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Abstract

We develop a microprocessor design that tolerates hard 

faults, including fabrication defects and in-field faults, 

by leveraging existing microprocessor redundancy. To 

do this, we must: detect and correct errors, diagnose 

hard faults at the field deconfigurable unit (FDU) gran-

ularity, and deconfigure FDUs with hard faults. In our 

reliable microprocessor design, we use DIVA dynamic 

verification to detect and correct errors. Our new 

scheme for diagnosing hard faults tracks instructions’ 

core structure occupancy from decode until commit. If a 

DIVA checker detects an error in an instruction, it incre-

ments a small saturating error counter for every FDU 

used by that instruction, including that DIVA checker. A 

hard fault in an FDU quickly leads to an above-thresh-

old error counter for that FDU and thus diagnoses the 

fault. For deconfiguration, we use previously developed 

schemes for functional units and buffers, and we present 

a scheme for deconfiguring DIVA checkers. Experimen-

tal results show that our reliable microprocessor quickly 

and accurately diagnoses each hard fault that is injected 

and continues to function, albeit with somewhat 

degraded performance. 

1  Introduction

As technological trends continue to lead toward 

smaller device and wire dimensions in integrated cir-

cuits, the probability of hard (permanent) faults in 

microprocessors increases. These faults may be intro-

duced during fabrication, as defects, or they may occur 

during the operational lifetime of the microprocessor. 

Well-known physical phenomena that lead to opera-

tional hard faults are gate oxide breakdown, electromi-

gration, and thermal cycling. Microprocessors become 

more susceptible to all of these phenomena as device 

dimensions shrink [28], and the semiconductor indus-

try’s roadmap has identified both operational hard faults 

and fabrication defects (which we will collectively refer 

to as “hard faults”) as critical challenges [13]. In the 

near future, it may no longer be a cost-effective strategy 

to discard a microprocessor with one or more hard 

faults, which is what, for the most part, we do today. 

Traditional approaches to tolerating hard faults have 

masked them using macro-scale redundancy, such as tri-

ple modular redundancy (TMR). TMR is an effective 

approach, but it incurs a 200% overhead in terms of 

hardware and power consumption. There are some 

other, lightweight approaches that use marginal amounts 

of redundancy to protect specific portions of the micro-

processor, such as the cache [36, 18] or buffers [5], but 

none of these are comprehensive. 

Our goal in this work is to create a microprocessor 

design that can tolerate hard faults without adding sig-

nificant redundancy. The key observation, made also by 

previous research [25, 27, 29], is that modern supersca-

lar microprocessors, particularly simultaneously multi-

threaded (SMT) microprocessors [32], already contain 

significant amounts of redundancy for purposes of 

exploiting ILP and enhancing performance. We want to 

use this redundancy to mask hard faults, at the cost of a 

graceful degradation in performance for microproces-

sors with hard faults. In this paper, we do not consider 

adding extra redundancy strictly for fault tolerance, 

because cost is such an important factor for commodity 

microprocessors. The viability of our approach depends 

only on whether, given a faulty microprocessor, being 

able to use it with somewhat degraded performance pro-

vides any utility over having to discard it. 

To achieve our goal, the microprocessor must be 

able to do three things while it is running. 

• It must detect and correct errors caused by faults 

(both hard and transient). 

• It must diagnose where a hard fault is, at the granu-

larity of the field deconfigurable unit (FDU). 

• It must deconfigure a faulty FDU in order to prevent 

its fault from being exercised. 
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While previous work in this area has explored 

aspects of this problem, none has developed an inte-

grated solution. Some work has used deconfiguration to 

tolerate strictly fabrication defects and thus assumed 

pre-shipment testing instead of online error detection 

and diagnosis [25]. Other work has explored deconfigu-

ration and has left detection and diagnosis as open prob-

lems [29]. 

In this paper, we discuss integrated design options 

for microprocessors that achieve all three of these goals, 

and we present one particular microprocessor in this 

design space. First, our microprocessor detects and cor-

rects errors, due to both transient faults and hard faults, 

using previously developed DIVA-style [2] dynamic 

verification. Second, it uses a newly developed mecha-

nism to diagnose hard faults as the system is running. 

Third, after diagnosing a hard fault, the microprocessor 

deconfigures the faulty FDU in an FDU-specific fash-

ion. In this paper, we present and evaluate previously 

developed deconfiguration schemes for functional units 

and portions of array structures (e.g., reorder buffer, 

load/store queue, etc.), and we show that our integrated 

approach also enables the microprocessor to deconfig-

ure faulty DIVA checkers. 

Our experimental results show that our new diagno-

sis mechanism quickly and accurately diagnoses hard 

faults. Moreover, our reliable microprocessor can func-

tion quite capably in the presence of hard faults, despite 

not using redundancy beyond that which is already 

available in a modern microprocessor. This technique 

can turn otherwise useless microprocessors into micro-

processors that can function at a gracefully degraded 

level of performance. This capability can improve reli-

ability by tolerating operational hard faults. We can 

improve yield by shipping microprocessors with defects 

that we have tolerated—it is as if they are regular micro-

processors that will get “binned” into a lower perfor-

mance bin. Although binning is typically by clock 

frequency, recent proposals have suggested more gen-

eral performance binning [25]. As long as these bins are 

not so low-performing as to be useless, then our 

improvement in yield is a benefit. Our scheme also 

vastly outperforms a system with only DIVA or a com-

parable recovery-based scheme, since the performance 

cost of recoveries is quite high for hard faults that get 

exercised frequently; moreover, our scheme can tolerate 

a hard fault in a DIVA checker.

