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An approximation method, based on dimer coverings, for the ground state of the antiferromag- 
netic Heisenberg lattice is described. The working of the method is demonstrated by some 
small-system calculations. The method introduces a possible mechanism for symmetry breaking for 
two- and higher-dimensional systems. 

I. Introduct ion 

Much at tent ion has been paid in the l i terature to the ground-s ta te  proper t ies  

of  ant i fer romagnet ic  He isenberg  systems (s = ½). 

A n  impor tan t  subject  to investigate is whe ther  long-range order  exists in the 
g round  state or  not.  The  classical case is quite simple: The  ground  state is 

always a N6el state. If  it is possible to subdivide the lattice into two sublattices, 
a and /3 ,  such that  each point  of  sublattice ~ is su r rounded  by points  of/3,  and 

vice versa,  one  can define a N6el state to be a state with a max imum,  
opposi te ly  directed,  sublattice magnet izat ion.  See fig. 1. 

The  quan tum-mechan ica l  p rob lem is much more  complicated.  Even  at zero 

t empera tu re  quan tum fluctuations allow the system to ' j ump out '  of  the N6el 

state and so long-range order  can be b roken  down.  

Fig. 1. A Ndel state in the square lattice. 
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Exact results are scarce in this field of statistical physics. The first exact result 
in this area was the calculation of the ground-state wave function of the linear 
chain with nearest-neighbour interactions only, done by Bethe in 1931 ~ ). From 
Bethe 's  solution it became clear that there exists no long-range order  in 
one-dimensional antiferromagnetic systems and this would be confirmed by 
other calculations, e.g. done by Lieb, Schultz and Mattis2). 

Mermin and Wagner proved the strong theorem that says that no long-range 
order  can exist at finite temperatures for one and two-dimensional systems3). 
Peierls and Marshall proved the ground state of an antiferromagnetic Heisen- 
berg system to be a singlet4). 

The situation for three-dimensional systems still is very unclear, almost 
nothing is known exactly about ground-state properties of e.g. the Heisenberg 
model for a simple cubic lattice. Besides the one-dimensional antiferromagnet 
the, almost trivial, spherical model for antiferromagnets can be treated exactly. 
The ground state of this model,  where every /3-lattice site is a neighbour of 
every a-si te and vice versa, shows a classical, N6el ordering. 

The question arises for which dimensions the ground state possesses long- 
range order. This order  may exist for two-dimensional systems, but according 
to Mermin and Wagner3), it will vanish for any finite temperature.  By the 
absence of an exact expression for the ground state in two dimensions, one is 
forced to make use of approximation methods. Thus far various types of 
approximations have been made to estimate the ground-state energy. Mar- 
shall4), DavisS), Bullock6), KuboV'8), Bartkowski9), Oitmaa and Betts"~), 

Floria and Navarr011): All these authors were able to give a good estimate of 
the ground-state energy but none of them could give much detail of the 
ground-state wave function. 

To understand symmetry breaking and its relation with long-range order,  
however, one needs a good impression of the structure of the ground-state 
wave function. Only Van den Broek 12) used a method that not only gives a 
good estimate of the energy but also some information about the wave 
function, such as correlation functions. 

In antiferromagnetic quantum systems we can discern two tendencies: In the 
first place the system tries to realize a maximum sublattice magnetization, 
secondly it strives to form neighbour pairs in the singlet state. 

By using a method,  already introduced by Hite et al. 13) in the theory of 
zr-networks, we try to show long-range order can be built up by taking a 
suitable linear combination of so-called singlet-pair states, where every spin 
forms a singlet with one of its neighbours. If we take such a linear combination 
we are certain that the total state will be a singlet, in accordance with the 
theorem of Peierls and Marshall. 

We shall demonstrate the principle by showing the results of calculations for 
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some small systems. Of  course we will test whether  our ground-state energy 
will be in agreement  with already existing approximations.  

Another  point of interest forms the Marshall criterion4). This criterion 

predicts the signs of the configuration coefficients in the linear combination 
which forms the ground state. 

