extra redundancy may be

too great for commodity microprocessors.

For one of the multiple DIVA checkers, we can map

it out if we diagnose it as being permanently faulty.

Depending on how DIVA checkers are scheduled,

deconfiguration is just as simple as for ALUs; just mark-

ing a faulty checker as permanently busy will deconfig-

ure it. Prior work has not looked into deconfiguring

DIVA checkers, because no fault diagnosis schemes

prior to this paper could diagnose hard faults in a

checker.

6 Costs and Limitations

The design that we have presented in Sections 3-5 is

not free, nor is it without limitations. In this section, we

present its hardware costs and limitations.

6.1 Hardware Costs

We add hardware to an unprotected microprocessor

to achieve hard fault tolerance. The largest, single addi-

tion to the processor is the DIVA checkers, each of

which has been estimated at 6% of the size of an Alpha

21264 core [34]. In addition to DIVA, which provides

benefits even without our additions, we also add: error

counters (1227 bits total), wires for tracking each

instruction’s resource usage (19 wires in total), and logic

for deconfiguring FDUs. None of these additional hard-

ware costs are large; moreover, they can all be reduced

at the expense of a coarser granularity of diagnosis and

deconfiguration. For example, we can share one error

counter and one wire among k entries in the instruction

window, at the cost of having to deconfigure all k entries

if any of them incurs a hard fault.

6.2 Limitations

We now discuss three limitations of our current

implementation and approaches for addressing them in

the future. First, there are certain structures that we

either cannot protect or that are very difficult to protect.

Our current implementation cannot protect the register

file, because it is part of the recovery point for DIVA

recovery. We cannot diagnose faults in singleton

resources, due to ambiguity reasons stated at the end of

Section 4.1. Singleton resources include issue logic,

common datapath lines, and similar components. Sin-

gletons are always in lock-step scheduling with other

singletons. Future work will involve designing modular

implementations of these currently monolithic struc-

tures, so that incremental redundancy is feasible.

Second, there are certain scenarios in which the sys-

tem can deconfigure a fault-free FDU. A transient or

hard fault in our added hardware—error counters, wires

for tracking resource usage, and deconfiguration logic—

could lead to deconfiguring a fault-free component. In

general, if deconfiguration does not help (i.e., immedi-

ately after deconfiguration, another error counter satu-

rates), then the system can reconfigure the previously

2nd faulty row

1st faulty row

spare

spare

begin_buffer

end_buffer
pointer

advance
logic

pointer
advance

logic

0 0 0 1 0 1 0
General
Purpose
spares

fault information buffer size

buffer size
advancement

fault map

Check row

1st faulty row

Spare replacing
1st faulty row

Spare replacing
2nd faulty row

A
d
d
re

ss
D

e
co

d
e

read/write
enable

read/write
enable

data in

data
out

2nd faulty row

Remap
Logic

00

10

00

01

00

00

00

Fault/spare
match map

Figure 1. Deconfiguration of entries in a
circular buffer (e.g., reorder buffer).
Shading indicates hardware added for
entry deconfiguration purposes.

Figure 2. Deconfiguration of entries in a
tabular structure (e.g., reservation station).
Shading indicates hardware added for entry
deconfiguration purposes.

7

mapped out unit back into the system (under the com-

mon assumption of one hard fault at a time). The micro-

processor also tolerates faults in the error counters by

testing them. After clearing the counters, it checks that

they are indeed all zero. It also uses a small amount of

hardware to periodically test that the counters can be

incremented correctly. If a counter is faulty, the corre-

sponding FDU is then permanently either configured or

deconfigured, based upon whether it is mapped back in

or left deconfigured. Mapping it back in leaves the sys-

tem vulnerable to a hard fault in this FDU, but leaving it

deconfigured is potentially a loss of useful hardware.