The contributions of this work are:

•A dynamic, comprehensive hardware mechanism 

for diagnosing hard faults in microprocessors, 

including faults in DIVA checkers.

•A microprocessor design that integrates our new 

hard fault diagnosis mechanism with DIVA error 

detection and a mix of pre-existing and new decon-

figuration schemes.

•An experimental evaluation that demonstrates that a 

microprocessor with our enhancements can tolerate 

hard faults with a graceful degradation in perfor-

mance.

In Section 2, we discuss hard faults and why they 

concern microarchitects. In Sections 3, 4, and 5, we 

describe error detection and correction, hard fault diag-

nosis, and deconfiguration of faulty components, 

respectively. Section 6 discusses the costs and limita-

tions of our particular implementation. Section 7 pre-

sents our experimental evaluation. We discuss related 

work in Section 8 and conclude in Section 9.

2  Hard Faults in Microprocessors

In this section, we discuss the hard faults that moti-

vate this work. In particular, we focus on the technologi-

cal trends that are leading towards greater incidences of 

these faults. With increasingly smaller device and wire 

dimensions and higher temperatures, these trends lead 

us to conclude that hard fault rates will increase. 

There have been several recent studies of operational 

hard faults [28, 14], that is, hard faults that occur over 

the lifetime of the microprocessor. Srinivasan et al. [28] 

determine that electromigration [31, 3] and gate oxide 

breakdown [10] are likely to be the two dominant phe-

nomena that cause operational hard faults. Electromi-

gration results in highly resistive interconnects or 

contacts and eventually leads to open circuits. Elec-

tromigration increases as wire dimensions shrink and as 

temperatures increase. Gate oxide breakdown (OBD) 

results in the malfunction of a single transistor due to 

the creation of a highly conductive path between its gate 

and its bulk. A newly manufactured oxide contains 

inherent electron traps due to imperfections in the fabri-

cation process. Over the lifetime of the device, the num-

ber of such traps increases due to electric field stress and 

electron tunneling. At some point, the electron traps 

may line up and constitute a conductive path between 

the gate and the bulk of the device, eventually leading to 

OBD. OBD rates increase as oxide thicknesses shrink 

and temperatures increase. Since OBD increases switch-

ing delay, it can lead to delay faults that manifest them-

selves as bit flips [6]. 

Defects introduced during chip fabrication are 

another source of hard faults. Their causes differ from 

those of operational hard faults, but they often manifest 

themselves in a similar fashion. For example, a fabrica-

tion defect could result in a discontinuity in a wire, 
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which is equivalent to the situation in which electromi-

gration leads to an open circuit. A fabrication defect 

could also lead to the growth of an insufficiently thick 

gate oxide, which is functionally equivalent to OBD. 

The impact of technology trends on fabrication defects 

is less clear than it is for operational faults. In general, 

though, smaller wire and device dimensions are more 

prone to defects, since the margin for error is smaller. 

3  Error Detection and Correction

There are numerous ways to detect and correct errors 

in microprocessors. For our target design space, the best 

error detection candidates are the recently developed 

techniques that are both comprehensive (i.e., not tai-

lored to one specific error model) and less costly than 

macro-scale redundancy (e.g., TMR). We do not claim 

to innovate in this area; we simply seek to use a pre-

existing solution that is well-suited to our diagnosis and 

deconfiguration mechanisms. 

We choose DIVA to comprehensively detect and cor-

rect errors using dynamic verification with checker pro-

cessors [2]. In a system with DIVA dynamic 

verification, a total of n checkers are added at the com-

mit stage of the typical n-way superscalar processor 

pipeline. These checkers are small, simple, in-order 

cores. According to Weaver and Austin [34], a checker’s 

size is less than 6% of an Alpha 21264 core, which is far 

less than the 200% overhead of TMR. These checkers 

re-execute each instruction and compare their results 

with those of the superscalar core. The original DIVA 

paper [2] assumes that the checkers, because of their 

small size, can be made resilient to physical faults; thus, 

a mismatch in the result of an instruction signifies an 

error in the superscalar core and leads the checker to 

correct the error by committing its results and squashing 

the superscalar pipeline. 

In the original DIVA design, a hard fault in a checker 

is undetectable and uncorrectable—this is a limitation 

that we overcome later in this paper by detecting and 

diagnosing hard faults in checkers, so that a system can 

stop producing erroneous results and, if backward error 

recovery (BER) is available, recover from erroneous 

data that was committed before the checker was diag-

nosed as faulty. 

Other options besides DIVA exist, such as redundant 

multithreading, and they present different engineering 

tradeoffs. A thorough discussion of all of the alterna-

tives is outside the scope of this paper, but we provide a 

summary of alternatives and their capabilities in 

Section 8. We chose DIVA over the alternatives because 

the opportunity cost and power consumption of using 

the alternatives exceeded the small amount of overhead 

introduced by DIVA. We also believe that DIVA check-

ers offer better hard fault correction capability. Detailed 

studies of the implementation of DIVA dynamic verifi-

cation have shown it to provide performance nearly on 

par with an unprotected processor in the error-free case, 

with minor performance degradation until error rates 

reach the error-per-thousand-instruction range [2].

