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ABSTRACT

A Mechanism of Mechanotransduction Mediated by the Primary Cilium

Kristen L. Lee

Mechanotransduction is a process by which cells sense and convert mechanical loads

into biochemical signals and transcriptional changes. This process is particularly critical

in bone, a metabolically active tissue that continously remodels and adapts to mechan-

ical loads in its local environment. Osteocytes are the most prevalent bone cell type

and are responsible for coordinating skeletal adaptation. Recently, the loss of primary

cilia, nonmotile antenna-like cellular structures, has been attributed to causing defects

in skeletal development and loading-induced bone formation. While primary cilia have

been implicated in osteocyte mechanotransduction, the molecular mechanism associated

with this process is not understood. In this thesis, we demonstrate that the osteocyte

primary cilium forms a microdomain that mediates osteogenic responses to mechanical

loads. In the first study, we build a genetically encoded primary cilium-localized calcium

biosensor and characterize ciliary calcium mobilization in response to mechanical load-

ing with unprecedented sensitivity. Next, we apply similar techniques to monitor levels

of another second messenger, cyclic AMP (cAMP), and are the first to demonstrate

that the primary cilium segregates ciliary cAMP from the cytosol. In the third study,

we link loading-induced bone formation in vivo to adenylyl cyclase 6 enzyme function,

a component of the primary cilium-mediated mechanotransduction mechanism. Collec-



tively, this thesis elucidates how osteocyte primary cilia convert mechanical stimuli into

osteogenic responses at the molecular and tissue levels and characterizes the primary

cilium as a microdomain that serves as a biochemical and mechanical signaling nexus.

Improvements in our understanding of primary cilia-regulated mechanotransduction

will advance research efforts in the bone, tissue engineering, and mechanobiology com-

munities.
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Chapter 1

Introduction

1.1 Opportunities

Ciliopathies are a collection of diseases caused by mutations affecting a cellular or-

ganelle called the primary cilium. Syndromes classified as ciliopathies often consist of

multiple kidney, brain, retina, liver, and bone disorders, and the severity of these con-

ditions vary broadly. Skeletal dysplasia occurs in many ciliopathies including Alström

syndrome, Jeune syndrome, Verma-Naumoff syndrome, Majewski syndrome, Ellis-van

Creveld syndrome, Senior-Loken syndrome, and Sensenbrenner syndrome [Huber and

Cormier-Daire, 2012,Haycraft et al., 2007,Nguyen and Jacobs, 2013]. Although there

is a clincal focus on the clear developmental importance of primary cilia, primary

cilia serve diverse functional roles and are also critical for mechanosensing. Recent

studies in bone show that primary cilia defects impair mechanotransduction and re-

pair [Temiyasathit et al., 2012, Leucht et al., 2013]. Interestingly, primary cilia were



considered vestigial organelles up until only a decade ago, and now, primary cilia char-

acterization is a growing research subject in various scientific communities.

Advances in the development of genetically encoded biosensors, also in the last

decade, has enabled researchers to monitor intracellular signaling events with unprece-

dented sensitivity. Scientists and engineers have honed these tools to track and mea-

sure specific ion, molecule, and enzyme activity levels in live cells, in real-time, and

at targeted subcellular locations [Palmer et al., 2011]. One particular biosensor sys-

tem harnesses Fluorescence Resonance Energy Transfer (FRET), where the relative

emission intensities of donor and acceptor fluorophores change due to a conformational

modification that occurs when the target is added. Ratiometric measurements like this

overcome the disadvantage of uneven loading of traditional diffusive single fluorescent

indicator dyes [Rudolf et al., 2003]. Our ability to add targeting sequences combined

with improved dynamic ranges of FRET-based biosensors make it possible to moni-

tor the local signaling environment within the primary cilium, which is approximately

1/30,000 the cell volume [Praetorius and Spring, 2003].

1.2 Bone

Bone is a metabolically active tissue that continously remodels and adapts to mechanical

loads in its local environment. While bone formation occurs with mechanical loading

above normal levels, resorption occurs with insufficient loading [Chow et al., 1993,

Turner et al., 1994]. Individuals are unable to experience regular dynamic or ambulatory

activity in space or when immobilized during bed rest, and this lack of movement
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clearly leads to bone loss [Lang et al., 2004,Tsuzuku et al., 1999]. In bone, remodeling

occurs with the coordinated balance of bone matrix secretion by osteoblasts and bone

resorption by osteoclasts. Our ability to create treatments for disuse-induced bone loss

and engineer bone constructs depends on our understanding of how bone cells sense

mechanical cues and maintain homeostasis in a mechanical environment.

The osteocyte is a terminally-differentiated, osteoblast-derived cell that makes up

approximately 95% of all bone cells [Bruder and Caplan, 1990,Franz-Odendaal et al.,

2006]. Osteocytes are embedded in interconnected cave-like structures and channels

in the mineralized bone matrix called the lacunar-canalicular (LC) network. Under

normal loading conditions, osteocytes are theoretically exposed to surface shear stress

ranging 8-30 dynes/cm2 as interstitial fluid moves within the LC network [Han et al.,

2004,Weinbaum et al., 1994,You et al., 2001b]. Under these levels of fluid flow-induced

shear stress, osteocytes exhibit intracellular calcium (Ca2+) oscillations in vitro and

in situ [Hung et al., 1995, Lu et al., 2012, Yellowley et al., 1997, Jing et al., 2013].

Given its sensitivity to mechanical stimuli, ability to regulate osteoblast, osteoclast,

and mesenchymal stem cell function, and demonstrated role in mediating unloading-

induced bone loss in vivo, the osteocyte is viewed as a mechanosensing cell required for

mechanotransduction in bone [Cardoso et al., 2009,Heino et al., 2004,Hoey et al., 2011,

Tatsumi et al., 2007,Taylor et al., 2007]. The osteocyte’s ability to sense mechanical

loads depends on cellular mechanosensors which include stretch-activated ion channels,

integrins and focal adhesions, the cytoskeleton, and the primary cilium [Duncan and

Hruska, 1994,Huo et al., 2008,Castillo et al., 2012,Litzenberger et al., 2009,Myers et al.,

2007,Malone et al., 2007].
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1.3 Mechanotransduction

Mechanotransduction is a process by which cells sense and convert mechanical signals

into biochemical and transcriptional changes. Mechanical forces influence almost ev-

ery stage of life including embryogenesis, tissue development, physiology, and apoptosis

and is studied in different tissue contexts, in various biological contexts, and at multiple

scales [Ingber, 2006]. Responses to mechanical loads at the cellular level include adapt-

ing to high strain environments by shortening the primary cilium, exerting contractile

force at a magnitude that scales with substrate stiffness, and migrating preferentially

towards more rigid substrates [Solon et al., 2007,McGlashan et al., 2010,Lo et al., 2000].

The cell’s ability to interpret and react to mechanical forces is critical to cell function

and health, as disruption in mechanotransduction or abnormal tissue mechanical prop-

erties cause disease, including cancer and osteoporosis [PaszeK et al., 2005,Provenzano

et al., 2008,Nelson and Bissell, 2006,Tatsumi et al., 2007]. Our understanding of the

intricacies of mechanotransduction has broad relevance in multiple cell types, stages of

development and adult function, and pathologies.

Stretch-activated ion channels

The application of fluid flow causing surface shear stress or movement of transmembrane

lipid bilayer components can open stretch-activated ion channels. As expected, opening

these ion channels affects ion transport and distribution. Mechanically-activated chan-

nels have been implicated in a wide range of functions such as touch, hearing, and detect-

ing osmotic gradients, volume, and pressure [Hamill and Martinac, 2001]. Many families
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of stretch-activated ion channels exist, including weakly inward-rectifying K+ channels

named TREK and TRAAK, the amiloride-sensitive epithelial Na+ channel called ENaC,

and the TRP family of cation channels, many of which are Ca2+-permeable [Martinac,

2004]. Polycystin 2 (PC2) and Transient Receptor Potential Vanilloid 4 (TRPV4) are

both channels in the TRP family that mediate fluid flow-induced Ca2+ oscillations in

kidney epithelial cells [Nauli et al., 2003,Köttgen et al., 2008].

Integrins and focal adhesions

Integrins are transmembrane adhesion receptors that anchor cells to the extracellular

matrix, and thus, serve as direct physical connections to the local environment. An

integrin associates with an assembly of several proteins called a focal adhesion within the

cell which links directly to the cytoskeleton. Several groups have demonstrated that the

integrin-focal adhesion complex mediates mechanotransduction [Katsumi et al., 2004].

This extensive collection of evidence includes the stretch-induced phosphorylation of

multiple focal adhesion constituents in smooth muscle cells and fibroblasts and focal

adhesion kinase-mediated mechanotransduction in osteoblasts in vitro [Hamasaki et al.,

1995, Sai et al., 1999,Castillo et al., 2012]. Other groups have manipulated cell shape

and stiffness by modifying substrate spatial and mechanical properties [Yeung et al.,

2005, Tee et al., 2011, Han et al., 2012]. In particular, a pivotal study performed by

Chen et al demonstrated that the amount of focal adhesions increases as a function

of cell spreading and cytoskeletal tension which suggests that cell shape, cytoskeletal

tension, and local focal adhesion dynamics are part of a feedback system controlled by

the external mechanical environment [Chen et al., 2003].
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Cytoskeleton

The cytoskeleton is composed of three distinct classes: actin, intermediate filaments,

and microtubules. While each of these three elements have different roles in mediating

cell motility, maintaining cell shape, and providing structure, there is evidence that they

all play a role in mechanotransduction. Actin stress fibers are tethered to and mediate

dynamics of focal adhesions, potentially because changes in actin filament tension and

curvature affect interactions with actin-binding proteins [Geiger et al., 2009,Wehrle-

Haller, 2012, Hayakawa et al., 2011, Risca et al., 2012, Romet-Lemonne and Jégou,

2013]. While intermediate filaments were once considered only structural cytoskele-

tal elements, they have been shown to control essential mechanical signal transduction

events. For example, a major intermediate filament, desmin, is involved in the structural

and mechanical integration of muscle [Shah et al., 2004]. In alveolar epithelial cells,

shear stress-induced disassembly of keratin, another intermediate filament, is mediated

by protein kinase C phosphorylation [Ridge et al., 2005]. Microtubules are the largest

type of cytoskeletal class and have also been shown to mediate mechanotransduction.

Microtubule polymerization increases as a function of tensional force magnitude ap-

plied through integrins in neurons and vascular smooth muscle cells [Dennerll et al.,

1988,Putnam et al., 2001]. Additionally, pharmacologic disruption of the microtubule

network before strain application abolishes the force-induced redistribution of GTPases

RhoA and Rac [Putnam et al., 2003].

6



1.4 The Primary Cilium

The primary cilium is a solitary, non-motile organelle that extends from the surface of

nearly all vertebrate cells [Huang et al., 2006,Wheatley et al., 1996]. Primary cilia are

approximately 250 nm in diameter and typically 1-4 µm in length [Kiprilov et al., 2008].

The ciliary axoneme is a hollow cylindrical structure composed of nine microtubule

doublets (in 9+0 configuration) that extends out from the cell (Figure 1.1) [Wilsman

and Fletcher, 1978]. It anchors into the basal body which also serves as a microtubule

organizing center (MTOC) and is one of two centrioles. Primary cilia are formed by

intraflagellar transport, requiring the anterograde motor-forming protein KIF3A and

another motor complex protein IFT88 [Lee et al., 2010].

Figure 1.1: The primary cilium consists of a 9+0 microtubule doublet axoneme (blue),
a microtubule organizing center (MTOC)/mother centriole (purple), and a daughter
centriole (pink). Basal feet (red) connect the MTOC to the microtubule cytoskeleton
(yellow). Distal appendages (green) attach the basal body to the plasma membrane,
which is contiguous with the plasma membrane covering the axoneme. Striated rootlets
(black and white) are associated with the basal body.
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Defects in KIF3A, IFT88, and other ciliary components are associated with nu-

merous human diseases called ciliopathies. Primary cilia serve as important cellular

sensors and mediate Hedgehog and Wnt signaling, which are involved in developmental

processes [Wong and Reiter, 2008,Lancaster et al., 2011]. The primary cilium’s role in

mediating skeletal development has been exhibited in a conditional knockout of Kif3a

linked to the late stage osteoblast and osteocyte Osteocalcin promotor in mice, which

resulted in osteopenia, impaired osteoblast function as measured by decreased tibial

Runx2, Osterix, Osteocalcin, and Dmp1 mRNA expression, and attenuated Hedgehog

and Wnt signaling [Qiu et al., 2012].

The primary cilium’s role in numerous cellular processes is underlined by its function

as a mechanosensor. The primary cilium possesses general features of mechanosensory

transduction: an extracellular component, transduction channels, and an intracellular

link [Gillespie and Walker, 2001]. It has been described as a “mechanosensory tog-

gle switch” because it extends from the apical cell membrane and deflects with fluid

movement postulated to occur within the LC system and bends during cartilage com-

pression [Malone et al., 2007,Whitfield, 2008, Jensen et al., 2004]. Our understanding

of primary cilium bending mechanics and bending-induced forces on the plasma mem-

brane covering the primary cilium is essential to elucidating the molecular mechanism

of mechanotransduction mediated by the primary cilium. Recently, Young et al studied

the tension force distribution along a primary cilium under flow and suggest that stretch-

activated ion channels are likely to be activated and open near the base of the primary

cilium where tension force is the highest [Young et al., 2012]. Another characteristic of
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the primary cilium that highlights its mechanosensory role is its intracellular interac-

tion with the cytoskeleton. Actin filaments and microtubules are sensitive to mechanical

loading, and their dynamics have been shown to affect cilia length which suggests that

the primary cilium plays a role in mechanotransduction [Kim et al., 2010,Sharma et al.,

2011].

Many groups have demonstrated that primary cilia serve as mechanosensors in multi-

ple tissue contexts including kidney, liver, and skeletal tissues. Interestingly, mechanical

stimulation shortens primary cilia in kidney epitheia and chondrocytes, suggesting that

modulating primary cilium length is a way to minimize overstimulation [Miyoshi et al.,

2011,McGlashan et al., 2010,Besschetnova et al., 2010]. Primary cilia clearly mediate

mechanotransduction as they are neccessary for fluid flow-induced Ca2+ transients in

kidney epithelial cells and bile duct epithelial cells [Nauli et al., 2003, Praetorius and

Spring, 2003,Masyuk et al., 2006]. A pivotal study by Praetorius and Spring suggested

that local stimulation of the primary cilium is critical for mechanotransduction because

the same local stimulus applied to the apical membrane did not elicit a Ca2+ influx

within renal epithelial cells [Praetorius and Spring, 2001]. Recently, the development

of a murine osteoblast and osteocyte conditional knockout of Kif3a which resulted in a

loading-induced bone formation defect in vivo implicates the primary cilium in mechan-

otransduction in tissues other than kidney and liver [Temiyasathit et al., 2012]. At the

level of transcription and translation, loss of primary cilia impaired flow-induced in-

creases in Cox-2, Opn, and Opg/Rankl mRNA levels and inhibited PGE2 release in

osteoblasts and osteocytes in vitro [Malone et al., 2007, Delaine-Smith et al., 2014].

Taken together, these data suggest that the primary cilium is necessary for transducing
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mechanically-stimulated osteogenic and antiresorptive signals. However, the primary

cilium-mediated molecular mechanism of osteocyte mechanotransduction is unknown.

1.5 Second Messengers

Calcium

Ca2+ is a ubiquitous second messenger serving as a biochemical signal that regulates

a variety of cellular processes including proliferation, development, and transcription

factor activation [Berridge et al., 2003]. In bone cells specifically, mechanically-induced

Ca2+ oscillations have been shown to mediate increased expression of the bone matrix

protein osteopontin [You et al., 2001a]. The transient elevation of intracellular Ca2+ is

one of the earliest cellular responses to mechanical stimuli in osteoblasts and osteocytes.

