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INTRODUCTION
The stratigraphy of many continental rift basins shows a vertical tran-

sition from an early fluvial, shallow lake, or shallow-marine succession to a
deep lake or deep-marine succession (Lambiase and Bosworth, 1995).
Prosser (1993) termed these two stages in rift-basin development the “rift
initiation” when the rate of fault displacement is relatively low and sedi-
mentation keeps pace with subsidence, and the “rift climax” when the rate
of fault displacement increases markedly and sedimentation cannot keep
pace with subsidence. The transition from rift initiation to rift climax is evi-
dent in subsidence data for synrift successions, such as the Miocene Gulf of
Suez rift (Fig. 1; Steckler et al., 1988). The mechanism for this transition
from slow to rapid subsidence is not well understood, although an increase
in extension rate is commonly implied (Steckler et al., 1988; Prosser, 1993;
ter Voorde et al., 1997).

The formation and filling of extensional basins are controlled by the
development of large normal fault systems (Schlische, 1991; Schlische and
Anders, 1996). Contreras et al. (1997) applied a self-similar fault-growth
model to investigate half-graben evolution using a single fault segment with
a constant extensional strain rate. Although their model is able to reproduce
overall basin shallowing observed during the rift climax to late synrift and/or
postrift succession, it does not explain the rift initiation to rift climax succes-
sion. Recent studies of normal fault growth have shown that large fault sys-
tems form by the linkage of shorter fault segments (Dawers and Anders,

1995; Cartwright et al., 1995). In this paper, we investigate the influence of
fault interaction and linkage during fault-zone evolution on subsidence and
stratigraphic patterns in rift basins. We use a numerical model to simulate
evolution of a fault array, and then examine the patterns of displacement-rate
variation through time along the array. Because the displacement rate is a
proxy for the rate of hanging-wall subsidence, these patterns can be com-
pared with stratigraphic and subsidence observations from rift basins.

NUMERICAL MODEL OF FAULT GROWTH
Rupture of an upper-crustal fault results in an elastic strain perturba-

tion in the surrounding rock volume characterized by regions where the
stress level is either increased (enhancement zones) or relaxed (shadow
zones) (Fig. 2; King et al., 1994). Nearby faults may be brought closer to
failure or partially unloaded depending on their location and orientation
relative to the rupture zone, hence stress feedbacks are likely to develop in
the evolving fault network (Cowie, in press). Positive feedback develops
between faults that have mutually overlapping stress enhancement zones,
and these faults will grow more rapidly. Negative feedback develops be-
tween faults with mutually overlapping shadow zones, resulting in cessa-
tion of fault activity. The symmetry properties of the stress perturbation
around normal faults will favor the development of en echelon or coplanar
fault arrays. In contrast, stress shadow zones develop in the immediate foot-
wall and hanging-wall areas, thereby suppressing adjacent fault growth
(Ackermann and Schlische, 1997).

We use the Cowie et al. (1993) thin-plate model for elastic-brittle
deformation of a lithospheric plate to demonstrate how stress feedback
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between adjacent faults controls fault linkage and variations in displace-
ment rates. Their model consists of a horizontal square lattice with hetero-
geneous material properties, which do not weaken with time. A constant
antiplane shear strain rate is applied across the plate, and cyclic boundary
conditions are set along the lateral edges. Coupling between the elastic-
brittle lithosphere and underlying ductile layers is not considered in the
model. The deformation produced consists of vertical shear dislocations,
which accumulate displacement by repeated rupture. Comparison of this
model with extensional settings requires an additional rigid-body rotation to
produce a series of “domino” fault blocks. Stress changes are calculated
throughout the lattice after each rupture event. The pattern of stress
enhancement and reduction due to a vertical shear dislocation is comparable
to a steeply dipping normal fault (≥60°) in terms of the overall shape and
location of the stress perturbations (Fig. 2; Cowie, 1998). The model is
strictly applicable only to small amounts of total strain (<5%). The effects of
sediment loading and flexural isostasy are not considered, but will only
modify the amplitude of the faulted topography produced.

MODEL RESULTS
The evolution of faulting in one of the numerical simulations is shown

in Figure 3. At time 1, during the early stages of fault development, several
isolated faults of comparable length have formed and weakly interact. Time
2 corresponds to the onset of segment linkage, which takes place as faults
interact more strongly. The fault on which B is located more than doubles in
length during this time period. Displacement accumulation rates at points B
and D show a gradual increase between times 1 and 2 as a consequence of
their location near the center of a large fault (D) or due to linkage (B) (Figs.
3, 4). In contrast, points A, C, and E are characterized by slow displacement
rates because they are located on faults that are still relatively isolated during
times 1 and 2. Between times 2 and 3, the displacement at points A, D, and
E increases abruptly because the segments on which they are located have
grown substantially by linkage. As linkage progresses, the stress shadows of
larger structures result in cessation of fault growth in both the footwall and

hanging wall. Consequently, displacement rates increase on the remaining
active structures (B, C, and D) to accommodate the imposed constant strain
rate (Fig. 4). Point Ashows a more gradual transition to a high displacement
rate because it is located in a complex zone where the deformation is initially
accommodated by two fault strands before localizing onto one. By time 4 the
bulk of the strain is accommodated along a narrow zone connecting A, B, C,
and D. The overall transition—from slow displacement rates during the early
phase of fault development, to more rapid rates as the deformation local-
izes—begins prior to the formation of a fully linked fault system (Fig. 4).
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Comparison of behavior at points C and E illustrates the stress feed-
back mechanism most clearly. At time 3, the fault on which C is located
remains isolated and develops very slowly because it lies in the stress
shadow zone of the fault on which E is located. Eventually, C begins to
undergo positive stress feedback due to its along-strike position from other
active segments, whereas the fault on which E is located becomes less opti-
mally positioned within the overall developing structure. Displacement at C
starts to increase dramatically when displacement at E switches off because
the fault splay on which it lies becomes abandoned.