If we want to construct a reliable approximated ground state, at least we 
have to take care that there is a great overlap between the approximated and 
the exact ground state, so it is necessary that the coefficients in our ground 
state obey the Marshall criterion in a huge majority.  

2. Description of the approximation 

We consider the following Hamiltonian:  

H = J s , . s j ,  (1)  
(ij) 

where the sum runs over  all neighbour pairs. For convenience we will further 

take J = 1. 
We approximate  the ground state by a linear combination of states in which 

every spin forms a singlet with one of its n e a r e s t  neighbours. 
Such a singlet pair can be regarded as a dimer and every state in the linear 

combination corresponds with a dimer covering of the lattice. The lattice 
contains 2 N  lattice sites (N in each sublattice) so there are N dimers. If we 
denote a dimer covering with the symbol in) ,  we may write the ground state in 

our approximation as 

]q~o) = ~ ' ~ c . ] n  ) . (2) 
n 

We number  the spins 1, 2 . . . .  , 2N ,  so that an even index corresponds with a 

spin in the /3-sublattice and an odd index with an a-spin.  
The state ]~b0) may be written as a linear combination of eigenstates of the 

individual s~. We call these states Ising configurations throughout this work and 
we represent  them by kets like l+ + - + - - . . .  ), where the sign -+ on the ith 
place stands for an eigenvalue -+ ½h of s~. These kets are or thonormal .  

The total spin S and its z -component  M are good quantum numbers.  
Because the ground state is a singlet, we restrict ourselves to states with M = 0, 
i.e. to Ising configurations with as many spins " u p "  ( + )  as "down"  ( - ) .  Each 
dimer covering [n) contains N dimers and therefore In) can be written as a 
linear combination of 2 N Ising configurations. The coefficient of each Ising 
configuration in In) is +1 or - 1 ,  apart  f rom an overall normalization factor. 

We choose the signs so that in e a c h  dimer covering the N6el configuration 
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Fig. 2. The two dimer coverings of the 2 × 2-square. 

I + - + - + - . . .  ) and all the configurations one can get by an even number of 
neighbour interchanges, are given the coefficient +1. All the other Ising 
configurations belonging to the dimer covering become coefficient - 1 .  

Within one dimer covering the Marshall criterion is by this construction 
automatically fulfilled. We give a simple example, the 2 x 2-lattice, see fig. 2, 
which allows for two dimer coverings, I1) and 12). 

I1) = ½ { 1 + - + - ) - I + - - + ) - I - + + - )  + I - + - + ) } ,  

12) = ½ ( 1 + - + - ) - I + + - - ) - I - - + + )  + I - + - + ) } .  
(3) 

For reasons of symmetry we can divide the dimer coverings into classes. Within 
a class each dimer covering has the same coefficient E, (see (2)). 

In the case of the 2 x 2-lattice it is obvious that the two dimer coverings are 
equivalent for reasons of symmetry, so the ground state may be written as 

d 
Ig'o) = ~ {2(1+-+-)  + l - + - + ) ) - ( l + - - + )  + 1 - + + - )  + l + + - - )  

+ I - - + + ) ) }  . (4) 

This state turns out to be the exact ground state and is normalized for d = 3-~/2. 
We now already notice the special role the N6el configurations play: They 

are the only configurations that can be covered by all dimer coverings, so if the 
number of dimer coverings increases, the relative amplitude of the N6el 
configurations in the ground state increases too. 

We now derive an expression for the expectation value of the energy in the 
approximated ground state. 

Therefore  we rewrite (2) as 

I~lO)~---EEi(~n Cn~i,n)l~)i). ( 5 )  
i 

In (5) the first summation runs over all Ising configurations I~bi), i.e. distribu- 
tions of an equal number of + and - signs over the lattice sites, the second 
sum runs over the dimer coverings. We define: 



364 P . L .  I S K E  A N D  W . ] .  C A S P E R S  

sci.,,= 1 if the 1sing configuration i is covered by In) ; 

~:s.,, = 0 if the Ising configuration i is not covered by In) . 