In osteoblasts and osteocytes, fluid flow-induced Ca2+mobilization is dependent on

extracellular Ca2+ influx and intracellular Ca2+ release from the endoplasmic reticulum

[Hung et al., 1996,Lu et al., 2012,Huo et al., 2008]. As mentioned in the previous section,

flow-stimulated Ca2+ increases occur in renal and bile duct epithelial cells and are

dependent on primary cilia. Interestingly, primary cilia removal does not inhibit flow-

induced cytosolic Ca2+increases in osteoblasts, but a different primary cilium-restricted

Ca2+-dependent mechanism has been suggested by Kwon et al and will be explained

in Chapters 2 and 3, illustrating the diversity of Ca2+ signaling in different tissue

contexts [Malone et al., 2007,Kwon et al., 2010].
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Cyclic AMP

Another second messenger is cyclic adensosine monophosphate (cAMP) which is cat-

alyzed from adenosine triphosphate (ATP) by members of the adenylyl cyclase (AC)

enzyme family. cAMP is involved in a wide range of cellular processes by activating

the phosphorylating enzyme protein kinase A (PKA) and exchange proteins activated

by cAMP (Epac) [Wadhwa et al., 2002, Seino and Shibasaki, 2005]. Ca2+ oscillations

play an important physiologic role in cAMP production via inhibition or activation of

different AC isoforms, such as the Ca2+-inhibitable enzymes AC5 and AC6 and the

Ca2+-stimulated enzymes AC1, AC3, and AC8 [Willoughby and Cooper, 2007]. AC3

and AC6 have been observed on the primary cilium membrane [Bishop et al., 2007,Ou

et al., 2009,Kwon et al., 2010,Masyuk et al., 2006]. Thus, the primary cilium may me-

diate mechanotransduction by orchestrating intricate molecular interactions involving

Ca2+ and cAMP signaling.

1.6 Central Hypothesis and Organization

The central hypothesis of this thesis is that the osteocyte primary cilium forms a mi-

crodomain that serves as a biochemical and mechanical signaling nexus.

Hypothesis 1: The mechanically-stimulated ciliary Ca2+ mi-

crodomain is distinct from the cytosol.

In Chapter 2 of this thesis, we create a novel primary-cilium localized Ca2+ biosensor

and monitor loading-induced ciliary Ca2+ increases. Several candidate mechanosensi-
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tive Ca2+-permeable channels are knocked down to identify the source of this Ca2+

mobilization, and we compare flow-induced Ca2+increases in cells with Pkd2, Trpv4, or

Piezo1 deficiency.

Hypothesis 2: The mechanically-stimulated ciliary cAMP mi-

crodomain is distinct from the cytosol.

In Chapter 3 of this thesis, we measure flow-induced cAMP levels in real-time. By

extending the plasmid design techniques used in Chapter 2, we create a novel primary

cilium-localized cAMP biosensor and monitor mechanically-stimulated ciliary cAMP

responses.

Hypothesis 3: Deletion of AC6 inhibits loading-induced bone

formation in vivo.

In Chapter 4 of this thesis, we examine the link between primary cilia, AC6, and bone

adaptation to mechanical loads. A previous study in our lab showed that loading-

induced cAMP changes and Cox-2 expression increases are dependent on both AC6

and primary cilia in vitro. Here, we demonstrate that AC6 mediates loading-induced

bone formation in vivo using mice with a global deletion of AC6.
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Chapter 2

Calcium in the Osteocyte Primary

Cilium

Project Collaborators: Kristen L. Lee, Marie D. Guevarra, Mardonn C.

Chua, Mingxing ouyang, yingxiao wang, Christopher R. Jacobs

2.1 Abstract

The primary cilium is an antennae-like, nonmotile structure that extends from the sur-

face of most mammalian cell types and is critical for chemosensing and mechanosensing

in a variety of tissues including cartilage, bone, and kidney. Flow-induced intracellular

calcium ion (Ca2+) increases in kidney epithelia depend on primary cilia and primary

cilium-localized Ca2+-permeable channels Polycystin 2 (PC2) and Transient Receptor

Potential Vanilloid 4 (TRPV4). While primary cilia have been implicated in osteo-



cyte mechanotransduction, the molecular mechanism that mediates this process is not

fully understood. Here, we show that fluid flow induces Ca2+ increases in osteocyte

primary cilia which depend on intracellular Ca2+ release and extracellular Ca2+ entry.

We directed a Fluorescence Resonance Energy Transfer (FRET)-based Ca2+ biosensor

with the primary cilium-specific sequence of Arl13b. Using this tool, we investigated

the role of several Ca2+-permeable channels that may mediate flow-induced Ca2+ en-

try into the primary cilium: PC2, TRPV4, and PIEZO1. Our data demonstrate that

TRPV4, but not PC2 or PIEZO1, mediates flow-induced ciliary Ca2+ increases and

loading-induced Cox-2 mRNA increases, an osteogenic response. These results demon-

strate that the mechanism of mechanotransduction mediated by primary cilia varies in

different tissue contexts. Furthermore, our data suggest that the primary cilium forms

a calcium microdomain that is distinct from the cytosol. In this study, we report the

first measurements of Ca2+ signaling within osteocyte primary cilia, and we anticipate

that this work is a starting point for more studies investigating the role of TRPV4 in

mechanotransduction.
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2.2 Introduction

Mechanotransduction is a process by which cells sense and convert mechanical signals

into biochemical and transcriptional changes. The calcium ion (Ca2+) is a ubiqui-

tous second messenger that regulates numerous signaling pathways. Despite how uni-

versal Ca2+ is, discrete intracellular signaling mechanisms occur because Ca2+ gradi-

ents are spatiotemporal and do not comprise one general pool that changes uniformly.

For example, there are discrete microdomain Ca2+ signals including “Ca2+ sparks,”

“Ca2+ sparklets,” and “scraps,” that modulate constriction and relaxation in vascu-

lar smooth muscle cells [Wang et al., 2004, Nelson et al., 1995]. Mechanical loading

generates rapid and temporal intracellular Ca2+ increases in many cell types including

osteocytes, osteoblasts, neurons, and kidney cells. Ca2+ mobilization is required for

flow-induced PGE2 release and flow-induced osteopontin gene regulation in osteocytes,

demonstrating that Ca2+ is upstream of mechanotransduction activies and paracrine

signaling [Ajubi et al., 1999,You et al., 2001b].

Studies characterizing flow-induced intracellular Ca2+ increases in osteoblasts and

osteocytes have spanned almost two decades, starting with identifying that osteoblasts

are more responsive to fluid shear stress than mechanical strain and that oscillatory fluid

flow is a less potent stimulus than steady flow [Owan et al., 1997,Jacobs et al., 1998,Lu

et al., 2012]. Both extracellular Ca2+ and intracellular Ca2+ stores are critical for gener-

ating the flow-induced Ca2+ response [Hung et al., 1996,Lu et al., 2012]. Ryanodine and

inositol trisphosphate (IP3) receptors have been shown to mediate loading-induced in-

tracellular Ca2+ storage release and are part of extracellular Ca2+-induced Ca2+ release

(CICR) from the endoplasmic reticulum [Lu et al., 2012,You et al., 2001a]. Further-
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more, ATP-gated purinergic receptors have been implicated in regulating flow-induced

Ca2+ responses [Lu et al., 2012, Jing et al., 2013]. While these studies were seminal in

understanding fluid flow-induced intracellular Ca2+mobilization, they did not resolve

Ca2+ microdomain transients from cytosolic Ca2+ events.

Recent advances in monitoring ciliary Ca2+ mobilization have improved our under-

standing of the primary cilia-mediated mechanism of mechanotransduction in kidney

epithelia. In the past, traditional diffusive BAPTA-based fluorescent indicator dyes

were used to measure intracellular Ca2+ levels but did not target specific subcellular

domains. In some pivotal studies, Praetorious and Spring and Nauli et al demonstrated

that primary cilia are required for mechanically-induced Ca2+ increases in kidney ep-

ithelial cells [Praetorius and Spring, 2001, Praetorius and Spring, 2003, Nauli et al.,

2003]. The dependence of flow-induced Ca2+ increases on kidney epithelia primary cilia

and the presence of mechanosensitive Ca2+-permeable channels on the ciliary membrane

suggest that mechanical loading opens stretch-activated ion channels on the primary

cilium that mediate Ca2+ entry. In the last year, Delling et al, Su et al, and Jin et al

directed genetically encoded single fluorescence Ca2+ biosensors to the primary cilium

using a variety of ciliary targeting sequences in human retina pigmented epithelia and

kidney epithelial cells [Delling et al., 2013, Su et al., 2013, Jin et al., 2013]. Su et al

and Jin et al exposed kidney epithelial cells to fluid flow, which bent primary cilia and

increased ciliary and cytosolic Ca2+ levels [Jin et al., 2013,Su et al., 2013]. The Ca2+-

permeable channel polycystin-2 (PC2) associates with the mechanosensitive protein

polycytin 1 and localizes to the primary cilium. Jin et al reported that flow-induced

Ca2+ elevations occur first in the primary cilium and are followed by cyotosolic Ca2+ mo-
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bilization. Both ciliary and cytosolic Ca2+ increases were dependent on PC2 [Jin et al.,

2013]. Furthermore, blocking ryanodine receptors inhibited cytosolic Ca2+ increases

without affecting the flow-induced ciliary Ca2+ response [Fill and Copello, 2002, Jin

et al., 2013]. Collectively, these recent flow studies on kidney epithelia primary cilia

demonstrate that fluid flow activates PC2 through which extracellular Ca2+ enters and

triggers ryanodine receptors in CICR.

Current knowledge of the osteocyte primary cilia-mediated mechanism of mechan-

otransduction is relatively poor compared with recent progress in kidney epithelia pri-

mary cilia mechanotransduction research. Our group previously used the fluorescent dye

Fura 2-AM to demonstrate that flow-induced Ca2+ increases in MLO-Y4 osteocyte-like

cells are independent of primary cilia and stretch-activated channels, which is different

from kidney cells [Malone et al., 2007]. While these results suggest that the osteocyte

primary cilia-regulated mechanism of mechanotransduction is not linked to intracellu-

lar Ca2+ levels, it is unknown if the local primary cilium Ca2+ environment is distinct

from the cytosol. We hypothesized that the osteocyte primary cilium mediates mechan-

otransduction by forming a distinct Ca2+ microdomain. Therefore, the objective of this

study was to monitor flow-induced ciliary Ca2+ levels and elucidate the intricate role

of the osteocyte primary cilium as a biochemical and mechanical signaling nexus.

In this study, we directed a Fluorescence Resonance Energy Transfer (FRET)-based

Ca2+ biosensor to the primary cilium by fusing a biosensor sequence to the primary

cilium-specific sequence of Arl13b. The modified YC3.6 Ca2+-sensitive FRET-based

biosensor contains a calmodulin (CaM) region with four Ca2+ binding domains [Ouyang

et al., 2008]. Binding of Ca2+ results in a conformational change that increases FRET
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signal, which is characterized by decreased ECFP and increased YPet fluorescence

[Whitaker, 2010]. YPet as an acceptor produces the largest FRET dynamic range in

live cells compared to Citrine, Venus, or cpVenus [Ouyang et al., 2008]. Using a targeted

version of YC3.6 and the diffusive Ca2+ indicator dye Fura Red, we detected ciliary and

cytosolic Ca2+ increases within individual MLO-Y4 cells exposed to fluid flow stimula-

tion. Additionally, we examined the role of several Ca2+-permeable channels on the pri-

mary cilium: Polycystin-2 (PC2), Transient Receptor Potential Vanilloid 4 (TRPV4),

and PIEZO1. Our data demonstrate that TRPV4, but not PC2 or PIEZO1, mediates

flow-induced ciliary Ca2+ increases and a loading-induced osteogenic response at the

transcriptional level. Collectively, our study demonstrates that the osteocyte primary

cilium microdomain is distinct from the cytosol and that sources of loading-induced

ciliary Ca2+ mobilization are different in kidney epithelia and osteocytes. These are

the first measurements of Ca2+ signaling within the osteocyte primary cilium, and we

anticipate this work is a starting point for more studies investigating the role of TRPV4

in osteocyte mechanotransduction [Prasad et al., 2014].
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2.3 Materials and Methods

2.3.1 Summary

A FRET-based Ca2+ biosensor was directed to the primary cilium using Arl13b. Fura

Red-AM indicator was used to detect flow-induced Ca2+ changes within the cytosol.

Defects in flow-induced Ca2+ signaling caused by Pkd2, Trpv4, and Piezo1 siRNA-

mediated knockdowns were measured. siRNA-mediated knockdowns were verified using

real-time qRT-PCR and Western blotting. MLO-Y4 cells deficient in Tprv4 and Piezo1

were flowed, and Cox-2 mRNA expression levels were quantified.

2.3.2 Plasmid construction

Drs. Yingxiao Peter Wang and Mingxing Ouyang previously modified the YC3.6 Ca2+-

sensitive FRET-based biosensor composed of an ECFP donor, calmodulin region, M13

calmodulin-binding region, and YPet acceptor (CaB). Drs. Kenji Kontani and Kristen

Verhey generously shared with us the Arl13b gene. We fused Arl13b to the N terminus

of CaB using a 15 amino acid-long flexible linker to form Arl13b-L-CaB (ALC) [Wang

et al., 2005]. Deletions of Trp3and Phe17 in the M13 region were performed to block

Ca2+-induced changes in FRET, serving as negative controls of CaB and ALC (mutCaB

and mutALC) [Ikura et al., 1992].

2.3.3 Cell culture and transfection

MLO-Y4 osteocyte-like cells were cultured in MEM alpha (Life Technologies) with 5%

FBS, 5% CS, and 1% PS at 37➦C in 5% CO2. 1.25 million cells were transfected with
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10 µg plasmid by electroporation using the BTX 360 with a single 300 V, 100 Ω, 1000

µF pulse. Cells were co-transfected with the ALC plasmid and 0.5 nmol siRNA. siRNA

sequences were: Pkd2 (5’-CCUCUUGGCAGUUUCAGCCUGUAAA- 3’), Trpv4 (5’-

GAUGGACUGCUCUCCUUCUUGUUGA -3’), and Piezo1 (5’-CACCGGCAUCUACG

UCAAAUA-3’) [Coste et al., 2010]. Transfected MLO-Y4 cells were seeded onto colla-

gen I-coated glass slides (#1.5 glass, Warner Instruments) at a density of 4k cells/cm2

and cultured for 3 days in reduced serum containing 2.5% FBS and 2.5% CS. IMCD cells

were cultured in DMEM (Life Technologies) with 10% FBS and 1% PS. Transfected

IMCD cells were seeded onto fibronectin-coated glass slides at a density of 8k cells/cm2

and cultured for 3 days in 1% FBS. Prior to imaging, cells were incubated in 20 µM

Fura Red-AM (Life Technologies, F-3021) with 0.1% Pluronic➤ F-127 (20% Solution

in DMSO) (Life Technologies) for 1 hour at room temperature to label cytosolic Ca2+.

2.3.4 Imaging flow chamber

Slides were placed in the RC-30 Confocal Imaging Chamber (Warner Instruments) and

attached to a syringe containing phenol red-free MEM alpha with 1% FBS and 1% CS

for MLO-Y4 cells or phenol red-free DMEM with 1% FBS for IMCD cells. MLO-Y4

cells were exposed to oscillatory fluid flow resulting in 10 dyne/cm2 shear stress, and

IMCD cells were exposed to steady fluid flow resulting in 1 dyne/cm2 shear stress, both

within physiologic range for each cell type. Thapsigargin was added to the imaging

media at a final concentration of 10 µM for appropriate samples. A separate syringe

with 10 µM ionomycin was connected to the chamber to verify cell viability and show

biosensor activation after the initial flow stimulus.
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2.3.5 Ca2+ imaging in cilia and cytosol

Fluorescent samples were imaged on an Olympus IX71 inverted epifluorescence micro-

scope with a 1.30 N.A. 40X oil-immersion objective. Donor excitation was achieved

using a xenon lamp with a 430/24 nm filter. ECFP, YPet, and Fura Red images were

collected simultaneously using a Quad-View system (QV2, Photometrics) containing

470/28 nm, 530/30 nm, and 641/75 nm emission filters. Cells were left to rest for 20

minutes prior to imaging. For calibration studies, we added ionomycin at a final con-

centration of 5 µM and CaCl2 at a final concentration of 0.1, 0.25, or 0.5 mM. During

fluid flow studies, baseline signal was recorded for 30 seconds followed by 5 minutes of

flow. Images were taken at 4 Hz with 150 msec exposure.

2.3.6 Antibodies

We used the following primary antibodies: Rabbit anti-Polycystin 2 (Santa Cruz, sc-

25749), rabbit anti-sera to TRPV4 (generously provided by Dr. Stephan Heller), rab-

bit anti-Piezo1 (Novus NBP1-78537 for immunostaining and NBP2-10504 for Western

blotting), mouse anti-acetylated alpha tubulin (Abcam, ab24610), and mouse anti-actin

(Abcam, ab11003). We used the following secondary antibodies: Alexa Fluor 488 goat

anti-rabbit IgG (Life Technologies, A11008), Alexa Fluor 568 goat anti-mouse IgG (Life

Technologies, A11031), goat anti-rabbit IgG-HRP (Santa Cruz, sc-2004) and HRP goat

anti-mouse Ig (BD Biosciences, 554002).