4  Fault Diagnosis

DIVA checkers do not provide fault diagnosis. They 

are only capable of detecting and correcting errors, not 

determining their underlying causes. For transient faults, 

this is appropriate, since the desired remedy never 

involves altering the configuration of the core. For hard 

faults, however, we show in Section 7 that it is often 

desirable to deconfigure part of the superscalar core in 

order to prevent frequent errors and the performance 

penalty that frequent pipeline flushes from DIVA correc-

tions (or redundant thread corrections) would require. 

We define sub-structures within the processor core 

that we wish to be able to deconfigure as field deconfig-

urable units (FDUs). To diagnose hard faults in the pro-

cessor core, we first have to select the FDU granularity 

at which we wish to be able to diagnose. Many struc-

tures are replicated within a typical superscalar core, 

and the granularity of replication represents a natural 

FDU granularity. 

The choice of FDU is a design decision for a given 

implementation. For the processor we model in our eval-

uation, the identified FDUs for which we track diagnosis 

information are: individual entries in the instruction 

fetch queue (IFQ), individual reservation stations (RS), 

individual entries in the load-store queue (LSQ), indi-

vidual entries in the re-order buffer (ROB), individual 

arithmetic logic units (ALU), and the individual DIVA 

checkers. We have chosen a fairly fine FDU granularity, 

but one could choose coarser or even finer granularities 

if so desired; we discuss this engineering tradeoff later. 

The hardware bounds of our diagnosis mechanism are 

the components in which the selected error checker (in 

our design, DIVA) can detect a fault. Therefore, we do 

not consider the register file, because DIVA cannot 

recover from errors in it. 

4.1  A New Online Diagnosis Mechanism

We propose in this paper to dynamically attribute 

errors to FDUs as the system is running. Given an error 

detection mechanism, if an instruction (or micro-op, in 

the case of IA-32) is determined to be in error, the sys-

tem records which FDUs that instruction used during its 

lifetime. If, over a period of time, more than a pre-speci-

fied threshold of errors has been attributed to a given 

FDU, it is very likely that this resource has a hard fault. 
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To track each instruction’s FDU usage, bits are car-

ried with each instruction from the point of FDU usage 

to commit. For those structures that the instruction owns 

at commit, this information is already implicitly avail-

able and no extra wires are needed to carry this resource 

usage info through the pipeline. In our modeled proces-

sor, the ROB entries and DIVA checkers use implicit 

tracking. For the remaining FDUs, the number of bits 

required is a function of the size of the structure and the 

granularity into which we are allowing it to be sub-

divided for later deconfiguration. This represents an 

engineering trade-off in our design that will allow 

implementations to select the appropriate FDU granu-

larity/overhead trade-off. With the configuration used in 

our evaluation in Section 7, each instruction carries 19 

bits of usage information: 5 bits for RS, 6 bits for LSQ, 

6 bits for IFQ, and 2 bits for ALUs. Carrying these extra 

bits through the pipeline incurs two costs: pipeline 

latches will be marginally wider and there will be more 

wires to route through the pipeline. However, compared 

to the 64-bit operands that are carried through the pipe-

line, these extra 19 bits are a small addition, especially 

since not all 19 bits need to traverse the whole pipeline. 

For each FDU we track, the processor maintains a small, 

saturating error counter. 

There are four challenges with this approach. First, 

after the FDUs have been selected and configured for 

diagnosis in an implementation of our mechanism, all 

remaining logic for which the checker detects errors 

must also be tracked by our diagnosis scheme. For our 

design, this critical logic includes all logic that is not 

within an FDU but that is in the portion of the supersca-

lar core for which DIVA is capable of detecting errors. 

This includes instruction issue, any singleton arithmetic 

logic units (ALUs) (for example, a floating point multi-

ply/divide unit), floating point ALUs, and any common 

datapaths that all instructions must traverse while in-

flight. 

Second, transient errors must not lead to above-

threshold error rates. Thus, we must have error counter 

thresholds that are not too small, and the microprocessor 

must periodically clear the error counters to prevent 

transient errors from accumulating past the hard fault 

threshold. The frequency of counter clearing is an 

adjustable parameter that depends on expected transient 

error rates. Counter clearing is a low-cost operation, so 

we choose to clear the counters once per second in our 

experiments, even though current terrestrial transient 

fault rates do not approach this frequency. Also, if a hard 

fault is detected and deconfiguration is activated, the 

deconfiguration process clears the error counters. 