In (5), es is the "Marshall-sign",  e~ = ( - 1 )  pi, where Pi is the number  of 
interchanges of neighbours that is necessary to reach the Ising configuration i 

starting from the N6el configuration ]+ - + -  + -  . . . ). 

If  we define 

a i = e, ~ c,,,~i.., (6) 
n 

then (5) simplifies to 

[~o> = ~ acid,>. (7) 
i 

If we regard only the z - z - c o m p o n e n t  of the Hamil tonian (1), then the energy 

of an Ising configuration is given by 

zz zz z z /4~16,) : E, 16,>, < = 2 ~j,,~,,, (8) 
<jk) 

z z where s j, i is the eigenvalue of the one-particle opera tor  sj for the state ]4~i). 
The expectation value of the z - z - c o m p o n e n t  of the ground-state energy can 

now be written as 

Z ~ Z Z  2 
12~ i a i ( 4,olH~~l ~,,,) , . . . .  (9) 

E,, <~olq.,,> E .~  
i 

For the expectation value of the total ground-state energy we can, on the 

ground of rotational symmetry ,  easily write 

< ,=3E2 .  (101 

Now we derive an expression for the probabili ty that the system is in a Ndel 
state. In a Ndel state there is a maximum sublattice magnetization which is ½ N. 

The magnetization of the two sublattices are antiparallel in a Ndel state. In 
2 quantummechanical  language: S 2 and S¢ have a maximum eigenvalue: 

½ U ( 1 U  + 1 ) h  2, whereas the eigenvalue of S~ and S~ obey: M~ = - M ~ .  There  
are N + 1 of these substates with anti-parallel sublattice magnetizations, writ- 

ten as 
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l i N M ) ® I ½ N - M  ) ( M = - I N , - I N + I , . . . , i N ) .  (11) 

From the Clebsch-Gordan  transformation 

IJ~ J2 j m ) =  liN ½NO0) 

= Z ( i N  M iN-MI½N ½NOO)IiN M ) ® [ 1 N - M )  , 
M 

(12) 

with (cf. ref. 14) 

( 1N M ½N -M[ ½N iN 0 O) = (--)N/2-M(N + 1) -1/2 (13) 

we conclude that all these N6el states have the same probability (this can also 
be concluded on grounds of rotational symmetry).  The total probability for a 
N6el state is therefore given by 

PN&I -- (N + 1)a2&l , (14) 

i 

where anger is the amplitude (6) of one of the N6el configurations. 
We now discuss the relation between long-range order and the N6el prob- 

ability. 
First we consider a state (2), made up of only one dimer covering I&). This 

(normalized) state can be written as a direct product of singlet states for pairs ], 

N 

16) = H [0)j, (15) 
j=l  

with 

1 (16) i .  

In this state each spin on a given sublattice has an equal probability i to be 
"up"  as to be "down".  There is no correlation between spins of different pairs; 
in that sense the state is completely disordered. 

The amplitude of e.g. the first N6el state, 

IN1) = [ + - ) , Q I + - ) z Q  . . .  Q I + - - ) N ,  (17) 

can be easily calculated by taking the inner product with [&), 
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a N ~ e l l  : ( N l [ q b )  : , ( 1 8 )  

so the N6el probability PN~e~ in the disordered case is 

PN~e~d = (N + 1)½ u (d = disordered) . (19) 

We now define the "N6el probability per dimer" in the thermodynamic limit as 

N 
:¢ ~__ 

P N 6 e l  l i m  X / P N 6 e l  " (20) 
N - - ~  ~v 

From (19) we see that in the "disordered" case PN~e~ AS a sufficient 
condition for long-range order in our approximation we now consider 

P~e~ > ½ • (21) 

In our view (21) corresponds to the condition of broken symmetry, i.e. a wave 
packet of only one of the N6el states and a group of neighbouring states with a 
relatively small amplitude for large N, is asymptotically stable. It would take an 
infinitely long time for the systems to pass into another N6el state. For a more 
detailed discussion of symmetry breaking we refer to AndersonlS). 