21



2.3.7 Immunocytochemistry and confocal microscopy

MLO-Y4 and IMCD cells were seeded on 35 mm glass bottom dishes at approximately

1 k cells/cm2 and 2 k cells/cm2 respectively. Upon reaching 80-90% confluence after

2 days of culture, cells were fixed with 10% Formalin, permeabilized with 0.1% Triton

X-100, and blocked with 10% goat serum and 1% BSA in PBS. Cells were labeled with

primary antibodies for acetylated alpha tubulin and PC2, TRPV4, or PIEZO1, followed

by incubation in appropriate Alexa Fluor-labeled secondary antibodies. Nucleic stain

was achieved using DAPI (0.5 mg/mL). Confocal images were obtained on a Leica SP5

using a 1.46 N.A. 100X oil-immersion objective.

2.3.8 Western blot

Cells transfected with Pkd2, Trpv4, Piezo1, and MedGC scrambled siRNA (Life Tech-

nologies) were lysed in RIPA buffer (Santa Cruz, sc-24948) supplemented with sodium

orthovanadate, PMSF, and protease inhibitor cocktail 3 days post electroporation. 5

µg of each protein sample was run through NuPAGE➤ Novex➤ 4-12% Bis-Tris gels

(Life Technologies). After electrophoresis, proteins were transferred to InvitrolonTM

PVDF membranes (Life Technologies). The membranes were cut in half to separately

label actin bands. Membranes for PC2, PIEZO, and actin were blocked with 5% BSA

(Sigma-Aldrich) and membranes for TRPV4 were blocked with 5% non-fat milk. HRP-

conjugated antibodies were detected with chemiluminescence (Clarity Western ECL

substrate, BioRad) on a Fujifilm LAS-4000 biomolecular imager.
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2.3.9 Flow chamber

Transfected MLO-Y4 cells were seeded onto collagen I-coated glass slides at approxi-

mately 5k cells/cm2 and cultured for 3 days. Slides were placed in parallel plate flow

chambers (56 × 24 × 0.28 mm), incubated for 30 minutes, and then exposed to 5 min-

utes of oscillatory fluid flow (OFF) at 1 Hz with a peak shear stress of 10 dynes/cm2.

Slides were removed from chambers after 55 minutes, and RNA was isolated immedi-

ately.

2.3.10 Quantitative real-time RT-PCR

RNA was extracted from cells using TriReagent (Sigma-Aldrich) and isolated, followed

by cDNA synthesis using TaqMan reverse transcriptase (Applied Biosystems). cDNA

samples were amplified with Trpv4 (Mm00499025 m1), Pkd2 (Mm00435829 m1), Piezo1

(Mm01241570 g1), Piezo2 (Mm01262433 m1), Cox-2 (Mm00478374 m1) and Gapdh

(4352339E) primers and probes (Applied Biosystems) by quantitative real-time RT-

PCR using the ABI PRISM 7900 detection system (Applied Biosystems). Samples and

standards were run in triplicate and were normalized to the endogenous Gapdh expres-

sion. Relative gene levels between samples were determined using the relative standard

curve method (ABI Prism 7700 User Bulletin 2; Applied Biosystems).

2.3.11 Data analysis

Images were corrected for background and bleedthrough. Average intensity data of a

region of interest over time was smoothened using a 1D Savitsky-Golay filter. Peaks
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were identified by finding local maxima using Matlab. Unless otherwise specified, a cell

was considered responsive if a flow-induced Ca2+ peak height was equal or greater to 1.5

times the maximum baseline oscillation. Results are shown as mean ± SEM. Unpaired

t-tests (two-tailed) were used to analyze differences between treated and untreated

groups. Comparisons of multiple groups were performed using 1-way ANOVA followed

by Dunnett’s multiple comparison post hoc test or Bonferroni’s multiple comparison

post hoc test for Cox-2 mRNA level comparisons. For all tests, p < 0.05 was considered

significant.
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2.4 Results

2.4.1 Arl13b-linker-Ca2+ biosensor detects ciliary Ca2+

For this study, we developed a novel primary cilium-localized, fully ratiometric biosen-

sor using the modified YC3.6 Ca2+-sensitive FRET-based biosensor (CaB) fused to

ARL13B. First, we established that ARL13B localizes to primary cilia in MLO-Y4

osteocyte-like cells and verified ARL13B localization to IMCD primary cilia (A.1a-

b) [Sharma et al., 2011]. Interestingly, we found that another reported primary cilium-

localized protein, Somatostatin receptor 3 (SSTR3), which localizes to the IMCD pri-

mary cilium, did not localize to the MLO-Y4 primary cilium, excluding it as a ciliary

targeting sequence (Figure A.1c-d). Our biosensor design consisted of Arl13b at the

N terminus followed by a 15 amino acid-long flexible linker, ECFP, calmodulin, M13

calmodulin-binding region, and YPet at the C terminus (Figure 2.1a) [Wang et al.,

2005,Ouyang et al., 2008]. Addition of Ca2+ leads to increased FRET signal, and trans-

fecting Arl13b-linker-CaB (ALC) enabled us to detect Ca2+ levels within the primary

cilium separate from the cytosol. The addition of 5 µM ionomycin, a Ca2+ ionophore, in

media containing 1.8 mM Ca2+ led to detectable increases in FRET (represented by the

emission ratio of YPet:ECFP fluorescence intensity) (Figure 2.1b). Furthermore, the

FRET signal increased at a slower rate and with delay to smaller concentrations of cal-

cium chloride (CaCl2) added with ionomycin in Ca2+-free media compared with higher

concentrations of CaCl2 (Figure 2.1c). Thus, we determined that ALC was sensitive to

different levels of ciliary Ca2+.
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Figure 2.1: ALC localizes to the primary cilium and detects Ca2+ level changes.
(a) Schematic of the primary cilium-localized biosensor, ALC. (b) ALC FRET signal
increases when ionomycin is added to media. Scale bars, 5 µm. (c) Traces of baseline-
normalized FRET signal over time with different [CaCl2]. (d) YPet fluorescence images
of a vertical primary cilium which bent to the right during flow. Scale bars, 10 µm. (e)
Individual ciliary and cytosolic Ca2+ measurements during oscillatory fluid flow starting
at t = 0 s. (f) Ca2+ increases with untreated or thapsigargin-treated media (untreated
(n=17 or 18), thapsigargin (n=6)) and percent of MLO-Y4 primary cilia and cytosolic
domains exhibiting flow-induced Ca2+ increases (n=15-21). (***, p<0.0001; *, p<0.05).
Error bars show mean ± SEM.
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2.4.2 Mechanical stimulation of MLO-Y4 cells transfected with

ALC led to ciliary and cytosolic Ca2+ mobilization

Primary cilia with a vertical component prior to flow typically bent in the direction of

flow (Figure 2.1d). We loaded the Ca2+ indicator dye Fura Red into cells transfected

with ALC to monitor cytosolic Ca2+ levels. Use of a Quad-View beam splitter allowed

us to collect images through several emission filters, and we monitored ECFP, YPet,

and Fura Red signals simultaneously [Baik et al., 2013]. Application of 1 Hz oscillatory

fluid flow resulting in 10 dynes/cm2 surface shear stress led to ciliary and cytosolic Ca2+

peaks within approximately 8.2 ± 0.8 s and 8.2 ± 0.6 s, respectively (Figure 2.1e). On

an individual cell basis, 57% of Ca2+ peaks occurred in the primary cilium prior to the

cytosol of the same cell, suggesting that Ca2+ increases in the primary cilium do not

trigger intracellular Ca2+ release as it does in kidney epithelial cells. We also trans-

fected and stimulated cells transfected with inactive biosensors, mutCaB and mutALC,

to verify that the observed peaks were indeed due to increased Ca2+ levels (Figure A.2).

Next, cells were treated with thapsigargin, which depletes intracellular Ca2+ stores. We

continued to observe flow-induced ciliary Ca2+ peaks, although there were significant

decreases in responsiveness and peak magnitude (Figure 2.1f). These results imply that

Ca2+-permeable channels on the primary cilium also mediate flow-induced Ca2+ entry.
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2.4.3 PC2, TRPV4, and PIEZO1 are Ca2+-permeable chan-

nels on the primary cilium

We examined three Ca2+-permeable channels localized to the osteocyte primary cilium:

Polycystin- 2 (PC2), Transient Receptor Potential Vanilloid 4 (TRPV4), and PIEZO1.

PC2 and TRPV4, among other channels, localize to kidney epithelia primary cilia and

mediate flow-induced Ca2+ increases [Nauli et al., 2003,Köttgen et al., 2008].

Figure 2.2: PC2, TRPV4, and PIEZO1 localize to MLO-Y4 primary cilia and plasma
membrane. (a-c) Co-immunostaining of acetylated α-tubulin and PC2, TRPV4, and
PIEZO1 on MLO-Y4 cells. Scale bars, 10 µm. (d) Western blot of PC2, TRPV4,
PIEZO1, and actin protein in MLO-Y4s treated with scrambled control siRNA and
Pkd2, Trpv4, or Piezo1 siRNA. (e) Quantified knockdown of Pkd2 (n=4), Trpv4
(n=10), and Piezo1 (n=4) mRNA levels in MLO-Y4 cells treated with siRNA rela-
tive to controls (n=10). Error bars show mean ± SEM.
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Coste et al reported that mechanically-activated ion channels PIEZO1 and PIEZO2

are expressed in several murine tissues including kidney and have relatively lower ex-

pression in brain and heart tissue [Coste et al., 2010]. We observed Piezo1 mRNA

expression in MLO-Y4 and IMCD cells and Piezo2 mRNA expression only in IMCDs

(Figure A.3). We immunostained MLO-Y4 cells for PC2, TPRV4, and PIEZO1 and

found that all three channels are present in both the primary cilium and plasma mem-

brane (Figure 2.2a-c). siRNA transfection reduced protein and mRNA levels compared

with scrambled siRNA controls (all groups vs. control mRNA levels, p<0.005)(Figure

2.2d-e).

2.4.4 TRPV4 mediates osteocyte flow-induced ciliary Ca2+ in-

creases

PC2 mediates mechanically-induced ciliary and cytosolic Ca2+ signaling in kidney ep-

ithelia, and here, our data suggest that osteocyte mechanotransduction is independent

of PC2. Following co-transfection of ALC and either Pkd2, Trpv4, or Piezo1 siRNA,

MLO-Y4 cells were loaded with Fura Red and exposed to oscillatory flow stimulation.

To illustrate the role of candidate mechanically-activated channels in regulating Ca2+

entry, we plotted the percent of responsive cells exhibiting flow-induced Ca2+ peaks as

a function of minimum peak height (a multiple of the sample’s baseline oscillation) for

all treatment groups. Out of all the Ca2+-permeable channels, only the loss of Trpv4

clearly impaired the percent of responding cells (Figure 2.3a).
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Figure 2.3: TRPV4 plays a role in osteocyte mechanotransduction. (a-b) Percent
of responsive cells exhibiting flow-induced Ca2+ peaks as a function of minimum peak
amplitude (a multiple of the sample’s baseline oscillation)(n=15-21). (c-d) Timing of
ciliary and cytosolic Ca2+ peaks of treated cells relative to untreated controls ((un-
treated (n=15), thapsigargin (n=5 or 6), Pkd2, Trpv4, and Piezo1 (n=14-16)). (e-f)
Levels of normalized Cox-2 mRNA expression in scrambled, Trpv4, or Piezo1 siRNA-
treated cells with and without 5 minutes of oscillatory flow exposure (n=9-11). (*,
p<0.05) Error bars show mean ± SEM.
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Using a threshold cutoff of 5 times the baseline oscillation, 75% of untreated cells

demonstrated ciliary Ca2+ peaks compared with 30% of Trpv4 siRNA-treated cells.

Trpv4 deficiency did not lower the percent of cells exhibiting cytosolic Ca2+ peaks

(Figure 2.3b). In fact, only thapsigargin treatment affected the percent of cells exhibit-

ing flow-induced cytosolic Ca2+ increases (Figure 2.3b). Pkd2 and Piezo1 deficiencies

did not inhibit the percent of ciliary or cytosolic Ca2+ peaks. Interestingly, Piezo1

knockdown sensitized the cytosolic Ca2+ response to flow perhaps because a different

Ca2+-permeable channel. As mentioned earlier, there is a delay in peak FRET sig-

nal with lower Ca2+ concentrations relative to higher Ca2+ concentrations. Compared

with untreated samples, ciliary and cystolic Ca2+ peaks were delayed in MLO-Y4 cells

treated with thapsigargin or deficient in Trpv4 and Piezo1 (Figure 2.3c-d). These

differences were not statistically significant in cells lacking Piezo1. Collectively, these

results suggest that fluid flow mechanically activates TRPV4 channels on the primary

cilium and independent intracellular Ca2+ release, allowing extracellular Ca2+ and Ca2+

from internal stores to enter the primary cilium microdomain.

2.4.5 Primary cilia-regulated mechanisms of mechanotrans-

duction are different in kidney epithelia and osteocytes

With the suggestion that the osteocyte primary cilia-mediated mechanism of mechan-

otransduction depends on TRPV4 and not PC2, we conducted similar flow studies with

kidney epithelial cells to verify that this difference was due to cell type and not exper-

imental approach. We immunostained IMCD cells for PC2 and found similar localiza-

tion relative to MLO-Y4 cells (Figure 2.4a). As expected and previously reported, Pkd2
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knockdown (11.85 ± 0.03% relative to IMCD control mRNA levels, p<0.005) blocked

steady flow-induced ciliary and cytosolic Ca2+ increases in IMCDs, and these differ-

ences were statistically significant (Figure 2.4b-g) [Jin et al., 2013]. Consistent with the

study by Jin et al, IMCD ciliary Ca2+ peaks preceded cyotosolic Ca2+ increases in all

samples (p<0.005) [Jin et al., 2013].

Figure 2.4: PC2 mediates kidney epithelial mechanotransduction. (a) PC2 localizes to
IMCD primary cilia and plasma membrane. Scale bar, 10 µm. (b) Western blot of PC2
and actin protein in IMCDs treated with scrambled control or Pkd2 siRNA. (c) Quan-
tified knockdown of Pkd2 mRNA expression in IMCD cells treated with siRNA relative
to controls (n=4). (d-e) Flow-induced Ca2+ increases in responsive cells deficient in
Pkd2 (primary cilium: untreated (n=6), Pkd2 (n=4), cytosol: untreated (n=4), Pkd2
(n=1)). (f-g) Percent of IMCD exhibiting flow-induced Ca2+ increases (n=9-10). (***,
p<0.0005; *, p<0.05) Error bars show mean ± SEM.
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2.4.6 TRPV4 is required for osteocyte mechanotransduction

Next, we were interested in determining if TRPV4 also mediates osteocye mechan-

otransduction at the transcriptional level in addition to regulating early ciliary Ca2+ mo-

bilization. The Cox-2 gene encodes an enzyme which catalyzes formation of prostaglandin-

E2 (PGE2), an osteogenic cytokine released by osteoblasts and osteocytes in response to

mechanical stimulation, and Cox-2 expression increases correspond to more PGE2 re-

lease [Malone et al., 2007]. After 5 minutes of oscillatory fluid flow stimulation (identical

to the imaging experiments) and a rest period of 55 minutes, we isolated and quantified

Cox-2 mRNA expression relative to the endogenous control Gapdh. Scrambled siRNA-

transfected cells exhibited a flow-induced increase in Cox-2 mRNA expression levels,

and this flow-induced response was blocked in cells lacking Trpv4 (1.3 ± 0.3 (control) vs.