Third, there is a window of vulnerability in which a

faulty microprocessor can unwittingly produce errone-

ous results. Being able to deconfigure a faulty DIVA

checker enables the microprocessor to improve reliabil-

ity by preventing the fault from continuing to silently

corrupt system state; in a DIVA-only system, it would

go unnoticed until visible data corruption was recog-

nized by a downstream entity. However, there is still a

window of vulnerability between when the hard fault

occurs in the checker and when it is diagnosed and

deconfigured. In that window, a number of instructions

equal to the error counter threshold for the checker

times the number of DIVA checkers could have been

committed in error, since DIVA checkers assume they

are correct in the case of a mis-comparison. Without a

higher-level recovery scheme, such as checkpointing,

this erroneously committed state represents an unrecov-

erable error.

7 Evaluation

There are three goals of this evaluation. First, we

want to show that our reliable microprocessor can

quickly and correctly detect and diagnose hard faults,

even in the presence of transient faults. Second, we want

to demonstrate that, after our scheme deconfigures a

permanently faulty FDU, the microprocessor’s perfor-

mance is still good enough to be useful. Third, we want

to compare our scheme against a microprocessor that

simply relies on DIVA checkers to tolerate hard faults;

while DIVA was designed primarily for soft faults, it

can also tolerate hard faults, and we want to determine if

our scheme outperforms this simpler solution.

7.1 Methodology

To evaluate our design for proper operation under

the fault models considered, we modified sim-mase, as

made available by SimpleScalar [1]. We model a super-

scalar processor that is patterned roughly after the origi-

nal, pre-SMT-enabled Intel Pentium 4 [11, 4] with

DIVA checkers modelled, as supported by sim-mase.

Since the register renaming scheme does not affect our

experiments, the processor uses implicit renaming via

the reservation stations (i.e., without an explicit register

map table). Table 2 shows the detailed configuration of

the processor we model. We modified SimpleScalar to

allow for hard fault injection.

For benchmarks, we use the complete SPEC2000

benchmark suite with the reference input set. To reduce

simulation time, we used SimPoint analysis [24] to sam-

ple from execution of each benchmark. Since the results

in the rest of this section are presented in terms of nor-

malized performances, we provide baseline error-free

IPC results in Figure 3.

7.2 Detection and Diagnosis of Hard Faults

Our first set of experiments explores how accurately

and quickly our scheme detects and diagnoses hard

faults. In each experiment, we injected periodic transient

faults in various structures and one hard fault in a single

structure. We injected transient faults in a Poisson distri-

bution with a mean of one transient per billion instruc-

tions. All injected hard faults manifest as a single bit

0

1

2

IP
C

SPEC 2000 FP Benchmarks

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

0

1

2

IP
C

SPEC 2000 Int Benchmarks

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

Figure 3. Error-free performance (SpecINT and SpecFP)

8

stuck-at-1. For the ROB, we inject the fault into the

least-significant bit (LSB) of the data result. This causes

the common value of 1 to provide data masking for the

injected fault. For the RS and IFQ, we corrupt the LSB

of the register identifier for the second argument of the

instruction. This causes single-argument instructions to

functionally mask this error and gives an even probabil-

ity that two-argument instructions will experience data-

masking for the injected fault. For the LSQ, we inject

the fault in bit 16 of the address. This prevents data mis-

alignment exceptions and provides an average-case data

masking scenario. Finally, for the integer ALUs, we

model faults as manifesting in the adder. We used a

gate-level design for a 32-bit adder and selected a repre-

sentative gate whose output is stuck-at-1 when the fault

is injected. We performed a thorough gate-level fault

simulation of the adder, and the gate we selected for

fault injection represents the nominal masking case with

a shading toward more masking, as this is a pessimistic

assumption in our experiments. Masking was then eval-

uated for every instruction that accessed the ALU with

the faulty adder.