3. Dimension dependence 

We already noticed that no long-range order  exists in the ground state of the 
one-dimensional antiferromagnetic Heisenberg model. 

Qualitatively we can explain the absence of SB in the linear chain by using 
our approximation and by realizing that the linear chain has only two dimer 
coverings (we suppose periodic boundary conditions). See fig. 3. The N6el 
amplitude is only 2 and therefore too small to cause SB. We can calculate the 
N6el probability exactly in this approximation: Both dimer coverings contain 
2 N Ising-configurations. The only common configurations are the N6el configu- 
rations. Both N6el configurations have amplitude with absolute value 2c (c is a 
normalization constant. Notice that I1) and 12) are equivalent for reasons of 

® 0 . . . . .  ® 0 . . . .  ~ 0 . . . . .  ® 0 11 )  

0 ® . . . . .  0 ® . . . . .  O ® . . . .  0 ® ] 2 )  

Fig.  3. T h e  t w o  d i m e r  c o v e r i n g s  o f  t h e  l i n e a r  c h a i n  w i t h  p e r i o d i c  b o u n d a r y  c o n d i t i o n s .  
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symmetry).  The other 2 - 2  N -  4 Ising configurations that can be covered have 
an amplitude lai] = lc.  Substitution in (14) gives 

(N + 1). 2 2 4N + 4 
PN~I = (2"2  N -  4)" 12 + 2" 22 -- 2 u+l + ~  (22) 

From (20) it then follows that 

Pyre, ½. (23) 

The expectation value for the ground-state energy can be calculated easily in 
this case. In the thermodynamic limit the dimer coverings [1) and ]2) become 
orthonormal,  so the energy per lattice site may be determined from the energy 
for one covering. 

In a covering every spin has two neighbours: One of them is part of the same 
dimer and has therefore the opposite sign which gives a contribution -0 .25  to 
the energy, that is -0 .125  per spin. The other  neighbour takes part in another  
dimer and may therefore have the same as well as the opposite sign, so this 
bond does not contribute to the energy. So we find for the energy per site 

e zz = -0.125---~e = - 0 . 3 7 5 .  (24) 

If we compare this value with the exact value, calculated by Hulth6n16), 

e = ~ - I n 2 ~ - 0 . 4 4 3 ,  (25) 

then we see that our value (24) is about 15% too high. In this case we can 
obtain a bet ter  approximation by introducing non-neighbour pairs (with one 
spin on the a-sublatt ice and the other  on /3)  in the singlet state (cf. section 4), 
so then there will be more coverings. The variational space of (2) then 
becomes larger and we may expect that the minimum energy in this space is 
lower and therefore a bet ter  approximation of the exact ground-state energy. 
This effect, due to the overlap between the dimer coverings is usually called 
r e s o n a n c e  (Hite et al.13). Although in this case the N6el amplitude will be 
larger too, we don' t  expect the number of coverings will be so large that (21) 
will hold. 

In two and more dimensions the situation will be quite different, because the 
co-ordination number  increases with increasing dimension, and this results in a 
rapid increase of the number  of dimer coverings per lattice site. 

In two dimensions, for example, we have the famous Kasteleyn/Fisher 17'18) 
result 
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Z ~ ( 1 . 7 9 )  N, N- -*m ,  (26) 

where Z is the number  of dimer coverings. 
By taking a linear combination of all these coverings we expect to be able to 

construct a good approximation of the ground state. 
The limit d---~ ~ (d = dimension) can be represented by a lattice in which all 

sites of a given sublattice have all the sites of the other sublattice as neigh- 
bours. In this so-called spherical limit our method generates the exact ground 

state. 
As a result of the increasing number  of dimer coverings it may be possible 

that the relative weights of the Ndel states will be large enough to cause SB, 
and this may occur, starting with a critical dimension d c = 2. The (exact) 
ground state of the spherical model is certainly ordered,  because here we have 

PN~e~ 1. 
Anyhow,  we have a mechanism that can explain for the occurrence of SB, 

starting from the tendency in the system to form singlet pairs: It is caused by 
the fact that some Ising configurations (the Ndel configurations) can be covered 
by dimers more than others. So, in fact, it is a combinatorial  effect. 