1.0± 0.1 (Trpv4 ) fold increase) (Figure 2.3e). MLO-Y4 cells transfected with scrambled

control siRNA and Trpv4 siRNA expressed similar levels of Cox-2 mRNA expression

at baseline. Interestingly, Piezo1 deficiency did not affect downstream flow-induced

changes in Cox-2 mRNA. MLO-Y4 cells transfected with Piezo1 siRNA demonstrated

a 1.4 ± 0.2 fold flow-induced increase in Cox-2 mRNA expression which was not sig-

nificantly different from controls although they exhibited lower baseline Cox-2 mRNA

expression levels (Figure 2.3f). Taken together, these data suggest that loss of TRPV4,

and not PIEZO1, alters osteocyte mechanotransduction at molecular and transcrip-

tional levels.
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2.5 Discussion

In this study, we directed a FRET-based Ca2+ biosensor to the primary cilium and

loaded cells with a nontargeted fluorescent Ca2+ indicator dye to resolve the local Ca2+

enviornment in the osteocyte primary cilium from the cytosol. We monitored ciliary

and cytosolic Ca2+ levels using an epifluorescence microscopy system and observed flow-

induced Ca2+ peaks in both domains. Trpv4 deficiency reduced flow-induced ciliary

Ca2+ peaks but did not impair flow-induced cytosolic Ca2+ peaks, illustrating that

the primary cilium microdomain is distinct from the cytosol. Thapsigargin treatment

impaired flow-induced ciliary and cytosolic Ca2+ peaks, demonstrating that intracellular

Ca2+ release and Ca2+ entry through TRPV4 are both components of ciliary Ca2+

mobilization. In contrast, knockdown of Pkd2 and Piezo1 did not affect ciliary or

cytosolic Ca2+ peaks. Last, we linked the role of TRPV4 in regulating flow-induced

ciliary Ca2+ mobilization with a downstream osteogenic response at the transcriptional

level by determining that flow-induced changes in Cox-2 expression depend on TRPV4.

Collectively, our study demonstrates that the loading-induced ciliary Ca2+ mechanism

is different between kidney epithelia and osteocytes.

After observing flow-induced Ca2+ peaks in both the osteocyte primary cilium and

cytosol, we were motivated to identify the source of the ciliary Ca2+ peak. To deplete

intracellular Ca2+ stores, we treated cells with thapsigargin and continued to observe

ciliary Ca2+ peaks, suggesting that Ca2+-permeable channels on the primary cilium have

a role in mediating flow-induced Ca2+ entry. However, thapsigargin treatment did lower

flow-induced ciliary and cytosolic Ca2+ peak magnitudes and responsiveness compared

with untreated cells, indicating that intracellular Ca2+ release is a component of flow-
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induced ciliary Ca2+ mobilization in osteocytes. Furthermore, a statistically significant

delay in ciliary and cytosolic Ca2+ peaks occurred in thapsigargin-treated cells compared

with controls. Thus, our data demonstrate that intracellular Ca2+ release contributes,

in part, to the local primary cilia Ca2+ environment and suggests that the primary

cilium serves as an important signal integrator.

In this study, we present evidence that fluid flow activates TRPV4 on the pri-

mary cilium and mediates Ca2+ entry into the primary cilium microdomain but does

not trigger CICR. Using immunocytochemistry techniques, we determined that the

stretch-activated Ca2+-permeable channel TRPV4 localizes to the primary cilium and

plasma membrane. Our flow experiments revealed that Trpv4 knockdown lowered flow-

induced ciliary Ca2+ peaks but did not impair cytosolic Ca2+ peaks. Unlike kidney

epithelia, where Ca2+ reportedly enters the primary cilium through PC2 and induces

CICR via ryanodine receptor activation, Trpv4 deficiency in osteocytes did not affect

cytosolic Ca2+ mobilization [Jin et al., 2013]. This result suggests that the TRPV4-

mediated ciliary Ca2+ microdomain does not regulate CICR in osteocytes. This is

different from astrocytes, where TRPV4-mediated CICR regulates neurovascular cou-

pling in an IP3R regulated system [Dunn et al., 2013]. It is also possible that other

mechanically-activated Ca2+ permeable channels compensate for the loss of TRPV4

function in the cytosol, which is consistent with data from this study showing that the

loss of Piezo1 may sensitize cells to flow. Knockdown of each channel did not impair the

flow induced cytosolic cytosolic Ca2+ response, which suggests that a different mecha-

nism is in play that maintains normal cytosolic Ca2+ levels. Taken together, TRPV4’s

location in an area of high membrane strain on the primary cilium and dependence of
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the flow-induced ciliary Ca2+ peak on TRPV4 suggest that the primary cilium acts as

a Ca2+ and mechanical signaling nexus dependent on TRPV4.

Our understanding of primary cilium bending mechanics and mechanical forces on

the plasma membrane covering the primary cilium is essential to elucidating the molec-

ular mechanism of mechanotransduction mediated by the primary cilium. Recently,

Young et al studied the tension force distribution along a primary cilium under flow

and suggested that stretch-activated ion channels are likely to be activated and open

near the base of the primary cilium where tension force is the highest [Young et al.,

2012]. While primary cilia bending is one potential physical event, it is possible that

primary cilium deflection is not physiologic and that mechanical loading of the pri-

mary cilium occurs in other ways. For example, ❜-1 integrins are localized to MDCK

primary cilia, and ❜-1 integrins have been implicated in mediating osteocyte mechan-

otransduction and loading-induced bone formation [Praetorius et al., 2004,Litzenberger

et al., 2010,Litzenberger et al., 2009]. Thus, increased membrane tension is not limited

to primary cilia bending and may involve primary cilia integrin-extracellular matrix

interactions.

We anticipate that TRPV4 will be an attractive pharmacologic target for treat-

ing disuse-induced bone loss due to its role mediating osteocyte mechanotransduction

and its sensitivity to existing biochemical agents (agonists: 4❛-PDD, GSK1016790A,

RN1747 and antagonist: RN1734) [Watanabe et al., 2003,Thorneloe et al., 2008,Vin-

cent et al., 2009]. Treatment with TRPV4 agonists and therapies that elongate osteocye

primary cilia (lithium chloride, hydrogen sulfide, interleukin-1) to enhance mechanical

strain levels may amplify osteogenic responses and prevent disuse-induced bone loss
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in patients restricted to bed rest [Wann et al., 2012,Miyoshi et al., 2011, Han et al.,

2014]. Interestingly, Trpv4 is also expressed by osteoclastic lineages, and osteoclast dif-

ferentiation and function have been shown to dependend on Trpv4 in vivo [Mizoguchi

et al., 2008, Masuyama et al., 2012, van der Eerden et al., 2013]. Thus, the devel-

opment of an osteoblastic lineage-specific therapeutic targeting TRPV4 rather than

systemic drug therapy would likely be necessary to promote bone formation. Further-

more, O’Conor et al have shown that TRPV4 plays a role as a physical transducer

in chondrocytes, which may provide insight into functional cartilage tissue engineering

approaches [OConor et al., 2014].

While Jin et al reported that flow-induced Ca2+ mobilization occurs in primary cilia

before cytosolic Ca2+ increases in the kidney epithelial cells, our flow studies do not

demonstrate a clear difference in the timing between ciliary and cytosolic Ca2+ peaks

in osteocytes [Jin et al., 2013]. This timing similarity could suggest that extracellular

Ca2+ enters the primary cilium at the same time as distinct cytosolic Ca2+ increases.

However, the ciliary Ca2+ peaks occurred roughly equally before and after cytosolic

Ca2+ peaks, suggesting that ciliary Ca2+ does not trigger cytosolic Ca2+ increases.

Thus, we are unable to characterize a relationship between ciliary and cytosolic Ca2+

peak timing unlike in kidney epithelial cells.

Several other groups have demonstrated that flow-induced ciliary Ca2+ mobilization

is dependent on PC2 in kidney epithelia [Nauli et al., 2003, Köttgen et al., 2008, Jin

et al., 2013]. Our data suggest that flow-induced ciliary Ca2+ mobilization is dependent

on TRPV4, and not PC2, in osteocytes. We conducted similar flow studies with kidney

epithelial cells to verify that this difference was due cell type and not experimental ap-
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proach. Our studies with IMCD cells also showed that flow-induced ciliary and cytosolic

Ca2+ increases depend on PC2. The consistency in our results suggest that the mech-

anism of mechanotransduction mediated by primary cilia varies across different tissue

contexts. Another difference between the MLO-Y4 and IMCD flow studies was the

type of flow regime, consisting of oscillatory fluid flow resulting in 10 dynes/cm2 shear

stress for MLO-Y4 cells and steady flow resulting in 5 dynes/cm2 shear stress for IMCD

cells. Previously, Malone et al determined that flow-induced Ca2+ flux differences in

MC3T3-E1 osteoblasts and MDCK kidney cells did not depend on these specific flow

regimes which suggests that primary cilium-mediated mechanosensation in osteoblasts

and kidney cells are indeed different [Malone et al., 2007]. Thus, the application of

different but physiologically relevant mechanical loads was appropriate for elucidating

intricacies in the mechanotransduction mechanism in IMCD and MLO-Y4 cells.

In conclusion, this study highlights the specialization of primary cilia mechanisms

across different tissue contexts. Here, we demonstrate that mechanically-stimulated cil-

iary Ca2+ mobilization is different between kidney epithelia and osteocytes. Strikingly,

the osteocyte primary cilium forms a distinct microdomain from the cytosol during me-

chanical loading. The primary cilium microdomain may help maintain spatiotemporal

organization within the cell which allows numerous molecular mechanisms to occur with

just a limited number of signaling molecules. We expect that the Ca2+-permeable chan-

nel TRPV4 will be an attractive therapeutic target for bone loss disease because of its

location in an area of high membrane strain on the primary cilium, demonstrated role

as a physical transducer in osteocytes in this study and chondrocytes in a recent study

by O’Conor et al, and sensitivity to existing biochemical agents [OConor et al., 2014].
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Furthermore, we anticipate that other flow studies on second messenger-mediated path-

ways in the primary cilium microdomain and loading-induced bone formation studies

using mice with an osteocyte-targeted deletion of TRPV4 will elucidate how TRPV4-

mediated Ca2+ entry in the primary cilium microdomain regulates osteogenic responses

to mechanical loads.
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Chapter 3

Cyclic AMP in the Osteocyte

Primary Cilium

Project Collaborators: Kristen L. Lee, Davide Calebiro, Martin J. Lohse,

Christopher R. Jacobs

3.1 Abstract

Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that reg-

ulates a broad range of intracellular signaling pathways. In a previous study by our

lab, we demonstrated that mechanical loading lowered osteocyte cAMP levels, which

was dependent on primary cilia. The osteocyte primary cilium deflects with mechanical

stimulation and forms a Ca2+ microdomain, however, the local cAMP signaling envi-

ronment is unknown. In this study, we present the first real-time measurements of flow-

induced ciliary and cytosolic cAMP levels in osteocytes. We directed a FRET-based



cAMP biosensor and red single fluorescence Ca2+ biosensor to the primary cilium by

fusing the biosensor sequences to the primary cilium-specific sequence of Arl13b which

allowed us to compare cAMP and Ca2+ changes within the same cell. Here, we show

that fluid flow induces sustained ciliary cAMP increases and cytosolic cAMP decreases.

Interestingly, flow-induced ciliary Ca2+ levels peak and return to baseline before the

maximal cAMP response occurs. Our data suggest that the primary cilium forms a

distinct cAMP microdomain protected from the cytosol and serves as a biochemical

and mechanical signaling nexus. Ultimately, our study points to the involvement of

cAMP-producing adenylyl cyclases (ACs) in primary cilium-mediated mechanosensa-

tion, and we believe this work is a launching point for more studies identifying the

signals governing AC activity in osteocyte mechanotransduction.

41



3.2 Introduction

Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that regu-

lates a broad range of processes such as metabolism, differentiation, and proliferation,

and actin cytoskeletal dynamics [Sutherland et al., 1972,Perez et al., 2005,Banales et al.,

2009,Siddappa et al., 2009,Masyuk et al., 2008]. Adenylyl cyclases (ACs) are a family of

enzymes that convert adenosine monophosphate (ATP) into cAMP. cAMP has two ef-

fectors, protein kinase A (PKA) and exchange proteins activated by cAMP (Epac), both

of which mediate diverse cellular functions [Seino and Shibasaki, 2005]. In a previous

study by our lab, we demonstrated that osteocyte cAMP levels decreased with two min-

utes of fluid flow stimulation and that loss of primary cilia impaired this flow-induced

cAMP response [Kwon et al., 2010]. Furthermore, treatment with gadolinium chlo-

ride, which blocks stretch-activated Ca2+ channels, impaired the flow-induced cAMP

response, suggesting that Ca2+ entry through mechanically-sensitive Ca2+-permeable

channels mediates cAMP changes [Kwon et al., 2010]. The osteocyte primary cilium

deflects with mechanical stimulation and forms a Ca2+ microdomain, however, the local

cAMP signaling environment is unknown.

The primary cilium microdomain is approximately 1/30,000 the size of the cell body

and serves as a mechanical signal transducer [Praetorius and Spring, 2003,Praetorius

and Spring, 2001]. Interestingly, Besschetnova et al showed that increased cAMP levels

elongated primary cilia in kidney epithelial and mesenchymal cells [Besschetnova et al.,

2010]. In their study, fluid flow decreased intracellular cAMP levels and reduced pri-

mary cilium length [Besschetnova et al., 2010]. While it has been suggested that cAMP

mediates primary cilia length to minimize overexposure to high mechanical loads, it is
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unknown how the primary cilium cAMP microdomain changes with fluid flow stimu-

lation. Understanding the flow-induced cAMP changes within the primary cilium and

cytosol may elucidate the role of cAMP in mechanotransduction. Therefore, the objec-

tive of this study was to characterize how ciliary cAMP levels change with mechanical

stimulation.

Epac1, one of the two Epac isoforms, has a single cAMP binding domain with

EC50=2.4 µM [Bos, 2003]. The Epac1-based cAMP sensor, Epac1-camps, is composed

of amino acids E157–E316 from the human Epac1 protein flanked by fluorescent pro-

teins YFP and CFP [Börner et al., 2011]. Binding of cAMP to Epac1-camps causes a

conformational change that separates CFP from YFP and decreases the resulting FRET

signal which is composed of increased CFP and decreased YFP fluorescence. Epac1-

camps has several advantages over other biosensors such as faster kinetics and larger

dynamic range compared with PKA-based biosensors. Additionally, it is more sensitive

to lower concentrations of cAMP relative to the full length Epac-based Indicator for

cAMP Using Epac (ICUE, EC50=12.5 µM) which may also have unwanted signaling

capabilities [Ponsioen et al., 2004,Violin et al., 2008]. Thus, we used the FRET-based

Epac1-camps biosensor to monitor flow-induced ciliary and cytosolic cAMP levels in

real-time.

In this study, we directed the Epac1-camps FRET-based biosensor to the primary

cilium and detected flow-induced ciliary cAMP increases in contrast to flow-induced

cytosolic cAMP decreases within MLO-Y4 cells. Additionally, co-transfection of the

genetically encoded single fluorescence Ca2+ biosensor (R-CaMP1.07), which contains

the circularly permuted red fluorescent protein mApple linked to calmodulin and M13,
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allowed us to compare flow-induced changes in ciliary cAMP and Ca2+ within the

same cells. Our data demonstrate that loading-induced ciliary Ca2+ increases preceded

ciliary cAMP increases, suggesting that Ca2+ regulates cAMP levels within the primary

cilium microdomain. Here, we present the first real-time measurements of flow-induced

ciliary and cytosolic cAMP changes in osteocytes. Our data suggest that the primary

cilium forms a cAMP microdomain that mediates mechanotransduction and points to

the involvement of adenylyl cyclases in primary cilium-dependent mechanosensing.

44



3.3 Materials and Methods

3.3.1 Summary

FRET-based Epac1-camps and single fluorescence Ca2+ biosensor, R-CaMP1.07, were

directed to the primary cilium using Arl13b to detect flow-induced ciliary cAMP and

Ca2+ changes. Diffusive Epac1-camps was used to monitor flow-induced cytosolic cAMP

levels.

3.3.2 Plasmid construction

Drs. Martin Lohse and Davide Calebiro generously provided the Epac1-camps plasmid

composed of a YFP acceptor, Epac1 cAMP binding region, and CFP donor. Drs.

Junichi Nakai and Masamichi Ohkura generously provided the R-CaMP1.07 plasmid.

Drs. Kenji Kontani and Kristen Verhey shared with us the Arl13b gene. We fused

Arl13b to the N terminus of Epac1-camps and R-CaMP1.07 using a 15 amino acid-

long flexible linker to form Arl13b-L-Epac1 (ALE) and Arl13b-L- R-CaMP1.07 (ALR)

[Wang et al., 2005].

3.3.3 Cell culture and transfection

MLO-Y4 osteocyte-like cells were cultured in MEM alpha (Life Technologies) with 5%

FBS, 5% CS, and 1% PS at 37➦C in 5% CO2. 1.25 million cells were transfected with

10 µg plasmid by electroporation using the BTX 360 with a single 300 V, 100 Ω, 1000

µF pulse. Transfected MLO-Y4 cells were seeded onto collagen I-coated glass slides

(#1.5 glass, Warner Instruments) at a density of 4k cells/cm2 and cultured for 3 days
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in reduced serum containing 2.5% FBS and 2.5% CS.