In all of our experiments, the microprocessor

detected and diagnosed the injected hard fault and did

not mis-diagnose a soft fault as being hard. We mea-

sured how many instructions were executed before an

injected hard fault was diagnosed, and we plot the

results of this experiment in Figure 4. Since the results

were relatively insensitive to the benchmarks, we

present the mean results for SpecINT and SpecFP; the

error bars in the figure represent one standard deviation

above and below the mean. The results show that most

hard faults are diagnosed within a few thousand instruc-

tions and that all of them are diagnosed within 15 thou-

sand instructions. From this data, we also observe that

the window of vulnerability for a faulty DIVA checker is

about 200 instructions, which is easily within the recov-

ery capabilities of typical hardware and software back-

ward error recovery (BER) mechanisms. The different

diagnosis latencies for different FDUs are a function of

the relative usages of these structures as well as their

error counter thresholds. Nevertheless, for all structures

other than the DIVA checkers, the diagnosis latency is

relatively unimportant, since between when the fault

occurs and when it is diagnosed and the FDU deconfig-

ured, the checkers mask its effect with only a perfor-

mance penalty caused by the number of pipeline flushes

Table 2. Parameters of Target System

Feature Details

pipeline stages 20

width: fetch/issue/com-

mit/check

3/6/3/3

branch predictor 2-level GShare, 4K entries

instruction fetch queue 64 entries

reservation stations 32

reorder buffer 128 entries

load/store queue 48 entries

integer ALUs 3 units, 1-cycle

integer multiply/divide 1 unit, 14-cycle mult, 60-

cycle div

floating point ALUs 2 units, 1-cycle

floating point mult/div 1 unit, 1-cycle mult, 16-

cycle div

L1 I-Cache 16KB, 8-way, 64-byte

blocks, 2-cycles

L1 D-Cache 16KB, 8-way, 64-byte

blocks, 2-cycles

L2 cache (unified) 1MB, 8-way, 128-byte

blocks, 7-cycles

0

5000

10000

15000

A
v

er
ag

e
In

st
ru

ct
io

n
 C

o
u

n
t

Faulted Structures

SPECint 2000

SPECfp 2000

1 IFQ entry 1 RS 1 ALU 1 LSQ entry 1 ROB entry 1 Checker Critical Logic

Figure 4. Hard fault diagnosis latency

0.8

1.0

1.2

N
o
rm

al
iz

ed
 r

u
n
ti

m
e

Faulted Structures

SPECint 2000

SPECfp 2000

fault-free -1 IFQ entry -1 RS -1 ALU -1 LSQ entry-1 ROB entry -1 Checker

Figure 5. Performance impact of losing one
component to a hard fault

9

equal to the error counter threshold for the faulty FDU.

Over the course of even thousands of instructions, this

performance penalty is still unimportant. The key is not

incurring that performance penalty over the entire life-

time of the processor, as results in Section 7.4 show.

7.3 Performance After Deconfiguring FDU

The second set of experiments evaluates the perfor-

mance impact of de-configuring an FDU after having

diagnosed it as being permanently faulty. In each of

these experiments, we remove one of each type of FDU

that we study. Figure 5 plots the runtime for each of

these experiments, normalized to the error-free (fully-

configured) case. Since there is little variation in the

results across benchmarks, we plot the average results

(geometric means of normalized runtimes) across the

SpecINT and SpecFP benchmarks. The data show that

the performance impact of deconfiguring an FDU is

often small. This result, which corroborates prior work

[25, 29], is in part due to the fact that the processor con-

figuration we are modeling is over-provisioned for sin-

gle SPEC benchmarks; the Pentium 4 is designed to run

multiple threads simultaneously. Thus, resources are

often idle in a typical single-threaded workload. There

is, however, a non-negligible performance degradation

due to deconfiguring an ALU or DIVA checker. Never-

theless, all of these faulty systems continue to function

correctly and with reasonable performance.

0

1

2

3

4
N

o
rm

al
iz

ed
 r

u
n
ti

m
e

SPEC 2000 Integer Benchmarks

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted ALU

1 faulted LSQ entry

1 faulted ROB entry

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

0

1

2

3

4

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

SPEC 2000 FP Benchmarks

fault-free configuration

1 faulted IFQ entry

1 faulted RS

1 faulted ALU

1 faulted LSQ entry

1 faulted ROB entry

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

Figure 6. Performance comparison to DIVA-only (SpecINT and SpecFP)