4. Examples: some small-system calculations 

To illustrate the working of our approximations for d->_2, we have done 
some computer  calculations for the 4 x 4-square and for the 2 x 2 x 2-cube. If 
we suppose periodic boundary conditions, the 4 x 4-square admits 272 dimer 
coverings. These coverings can be subdivided into 13 classes with weights d 1, 
c 2 , - - . ,  d~3- Coverings within a class are related by the symmetry of the 
system. In the most simple approximation,  in which we give all classes the 

same weight, 

A: 61 = &- . . . . .  all3 , (27) 

we automatically are in agreement  with the Marshall criterion. In table I, first 
row, we give the results for his approximation.  

Secondly we may allow for different weights, so we get a variational problem 

if we minimize the energy (9). 
This energy now has the form 

xqAx 
E z z -  , w i t h x = ( 6 1 , 6  . . . . . .  d13 ) ,  (28) 

X T [3X 

where A is a real, symmetric  (13 x 13)-matrix and B is a real, symmetric 
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TABLE [ 

Resul ts  for the 4 × 4-square  with periodic boundary  conditions.  

369 

Approx ima t ion  e Yl 3'2 P~e~ Marshall  

d imers  only A: ~71 = dz . . . . .  g~3 -0 .6686  -0 .3343  +0.1488 0.899 100% 
B: (d 1 62 . . . . .  dl3)mi. -0 .6767  -0 .3383  +0.1645 0.903 99.91% 

dimers  only C: d~ = d 2 -0 .6964  -0 .3482  * 0.945 100% 
(index 1) and D: gl = 1; d 2 = xmi . -0 .6965  -0 .3482  * 0.951 100% 
dimers  + one 
knight 's  move  
(index 2) 

positive definite (13 x 13)-matrix. The structure of the matrices A and B makes 
the minimum problem for E = equivalent to solving the following generalized 

eigenvalue problem: 

Ax = E / B x ,  (29) 

where E0 z is the minimum eigenvalue. It is possible that one or more of the (i 
have a negative sign in the solution of (29), and possibly the Marshall condition 
is not fulfilled. Indeed in the 4 x 4-system some of the d i have an opposite sign 
(perhaps a finite system effect) but fortunately only eight out of 8918 Ising 
configurations that can be covered by dimers, turn out to have the wrong sign 
in the total linear combination (5), i.e. only 0.09%. Furthermore,  the relative 

N6el amplitude is still very large. 
The results of this calculation (B) are given in the second row of table I. 

Finally we have investigated the influence of allowing one pair of spins at 
distance V~ (the knight's move), to form a singlet. The two spins in such a pair 
belong to the different sublattices. Also for this case we did two calculations: 
In the first (C) we gave all 1808 coverings the same weight, in the second (D) 
we discriminated between the 272 real dimer coverings, with relative weight 1, 
and the 1536 coverings with one knight's move, with relative weight x. We 
fouhd a minimum in the energy for x ~ 1.45. We find that the energy does not 
change very much by introducing the knight's moves. 

In table I, e is the energy per site, 3'1 and "/2 are the nearest- and next-nearest 
neighbour correlation functions respectively. In the last co lu m n 'w e  have 
written down the fraction of Ising configurations with the right (Marshall-) 
sign. As one can see there is not much discrepancy between the first approxi- 
mation (A) and the others. This may be an indication that it is sufficient to 
consider only dimers and to give all coverings the same weight. 

If we use the spin-wave approach to get an estimate for the ground-state 
energy (cf. ref. 12, ch. IV), we end up with an expression that in the case of 
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the  4 x 4-square  m a y  be  wr i t t en  as 

e = - 1 . 5 +  ~'~ 4 -  c o s s .  
n r n v 

(n x, ny = O, 1, 2, 3 ) .  