3.3.4 Imaging flow chamber

Slides were placed in the RC-30 Confocal Imaging Chamber (Warner Instruments) and

attached to a syringe containing phenol red-free MEM alpha with 1% FBS and 1%

CS. Oscillatory fluid flow was applied to MLO-Y4 cells resulting in 10 dyne/cm2 shear

stress. A separate syringe with 10 µM ionomycin and 10 µM forksolin was connected

to the chamber to verify cell viability and show biosensor activation after the initial

flow stimulus.

3.3.5 cAMP and Ca2+ imaging

Fluorescent samples were imaged on an Olympus IX71 inverted epifluorescence micro-

scope with a 1.30 N.A. 40X oil-immersion objective. Donor excitation was achieved

using a xenon lamp with a 430/24 nm filter for Epac1-camps and 577/25 nm filter for

R-CaMP1.07. Images were collected using a Quad-View system (QV2, Photometrics)

containing 470/28 nm, 530/30 nm, and 641/75 nm emission filters. Cells were left to

rest for 20 minutes prior to imaging. During fluid flow studies, baseline signal was

recorded for 30 seconds followed by 5 minutes of flow. ALE and ALR images were

taken at 2 Hz with 150 msec exposure. Untargeted Epac1-camps signal was taken at

0.5 Hz with 150 msec exposure.
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3.3.6 Data analysis

Images were corrected for background and bleedthrough. Average intensity data of a re-

gion of interest over time was smoothened using a 1D Savitsky-Golay filter. Peaks were

identified by finding local maxima using Matlab. Results are shown as mean ± SEM.

Unpaired t-tests (two-tailed) were used to analyze differences between two groups. For

all tests, p < 0.05 was considered significant.
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3.4 Results

3.4.1 Arl13b-linker-Epac1-camps biosensor detects ciliary cAMP

For this study, we developed a novel primary cilium-localized FRET-based Epac1-camps

biosensor which was fused to ARL13B at the N terminus followed by a 15 amino acid-

long flexible linker (ALE) (Figure 3.1a) [Wang et al., 2005].

Figure 3.1: ALE localizes to the primary cilium and detects changes in ciliary cAMP
levels. (a-b) Schematic of primary cilium-localized cAMP biosensor, ALE, and primary
cilium-localized Ca2+ biosensor, ALR. (c) cAMP levels change with the addition of
AC activator and inhibitor (n=5 (forskolin) or n=3 (MDL-12,330A)). (d) Ca2+ levels
increase with the addition in ionomycin in media containing 1.8 mM Ca2+ (n=4). Error
bars show mean ± SEM.
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Use of ALE allowed us to detect cAMP levels within the primary cilium distinct from

the cytosol. Addition of the AC activator forskolin led to a 28% drop in FRET signal

corresponding to increased cAMP, and addition of the AC inhibitor MDL-12,330A led

to a 19% increase in FRET signal corresponding to decreased cAMP (Figure 3.1c). We

designed Arl13b-linker-R-CaMP1.07 (ALR) with the same primary cilium localization

sequence and linker (Figure 3.1b). Addition of 10 µM ionomycin in media containing

1.8 mM Ca2+ led to an approximate 220% fold increase in fluorescence (Figure 3.1d).

3.4.2 Ciliary cAMP increases with mechanical stimulation

We co-transfected MLO-Y4 cells with ALE and ALR to monitor ciliary cAMP and

Ca2+ levels, respectively. Use of a Quad-View beam splitter allowed us to collect im-

ages through several emission filters, and we simultaneously captured ECFP and YPet

fluorescence followed by mApple fluorescence every 0.5 seconds. Application of 1 Hz

oscillatory fluid flow resulting in 10 dynes/cm2 surface shear stress led to ciliary cAMP

increases and a Ca2+ peak (Figure 3.2a-b). Interestingly, the flow-induced Ca2+ peak

was rapid, lasting approximately 25 ± 2 s, while the flow-induced cAMP increase was

more gradual and sustained over 5 minutes of flow compared to the Ca2+ response

(Figure 3.2c). Additionally, our data show that flow-induced ciliary cAMP levels peak

after the Ca2+ spike (p<0.05) (Figure 3.2d).
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Figure 3.2: Flow-induced ciliary cAMP levels increase after ciliary Ca2+. (a-b) Traces
of flow-induced ciliary cAMP and Ca2+ increases with flow starting at t = 0 s. (c) The
same cAMP and Ca2+ traces extended to 5 minutes of flow, demonstrating that the
ciliary cAMP increase is sustained over time. (d) Timing of ciliary cAMP and Ca2+

peaks after flow onset (n=6 (cAMP) and n=8 (Ca2+)). (*, p<0.05). Error bars show
mean ± SEM (a-d).

3.4.3 Cytosolic cAMP decreases with mechanical stimulation

Flow-induced intracellular cAMP decreases have been reported in kidney epithelial cells

and osteocytes, and because our primary cilium-localized cAMP biosensor reported a

different flow-induced response, we measured flow-induced cytosolic cAMP levels to

verify our experimental approach [Besschetnova et al., 2010,Kwon et al., 2010]. After
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transfecting MLO-Y4 cells with untargeted Epac1-camps, we applied oscillatory fluid

flow and monitored cytosolic cAMP levels. Fluid flow induced a gradual and sustained

decrease in cytosolic cAMP (Figure 3.3a). The peak cytosolic cAMP decrease typically

occurred 54 ± 19 s after the start of flow. Although ciliary and cytosolic cAMP mea-

surements were taken in different cells, the average peak ciliary cAMP increase occurred

at 31 ± 8 s, and this difference was not significant (p=0.2) (Figure 3.3b).

Figure 3.3: Cytosolic cAMP levels decrease during mechanical loading. (a) Traces of
flow-induced cytosolic cAMP with flow starting at t = 0 s. (b) Timing of ciliary and
cytosolic cAMP peaks after the start of flow (n=9 (ciliary) or n=6 (cytosolic)). Error
bars show mean ± SEM.

51



3.5 Discussion

In this study, we directed a cAMP biosensor and a Ca2+ biosensor to the osteocyte

primary cilium to characterize the mechanically-loaded ciliary cAMP environment. We

monitored ciliary cAMP and Ca2+ biosensor signals during flow exposure using an

epifluorescence microscopy system and determined that fluid flow mobilized both second

messengers. While cAMP levels rose slower than Ca2+ changes and remained elevated

over 5 minutes of flow, the Ca2+ peak returned to baseline within 30 seconds of onset.

Additionally, we measured flow-induced cytosolic cAMP changes in real-time using the

untargeted cAMP biosensor and found that fluid flow induced a sustained cytosolic

cAMP decrease. Here, we demonstrate that the primary cilium forms a distinct cAMP

microdomain, and our data suggest that the primary cilium shields ciliary cAMP from

cytosolic interactions during mechanical loading.

cAMP microdomains have been detected in several cell types and in multiple sub-

cellular locations such as mitochondria, the nucleus, and near different AC isoforms at

the sub-plasma membrane [Zaccolo and Pozzan, 2002,Lefkimmiatis et al., 2013,Zippin

et al., 2010, Wachten et al., 2010]. In a recent study, the use of immunoprecipita-

tion and FRET-based biosensors revealed a direct interaction between Ca2+-stimulated

AC8, which resides in the lipid raft regions of the plasma membrane, and Orai1, a sub-

unit of store operated Ca2+ channels also on the plasma membrane [Willoughby et al.,

2012]. In their study, Willoughby et al demonstrated that the Orai1 knockdown inhib-

ited local Ca2+ increases within the AC8 microdomain and impaired cAMP production

by AC8 during store operated calcium entry [Willoughby et al., 2012]. Interestingly,

cAMP microdomains at the sub-plasma membrane region lack a physical membrane
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barrier and have been shown to contain higher cAMP levels relative to cAMP in the

cytosol [Oliveira et al., 2010]. Collectively, these studies show that cAMP microdomains

are protected from cytosolic interactions which may be critical for mediating numerous

signaling events.

cAMP is only produced by ACs, which indicates that AC activity regulates a wide

range of cellular processes including mechanotransduction. AC5 and AC6 are inhibited

by physiologic Ca2+ levels, which occurs by competitive inhibition for Mg2+ binding sites

(Kd,Ca2+ = 0.2 µM) [Guillou et al., 1999]. AC1, AC3, and AC8 are activated by Ca2+;

however, only AC3, and not AC1 or AC8, is expressed by MLO-Y4 cells [Willoughby and

Cooper, 2007,Kwon et al., 2010]. Thus, it is likely that AC3 plays a role in mediating

Ca2+-induced cAMP increases within the osteocyte primary cilium. AC3 has been

shown to localize to primary cilia in neonatal hippocampal neurons, although it is not

clear if this characteristic is shared by osteocytes [Bishop et al., 2007]. Relationships

between Ca2+ and cAMP have been described by many other groups. For example,

synchronous intracellular cAMP oscillations have been associated with Ca2+ changes

in Xenopus embryonic spinal neurons [Gorbunova and Spitzer, 2002]. In their study,

Gorbunova et al reported that blocking cAMP transients lowered Ca2+ spike frequency

while raising cAMP levels increased Ca2+ oscillation frequency and vice versa. Gerbino

et al observed sustained cAMP levels coupled with higher frequency Ca2+ oscillations

in HEK293 cells which is consistent with our measurements in the primary cilium

microdomain, and they suggest that cAMP machinery acts as a dampening device for

rapid Ca2+ transients [Gerbino et al., 2005]. Furthermore, in a study by Landa et al,

an inverse relationship between Ca2+ and cAMP oscillations in ❜-cells was observed
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when Ca2+ oscillations were induced, which is consistent with our measurements of

flow-induced cytosolic Ca2+ and cAMP changes in osteocytes [Landa et al., 2005].

This cAMP-Ca2+cross-talk may provide the opportunity to convey unique signals that

regulate a wide range of cellular processes with only a few types of signaling molecules.

Additionally, it has been reported that Ca2+oscillation frequency regulates expression of

numerous genes, which demonstrates that Ca2+oscillation characteristics create signal

specificity [Dolmetsch et al., 1997,Dolmetsch et al., 1998,Li et al., 1998].

In addition to Ca2+inhibition, PKA phosphorylation has been shown to inhibit

AC6 [Chen et al., 1997, Sabbatini et al., 2013]. Interestingly, PKA subunits localize

to the primary cilium base in mouse embryonic fibroblasts and the primary cilium in

cholangiocytes [Tuson et al., 2011,Masyuk et al., 2008]. This localization suggests that

the primary cilium could act as a signal release point to the cytosol, in which flow-

induced ciliary cAMP increases stimulate PKA activity near the primary cilium base.

With elevated activity, PKA could mediate changes in the cytosol such as inhibiting

AC6 and decreasing cystosolic cAMP levels. Thus, the genetically-encoded PKA activ-

ity biosensor, AKAR, would be useful in future studies [Komatsu et al., 2011]. PKA

phosphorylation regulates multiple enzymes and pathways, notably transcription fac-

tor cAMP response element-binding protein (CREB) [Delghandi et al., 2005]. CREB

binds certain motifs (TGACGTCA and CGTCA) near gene promoters to activate gene

targets and increase transcription, and it has been shown to target the bone formation

gene marker Cox-2 [Mayr and Montminy, 2001,Ghosh et al., 2007]. Therefore, exam-

ining any flow-induced CREB phosphorylation responses could elucidate how cAMP

regulates the primary cilium-dependent mechanism of mechanotransduction.
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Our ability to direct a cAMP biosensor to the osteocyte primary cilium has some

advantages over the cAMP enzyme-linked immunosorbent assay (ELISA) used previ-

ously [Kwon et al., 2010]. First, the Epac1-camps biosensor enabled us to monitor

cAMP levels in real-time, in contrast to treating cells with 3-isobutyl-1-methylxanthine

(IBMX) to inhibit cAMP breakdown and stopping flow at specific time points before

ELISA [Kwon et al., 2010]. While Kwon et al detected a transient flow-induced cAMP

decrease at the 2 minute time point which recovered at the 5 and 15 minute time points,

in this study, we observed a sustained cAMP drop over 5 minutes. A potential reason

for the relatively higher cAMP levels after 5 minutes of flow measured by Kwon et al

is because the cells are exposed to IBMX longer, resulting in cAMP accumulation. A

second benefit to using the genetically-encoded cAMP biosensor is the ability to add

targeting sequences to biosensor sequence. ELISA does not resolve cAMP levels within

the primary cilium from the cytosol since it involves lysing cells to measure intracellular

cAMP. In this study, the increased resolution of intracellular cAMP measurements leads

to different hypotheses regarding the mechanism of primary cilium-mediated mechan-

otransduction compared with the study by Kwon et al. In particular, while it is likely

that Ca2+-inhibited AC6 plays a role in the flow-induced cytosolic cAMP decrease,

our results imply that a Ca2+-stimulated AC isoform first mediates the flow-induced

ciliary cAMP increase. Kwon et al used immunocytochemistry techniques to detect

localization of multiple AC isoforms in osteocytes, however, without lateral views of

the primary cilium, it is difficult to determine localization of the different AC isoforms.

Thus, although Kwon et al implicated AC6 on the primary cilium in mediating the

flow-induced cAMP decrease, their study lacked subcellular resolution and definitive
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immunocytochemistry evidence.

In this study, we show that the primary cilium forms a cAMP microdomain that

shields flow-induced ciliary cAMP changes from cytsolic cAMP dynamics. Our data

imply that the primary cilium acts as a biochemical and mechanical signaling nexus

that potentiates signals contained within the microdomain and suggest that the pri-

mary cilium-dependent mechanism of mechanotransduction consists of the following

interactions (illustrated in Figure 3.4):

1. Flow-induced ciliary Ca2+ increases involving entry through stretch-activated

TRPV4 channels and intracellular Ca2+release

2. Ciliary cAMP increases (likely Ca2+-mediated)

3. Cytoslic cAMP decreases (potential PKA and Ca2+ inhibition of AC6)

4. Transcriptional activity and osteogenic response (likely mediated by cAMP-dependent

pathways)

As described above, AC3 localization to the osteocyte primary cilium has yet to be ver-

ified; however, it likely generates the flow-induced Ca2+-mediated cAMP increases in

the primary cilium. Furthermore, additional work is required to understand if loading-

induced cAMP dynamics regulate PKA activity in the primary cilium leading to down-

stream osteogenic responses at the transcriptional level. Investigating the role of ACs

in primary cilium mechanosensation is attractive due to the multiple modes of AC reg-

ulation (Ca2+, PKA, PKC, and G proteins), and we believe this work is a launching

point for more studies identifying the molecular mechanisms governing AC activity in

osteocyte mechanotransduction.
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Figure 3.4: Diagram of a potential primary cilium-mediated mechanism of mechan-
otransduction. Fluid flow induces ciliary Ca2+ and cAMP increases We propose that
increased Ca2+ levels stimulate cAMP production. Then, cAMP-stimulated PKA ac-
tivity and raised cytosolic Ca2+ levels inhibit AC6-mediated cAMP production in the
cytosol. Unique loading-induced cAMP dynamics modulate PKA and CREB pathways
controlling osteogenic gene transcription.
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Chapter 4

Adenylyl Cyclase 6 Mediates Bone

Adaptation

Project Collaborators: Kristen L. Lee, David A. Hoey, Milos Spasic, Tong

Tang, H. Kirk Hammond, Christopher R. Jacobs

A modified version of this chapter entitled “Adenylyl Cyclase 6 Mediates Loading-

Induced Bone Adaptation In Vivo” was published by The Journal of the Federation of

American Societies for Experimental Biology in March, 2014.