Third, the error rate threshold for a resource must be 

related to its usage. For example, a very high threshold 

for a resource that is rarely used will preclude the sys-

tem from ever diagnosing a hard fault in it. Thus, for fre-

quently utilized FDUs, a larger counter value is required 

to prevent the mis-diagnosis of a fault in an upstream or 

downstream structure. In Table 1, we list the counter 

thresholds for the FDUs we consider in this paper. For 

resources that are very rarely used, such as the floating 

point units, our mechanism might never be able to diag-

nose hard faults in them. However, any hard fault that 

gets exercised so rarely as to not exceed our error 

counter threshold is also so rare that it incurs little per-

formance penalty for its infrequent error recoveries. In 

this situation, simply using DIVA to correct errors due 

to a hard fault in a rarely used FDU is sufficient. Results 

(not shown due to space constraints) confirm that, even 

for the SPEC floating point benchmarks, a faulty FPU 

does not significantly degrade performance. Thus, we do 

not consider FPUs to be FDUs. The key observation is 

that our scheme can diagnose hard faults in the highly 

utilized resources, so that the microprocessor avoids fre-

quent recoveries. 

The final challenge is that the resources must be 

used reasonably independently. Otherwise, for example, 

if every time an instruction uses resource A it also uses 

resource B, then the diagnosis mechanism will not be 

able to distinguish between a hard fault in A and a hard 

fault in B. To guarantee that instructions take many dif-

ferent and independent paths through the pipeline, we 

slightly change the scheduling of resources that are nor-

mally scheduled non-uniformly (e.g., higher priority for 

ALU0) to add a “round-robin” aspect to it. For example, 

instead of always allocating the lowest-numbered ALU 

that is available, the microprocessor allocates available 

ALUs in a round-robin fashion. Otherwise, the usage of 

ALU0 could be significantly greater than that of other 

ALUs and thus preclude hard faults in them from being 

diagnosed (since the thresholds assume uniform utiliza-

Table 1. Error counter thresholds
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instruction fetch queue entry 32 64 320

reservation station 32 32 160

reorder buffer entry 16 128 512

load/store queue entry 16 48 192

integer ALU 64 3 18

DIVA checker 64 3 18

critical logic (issue, etc.) 128 1 7

1227
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tion). This scheduling modification is not necessary for 

resources that are naturally scheduled uniformly, like 

ROB entries. We found that round robin scheduling 

alone does not avoid all lockstep allocation of resources, 

though. For example, with three ALUs and three DIVA 

checkers, we found that a long string of instructions that 

all used ALUs led to undiagnosable errors. In one par-

ticular scenario, an instruction that used ALU0 always 

used Checker1, ALU1 was perfectly correlated with 

Checker2, and ALU2 was perfectly correlated with 

Checker0. To avoid this lockstep allocation, we intro-

duced a small amount of pseudo-randomness into the 

scheduling of checkers. Every cycle, the first checker to 

be considered for allocation is determined based on 

pseudo-random data (e.g., low order bits of the tick 

counter), and then subsequent checkers are allocated 

sequentially (mod 3) after the first one. This pseudo-ran-

domness, combined with round-robin scheduling, pre-

vents lockstep allocation and achieves reasonably 

uniform utilization of each set of identical FDUs.

We include the DIVA checkers in the error diagnosis 

design, so that we can enable the microprocessor to tol-

erate hard faults in the checkers. Since a k-way super-

scalar microprocessor requires approximately k

checkers to avoid having the checkers become a bottle-

neck, we would like to be able to tolerate a hard fault in 

one of them by leveraging their redundancy. 

Using DIVA for error detection and correction pro-

vides three unique issues related to diagnosis and decon-

figuration of a hard-faulted unit. First, uncached loads 

and stores commit without any redundant check of the 

operation, making them undiagnosable. A fault affecting 

the logic unique to these operations will not be covered 

by our mechanism. The system will perform exactly as 

it would if it only had DIVA checkers active. Second, 

the microprocessor is vulnerable to transient errors in 

DIVA checkers, but DIVA assumes that small checkers 

can be designed to be more resilient to transient faults 

by using more robust feature sizes. Third, because the 

microprocessor trusts a DIVA checker until its error 

counter exceeds its threshold, the microprocessor is vul-

nerable to incorrect execution in the window between 

when a hard fault occurs in a checker and when it diag-

noses that the checker is the culprit. We further discuss 

this window of vulnerability in Section 6.2. 

4.2  Alternative Design Options

There exist other ways to perform fault diagnosis. 

The most obvious approach is to use TMR—if two mod-

ules produce one result and the third module produces a 

different result, then the system diagnoses the third 

module as faulty (assuming a single-fault model). TMR, 

however, has a 200% hardware and power overhead. 

Another well-known diagnosis approach is built-in 

self-test (BIST). After detecting an error and determin-

ing that it is due to a hard fault (e.g., by detecting it 

repeatedly), systems with dedicated BIST hardware can 

test themselves in order to diagnose the location of the 

hard fault. To its advantage, unlike our new diagnosis 

mechanism, BIST does not have to worry about the sta-

tistical nature of online error counting. BIST can be 

applied to a microprocessor like the ones we study, and 

one concurrent BIST mechanism can be used for all 

components in the path, although the number of BIST 

test vectors to generate—either deterministically or 

pseudo-randomly—would be extremely large. The 

BIST-based scheme cannot be applied to single modules 

such as the instruction queue or the decode logic, since 

taking these structures offline for testing would leave the 

microprocessor temporarily unable to function. More-

over, online error counting has the advantage over BIST 

of diagnosing faults via the observation of the execution 

of actual software and not needing to analyze test out-

puts. BIST also adds performance overhead due to the 

extra multiplexers that choose between normal inputs 

and BIST inputs. 