)2 / 
g/x ~- COS ~- " / /y  

(30) 

If  we work  ou t  the  s u m m a t i o n  we find e = - 0 . 6 9 2 0 ,  which is ve ry  well  in 

a g r e e m e n t  with the  resul ts  of  t ab le  I. 

In  t ab le  II  we have  given the resul ts  for  the  4 x 4-square  la t t ice  with f ree  

ends .  

N o w  the re  are  36 cover ings ,  spl i t  up  into  10 classes (cf. E and F) .  A g a i n  we 

have  cons ide r ed  the  inf luence of  add ing  one  kn igh t ' s  move .  T h e r e  are  144 

cover ings  of  t.his type ,  to be  d iv ided  in 18 classes,  c o r r e s p o n d i n g  with  a 

va r i a t i ona l  p r o b l e m  with 28 var iab les  ( G  and H) .  

F ina l ly ,  we cons ide red  the  effect  of  a l lowing the  n u m b e r  of  kn igh t ' s  moves  to 

be  any n u m b e r  i, i = 0, 1, 2 . . . . . .  8. A l l  cover ings  with i moves  we gave  the  

same  weight  (i ( a p p r o x i m a t i o n s  I and  J) .  H e r e  again  we m a y  conc lude  tha t  the  

first a p p r o x i m a t i o n  ( E l  differs  no t  much  f rom the o thers ,  with the  excep t ion  of  

the  non- rea l i s t i c  a p p r o x i m a t i o n  ( I ) .  

In  t ab le  I I I  we c o m p a r e  the  resul ts  of  a p p r o x i m a t i o n s  (A) and ( E l  with 

resul ts  o b t a i n e d  by  o t h e r  au thor s  for  the  t h e r m o d y n a m i c  l imit .  These  e x a m p l e s  

r e p r e s e n t  mos t  s t r a igh t fo rward ly  ou r  idea .  

We see tha t  (A)  is in g o o d  a g r e e m e n t  wi th  these  va lues  ( t hough  the  sys tem 

con ta ins  only  4 × 4 = 16 s i tes! ) ,  while  ( E l  p red ic t s  an ene rgy  tha t  is s o m e w h a t  

t oo  high;  we could  i n t e rp re t  this as a b o u n d a r y  effect .  T o g e t h e r  wi th  Van den  

B r o e k ' s  resul ts ,  ou r  a p p r o x i m a t i o n  is the  only  one  tha t  gives a r e a s o n a b l e  va lue  

for  the  sp in -co r re l a t ion  funct ions .  Because  in the  square  la t t ice  the  co- 

o r d i n a t i o n  n u m b e r  is four ,  it is eas i ly  seen  tha t  we should  have:  3'1 = i e in this 

la t t ice .  

TABLE II 
Results for the 4 × 4-square with free ends. 

Approximation e Yl Y2 P*~e~ Marshall 

dimers only 

dimers only and 
dimers + one 
knight's move 

0,1,2,.. ,8 
knight's moves 

E: (1 = (2 . . . . .  (~10 -0.5437 -0.3625 +0.1522 0 . 8 1 3  100% 
F: ((1, (2, • . . , (10)mi, --0.5459 --0.3639 +0.1522 0.820 100% 

G: (l = (~ . . . . .  (28 -0.5621 0 . 3 7 4 7  +0.1872 0 . 8 7 2  100% 
H: ((~, (2 . . . . .  d28)mi, -0.5664 0 .3775  +0.1916 0 . 8 7 6  100% 

I: d o = (1 . . . . .  (s -0.4840 -0.3226 * 0.949 100% 
J: ((0, (1 . . . . .  (8)rain --0.5661 --0.3774 * * 100% 
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TABLE I I I  
Es t imates  for  ground-s ta te  proper t ies  of  the square  lattice. 
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Source e 3'1 3'2 

Per turbat ional  DavisS) - 0 . 6 6 4  - 0 . 5 1  * 
Bullock 6) - 0 . 6 6 6  - 0 . 5 0  * 
Van den Broek  ~2) -0 .651  - 0 . 3 3  +0.15 