4.1 Abstract

Primary cilia mediate mechanotransduction in multiple cell types including kidney ep-

ithelia, cholangiocytes, and osteocytes. Previously, we demonstrated that adenylyl cy-

clase 6 (AC6), a membrane-bound enzyme expressed by MLO-Y4 osteocyte-like cells,



may play a role in a primary cilium-dependent mechanism of mechanotransduction in

vitro. In this study, we examined if AC6 deletion impairs loading-induced bone forma-

tion in vivo. Skeletally mature mice with a global knockout of AC6 exhibited normal

bone morphology and responded to osteogenic chemical stimuli similar to wild-type

mice. Following ulnar loading over three consecutive days, bone formation parameters

were assessed using dynamic histomorphometry. Mice lacking AC6 formed significantly

less bone than control animals (41% lower bone formation rate). Furthermore, primary

bone cells isolated from AC6 knockout mice exhibited attenuated flow-induced increases

in Cox-2 mRNA levels compared to controls. Collectively, these data indicate that AC6

plays a role in loading-induced bone adaptation, and these findings are consistent with

our previous studies implicating primary cilia and AC6 in a novel mechanism of osteo-

cyte mechanotransduction.
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4.2 Introduction

Loading-induced functional adaptation of bone relies on mechanotransduction, the con-

version of external physical cues in the local environment into cellular biochemical and

transcriptional responses. Osteocytes reside within bone and mediate skeletal adapta-

tion to mechanical loads [Klein-Nulend et al., 1995,Klein-Nulend and Bakker, 2007,Tat-

sumi et al., 2007]. However, the relevant physical signals, mechanosensors, and mecha-

nisms of mechanotransduction are not well understood [Mullender et al., 2004,Liedert

et al., 2006]. Osteocytes, osteoblasts, and most other mammalian cells possess primary

cilia, important cellular signaling structures [Jacobs et al., 2010]. Nearly 100 years after

the discovery of primary cilia, Praetorius and Spring were among the first researchers to

demonstrate the mechanosensing ability of primary cilia in kidney epithelial cells [Prae-

torius and Spring, 2001,Praetorius and Spring, 2003]. Recently, the primary cilium has

been implicated in mechanotransduction in skeletal cell types such as chondrocytes and

osteocytes [Malone et al., 2007,Kwon et al., 2010,McGlashan et al., 2010,Temiyasathit

et al., 2012,Wann et al., 2012].

Adenylyl cyclases are membrane-bound enzymes that convert ATP into cyclic adeno-

sine monophosphate (cAMP), a second messenger [Hanoune and Defer, 2001]. cAMP

signal transduction has been implicated in a variety of cellular processes such as the ex-

tracellular signal-regulated kinases 1 and 2 and cAMP-response element-binding protein

(ERK1/2-CREB) signaling pathway, which mediates osteogenic responses to mechani-

cal stimulation in osteoblasts [Jessop et al., 2001,Ogasawara et al., 2001,Wadhwa et al.,

2002]. In a previous study in our lab, Kwon et al determined that AC2-7 and AC9

are expressed in osteocytes and reported that AC6 was enriched in the primary cilium
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compared with other AC isoforms using immunocytochemistry techniques [Kwon et al.,

2010]. Interestingly, the siRNA-mediated knockdown of Polaris, a gene necessary for

forming functional primary cilia, and the separate knockdown of AC6, both inhibited

flow-induced changes in cAMP levels in MLO-Y4 osteoycte-like cells [Kwon et al., 2010].

Furthermore, impairing osteocyte primary cilia formation also attenuated typical flow-

induced increases in Cox-2 mRNA expression [Malone et al., 2007,Kwon et al., 2010].

Strikingly, the knockdown of AC6 also led to a decrease in the levels of flow-induced

increases in Cox-2 mRNA expression, indicating that both AC6 and primary cilia reg-

ulate mechanotransduction in osteocytes [Kwon et al., 2010]. Collectively, these data

are consistent with a primary cilia-mediated mechanism of mechanotransduction that

is dependent on AC6 in osteocytes.

The purpose of this study was to determine if AC6 plays a role in skeletal adap-

tation in vivo using adult AC6 knockout mice. The data in this study suggest that

AC6 deletion limits loading-induced bone formation by impairing bone mechanotrans-

duction. These results are consistent with our previous in vitro study that implicates

primary cilia, AC6, and cAMP second messenger signals in a novel mechanism of bone

cell mechanotransduction.
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4.3 Materials and Methods

4.3.1 Summary

Mice with a global knockout of AC6 were generated and placed under ulnar compres-

sive loading to induce bone formation. Skeletal morphology and bone microarchitecture

characteristics were assessed using microCT. Dissected mouse pup calvariae were di-

gested using collagenase to isolate primary bone cells. Bone formation was induced

with BMP-2 treatment in vitro and intermittent PTH administration in vivo. Primary

bone cells isolated from AC6 KO mice and wild-type mice were exposed to fluid flow

stimulation, and Cox-2 mRNA expression levels were quantified. Mechanical loads were

placed on mouse ulnae, and loading-induced bone formation parameters were quantified

using dynamic histomorphometric analysis.

4.3.2 Animals

Transgenic mice with a C57BL/6 background and a global knockout of AC6 (AC6 KO)

were crossed with wild-type (WT) mice to generate heterozygous breeding pairs [Tang

et al., 2008]. WT and AC6 KO offspring generated by heterozygous breeding were used

for all studies. Tail-biopsy DNA was isolated for genotyping, followed by PCR reactions

with primers specific for the AC6 KO allele (5’- GGAGACCTAGAGATGGAGTG-3’

and 5’-GCCACTTGTGTAGCGCCAAG-3’ and the WT allele 5’-AAGATCTGCTTT

GTGGGTGC-3’ and 5’-AGCCACTGGCTCGATTCGCGTGGCG-3’. Gel electropore-

sis of PCR products was used to detect a 2.2 kb-long PCR product for AC6 KO or 550

base-long PCR product for WT. The procedures performed in this study were approved
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and in accordance with Columbia University Institutional Animal Care and Use Com-

mittee guidelines.

4.3.3 MicroCT analysis

Ulnae and tibiae from 16 week-old mice were dissected and stored at -20➦C. Samples

were imaged by micro-computed tomography (microCT) (Scanco vivaCT 40; Scanco

Medical AG) at 10.5 ➭m isotropic resolution [Sabsovich et al., 2008]. Bone lengths were

determined from scout views. Cortical bone analyses were performed at the ulnar and

tibial mid-diaphyses to determine total area, cortical area, cortical thickness (Ct. Th)

and minimum and maximum second moments of inertia (Imin and Imax). Trabecular

bone analyses were performed at the tibial proximal metaphysis to determine bone vol-

ume/trabecular volume (BV/TV), connectivity density (Conn. D), trabecular number

(Tb. N), trabecular thickness (Tb. Th), and trabecular spacing (Tb. Sp).

4.3.4 Primary bone cell isolation

Calvariae from 6-8 day-old neonatal mice were dissected and subject to serial diges-

tions in Dulbecco’s Modified Eagle Medium (Life Technologies) containing 2 mg/ml

collagenase II (Worthington Biochemical Corp.) at 37➦C for 20 minutes in a shaking

water bath. Fractions 1-2 were discarded while fractions 3-6 were pooled as primary

osteoblasts [Ogasawara et al., 2004]. Following six serial collagenase digestions, fraction

7 was obtained after incubating the calvarial fragments in trypsin/EDTA solution at

37➦C for 20 minutes, while fractions 8-9 were subject to collagenase digestions. Frac-

tions 7-9 were pooled as mixed population of primary bone cells consisting of osteoblasts
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and osteocytes [Gu et al., 2006]. Bright field microscopy images were acquired on an

inverted microscope (CKX41; Olympus) with a 10X air objective on day 4 of culture.

In addition to observing stellate morphology in later fractions, we validated osteoblast

versus osteocyte cell type by measuring Dmp1 mRNA expression in cells from fractions

3-6 and fractions 7-9.

4.3.5 Bone morphogenic protein II treatment

An in vitro experiment was conducted to investigate if primary osteoblast bone for-

mation was impaired by AC6 deletion. Primary osteoblasts obtained from fractions

3-6 of WT and AC6 KO primary bone cell isolations were seeded at 5,250 cells/cm2

in 6-well plates and cultured for 5 days in osteoblast media consisting of MEM alpha

(Life Technologies) supplemented with 10% FBS, 1% PS, 50 ♠g/ml ascorbic acid, and

10 mM β-glycerophosphate. On days 6 and 8, fresh osteoblast media containing 250

ng/ml bone morphogenic protein II (BMP-2) (355-BEC; RD Systems) was placed on

cells [Lai and Cheng, 2005,Matsubara et al., 2008]. Cell protein was isolated in RIPA

buffer and assayed for alkaline phosphatase (ALP) activity (APF; Sigma-Aldrich), and

total protein concentrations were determined using the Pierce BCA Protein Assay Kit

(Thermo Scientific).

4.3.6 Intermittent PTH administration

To investigate the bone formation of WT and AC6 KO mice, we administered intermit-

tent PTH treatment in vivo. WT and AC6 KO female mice at 16 weeks of age were ad-

ministered parathyroid hormone (PTH) solution, consisting of 20 µl/ml filtered hPTH
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(1-34) (80 µg/kg body weight; Bachem) dissolved in PBS with 2% heat-inactivated

mouse serum [Ferrari et al., 2005]. Starting on day 1, treatment consisted of daily

injections of PTH or vehicle solution for 4 weeks. Calcein (10 mg/kg body weight;

Sigma-Aldrich) and alizarin red (70 mg/kg body weight; Sigma-Aldrich) were injected

on days 12 and 26, respectively, and mice were sacrificed on day 28 [Elis et al., 2010].

Right ulnae were isolated and processed for dynamic histomorphometric analysis, as

described below.

4.3.7 Oscillatory fluid flow

Primary bone cells from fractions 7-9 of the isolation were seeded onto collagen I-

coated glass slides at approximately 1,400 cells/cm2 in MEM alpha (Life Technologies)

supplemented with 5% FBS, 5% CS, and 1% PS. After 5 days of culture at 37C and

5% CO2, cells were approximately 80% confluent. Slides were placed in parallel plate

flow chambers (56 × 24 × 0.28 mm), incubated for 30 minutes, and then exposed to

1 hour of oscillatory fluid flow at 1 Hz with a peak shear stress of 1 Pa and flow rate

of 18.8 ml/min. After flow stimulation, slides were immediately removed from the flow

chambers and washed with PBS, and mRNA expression levels were quantified.

4.3.8 mRNA expression levels

RNA was extracted and isolated from cells using TriReagent (Sigma-Aldrich), followed

by cDNA synthesis using TaqMan reverse transcriptase (Applied Biosystems). cDNA

samples were amplified with Ac6 (Mm00475772 m1), Cox-2 (Mm00478374 m1), Dmp1

(Mm00803833 g1) and Gapdh (4352339E) primers and probes (Applied Biosystems)
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by quantitative real-time PCR using the ABI PRISM 7900 detection system (Applied

Biosystems). Samples and standards were run in triplicate and were normalized to the

endogenous Gapdh expression. Relative mRNA expression levels between samples were

determined using the relative standard curve method.

4.3.9 Strain gauge testing

The forelimbs of 16 week-old WT and AC6 KO mice were isolated and minimally

dissected (n=9 WT male and n=8 AC6 KO male, n=9 WT female and n=7 AC6

KO female). A single-element strain gauge (EA-06-015-DJ-120-LE; Vishay Precision

Group) was adhered to the medial surface of the ulnar midshaft in the longitudinal

direction using MBond adhesive (MB-200; Vishay Precision Group) and connected to

a strain gauge signal conditioner (2120B; Vishay Precision Group) and an oscilloscope

(MSO6034A; Agilent Technologies). An axial compressive load of 3 N was applied with

a 2 Hz sine wave for 30 cycles. The averaged peak-to-peak strain was determined from

cycles 10-20.

4.3.10 In vivo axial ulnar loading

Mice at 16 weeks of age, consisting of 31 WT mice (16 male and 15 female) and 25

AC6 KO mice (15 male and 10 female), were placed under isofluorane anesthesia. Right

forelimbs were placed between two cups attached to an electromagnetic loading system

with feedback control (Bose ELF 3220, EnduraTEC, Inc.). After an initial 0.1 N load, a

peak compressive load of 3 N was applied with a 2 Hz sine wave for 120 cycles per day on

3 consecutive days. Left forelimbs served as non-loaded internal controls. Body weight
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was measured at 16 weeks of age. Mice were subcutaneously injected with calcein (10

mg/kg body weight; Sigma-Aldrich) on day 5 and alizarin red (70 mg/kg body weight;

Sigma-Aldrich) on day 9 following initiation of loading. All animals were euthanized

on day 15 and prepared for dynamic histomorphometric analysis.

4.3.11 Dynamic histomorphometry

Left and right ulnae were isolated, preserved in ethanol, infiltrated with methyl methacry-

late, and embedded in methyl methacrylate and benzoyl peroxide as described previ-

ously [Temiyasathit et al., 2012]. Transverse sections of the embedded ulnar midshaft

were imaged on a laser scanning confocal microscope (Leica TCS SP5; Leica Microsys-

tems). Measurements of bone perimeter (B. Pm), single label perimeter (sL. Pm),

double label perimeter (dL. Pm), and double label area (dL. Ar) were completed with

ImageJ and used to calculate mineralizing surface/bone surface (MS/BS=
1

2
sL.Pm+dL.Pm

B.Pm
·

100; %), mineral apposition rate (MAR= dL.Ar

dL.Pm/# days between labels; µm per day), and bone

formation rate/bone surface (BFR/BS=MAR·MS/BS
3.65

; µm3/µm2 per year). Relative (r)

measurements of rMS/BS, rMAR, and rBFR/BS were determined by subtracting the

values of the left ulnae from the right ulnae to show differences due to mechanical

loading.

4.3.12 Data analysis

Data are presented as mean ± SEM. The effects of gender and genotype or treatment

and genotype were assessed in all measurements using 2-way ANOVA with Bonferroni’s

multiple comparison post hoc test where appropriate. When gender was a significant
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factor, female and male data were analyzed separately. Unpaired t-tests (two-tailed)

were used to analyze differences in body weight and bone structure. Dynamic histomor-

phometric analyses between loaded and non-loaded ulnae were tested for significance

using paired t-tests (two-tailed). The corresponding rMS/BS, rMAR, and rBFR/BS

values of WT and AC6 KO mice from the loading experiment were analyzed using

unpaired t-tests (two-tailed). For all tests, p < 0.05 was considered significant.
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4.4 Results

4.4.1 Lack of gross morphological and skeletal phenotype in

AC6 KO mice

We verified that the body weight and tibial length of AC6 KO mice at 16-weeks of

age were not significantly different from WT mice, as originally reported by Tang et

al with 6-10 month-old mice [Tang et al., 2008]. On average, the body weights of WT

and AC6 KO mice were not significantly different for both male and female mice (WT

male = 31.1 ± 1.0 g and AC6 KO male = 29.9 ± 1.1 g; WT female = 23.0 ± 0.6 g and

AC6 KO female = 23.6 ± 0.6 g). In addition, the ulnar and tibial lengths of control

animals and AC6 KO animals were not significantly different (Table B.1). MicroCT

analysis was conducted to further examine cortical bone microarchitecture at the ulnar

and tibial mid-diaphyses while trabecular bone microarchitecture was examined at the

tibial proximal metaphysis. The total area, cortical area, cortical thickness, Imin, and

Imax at the ulnar midshaft of AC6 KO mice were not significantly different from WT

mice (Table B.1). The total area, cortical area, Imin, and Imax of the tibial midsection

and the trabecular indices BV/TV, Tb. N, Tb. Th, Tb. Sp, and Conn. D were

not significantly different between AC6 KO mice and controls (Table B.1 and Table

B.2). Among the static histomorphometric measurements that did not differ between

WT and AC6 KO mice, there was one minor difference in skeletal morphology, a 5.9%

decrease in cortical thickness at the tibial midshaft in AC6 KO female mice compared

to WT female mice that was statistically significant. Collectively, however, these data

indicate that there were no substantial differences in the skeletal morphology of young

69



adult WT and AC6 KO mice. Thus, these results suggest AC6 KO mice do not exhibit

a gross morphological or skeletal phenotype.

4.4.2 AC6 deletion does not impair the anabolic response to

BMP-2 and PTH treatment

We isolated primary osteoblasts from WT and AC6 KO mice and treated them with

BMP-2 to examine osteoblast-mediated bone formation. BMP-2 induced significant

increases in intracellular ALP activity relative to total protein concentration in primary

osteoblasts of WT mice and AC6 KO mice (Figure 4.1a).

Figure 4.1: Osteogenic chemical agents induce similar bone formation with and without
AC6 deletion in vitro and in vivo. (a) Amount of intracellular ALP activity normalized
to total protein concentration in primary osteoblasts isolated from WT mice or AC6 KO
mice and cultured with vehicle or BMP-2 (n=6). (b-d) MS/BS, MAR, and BFR/BS
measured at the ulnar midshaft of WT and AC6 KO mice injected with PTH or vehicle
(n=5). Post hoc analysis using Bonferroni’s multiple comparison test indicated signifi-
cant differences between vehicle and BMP-2 or PTH-treated groups. ( *p <0.05, **p <
0.005). Error bars show mean ± SEM.