5  Deconfiguring Faulty Components

After an FDU has been diagnosed as having a hard 

fault present, deconfiguring the faulty FDU is desired to 

avoid the frequent pipeline flushes that DIVA would 

trigger due to continued manifestation of the fault. In 

this section, we describe several pre-existing methods 

for deconfiguring typical microprocessor structures, 

plus a new way to deconfigure a faulty DIVA checker.

For circular access array structures—such as the 

instruction fetch queue (IFQ), reorder buffer (ROB), and 

load/store queue (LSQ)—previous work has shown how 

to add a level of indirection to allow for de-configura-

tion of a single entry with little additional latency added 

to access time for the structure [5, 25]. In the method by 

Bower et al. [5], each structure maintains a fault map. 

This fault map information feeds into the head and tail 

pointer advancement logic, causing the advancement 

logic to skip an entry that is marked as faulty. If cold 

spares are available, as assumed by Bower et al. and 

shown in Figure 1, the structure size can be maintained 

at the original processor design point. If no spares are 

provisioned, which is what we assume in this paper, 

then the structure size must be updated when the fault 

map is updated. 

For some tabular (i.e., directly addressed) struc-

tures—such as reservation stations, register files, etc.—a 

simple solution is to permanently mark the resource as 

in-use, thus removing it from further operation [25]. 

Once again, Bower et al. [5] assume that cold spares 
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may be available, and we illustrate this previously devel-

oped design in Figure 2, even though we assume no pro-

visioning of cold spares in this paper. 

For a functional unit (ALU, etc.), similar to a reser-

vation station, we can mark the resource as permanently 

busy, preventing further instructions from issuing to it 

[25]. Cold sparing of functional units is possible, but it 

may require too much die space, as functional units are 

relatively large compared to individual ROB entries or 

reservation stations. We focus on using existing redun-

dancy, since the cost of adding extra redundancy may be 

too great for commodity microprocessors.

For one of the multiple DIVA checkers, we can map 

it out if we diagnose it as being permanently faulty. 

Depending on how DIVA checkers are scheduled, 

deconfiguration is just as simple as for ALUs; just mark-

ing a faulty checker as permanently busy will deconfig-

ure it. Prior work has not looked into deconfiguring 

DIVA checkers, because no fault diagnosis schemes 

prior to this paper could diagnose hard faults in a 

checker.

6  Costs and Limitations

The design that we have presented in Sections 3-5 is 

not free, nor is it without limitations. In this section, we 

present its hardware costs and limitations. 

6.1  Hardware Costs

We add hardware to an unprotected microprocessor 

to achieve hard fault tolerance. The largest, single addi-

tion to the processor is the DIVA checkers, each of 

which has been estimated at 6% of the size of an Alpha 

21264 core [34]. In addition to DIVA, which provides 

benefits even without our additions, we also add: error 

counters (1227 bits total), wires for tracking each 

instruction’s resource usage (19 wires in total), and logic 

for deconfiguring FDUs. None of these additional hard-

ware costs are large; moreover, they can all be reduced 

at the expense of a coarser granularity of diagnosis and 

deconfiguration. For example, we can share one error 

counter and one wire among k entries in the instruction 

window, at the cost of having to deconfigure all k entries 

if any of them incurs a hard fault. 

6.2  Limitations

We now discuss three limitations of our current 

implementation and approaches for addressing them in 

the future. First, there are certain structures that we 

either cannot protect or that are very difficult to protect. 

Our current implementation cannot protect the register 

file, because it is part of the recovery point for DIVA 

recovery. We cannot diagnose faults in singleton 

resources, due to ambiguity reasons stated at the end of 

Section 4.1. Singleton resources include issue logic, 

common datapath lines, and similar components. Sin-

gletons are always in lock-step scheduling with other 

singletons. Future work will involve designing modular 

implementations of these currently monolithic struc-

tures, so that incremental redundancy is feasible. 

Second, there are certain scenarios in which the sys-

tem can deconfigure a fault-free FDU. A transient or 

hard fault in our added hardware—error counters, wires 

for tracking resource usage, and deconfiguration logic—

could lead to deconfiguring a fault-free component. In 

general, if deconfiguration does not help (i.e., immedi-

ately after deconfiguration, another error counter satu-

rates), then the system can reconfigure the previously 
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mapped out unit back into the system (under the com-

mon assumption of one hard fault at a time). The micro-

processor also tolerates faults in the error counters by 

testing them. After clearing the counters, it checks that 

they are indeed all zero. It also uses a small amount of 

hardware to periodically test that the counters can be 

incremented correctly. If a counter is faulty, the corre-

sponding FDU is then permanently either configured or 

deconfigured, based upon whether it is mapped back in 

or left deconfigured. Mapping it back in leaves the sys-

tem vulnerable to a hard fault in this FDU, but leaving it 

deconfigured is potentially a loss of useful hardware. 