10

7.4 Performance with Just DIVA

In this last set of experiments, we evaluate the per-

formance of a microprocessor that relies strictly on the

DIVA checkers to tolerate hard faults. While DIVA was

designed primarily for soft faults and thus this is not a

basis for a perfectly fair comparison, DIVA can tolerate

hard faults and it is instructive to compare against this

option. A DIVA-only system is also similar to a system

that uses redundant threads for error detection and

flushes the pipeline to recover from errors (assuming

forward progress can be ensured). Figure 6 shows the

effects of allowing sub-structures with hard faults to

remain in use with the DIVA checkers correcting the

errors that they activate. Once again, we plot runtimes

that are normalized to the error-free case, but we do not

aggregate results across benchmarks because there is

significant variability across benchmarks. We do not

inject hard faults into the DIVA checkers because they

cannot tolerate them without our diagnosis/reconfigura-

tion. Because the structures into which we are injecting

faults are used frequently and are critical to the correct-

ness of the processor, the results show that hard faults

have a drastic impact on system performance when

DIVA is forced to correct the errors they create. The per-

formance of the DIVA-only system is far worse than the

performance we demonstrated for our system in

Section 7.3. Technology trends toward deeper pipeline

implementations will only serve to make the perfor-

mance penalty for each error’s recovery (i.e., pipeline

flush) more severe. The relative difference in magnitude

of the structure-to-structure penalty is directly related to

how frequently a given sub-structure is used by the

workload. Benchmark-to-benchmark variation for a

given type of FDU is a result of the distribution and fre-

quency of pre-existing stall events in a given bench-

mark. The causes of these events, such as cache misses

or branch mispredictions, result in a percentage of cor-

rected errors falling in the shadow of another pipeline-

clearing event, thus diminishing the penalty associated

with the error correction. For example, a benchmark

with many branch mispredictions is less sensitive to

pipeline flushes due to errors, if the errors tend to occur

soon after branch mispredictions, since there is less state

that gets flushed by the error.

7.5 Summary and Discussion of Results

The experimental results in this section confirm that

existing microprocessors have redundancy that can be

exploited to tolerate hard faults. We have also shown

that we can accurately and quickly diagnose hard faults

and reconfigure around faulty FDUs to provide a micro-

processor that performs only slightly worse than a fault-

free microprocessor. Moreover, it vastly outperforms the

alternative of just relying on DIVA.

Technological and architectural trends drive this

work and encourage further work in this area. The inci-

dences of hard faults and fabrication defects will con-

tinue to increase. Also, as microarchitects try to exploit

ever more ILP and thread level parallelism, there will be

even more redundancy that can be leveraged for improv-

ing reliability and yield. In particular, emerging SMT

processors will have more redundant hardware and

fewer singleton resources. Thus the advantages of our

approach will increase due to these trends. The caveat is

that, as workloads evolve to take advantage of this extra

hardware, the performance impact of having to decon-

figure an FDU will increase. Nevertheless, even a

heavily loaded microprocessor will continue to function

correctly and with better performance than just DIVA in

the presence of operational hard faults and fabrication

defects.

8 Related Work

In this section, we present prior research in tolerat-

ing hard faults and fabrication defects. A canonical

design for tolerating hard faults is the IBM mainframe

[26]. Mainframes not only have redundant processors,

but they also incorporate redundancy within the proces-

sor in order to seamlessly tolerate hard faults. The IBM

G5 microprocessor, for example, has redundant units for

fetch/decode and for instruction execution. Some other

traditional fault-tolerant computers, such as the Stratus

[35] and the Tandem S2 [15], simply replicate entire

processors. An even more extreme case of using redun-

dancy to tolerate fabrication defects and, to a lesser

extent, operational hard faults, is the Teramac [8]. The

Teramac is designed to make use of components that are

likely to be faulty, and it is motivated by expected defect

rates in nanotechnology. While these systems all pro-

vide excellent resilience to hard faults, such heavy-

weight redundancy incurs significant costs in terms of

hardware and power consumption.

DIVA [2] and redundant thread schemes provide low

cost and low power alternatives to heavyweight redun-

dancy. Among the redundant thread schemes, the ones

that perform recovery as well as error detection include

AR-SMT [21], Slipstream [30], SRT [20, 17], and

SRTR [33]. All of these schemes were designed for tran-

sient faults and thus share the same drawback as DIVA,

with respect to hard faults, since they incur a pipeline

squash (and its corresponding performance and energy

penalty) every time a fault manifests itself. For hard

faults in frequently-used microprocessor structures,

fault manifestation is too frequent and the performance

of these schemes suffers.