Spin-wave Kubo  7) -0 .671  * * 

Van den Broek  ~z) - 0 . 6 5 8  - 0 . 3 3  +0.20 
Flor ia /Navarro11)  - 0 . 6 3 5  * * 

Variational Kubo  8) - 0.647 * * 
Marshall  4) - 0 . 6 5 6  * * 

Bartkowski9)  - 0 . 6 5 9  * * 

Ext rapola t ion  O i t m a a / B e t t s l ° )  - 0 . 65 5  * * 

This  work  (A) - 0.669 - 0.334 + 0.149 
( E )  - 0 . 5 4 4  -0 .3 6 2  +0.152 

TABLE IV 

Resul ts  for the 2 × 2 × 2-cube. 

Approx ima t ion  e Yl PN~o~ Marshall  

dl = (2 - 0 . 5 9 0  - 0 . 3 9 3  0.941 100% 
( e l ,  C2)mi n - 0 . 593  - 0 . 3 9 5  0.953 100% 

Finally we consider the 2 × 2 × 2-cube. 

By inspecting fig. 4 we see that there are nine dimer coverings, to be divided 
into two classes, with weights d I and d 2. 

In table IV we have summarized the results of calculations for this system. 

The first row contains the values for Cl = C2" The second row gives the results 
obtained by minimizing the energy, the minimum corresponds with 

2 + V q ~  
(dl/d2)min - 3 (31) 

The exact ground-state energy for this system i s  19) 

e = - 0 . 6 0 3 .  

Even in our crudest approximation we find a difference of only 2%. 

Fig. 4. The  2 x 2 x 2-cube and its two types of  dimer  coverings.  
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5. Conclusions, expectations for large systems, discussion 

All small-system calculations learned us that the energy and the correlations 
belonging to the approximated ground state are not very sensitive to varying 
the weights of the dimer coverings in (2). This may be an indication that 
resonance is an important  effect in our approximation.  We believe that it is 
already a good approximation if we take equal weights in (2). In that case we 
not only satisfy Marshall 's  criterion, but we also give some plausibility to the 
expectation that some Ising configurations have a relatively large amplitude in 
the ground state. 

From the results of the 4 x 4 square (especially those for periodic boundary 
conditions) we get the impression, by comparing our results with those of other 
authors, that our method provides us with reasonable estimates of  some 
ground state propert ies  (e.g. the energy). 

To investigate the validity of our approximation for large systems we need 
other techniques, like Monte Carlo calculations, but some tendencies can 
already be noticed in small systems, and it is not difficult to see that they must 
be features of larger systems too. 

In this context it is important  to r emember  that there is a strong relation 
between the number  of atoms and the dimension of the system at one side and 
the number  of dimer coverings at the other side. 

This has two consequences: 

- W h e n  there are more coverings, the effect of resonance will be more 
important  and we therefore expect to get a bet ter  approximation of the 
ground-state energy and the ground state itself. 

- M o r e  coverings implicates a larger Ndel amplitude, so we see, by using 
(14), (20) and (21), that in the case of high-dimensional systems, i.e. many 
dimer coverings, we may expect symmetry breaking to occur. In one dimension 
we are sure that there is no SB; in two dimensions it is possible that there is SB 
(unstable for T > 0). Infinite-dimensional systems certainly have a ground state 
with SB. 

Our conclusion is that our method may work well in large systems with a 
dimension d _-> 2, but we need sophisticated calculations to decide whether  it 
predicts long-range order (e.g. in the case d = 2) or not. The accuracy of the 
method is expected to be increasing with increasing co-ordination number  
(dimension). 

Resumd. We expect that this model ,  in which the ground state is approximated 
by a linear combination of singlet-pairs states only, for dimensions d_-> 2 can 
give us insight in the phenomenon  of long-range order as a geometr ic /  
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combinatorial effect. Also it is supposed to give a good estimate of the 
ground-state energy. 

The authors have the opinion that this scheme can also be used to describe 
elementary excitations in Heisenberg systems, by introducing one triplet pair, 
in every dimer covering. States constructed along these lines have total spin 
S = 1 and are orthogonal to the ground state. 
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