Third, there is a window of vulnerability in which a 

faulty microprocessor can unwittingly produce errone-

ous results. Being able to deconfigure a faulty DIVA 

checker enables the microprocessor to improve reliabil-

ity by preventing the fault from continuing to silently 

corrupt system state; in a DIVA-only system, it would 

go unnoticed until visible data corruption was recog-

nized by a downstream entity. However, there is still a 

window of vulnerability between when the hard fault 

occurs in the checker and when it is diagnosed and 

deconfigured. In that window, a number of instructions 

equal to the error counter threshold for the checker 

times the number of DIVA checkers could have been 

committed in error, since DIVA checkers assume they 

are correct in the case of a mis-comparison. Without a 

higher-level recovery scheme, such as checkpointing, 

this erroneously committed state represents an unrecov-

erable error. 

7  Evaluation

There are three goals of this evaluation. First, we 

want to show that our reliable microprocessor can 

quickly and correctly detect and diagnose hard faults, 

even in the presence of transient faults. Second, we want 

to demonstrate that, after our scheme deconfigures a 

permanently faulty FDU, the microprocessor’s perfor-

mance is still good enough to be useful. Third, we want 

to compare our scheme against a microprocessor that 

simply relies on DIVA checkers to tolerate hard faults; 

while DIVA was designed primarily for soft faults, it 

can also tolerate hard faults, and we want to determine if 

our scheme outperforms this simpler solution.

7.1  Methodology

To evaluate our design for proper operation under 

the fault models considered, we modified sim-mase, as 

made available by SimpleScalar [1]. We model a super-

scalar processor that is patterned roughly after the origi-

nal, pre-SMT-enabled Intel Pentium 4 [11, 4] with 

DIVA checkers modelled, as supported by sim-mase. 

Since the register renaming scheme does not affect our 

experiments, the processor uses implicit renaming via 

the reservation stations (i.e., without an explicit register 

map table). Table 2 shows the detailed configuration of 

the processor we model. We modified SimpleScalar to 

allow for hard fault injection.

For benchmarks, we use the complete SPEC2000 

benchmark suite with the reference input set. To reduce 

simulation time, we used SimPoint analysis [24] to sam-

ple from execution of each benchmark. Since the results 

in the rest of this section are presented in terms of nor-

malized performances, we provide baseline error-free 

IPC results in Figure 3.

7.2  Detection and Diagnosis of Hard Faults

Our first set of experiments explores how accurately 

and quickly our scheme detects and diagnoses hard 

faults. In each experiment, we injected periodic transient 

faults in various structures and one hard fault in a single 

structure. We injected transient faults in a Poisson distri-

bution with a mean of one transient per billion instruc-

tions. All injected hard faults manifest as a single bit 
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Figure 3. Error-free performance (SpecINT and SpecFP)
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stuck-at-1. For the ROB, we inject the fault into the 

least-significant bit (LSB) of the data result. This causes 

the common value of 1 to provide data masking for the 

injected fault. For the RS and IFQ, we corrupt the LSB 

of the register identifier for the second argument of the 

instruction. This causes single-argument instructions to 

functionally mask this error and gives an even probabil-

ity that two-argument instructions will experience data-

masking for the injected fault. For the LSQ, we inject 

the fault in bit 16 of the address. This prevents data mis-

alignment exceptions and provides an average-case data 

masking scenario. Finally, for the integer ALUs, we 

model faults as manifesting in the adder. We used a 

gate-level design for a 32-bit adder and selected a repre-

sentative gate whose output is stuck-at-1 when the fault 

is injected. We performed a thorough gate-level fault 

simulation of the adder, and the gate we selected for 

fault injection represents the nominal masking case with 

a shading toward more masking, as this is a pessimistic 

assumption in our experiments. Masking was then eval-

uated for every instruction that accessed the ALU with 

the faulty adder.