11

There are lightweight approaches by Shivakumar et

al. [25] and Srinivasan et al. [29] that, similar to our

work, leverage existing redundancy in microprocessors.

Shivakumar et al.’s work differs in that it is strictly for

tolerating fabrication defects and does not extend to

hard faults that occur during execution. They combine

offline (pre-shipment) testing and diagnosis of micro-

processors with deconfiguration capabilities to improve

effective yield. Our approach combines deconfiguration

with online error detection and fault diagnosis to

improve both yield and reliability. Srinivasan et al.’s

work does not address error detection or fault diagnosis.

A recent approach to improving microprocessor reli-

ability in the presence of operational hard faults (but not

fabrication defects) is to use dynamic reliability man-

agement [27]. In this approach, the processor dynami-

cally adapts, based on a model of its estimated lifetime,

in order to achieve a desired lifetime. In particular, if the

processor is running too hot, due to a particular work-

load, it may use dynamic voltage scaling to cool down

and improve its reliability. This approach is orthogonal

and complementary to ours.

A recent scheme for tolerating only fabrication

defects, called Rescue [23], utilizes circuit transforma-

tions to improve testability and enable coarse-grain

diagnosis of defective components (ways of a supersca-

lar processor). The finer grain diagnosis in our research

enables us to discard less fault-free hardware, and it may

enable us to tolerate more hard faults before failure.

There are other non-comprehensive approaches to

tolerating hard faults in specific parts of a computer sys-

tem. One option for storage structures is to protect them

with error correcting codes (ECC), as in IBM main-

frames [26]. Combining ECC for arrays with DIVA

avoids costly DIVA recoveries. However, ECC protec-

tion of arrays is on the critical path for array access

(both read and write), and it will thus add to the micro-

processor’s critical path and degrade its performance in

the fault-free case. Storage structures can also be pro-

tected by using a level of indirection to map out faulty

portions of the structure. Whole disk failures were

addressed by RAID [19]. For disk faults that did not

incapacitate the entire disk, the solution was to map out

faulty portions at the sector granularity. Similar

approaches have been developed for DRAM main mem-

ory. Whole chip failures are tolerated by chipkill mem-

ory and RAID-M [9, 12], and partial failures are

tolerated with schemes that map out faulty locations [7,

16, 22]. For SRAM caches, techniques have been devel-

oped to map out defective locations during fabrication

[36] and, more recently, during execution [18]. SRAS

[5] uses a similar technique to map out defective rows in

microprocessor array structures, such as the reorder

buffer and branch history table.

9 Conclusions

To address the emerging problem of operational hard

faults and fabrication defects in microprocessors, we

have developed a microprocessor design that leverages

the existing redundancy in current microprocessors.

This redundancy, which exists to improve performance

by exploiting ILP and thread level parallelism, can be

used to mask hard faults. Our microprocessor design

integrates DIVA-style error detection with a new mecha-

nism for diagnosing hard faults. After diagnosis, it de-

configures the faulty FDU and continues operation.

Experimental results demonstrate that our scheme can

accurately and quickly diagnose hard faults and recon-

figure around faulty FDUs to provide a microprocessor

that performs only somewhat worse than a fault-free

system.

Acknowledgments

This material is based upon work supported by the

National Science Foundation under grants CCR-

0309164 and CCF-0444516, the National Aeronautics

and Space Administration under Grant NNG04GQ06G,

a Duke Warren Faculty Scholarship (Sorin), and dona-

tions from Intel Corporation. We thank Derek Hower for

modeling faults in the adder. We thank Alvy Lebeck and

rest of the Duke Architecture Reading Group for helpful

feedback on this paper.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An

Infrastructure for Computer System Modeling. IEEE

Computer, 35(2):59–67, Feb. 2002.

[2] T. M. Austin. DIVA: A Reliable Substrate for Deep

Submicron Microarchitecture Design. In Proc. of the

32nd Annual IEEE/ACM Int’l Symposium on

Microarchitecture, pages 196–207, Nov. 1999.