The effect of BMP-2 treatment was significant while there were no significant effects

of genotype and treatment-genotype interaction. In the in vivo experiment, intermittent

70



injections of PTH over 28 days (Figure 4.1b-d) led to increases in MS/BS, MAR, and

BFR/BS at the ulnar midsection in both WT and AC6 KO mice compared to vehicle

treated controls. The effect of treatment on MS/BS, MAR, and BFR/BS was significant

while there was no significant effect of genotype or treatment-genotype interaction.

Collectively, the results of the bone anabolic treatment experiments indicate that the

deletion of AC6 does not disrupt bone formation per se.

4.4.3 Attenuated flow-induced increase in Cox-2 mRNA ex-

pression in AC6 KO primary bone cells

Later fractions of cells digested from murine calvariae have been reported to contain

a high proportion of primary osteocytes (>60%) [Gu et al., 2006, Stern et al., 2012].

In our hands, primary bone cells isolated in fractions 3-6 generally exhibited cuboidal

morphology typical of osteoblasts while primary cells isolated in fractions 7-9 generally

exhibited stellate morphology and possessed numerous slender processes typical of os-

teocytes (Figure 4.2a-b). Furthermore, dentin matrix acidic phosphoprotein 1 (Dmp1 )

is expressed by osteocytes but not by osteoblasts and encodes a noncollagenous protein

that is present in the highly mineralized bone matrix [Toyosawa et al., 2001,Gu et al.,

2006]. The population of cells isolated in fractions 7-9 expressed more Dmp1 compared

to cells isolated in earlier fractions for both WT and AC6 KO cells, and this difference

was significant (Figure 4.2c). Overall, these data suggest that cells pooled from frac-

tions 7-9 of the serial digestion contain a higher proportion of osteocytes compared to

earlier fractions; however this method cannot isolate a pure population of osteocytes

alone.
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Figure 4.2: Primary bone cells combined from fractions 7–9 exhibit typical osteocyte
morphology and express Dmp1. (a-b) Bright field images of cells isolated from neonatal
calvariae in fractions 3–6 (a) and fractions 7–9 (b) of the serial collagenase digestion.
Scale bars = 20 µm. (c) Measurements of Dmp1 mRNA expression in cells extracted
from fractions 3–6 (n=11) were lower than in cells extracted from fractions 7–9 (n=13).
(#p < 0.0001). Error bars show mean ± SEM.

Thus, we referred to cells isolated in fractions 7-9 as primary bone cells. As ex-

pected, WT primary bone cells expressed Ac6 mRNA while there was no expression

of Ac6 mRNA in AC6 KO primary bone cells (WT=1.47 ± 0.08 and AC6 KO=0.02

± 0.01). Following primary bone cell isolation and culture, we exposed the cells to

oscillatory fluid flow for 1 hour. There was significant effect of treatment, genotype,
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and treatment-genotype interaction of Cox-2 expression levels, suggesting that loading-

induced osteogenic responses depend on AC6. WT primary bone cells exhibited a

significant increase in flow-induced Cox-2 mRNA expression compared to non-flowed

cells (2.6 ± 0.2 fold increase). In contrast, there was an attenuated increase in Cox-2

mRNA expression in AC6 KO primary bone cells in response to flow that was signifi-

cantly different (1.3 ± 0.1 fold increase) (Figure 4.3). These results imply that primary

bone cells lacking AC6 are less mechanosensitive to flow-induced shear stress than WT

cells and verify previous work with a siRNA-mediated knockdown of AC6 in MLO-Y4

osteocyte-like cells [Kwon et al., 2010].

Figure 4.3: 1 hour of oscillatory fluid flow exposure induced Cox-2 mRNA expression
increases in WT (n=5 no flow; n=6 flow) and AC6 KO (n=6 no flow; n=10 flow) primary
bone cells. Primary bone cells isolated from AC6 KO mice demonstrate an attenuated
flow-induced increase in Cox-2 mRNA expression compared to control cells. Analysis
by 2-way ANOVA identified a significant treatment-genotype interaction, suggesting
that the effect of flow depends on AC6. Post hoc analysis using Bonferroni’s multiple
comparison test indicated significant differences between flow and no flow groups. (*p
< 0.05, **p <0.005). Error bars show mean ± SEM.
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4.4.4 Attenuated loading-induced bone formation in AC6 KO

mice

To verify that the strain at the ulnar midshaft experienced by the two mouse groups

was not different, we measured strain on the medial surface of the ulnar midshaft of

16-wk-old mice in response to a 3 N peak axial load by strain gauging. At 3 N, average

ulnar strain in AC6 KO mice was 8.1% higher in males and 3.7% higher in females com-

pared with WT mice of the same gender (WT male=1782.4 ± 147.0 µ❡ and AC6 KO

male=1927.2 ± 245.1 µ❡; WT female=2008.6 ± 226.5 µ❡ and AC6 KO female=2083.5

± 259.1 µ❡). The effects of gender, genotype, and gender-genotype interaction on strain

were not significant at 3 N by 2-way ANOVA. Thus, we applied the same peak axial

compressive force of 3 N to all mice in the ulnar loading experiment. Ulnar loading

led to an anabolic response in WT and AC6-KO mice. Right (loaded) ulnae formed

significantly more periosteal bone than left (nonloaded) ulnae (Figure 4.4a-d). How-

ever, the loading-induced periosteal bone formation response was inhibited in AC6 KO

mice. AC6 KO mice exhibited significantly less loading-induced rMS/BS, rMAR, and

rBFR relative to WT mice (Figure 4.4e-g and Table 4.1). While genotype had a signif-

icant effect on rMS/BS, rMAR, and rBFR, there was no significant effect of gender or

gender-genotype interaction on any measure of bone formation by 2-way ANOVA.
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Figure 4.4: Ulnar loading-induced bone formation is attenuated in AC6 KO mice. (a-
d) Images of typical nonloaded (left) and loaded (right) ulnae of WT (a,b) and AC6
KO (c,d) mice. (e-g) Relative mineralizing surface over bone surface (rMS/BS, %;
(e), mineral apposition rate (rMAR, µm/day; (f), and bone formation rate (rBFR/BS,
µm3/µm2/yr; (g) at the periosteal surface of mechanically loaded ulnae. AC6 KO mice
exhibit 28% less rMS/BS, 30% less rMAR, and 41% less rBFR/BS compared to WT
values. (*p< 0.05, **p<0.005). Error bars show mean ± SEM.
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Genotype and parameter Left Right Relative

WT (n=31) nonloaded loaded loaded-nonloaded

MS/BS (%) 19.2± 2.9 68.4 ± 2.8# 49.1± 3.1

MAR (µm/d) 0.41 ± 0.09 2.18± 0.23# 1.76 ± 0.19

BFR/BS (µm3/µm2/yr) 43.5 ± 12.8 524.6 ± 46.1# 481.2 ± 38.8

AC6 KO (n=25) nonloaded loaded loaded-nonloaded

MS/BS (%) 19.2± 4.2 54.6 ± 4.3# 35.4 ± 3.2*

MAR (µm/d) 0.39 ± 0.13 1.62 ± 0.19# 1.23 ± 0.13*

BFR/BS (µm3/µm2/yr) 49.2 ± 22.2 331.1 ± 47.7# 281.9± 32.7*

Table 4.1: Parameters of bone formation in loaded and nonloaded ulnae. (*p<0.05 vs.
WT control. #p<0.0001 vs. control (nonloaded left ulna)). Data are mean ± SEM.

76



4.5 Discussion

In this study, we investigated the role of AC6 in bone mechanotransduction in vivo. Us-

ing high-resolution microCT analysis, we first determined that there is no severe skele-

tal phenotype in mice with a global deletion of AC6. Additionally, anabolic PTH and

BMP-2 treatments stimulated equivalent osteogenic responses with and without AC6

deletion, suggesting that bone formation in AC6 KO mice is not impaired. Next, we

determined that the absence of AC6 attenuated flow-induced increases in Cox-2 mRNA

expression in primary bone cells. Using dynamic histomorphometry, we demonstrated

that AC6 KO mice form less bone in response to mechanical loads compared to con-

trol mice (28% rMS/BS, 30% rMAR, and 41% rBFR/BS less than WT mice). Taken

together, these data suggest that a mechanism of mechanotransduction is impaired by

AC6 deletion and leads to the loading-induced bone formation defect exhibited by AC6

KO mice. Our study is the first to demonstrate that AC6 is involved in bone functional

adaptation in vivo and is consistent with our in vitro data that link AC6 to the novel

primary cilia-mediated mechanism of bone mechanotransduction [Kwon et al., 2010].

We demonstrate here that AC6 deletion impairs loading-induced bone formation in

vivo and suggest that it is part of a primary cilium-mediated mechanism of mechan-

otransduction. We previously reported that AC6 knockdown inhibits flow-induced

cAMP changes in MLO-Y4 cells [Kwon et al., 2010]. According to Kwon et al, this

response to flow was characterized by a transient decrease in intracellular cAMP at 2

minutes of mechanical stimulation and is potentialy regulated by flow-induced Ca2+

mobilization. Ca2+ signaling is dynamic and spatiotemporal, making it a versatile sig-

nal that is not characterized by sustained increases or decreases alone [Berridge et al.,
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2003]. Thus, specific loading-induced Ca2+-dependent cAMP signaling patterns may

mediate bone formation. Through protein kinase A activation, cAMP regulates com-

plex cellular processes such as the ERK1/2-CREB pathway which mediates proliferation

and differentiation in osteoblasts [Kaiser and Chandrasekhar, 2003,Yang et al., 2008].

Mechanical stress has been shown to increase ERK1/2 and CREB activation, and these

responses could be mediated by loading-induced cAMP signals that are generated by

the Ca2+-inhibited AC6 [Schmidt et al., 1998, You et al., 2001a, Husse and Isenberg,

2010]. Thus, AC6 deletion may have impaired this cAMP-dependent mechanism of

mechanotransduction within bone, resulting in attenuated loading-induced bone for-

mation. Furthermore, the osteocyte primary cilium microdomain potentially enhances

these early signaling kinetics. The findings in this thesis suggest that a distinct pri-

mary cilium microdomain exists, and it may foster an environment in which signaling

mechanisms are protected from cytosolic interactions.

Recently, a study by Temiyasathit et al demonstrated that primary cilia are im-

portant for the regulation of loading-induced bone formation in vivo [Temiyasathit

et al., 2012]. Kif3a is an intraflagellar motor protein unit necessary for primary cilia

formation and regulates postnatal osteoblast function [Qiu et al., 2012]. Col❛1(I) 2.3-

Cre;Kif3a(fl/fl) mice, which possess an osteoblast and osteocyte-specific deletion of

Kif3a driven by the Col❛1(I) promoter, form less bone in response to ulnar loading

compared with control mice [Temiyasathit et al., 2012]. Kif3a cKO and AC6 KO mice

demonstrate similar defects in loading-induced bone formation which suggests that AC6

and primary cilia are part of the same mechanism of mechanotransduction. Both bone-

specific Kif3a cKO mice and AC6 KO mice exhibit approximately 30% less rMAR and
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30-40% less rBFR/BS than control mice [Temiyasathit et al., 2012]. Together, the lack

of a skeletal phenotype and the attenuated loading-induced bone formation in Col❛1(I)

2.3-Cre;Kif3a(fl/fl) animals relative to control animals are consistent with AC6 KO

mice as described in this study [Temiyasathit et al., 2012].

The absence of a skeletal phenotype in AC6 KO mice might immediately suggest

that AC6 does not play a role in skeletal development or mechanotransduction. While

the bone architecture measurements in this study were collected at 16 weeks of age,

these measurements do not encompass the skeletal development and growth phases of

the AC6 KO mice. Thus, phenotypic changes manifest in earlier time points may have

gone unobserved. Therefore it is possible that mice lacking AC6 may possess a skeletal

phenotype that recovers by young adulthood. However, several other knockout mouse

models also do not demonstrate any bone architectural defects but exhibit significantly

different responses to mechanical loading. For instance, mice that are deficient in osteo-

pontin, a phosphoprotein secreted by osteoblasts, develop normally but do not exhibit

unloading-induced bone loss and form less parietal bone in response to tensile mechani-

cal stress compared to control animals [Salih et al., 1996,Ishijima et al., 2001,Morinobu

et al., 2003]. Similarly, Col❛1(I) 2.3-Cre;❜1-integrin(fl/fl) conditional knockout mice

do not demonstrate a skeletal phenotype but do exhibit lower rates of loading-induced

bone formation compared to control mice [Litzenberger et al., 2009]. The absence of a

skeletal phenotype and the normal bone formation exhibited by AC6 KO mice imply

that any changes seen in loading-induced bone formation are potentially due to differ-

ences in mechanotransduction rather than differences in pre-existing bone structure or

osteogenesis ability. One potential explanation for this finding is that mechanotrans-
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duction regulating development occurs by different mechanisms and/or there are several

compensatory mechanisms utilized during different types of loading. Another potential

reason for the lack of skeletal phenotype in AC6 KO mice is that mice do not have

osteonal bone or secondary bone structure, suggesting that mouse skeletal morphology

is more a result of development and growth rather than remodeling as experienced in

humans. Thus, the application of extrinsic loads is needed to demonstrate differences

in bone modeling and adaptation. In this study, we applied compressive loads resulting

in high physiologic cortical bone strains to stimulate loading-induced bone adaptation,

and there was a significant difference in the impaired bone formation response of AC6

KO mice compared with WT mice [Lee et al., 2002].

To determine whether the decrease in loading-induced bone formation in AC6 KO

mice occurred because the deletion inhibits a signaling mechanism of mechanotrans-

duction or whether the deletion impairs osteoblast bone formation, we treated AC6 KO

mice with osteogenic chemical agents. BMP-2 initiates bone formation by mediating

transcription of osteogenic genes such as type I collagen, osteocalcin, osteopontin, and

alkaline phosphatase [Cheng et al., 2001]. BMP-2 treatment of primary osteoblasts iso-

lated from WT and AC6 KO animals led to increased intracellular ALP activity, which

suggests that osteoblast function remains normal with AC6 deletion. Additionally, in-

termittent PTH administration induces periosteal bone formation mainly by inhibiting

osteoblast apoptosis and stimulating osteoblast activity [Jilka et al., 1999, Masi and

Brandi, 2004, Jilka, 2007, Jilka et al., 2009]. We demonstrated that intermittent PTH

administration led to increases in cortical bone formation in WT and AC6 KO mice

at the ulnar midpoint, the same site which exhibited a loading-induced bone forma-
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tion defect in AC6 KO mice. At both cellular and tissue levels, the results of BMP-2

and PTH treatments suggest that osteogenesis is not impaired in AC6 KO mice. Col-

lectively, these results indicate that AC6 plays a role in bone mechanotransduction

rather than in general bone formation or development. While this study shows that

AC6 is an important enzyme mediating loading-induced bone formation, further work

is needed to fully understand how AC6 is involved. Specifically, since there is evidence

that osteocytes, osteoblasts, and bone marrow cells all contribute to regulating me-

chanically induced bone adaptation, use of cre-lox recombination in new mice to isolate

the AC6 deletion will be crucial to elucidate which cell types posses an AC6-dependent

mechanism of mechanotransduction.

In summary, we demonstrated that AC6 mediates bone formation in response to

anabolic mechanical loading in vivo. While AC6 KO mice exhibited reduced loading-

induced bone formation relative to control mice, at the same time point, the lack of

AC6 did not impact adult bone geometry and microarchitecture or impair the response

to osteogenic agents. This finding is significant because it suggests that adult bone

adaptation is regulated by the primary cilium through an AC6-dependent mechanism.

Investigating the role of AC6, other components enriched in the primary cilium mi-

crodomain, and other mechanisms of mechanotransduction will collectively elucidate

how cells in bone respond to mechanical stimuli.
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Chapter 5

Conclusion

5.1 Summary

The primary cilium is an antennae-like nonmotile structure that is required for loading-

induced osteogenic responses in vitro and loading-induced bone formation in vivo. The

broad objective of these studies was to elucidate how the osteocyte primary cilium

mediates mechanotransduction. Specifically, our goal was to determine if the osteo-

cyte primary cilium forms a microdomain that serves as a biochemical and mechanical

signaling nexus. Collectively, the studies comprising this work utilized a range of molec-

ular biology, imaging, and mechanical loading techniques to show that loading induces

primary cilium-restricted second messenger changes that mediate osteogenic responses

in vitro and in vivo. Our data suggest that the primary cilium forms a Ca2+and cAMP

microdomain in response to mechanical loading, which likely creates signal specificity.