In all of our experiments, the microprocessor 

detected and diagnosed the injected hard fault and did 

not mis-diagnose a soft fault as being hard. We mea-

sured how many instructions were executed before an 

injected hard fault was diagnosed, and we plot the 

results of this experiment in Figure 4. Since the results 

were relatively insensitive to the benchmarks, we 

present the mean results for SpecINT and SpecFP; the 

error bars in the figure represent one standard deviation 

above and below the mean. The results show that most 

hard faults are diagnosed within a few thousand instruc-

tions and that all of them are diagnosed within 15 thou-

sand instructions. From this data, we also observe that 

the window of vulnerability for a faulty DIVA checker is 

about 200 instructions, which is easily within the recov-

ery capabilities of typical hardware and software back-

ward error recovery (BER) mechanisms. The different 

diagnosis latencies for different FDUs are a function of 

the relative usages of these structures as well as their 

error counter thresholds. Nevertheless, for all structures 

other than the DIVA checkers, the diagnosis latency is 

relatively unimportant, since between when the fault 

occurs and when it is diagnosed and the FDU deconfig-

ured, the checkers mask its effect with only a perfor-

mance penalty caused by the number of pipeline flushes 

Table 2. Parameters of Target System

Feature Details

pipeline stages 20

width: fetch/issue/com-

mit/check

3/6/3/3

branch predictor 2-level GShare, 4K entries

instruction fetch queue 64 entries

reservation stations 32

reorder buffer 128 entries

load/store queue 48 entries

integer ALUs 3 units, 1-cycle

integer multiply/divide 1 unit, 14-cycle mult, 60-

cycle div

floating point ALUs 2 units, 1-cycle

floating point mult/div 1 unit, 1-cycle mult, 16-

cycle div

L1 I-Cache 16KB, 8-way, 64-byte 

blocks, 2-cycles

L1 D-Cache 16KB, 8-way, 64-byte 

blocks, 2-cycles

L2 cache (unified) 1MB, 8-way, 128-byte 

blocks, 7-cycles

0

5000

10000

15000

A
v

er
ag

e 
In

st
ru

ct
io

n
 C

o
u

n
t

Faulted Structures

SPECint 2000

SPECfp 2000

1 IFQ entry 1 RS 1 ALU 1 LSQ entry 1 ROB entry 1 Checker Critical Logic

Figure 4. Hard fault diagnosis latency 

0.8

1.0

1.2

N
o
rm

al
iz

ed
 r

u
n
ti

m
e

Faulted Structures

SPECint 2000

SPECfp 2000

fault-free -1 IFQ entry -1 RS -1 ALU -1 LSQ entry-1 ROB entry -1 Checker

Figure 5. Performance impact of losing one 
component to a hard fault



9

equal to the error counter threshold for the faulty FDU. 

Over the course of even thousands of instructions, this 

performance penalty is still unimportant. The key is not 

incurring that performance penalty over the entire life-

time of the processor, as results in Section 7.4 show.

7.3  Performance After Deconfiguring FDU

The second set of experiments evaluates the perfor-

mance impact of de-configuring an FDU after having 

diagnosed it as being permanently faulty. In each of 

these experiments, we remove one of each type of FDU 

that we study. Figure 5 plots the runtime for each of 

these experiments, normalized to the error-free (fully-

configured) case. Since there is little variation in the 

results across benchmarks, we plot the average results 

(geometric means of normalized runtimes) across the 

SpecINT and SpecFP benchmarks. The data show that 

the performance impact of deconfiguring an FDU is 

often small. This result, which corroborates prior work 

[25, 29], is in part due to the fact that the processor con-

figuration we are modeling is over-provisioned for sin-

gle SPEC benchmarks; the Pentium 4 is designed to run 

multiple threads simultaneously. Thus, resources are 

often idle in a typical single-threaded workload. There 

is, however, a non-negligible performance degradation 

due to deconfiguring an ALU or DIVA checker. Never-

theless, all of these faulty systems continue to function 

correctly and with reasonable performance.
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7.4  Performance with Just DIVA

In this last set of experiments, we evaluate the per-

formance of a microprocessor that relies strictly on the 

DIVA checkers to tolerate hard faults. While DIVA was 

designed primarily for soft faults and thus this is not a 

basis for a perfectly fair comparison, DIVA can tolerate 

hard faults and it is instructive to compare against this 

option. A DIVA-only system is also similar to a system 

that uses redundant threads for error detection and 

flushes the pipeline to recover from errors (assuming 

forward progress can be ensured). Figure 6 shows the 

effects of allowing sub-structures with hard faults to 

remain in use with the DIVA checkers correcting the 

errors that they activate. Once again, we plot runtimes 

that are normalized to the error-free case, but we do not 

aggregate results across benchmarks because there is 

significant variability across benchmarks. We do not 

inject hard faults into the DIVA checkers because they 

cannot tolerate them without our diagnosis/reconfigura-

tion. Because the structures into which we are injecting 

faults are used frequently and are critical to the correct-

ness of the processor, the results show that hard faults 

have a drastic impact on system performance when 

DIVA is forced to correct the errors they create. The per-

formance of the DIVA-only system is far worse than the 

performance we demonstrated for our system in 

Section 7.3. Technology trends toward deeper pipeline 

implementations will only serve to make the perfor-

mance penalty for each error’s recovery (i.e., pipeline 

flush) more severe. The relative difference in magnitude 

of the structure-to-structure penalty is directly related to 

how frequently a given sub-structure is used by the 

workload. Benchmark-to-benchmark variation for a 

given type of FDU is a result of the distribution and fre-

quency of pre-existing stall events in a given bench-

mark. The causes of these events, such as cache misses 

or branch mispredictions, result in a percentage of cor-

rected errors falling in the shadow of another pipeline-

clearing event, thus diminishing the penalty associated 

with the error correction. For example, a benchmark 

with many branch mispredictions is less sensitive to 

pipeline flushes due to errors, if the errors tend to occur 

soon after branch mispredictions, since there is less state 

that gets flushed by the error.

7.5  Summary and Discussion of Results

The experimental results in this section confirm that 

existing microprocessors have redundancy that can be 

exploited to tolerate hard faults. We have also shown 

that we can accurately and quickly diagnose hard faults 

and reconfigure around faulty FDUs to provide a micro-

processor that performs only slightly worse than a fault-

free microprocessor. Moreover, it vastly outperforms the 

alternative of just relying on DIVA.

Technological and architectural trends drive this 

work and encourage further work in this area. The inci-

dences of hard faults and fabrication defects will con-

tinue to increase. Also, as microarchitects try to exploit 

ever more ILP and thread level parallelism, there will be 

even more redundancy that can be leveraged for improv-

ing reliability and yield. In particular, emerging SMT 

processors will have more redundant hardware and 

fewer singleton resources. Thus the advantages of our 

approach will increase due to these trends. The caveat is 

that, as workloads evolve to take advantage of this extra 

hardware, the performance impact of having to decon-

figure an FDU will increase. Nevertheless, even a 

heavily loaded microprocessor will continue to function 

correctly and with better performance than just DIVA in 

the presence of operational hard faults and fabrication 

defects.