[3] D. T. Blaauw, C. Oh, V. Zolotov, and A. Dasgupta. Static

Electromigration Analysis for On-Chip Signal

Interconnects. IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, 22(1):39–48, Jan. 2003.

[4] D. Boggs et al. The Microarchitecture of the Intel

Pentium 4 Processor on 90nm Technology. Intel

Technology Journal, 8(1), Feb. 2004.

[5] F. Bower, P. Shealy, S. Ozev, and D. Sorin. Tolerating

Hard Faults in Microprocessor Array Structures. In Proc.

of the Int’l Conference on Dependable Systems and

Networks, pages 51–60, June 2004.

[6] J. Carter, S. Ozev, and D. Sorin. Circuit-Level Modeling

for Concurrent Testing of Operational Defects due to

Gate Oxide Breakdown. In Proc. of Design, Automation,

and Test in Europe (DATE), pages 300–305, Mar. 2005.

12

[7] T. Chen and G. Sunada. An Ultra-Large Capacity Single-

Chip Memory Architecture with Self-Testing and Self-

Repairing. In Proc. of the Int’l Conference on Computer

Design (ICCD), pages 576–581, Oct. 1992.

[8] W. B. Culbertson et al. The Teramac Custom Computer:

Extending the Limits with Defect Tolerance. In Proc. of

the IEEE Int’l Symposium on Defect and Fault Tolerance

in VLSI Systems, Nov. 1996.

[9] T. J. Dell. A White Paper on the Benefits of Chipkill-

Correct ECC for PC Server Main Memory. IBM

Microelectronics Division Whitepaper, Nov. 1997.

[10] D. J. Dumin. Oxide Reliability: A Summary of Silicon

Oxide Wearout, Breakdown and Reliability. World

Scientific Publications, 2002.

[11] G. Hinton et al. The Microarchitecture of the Pentium 4

Processor. Intel Technology Journal, Feb. 2001.

[12] IBM. Enhancing IBM Netfinity Server Reliability: IBM

Chipkill Memory. IBM Whitepaper, Feb. 1999.

[13] International Technology Roadmap for Semiconductors,

2003.

[14] JEDEC Solid State Technology Association. Failure

Mechanisms and Models for Semiconductor Devices.

JEDEC Publication JEP122-B, Aug. 2003.

[15] D. Jewett. Integrity S2: A Fault-Tolerant UNIX Platform.

In Proc. of the 21st Int’l Symposium on Fault-Tolerant

Computing Systems, pages 512–519, June 1991.

[16] P. Mazumder and J. S. Yih. A Novel Built-In Self-Repair

Approach to VLSI Memory Yield Enhancement. In Proc.

of the Int’l Test Conference, pages 833–841, 1990.

[17] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed

Design and Implementation of Redundant Multhreading

Alternatives. In Proc. of the 29th Annual Int’l Symposium

on Computer Architecture, pages 99–110, May 2002.

[18] M. Nicolaidis, N. Achouri, and S. Boutobza. Dynamic

Data-bit Memory Built-In Self-Repair. In Proc. of the

Int’l Conference on Computer Aided Design, pages 588–

594, Nov. 2003.

[19] D. Patterson, G. Gibson, and R. Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In Proc.

of 1988 ACM SIGMOD Conference, pages 109–116, June

1988.

[20] S. K. Reinhardt and S. S. Mukherjee. Transient Fault

Detection via Simultaneous Multithreading. In Proc. of

the 27th Annual Int’l Symposium on Computer

Architecture, pages 25–36, June 2000.

[21] E. Rotenberg. AR-SMT: A Microarchitectural Approach

to Fault Tolerance in Microprocessors. In Proc. of the

29th Int’l Symposium on Fault-Tolerant Computing

Systems, pages 84–91, June 1999.

[22] K. Sawada et al. Built-in Self Repair Circuit for High

Density ASMIC. In Proc. of the IEEE Custom Integrated

Circuits Conference, 1989.

[23] E. Schuchman and T. N. Vijaykumar. Rescue: A

Microarchitecture for Testability and Defect Tolerance.

In Proc. of the 32nd Annual Int’l Symposium on

Computer Architecture, pages 160–171, June 2005.