This primary cilium-mediated mechanism of mechanotransduction may involve loading-



induced Ca2+ entry through TRPV4 channels on the primary cilium and AC-mediated

cAMP signal transduction, leading to downstream osteogenic transcriptional changes.

5.1.1 Calcium in the Osteocyte Primary Cilium

In our first study, we examined the initial flow-induced ciliary Ca2+ increase which

was distinct from the cytosolic Ca2+ increase in osteocytes. Ca2+ regulates numerous

signaling pathways and is one of the earliest responses elicited by mechanically-loaded

osteocytes. However, whether or not the local Ca2+ environment in the primary cil-

ium is distinct from general cytosolic levels during mechanical loading is unknown.

Using the primary cilium-specific sequence Ar1l3b, we directed a FRET-based Ca2+

biosensor to the primary cilium. With this tool, we determined that intracellular Ca2+

release is a component of flow-induced ciliary Ca2+ mobilization. A second extracellu-

lar Ca2+component was identified using siRNA-mediated knockdown of three stretch-

activated Ca2+-permeable channels: Polycystin 2 (PC2), Transient Receptor Potential

Vanilloid 4 (TRPV4), and PIEZO1. We demonstrated that TRPV4 mediates flow-

induced ciliary Ca2+ increases and osteogenic responses in vitro. Interestingly, TRPV4

played a major role in flow-induced ciliary Ca2+ mobilization but not in cytosolic Ca2+.

Another study on kidney epithelia primary cilia suggests that fluid flow opens different

mechanically-gated ciliary machinery involving PC2, through which Ca2+ enters and

is critical for triggering intracellular Ca2+ release [Jin et al., 2013]. Our study demon-

strates that the primary cilium-mediated mechanism of mechanotransduction varies

in different tissue contexts. Furthermore, our data demonstrate that the primary cil-

ium forms a Ca2+ microdomain that is distinct from cytosolic Ca2+mobilization during
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mechanical loading.

5.1.2 Cyclic AMP in the Osteocyte Primary Cilium

Cyclic AMP (cAMP) is another second messenger that also regulates a broad range of

intracellular signaling pathways. Flow-induced decreases in intracellular cAMP have

been reported by several labs. [Kwon et al., 2010, Besschetnova et al., 2010,Masyuk

et al., 2006] The osteocyte primary cilium deflects with mechanical stimulation and

forms a Ca2+ microdomain; however, the local cAMP signaling environment is unknown.

In the second study of this thesis, we targeted a FRET-based cAMP biosensor to the

primary cilium and demonstrated that flow stimulation induces ciliary cAMP increases

and cytosol cAMP decreases. Additionally, we developed a different primary cilium-

localized genetically encoded Ca2+ indicator to monitor ciliary Ca2+ and cAMP levels

simultaneously and found that mechanically-induced ciliary Ca2+ peaks preceded ciliary

cAMP increases. An interpretation of these data is that Ca2+ regulates cAMP levels

within the primary cilium microdomain and cytosol, potentially via activation and

inhibition of different adenylyl cyclase (AC) enzymes which produce cAMP. Collectively,

the use of primary cilium-localized Ca2+ and cAMP biosensors have demonstrated that

the primary cilium forms a microdomain that is a nexus of biochemical and mechanical

signals.

5.1.3 Adenylyl Cyclase 6-Mediated Bone Adaptation

In the third study, we tested a potential mechanism of mechanotransduction involving

an adenylyl cyclase in an in vivo loading model. Previously, we suggested that adenylyl
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cyclase 6 (AC6), a Ca2+-inhibited enzyme, has a role in the primary cilium-dependent

mechanism of osteocyte mechanotransduction in vitro. Using mice with a global AC6

deletion, we showed that AC6 deficiency impaired loading-induced bone formation.

AC6 deficient mice exhibited normal bone architecture and responded to osteogenic

chemical stimuli similar to wild-type mice. Interestingly, a similar loading-induced

bone adaption defect occurs in mice with with an osteoblast and osteocyte specific

knockout of the primary cilia-forming motor unit Kif3a. Taken together, our studies

provide evidence at the molecular, transcriptional, and tissue level suggesting that

a primary cilium-mediated mechanism involving Ca2+-inhibited AC6 plays a role in

osteocyte mechanotransduction.

5.2 Future Studies

This thesis demonstrates that the primary cilium forms a microdomain distinct from

the cytosol that functions as a nexus of mechanical force and Ca2+ and cAMP signals

and mediates loading-induced osteogenic responses. With the completion of this work,

we have identified other potential components of this signaling mechanism, and here,

we describe some additional studies that would further elucidate the intricacies of this

primary cilium-mediated osteocyte mechanotransduction pathway.

5.2.1 Role of Ca2+ in mediating flow-induced cAMP changes

In our first study, we demonstrated that flow-induced ciliary Ca2+ increases were depen-

dent on TRPV4, a stretch-activated Ca2+-permeable channel on the primary cilium. In
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our second study, we observed that fluid flow exposure produced ciliary cAMP increases

which reached a maximum height after the flow-induced ciliary Ca2+ peak returned to

baseline. These results suggest that cAMP levels are regulated by the flow-induced

Ca2+ increase. Thus, the goal of a future study would be to verify that upstream

flow-induced Ca2+ mobilization mediates downstream cAMP responses. In addition to

TRPV4-mediated Ca2+ entry, there was an intracellular Ca2+release component to the

flow-induced ciliary Ca2+ peak, both of which may regulate cAMP levels. To investigate

Ca2+-dependent changes in cAMP, it would be important to assess if blocking TRPV4

and impairing intracellular Ca2+release reduce flow-induced ciliary cAMP increases. A

second goal would be to identify the Ca2+-regulated enzyme(s) that generates ciliary

cAMP. Ca2+-activated AC3 has been observed in kidney epithelia primary cilia, and in-

terestingly, osteocytes only express AC3 and do not express the other Ca2+-stimulated

isoforms AC1 and AC8 [Bishop et al., 2007,Ou et al., 2009,Kwon et al., 2010]. There-

fore, it is likely that AC3 mediates the observed flow-induced ciliary cAMP increase.

Collectively, determing if AC3 localizes to the osteocyte primary cilium and assessing

the effect of AC3 deficiency on flow-induced ciliary cAMP responses would demonstrate

if AC3 has a role in the primary cilium-regulated mechanism of mechanotransduction.

5.2.2 Role of cAMP-dependent pathways in loading-induced

osteogenesis

In this thesis, we suggest that initial flow-induced Ca2+ and cAMP signals mediate

downstream osteogenic transcriptional changes via cAMP-dependent processes includ-

ing PKA activation and CREB phosphorylation. Over the past 30 years, several groups
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have demonstrated that PKA is enriched in the centrosome of epithelial, fibroblastic,

and brain cells, and potentially serves as a regulator of Hedgehog signaling by direct-

ing Gli protein distribution in the primary cilium [Barzi et al., 2010, Tuson et al.,

2011,Nigg et al., 1985,De Camilli et al., 1986]. PKA accumulation at the primary cil-

ium base implies that PKA activity is sensitive to high concentrations of cAMP in the

primary cilium. Our ability to monitor PKA activity in parallel with cAMP dynamics

would improve our understanding of cAMP-dependent signal transduction within the

osteocyte primary cilium. A FRET-based A kinase Activity Reporter (AKAR), which

binds phosphorylated PKA substrate, was previously targeted to lipid raft and non-

raft microdomains of the plasma membrane and used to determine that PKA activity

is differentially regulated in those compartments [Depry et al., 2011]. Thus, monitoring

PKA activity in the primary cilium and cytosol using AKAR would demonstrate if flow-

induced PKA activity differs in these regions and if PKA activity is part of the primary

cilium-mediated mechanism of mechanotransduction [Bogard et al., 2012,Crossthwaite

et al., 2005].

Although PKA regulates multiple enzymes and pathways, CREB phosphorylation

is particularly interesting because it has been shown to promote transcription of Cox-2,

an osteogenic marker [Ghosh et al., 2007,Ogasawara et al., 2001]. The application of

fluid flow generates increased Cox-2 mRNA levels, and the knockdowns of Trpv4 and

Ac6 impair this response suggesting that TRPV4, AC6, and CREB phosphorylation are

involved in a mechanism of mechanotransduction. Fitting with this thesis’s fluorescent

biosensor motif, a FRET-based CREB phosphorylation biosensor has been created,

indicator of CREB activation due to phosphorylation (ICAP), and would be useful
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for monitoring CREB phosphorylation levels in real-time [Friedrich et al., 2010]. To-

gether, the spatiotemporal characteristics of PKA activity and CREB phosphorylation

in mechanically-loaded osteocytes may be captured using AKAR and ICAP. Finally,

determining if the loss of Trpv4, Ac3, and Ac6 impair PKA activity and CREB phos-

phorylation dynamics would confirm the proposed primary cilium-regulated mechanism

of mechanotransduction.

5.2.3 Role of a primary cilium-mediated Ca2+-independent

mechanism of mechanotransduction

While the work in this thesis focused on a mechanism involving loading-induced opening

of stretch-activated ion channels localized to the primary cilium, it is possible that this

process is separate or acts in concert with other primary cilium-mediated Ca2+ indepen-

dent mechanisms of mechanotransduction. In particular, several groups have demon-

strated that the cytoskeleton plays a role in mechanotransduction and that cytoskeletal

dynamics affect primary cilium length [Kim et al., 2010,Sharma et al., 2011]. Thus, it is

likely that as the cytoskeleton distributes mechanical loads in the cell, it directly trans-

mits force to the primary cilium and affects primary cilium mechanics. Pharmacologic

cytoskeletal stabilizers and de-stabilizers enable modification of cytoskeletal dynamics:

cytochalasin D and latrunculin prevent actin filament formation; phalloidin stabilizes

actin; nocodazole and colchicine impair microtubule polymerization; and taxol and

epothilone B stabilize microtubules. A combination of modeling primary cilium bend-

ing and cytoskeletal mechanical properties and experiments investigating the effects

of pharmacologically-modified cytoskeletal dynamics on primary cilia mechanics will
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elucidate the cytoskeleton’s role in the primary cilium-mediated mechanism of mechan-

otransduction.

A second Ca2+-independent mechanism of mechanotransduction may involve G

protein-mediated regulation of cytoskeletal dynamics and modulation of cAMP sig-

naling. G proteins are components of G protein coupled receptors (GPCRs), and are

important for initiating intracellular signalling cascades [Oldham and Hamm, 2008].

The group of GPCR-associated G proteins is classified as a heterotrimeric G protein

complex which comprises of α, β, and γ subunits [Downes and Gautam, 1999]. Once

the GPCR is activated by a ligand, the GTPase domain of the α subunit (Gα) is ex-

posed and binds GTP, triggering the dissociation of Gα. Gα subunits can be classified

into four familys, including stimulatory Gsα and inhibitory Giα which can regulate AC

activity [Hanoune and Defer, 2001]. Thus, it is important to investigate if Gα levels are

mechanically regulated and if they mediate a cAMP-dependent mechanism of osteo-

cyte mechanotransduction. Interestingly, Gudi et al reported that fluid flow increased

G protein activation in endothelial cells within one second of flow onset, demonstrat-

ing that G proteins are mechanically-activated [Gudi et al., 1996]. Additionally, the

monomeric Rho-family of small GTPases, part of a different class of G proteins, has

been shown to regulate cytoskeletal dynamics, such as microtubule stabilization, actin

polymerization, and actin contractility, which demonstrates that G proteins mediate

cytoskeleton-dependent mechanosensation [Spiering and Hodgson, 2011]. Thus, deter-

mining if G proteins have a role in mediating flow-induced AC activity would be critical

to fully understanding the mechanotransduction mechanism regulated by primary cilia.
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5.3 Significance

We categorize the significance of this work into two areas. First, with our improved

understanding of the primary cilium as a microdomain that mediates the conversion of

mechanical stimuli into biochemical signals, our research can enhance the development

of osteoporosis therapies and tissue engineering methods. Since the primary cilium acts

as a mechanosensor, pharmacologic treatments that sensitize the primary cilium to me-

chanical stimuli such as increasing ciliary length or activating primary cilium-localized

mechanosensing machinery (TRPV4 and potentially AC3) would elevate osteogenic re-

sponses to insufficient mechanical loads. Additionally, dynamic loading has been shown

to improve the functional qualities and architecture of engineered tissue in cartilage and

bone bioreactor systems. Therefore, manipulating known mechanotransduction signal-

ing pathways, like the primary cilium-mediated mechanism, may help promote and

maintain tissue phenotypes.

Second, this thesis highlights the role of the primary cilium microdomain in medi-

ating cellular processes. The primary cilium constitutes 1/30,000 of the cell volume;

however, despite its size, the loss of this tiny cellular structure drastically compromises

the cell’s ability to sense and transduce chemical and mechanical signals. Here, we show

that the primary cilium shields second messenger signals from the rest of the cell during

mechanotransduction as a microdomain, similar to lipid rafts, the endoplasmic reticu-

lum, the nucleus, and mitochondria [Alonso et al., 2006, Pani and Singh, 2009, Parry

et al., 2005].
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Appendix A

Calcium

A.1 Supplemental Figures

Figure A.1: ARL13B localizes to primary cilia in MLO-Y4 and IMCD cells. (a-b)
IMCD and MLO-Y4 cells stained for acetylated α-tubulin and ARL13B. (c-d) IMCD
and MLO-Y4 cells stained for acetylated α-tubulin and SSTR3. Scale bars, 5 µm.



Figure A.2: Mutant CaB and ALC do not exhibit flow-induced FRET signal changes.
(a-b) MutCaB failed to detect flow-induced Ca2+ increase with the addition of 10 ♠M
CaCl2 (n=3) and steady flow (5 dynes/cm2) (n=2). (c) MutALC failed to detect flow-
induced Ca2+ increases (10 dynes/cm2) (n=4).

Figure A.3: MLO-Y4 cells express Piezo1 but not Piezo2. Piezo1 and Piezo2 mRNA
levels in MLO-Y4 cells, IMCD cells, and adult murine (C57BL/6) brain and heart tissue
(n=4-5). Error bars show mean ± SEM.
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Appendix B

Adenylyl Cyclase 6

B.1 Supplemental Data

Ulnar Midshaft Female Male

WT AC6 KO WT AC6 KO

n 11 8 12 10

Length (mm) 12.9±0.3 12.9±0.2 13.9±0.1 13.3±0.3

Total area(mm2) 0.234±0.011 0.255±0.006 0.247±0.003 0.236±0.01

Cortical area (mm2) 0.211±0.010 0.241±0.006 0.247±0.003 0.236±0.010

Cortical thickness (mm) 0.171±0.002 0.175±0.005 0.172±0.002 0.169±0.002

Imax (mm4) 0.012±0.002 0.013±0.002 0.021±0.002 0.019±0.003

Imin (mm4) 0.006±0.001 0.005±0.002 0.010±0.002 0.008±0.002

Tibial Midshaft Female Male

WT AC6 KO WT AC6 KO

n 10 7 14 10

Length (mm) 17.0±0.1 17.0±0.2 17.5±0.2 17.4±0.1

Total area(mm2) 0.595±0.008 0.587±0.017 0.752±0.025 0.670±0.03

Cortical area (mm2) 0.568±0.008 0.559±0.17 0.721±0.025 0.670±0.03

Cortical thickness (mm) 0.222±0.002 0.209±0.003∗∗ 0.223±0.010 0.224±0.007

Imax (mm4) 0.068±0.004 0.063±0.004 0.133±0.008 0.118±0.009

Imin (mm4) 0.055±0.006 0.045±0.003 0.102±0.007 0.091±0.009

Table B.1: Cortical bone geometry. Data are mean ± SEM. ∗∗p < 0.005 vs. gender-
matched WT control.



Proximal Tibia Female Male

WT AC6 KO WT AC6 KO

n 10 7 14 12

BV/TV (%) 10.2±0.6 9.2±0.7 15.9±1.4 15.0±1.4

Tb. N. (mm−1) 3.66±0.15 3.51±0.24 5.15±0.24 5.06±0.15

Tb. Th (mm) 0.049±0.001 0.048±0.002 0.049±0.002 0.047±0.002

Tb. Sp. (mm) 0.280±0.012 0.297±0.021 0.195±0.010 0.194±0.007

Conn. D. (mm−3) 75.5±9.6 72.4±17.5 150.7±19.1 141.9±10.5

Table B.2: Trabecular bone microarchitecture. Data are mean ± SEM.
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