8  Related Work

In this section, we present prior research in tolerat-

ing hard faults and fabrication defects. A canonical 

design for tolerating hard faults is the IBM mainframe 

[26]. Mainframes not only have redundant processors, 

but they also incorporate redundancy within the proces-

sor in order to seamlessly tolerate hard faults. The IBM 

G5 microprocessor, for example, has redundant units for 

fetch/decode and for instruction execution. Some other 

traditional fault-tolerant computers, such as the Stratus 

[35] and the Tandem S2 [15], simply replicate entire 

processors. An even more extreme case of using redun-

dancy to tolerate fabrication defects and, to a lesser 

extent, operational hard faults, is the Teramac [8]. The 

Teramac is designed to make use of components that are 

likely to be faulty, and it is motivated by expected defect 

rates in nanotechnology. While these systems all pro-

vide excellent resilience to hard faults, such heavy-

weight redundancy incurs significant costs in terms of 

hardware and power consumption. 

DIVA [2] and redundant thread schemes provide low 

cost and low power alternatives to heavyweight redun-

dancy. Among the redundant thread schemes, the ones 

that perform recovery as well as error detection include 

AR-SMT [21], Slipstream [30], SRT [20, 17], and 

SRTR [33]. All of these schemes were designed for tran-

sient faults and thus share the same drawback as DIVA, 

with respect to hard faults, since they incur a pipeline 

squash (and its corresponding performance and energy 

penalty) every time a fault manifests itself. For hard 

faults in frequently-used microprocessor structures, 

fault manifestation is too frequent and the performance 

of these schemes suffers. 
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There are lightweight approaches by Shivakumar et 

al. [25] and Srinivasan et al. [29] that, similar to our 

work, leverage existing redundancy in microprocessors. 

Shivakumar et al.’s work differs in that it is strictly for 

tolerating fabrication defects and does not extend to 

hard faults that occur during execution. They combine 

offline (pre-shipment) testing and diagnosis of micro-

processors with deconfiguration capabilities to improve 

effective yield. Our approach combines deconfiguration 

with online error detection and fault diagnosis to 

improve both yield and reliability. Srinivasan et al.’s 

work does not address error detection or fault diagnosis. 

A recent approach to improving microprocessor reli-

ability in the presence of operational hard faults (but not 

fabrication defects) is to use dynamic reliability man-

agement [27]. In this approach, the processor dynami-

cally adapts, based on a model of its estimated lifetime, 

in order to achieve a desired lifetime. In particular, if the 

processor is running too hot, due to a particular work-

load, it may use dynamic voltage scaling to cool down 

and improve its reliability. This approach is orthogonal 

and complementary to ours.

A recent scheme for tolerating only fabrication 

defects, called Rescue [23], utilizes circuit transforma-

tions to improve testability and enable coarse-grain 

diagnosis of defective components (ways of a supersca-

lar processor). The finer grain diagnosis in our research 

enables us to discard less fault-free hardware, and it may 

enable us to tolerate more hard faults before failure. 

There are other non-comprehensive approaches to 

tolerating hard faults in specific parts of a computer sys-

tem. One option for storage structures is to protect them 

with error correcting codes (ECC), as in IBM main-

frames [26]. Combining ECC for arrays with DIVA 

avoids costly DIVA recoveries. However, ECC protec-

tion of arrays is on the critical path for array access 

(both read and write), and it will thus add to the micro-

processor’s critical path and degrade its performance in 

the fault-free case. Storage structures can also be pro-

tected by using a level of indirection to map out faulty 

portions of the structure. Whole disk failures were 

addressed by RAID [19]. For disk faults that did not 

incapacitate the entire disk, the solution was to map out 

faulty portions at the sector granularity. Similar 

approaches have been developed for DRAM main mem-

ory. Whole chip failures are tolerated by chipkill mem-

ory and RAID-M [9, 12], and partial failures are 

tolerated with schemes that map out faulty locations [7, 

16, 22]. For SRAM caches, techniques have been devel-

oped to map out defective locations during fabrication 

[36] and, more recently, during execution [18]. SRAS 

[5] uses a similar technique to map out defective rows in 

microprocessor array structures, such as the reorder 

buffer and branch history table. 

9  Conclusions

To address the emerging problem of operational hard 

faults and fabrication defects in microprocessors, we 

have developed a microprocessor design that leverages 

the existing redundancy in current microprocessors. 

This redundancy, which exists to improve performance 

by exploiting ILP and thread level parallelism, can be 

used to mask hard faults. Our microprocessor design 

integrates DIVA-style error detection with a new mecha-

nism for diagnosing hard faults. After diagnosis, it de-

configures the faulty FDU and continues operation. 

Experimental results demonstrate that our scheme can 

accurately and quickly diagnose hard faults and recon-

figure around faulty FDUs to provide a microprocessor 

that performs only somewhat worse than a fault-free 

system. 
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