[24] T. Sherwood et al. Automatically Characterizing Large

Scale Program Behavior. In Proc. of the Tenth Int’l

Conference on Architectural Support for Programming

Languages and Operating Systems, Oct. 2002.

[25] P. Shivakumar, S. W. Keckler, C. R. Moore, and

D. Burger. Exploiting Microarchitectural Redundancy

For Defect Tolerance. In Proc. of the 21st Int’l

Conference on Computer Design, Oct. 2003.

[26] L. Spainhower and T. A. Gregg. IBM S/390 Parallel

Enterprise Server G5 Fault Tolerance: A Historical

Perspective. IBM Journal of Research and Development,

43(5/6), September/November 1999.

[27] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The

Case for Lifetime Reliability-Aware Microprocessors. In

Proc. of the 31st Annual Int’l Symposium on Computer

Architecture, June 2004.

[28] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The

Impact of Technology Scaling on Lifetime Reliability. In

Proc. of the Int’l Conference on Dependable Systems and

Networks, June 2004.

[29] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.

Exploiting Structural Duplication for Lifetime Reliability

Enhancement. In Proc. of the 32nd Annual Int’l

Symposium on Computer Architecture, June 2005.

[30] K. Sundaramoorthy, Z. Purser, and E. Rotenberg.

Slipstream Processors: Improving both Performance and

Fault Tolerance. In Proc. of the Ninth Int’l Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 257–268, Nov. 2000.

[31] J. Tao, J. F. Chen, N. W. Cheung, and C. Hu. Modeling

and Characterization of Electromigration Failures Under

Bidirectional Current Stress. IEEE Trans. on Electron

Devices, 43(5):800–808, May 1996.

[32] D. M. Tullsen et al. Exploiting Choice: Instruction Fetch

and Issue on an Implementable Simultaneous

Multithreading Processor. In Proc. of the 23rd Annual

Int’l Symposium on Computer Architecture, pages 191–

202, May 1996.

[33] T. N. Vijaykumar, I. Pomeranz, and K. K. Chung.

Transient Fault Recovery Using Simultaneous

Multithreading. In Proc. of the 29th Annual Int’l

Symposium on Computer Architecture, pages 87–98, May

2002.

[34] C. Weaver and T. Austin. A Fault Tolerant Approach to

Microprocessor Design. In Proc. of the Int’l Conference

on Dependable Systems and Networks, pages 411–420,

July 2001.

[35] D. Wilson. The Stratus Computer System. In Resilient

Computer Systems, pages 208–231, 1985.

[36] L. Youngs and S. Paramanandam. Mapping and

Repairing Embedded-Memory Defects. IEEE Design &

Test of Computers, pages 18–24, January-March 1997.

	Abstract
	1 Introduction
	2 Hard Faults in Microprocessors
	3 Error Detection and Correction
	4 Fault Diagnosis
	4.1 A New Online Diagnosis Mechanism
	Table 1. Error counter thresholds

	4.2 Alternative Design Options

	5 Deconfiguring Faulty Components
	Figure 1. Deconfiguration of entries in a circular buffer (e.g., reorder buffer). Shading indicates hardware added for entry deconfiguration purposes.
	Figure 2. Deconfiguration of entries in a tabular structure (e.g., reservation station). Shading indicates hardware added for entry deconfiguration purposes.

	6 Costs and Limitations
	6.1 Hardware Costs
	6.2 Limitations

	7 Evaluation
	7.1 Methodology
	Table 2. Parameters of Target System
	Figure 3. Error-free performance (SpecINT and SpecFP)

	7.2 Detection and Diagnosis of Hard Faults
	Figure 4. Hard fault diagnosis latency
	Figure 5. Performance impact of losing one component to a hard fault

	7.3 Performance After Deconfiguring FDU
	Figure 6. Performance comparison to DIVA-only (SpecINT and SpecFP)

	7.4 Performance with Just DIVA
	7.5 Summary and Discussion of Results

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	A Mechanism for Online Diagnosis of Hard Faults in Microprocessors
	Fred A. Bower1,3, Daniel J. Sorin2, and Sule Ozev2
	1Department of Computer Science, Duke University 2Department of Electrical and Computer Engineering, Duke University
	3IBM, Research Triangle Park