IMPLICATIONS FOR THE STRATIGRAPHIC DEVELOPMENT
OF RIFT BASINS

Our numerical simulation shows that fault interactions during the
development of a linked fault system are likely to have a major impact on
fault displacement rates, and hence rates of hanging-wall subsidence. Con-
sequently, it should be possible to observe the first-order effects of such
fault interactions in the stratigraphic record.

Rift Initiation to Rift Climax Transition
In the Miocene Gulf of Suez rift, fluvial and shallow-marine rift-

initiation deposits of the Aquitanian Nukhul Formation are overlain by deep-
marine rift-climax deposits of the Burdigalian Rudeis Formation (Patton
et al., 1994). Backstripped tectonic subsidence curves throughout the Suez
rift indicate that initially, during Nukhul Formation deposition, subsidence
rates were low (Fig. 1; Steckler et al., 1988; Richardson and Arthur, 1988).
However, between 19 and 21 Ma, there was an abrupt increase in the rate of
tectonic subsidence, resulting in the development of a deep-marine basin. We
propose that the slow rate of subsidence during the rift initiation stage is a
consequence of displacement being distributed on numerous small faults
(time 1, Figs. 3, 4). This explains the occurrence of the Nukhul Formation
only in isolated subbasins (Richardson and Arthur, 1988). The abrupt transi-
tion to high rates of subsidence and the onset of rapid basin deepening dur-
ing the rift climax may be attributed to fault localization as a consequence of
the stress feedback mechanism (times 2 and 3, Figs. 3, 4). Importantly, an

increase in regional extension rate is not required to explain this transition,
as implied in previous studies (Steckler et al., 1988; Patton et al., 1994).

Development of Sedimentary Depocenters
The numerical simulation indicates that fault interactions occurring

prior to the formation of a fully linked fault structure exert a marked control
on spatial and temporal variations in displacement rate. Evidence of this
comes from seismic interpretations of early rift climax stratal packages in a
Late Jurassic half graben located in the northern North Sea rift (Fig. 5A;
Dawers et al., 1998). Mapping of the geometry of the Statfjord East fault
and thickness distribution of hanging-wall marine-shale successions per-
mits reconstruction of the evolution of sedimentary depocenters in relation
to fault activity. During the Bathonian–late Oxfordian, sediment accumula-
tion was localized along the southern part of the Statfjord East fault
(Fig. 5B). The Heather Formation shows greatest thickness in the imme-
diate hanging wall of the southwestern segment of the Statfjord East fault.
Individual fault segments clearly control the location of subbasin depo-
centers. With time, displacement propagated toward the northeast (Fig. 5C).
Isopachs of the upper Oxfordian–Kimmeridgian lower Draupne Formation
indicate continued subsidence along the southern part of the fault, together
with development of a new depocenter along a fault segment toward the
northeast. We suggest that deposition of the Heather and lower Draupne
Formations occurred during a phase of ongoing linkage of fault segments
(time 3 in Figs. 3, 4) prior to the development of a fully linked array.

Localization of Fault Activity
Our model predicts that the rift initiation to rift climax transition is

related to a combination of enhanced fault linkage and cessation of activity
on faults in stress shadow zones. The Upper Jurassic to Lower Cretaceous
synrift succession in the Inner Moray Firth basin, North Sea rift, is charac-
terized by marked stratigraphic thickening across normal faults, such as the
Smith Bank fault (Fig. 6). Seismic stratigraphic analysis allows its subdivi-
sion into six sequences (J1b, J2.1–J2.5, Fig. 6; Underhill, 1991a, 1991b).
The earliest synrift sequences (J1b, J2.1 and J2.2) are dissected by numer-
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ous small faults. Later sequences (J2.3 and J2.4) are only affected by a
few large faults and show pronounced expansion into their hanging wall
and onlap onto the hanging-wall dip slope (Fig. 6). Cessation of activity
on smaller faults corresponds to the onset of major displacement accu-
mulation on large faults, such as the Smith Bank fault (J2.3, early–late
Kimmeridgian). It is clear that with continued extension, displacement
became localized on a few, large, long-lived faults, while other faults
became inactive, as demonstrated in our model (point E in Fig. 3).

CONCLUSIONS
Our model leads to a plausible physical explanation for the stratig-

raphy of many rift basins in that it provides a mechanism for the transition
from initially slow rates of subsidence during the rift initiation, to high rates
of subsidence during the rift climax. The mechanism depends on stress
feedback between interacting faults. The rate of hanging-wall subsidence is
found to depend on (1) relative position along a fault segment, (2) proxim-
ity and optimal positioning with respect to adjacent fault segments, and
(3) occurrence of linkage events. We find that linkage continues after the
transition to rift climax is observed. We also find that neighboring faults can
have different displacement rates during this transition, consistent with the
observations of Nicol et al. (1997). Some authors have invoked variable
stretching rates to explain observed synrift stratal geometries (Ravnås and
Bondevik, 1997; ter Voorde et al., 1997). Our results suggest that these
effects can be explained simply in terms of fault-array evolution at a con-
stant extension rate, and that variable fault activity is an inherent feature of
the linkage process.

The assumption of a stress-free boundary at the asthenosphere-
lithosphere interface in our model is clearly overly simplistic. Heimpel and
Olson (1996) showed that coupling between the elastic-brittle lithosphere
and an underlying high-viscosity layer inhibits strain localization and sup-
presses fault linkage in the upper layer. Nevertheless, good agreement
between our observations and model results suggests that viscous effects
may be of secondary importance at the strain rates of typical rifts (10–16s–1).
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