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abstract: One of the main goals in ecology is determining the
mechanisms that control the abundance and distribution of organ-
isms. Using data from 69 tropical forests worldwide, I demonstrate
that liana (woody vine) abundance is correlated negatively with mean
annual precipitation and positively with seasonality, a pattern pre-
cisely the opposite of most other plant types. I propose a general
mechanistic hypothesis integrating both ecological and ecophysio-
logical approaches to explain this pattern. Specifically, the deep root
and efficient vascular systems of lianas enable them to suffer less
water stress during seasonal droughts while many competitors are
dormant, giving lianas a competitive advantage during the dry season.
Testing this hypothesis in central Panama, I found that lianas grew
approximately seven times more in height than did trees during the
dry season but only twice as much during the wet season. Over time,
this dry season advantage may allow lianas to increase in abundance
in seasonal forests. In aseasonal wet forests, however, lianas gain no
such advantage because competing plants are rarely limited by water.
I extend this theory to account for the local, within-forest increase
in liana abundance in response to disturbance as well as the con-
spicuous decrease in liana abundance at high latitudes.

Keywords: climbers, latitudinal gradient, lianas, plant distribution,
seasonality, tropical forests.

Documenting patterns of the abundance and distribution
of organisms and developing theories to explain these pat-
terns are central to the study of ecology. Some large-scale
ecological patterns, such as the increase in biological di-
versity with decreasing latitude, are extremely well docu-
mented (reviewed by Willig et al. 2003). Other patterns,
however, such as the increase in the abundance of most
organisms throughout the tropics with annual rainfall, are
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equally intriguing but have received less attention (Gentry
1982, 1995; Clinebell et al. 1995). In both cases, the mech-
anisms responsible for these large-scale patterns remain
elusive. Comprehensive explanations for patterns of spe-
cies abundance at various spatial scales require theories
that incorporate mechanisms that operate over these spa-
tial scales. Development of these theories, however, may
require the integration of multiple disciplines, which may
provide a better explanation for the abundance and dis-
tribution of organisms than any single approach.

Because mechanistic explanations for the abundance
and distribution of most organisms have proven difficult
to develop, an alternative approach is to focus on excep-
tional groups of species whose patterns of abundance and
distribution deviate from other groups. Determining the
mechanisms that control the exceptional distribution of
some groups of species may help explain the more com-
mon distribution patterns. For example, in tropical forests,
the density of most vascular plant groups (e.g., trees,
palms, herbs, and epiphytes) increases with increasing pre-
cipitation (Gentry 1982, 1995; Clinebell et al. 1995; Dat-
taraja and Sukumar 2004). In contrast, the abundance of
lianas (woody vines), a key component of most tropical
forests (Schnitzer and Bongers 2002; Pérez-Salicrup et al.
2004), may be invariable or even vary negatively with an-
nual precipitation. Gentry (1991, 1995) speculated that
lianas vary more with the seasonality of rainfall, peaking
in tropical moist forests with a strong seasonal drought
but moderate rainfall compared with tropical wet and dry
forests. If Gentry’s speculations are correct, the mecha-
nisms that control the abundance of lianas likely differ
from those of other plant types. These mechanisms, how-
ever, remain poorly understood.

In addition to using lianas as a means to understanding
the distribution of other growth forms, providing a mech-
anistic explanation for the abundance of lianas themselves
is essential for a basic understanding of the ecology of
tropical forests (Putz and Mooney 1991; Schnitzer and
Bongers 2002; Pérez-Salicrup et al. 2004). Lianas are ex-
tremely abundant in and add considerably to the archi-
tectural complexity of most tropical forests, constituting
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between 10% and 45% of the woody individuals and rank-
ing second in biomass only to trees (Putz 1983; Gentry
1991; DeWalt and Chave 2004). Lianas also have a large
impact on many forest processes by reducing tree growth
and fecundity, suppressing gap phase regeneration, and
altering whole-forest carbon sequestration and water bud-
gets (Putz 1984; Stevens 1987; Schnitzer and Carson 2000,
2001; Schnitzer et al. 2000, 2004; Laurance et al. 2001;
Pérez-Salicrup 2001; Andrade et al., forthcoming). Fur-
thermore, lianas may be increasing in abundance through-
out the Neotropics (Phillips et al. 2002; Wright et al. 2004),
a phenomenon that could have significant implications for
the regeneration and dynamics of tropical forests. Because
lianas can effectively displace trees when found in high
densities (e.g., Schnitzer et al. 2000; Laurance et al. 2001),
the increase in liana abundance may further reduce tree
growth and alter tree species composition, thus funda-
mentally changing the physiognomy of these forests and
reducing the capacity of forests to sequester atmospheric
carbon (Putz 1984; Schnitzer et al. 2000; Phillips et al.
2002; Schnitzer and Bongers 2002). Determining the
mechanisms responsible for the proliferation of lianas is
therefore critical for predicting the impacts of lianas on
forests as climatic factors and land use practices continue
to change.

In this study, I use two independent data sets that vary
in spatial scale to determine the biogeographical patterns
of liana abundance with respect to mean annual precip-
itation and seasonality of rainfall. After establishing these
patterns, I then propose a simple and general theory based
on the combination of ecological and ecophysiological
principles to explain the predominant mechanism re-
sponsible for the pantropical patterns of liana abundance.
I support this theory with several distinct lines of empirical
evidence from both novel data and previously published
studies. This theory also provides the framework in which
to describe the mechanisms that control liana abundance
at a local scale (the clumped distribution of lianas within
a forest; Putz 1984; Pérez-Salicrup et al. 2001; Schnitzer
et al. 2000) and the sharp decrease in liana abundance
with increasing latitude (Gentry 1982, 1991; Ewers et al.
1991).

Testing the Patterns of Liana Abundance

I examined the abundance of lianas with respect to forest
seasonality and total annual rainfall at both the regional
and pantropical scales. At the regional scale, I censused
the number of liana stems in three lowland forests (!200
m elevation) along a strong rainfall and seasonality gra-
dient across the relatively narrow (55 km) isthmus of Pan-
ama. In each forest, I quantified the number and basal
area (measured 130 cm from the roots) of all free-standing

and climbing lianas ≥0.2 cm in diameter that were rooted
in randomly selected replicated plots located in intact for-
est. I included only independently growing stems that were
not connected aboveground to any other stem in the cen-
sus (apparent genets; sensu Mascaro et al. 2004).

The forests included Fort Sherman (9�21�N, 79�57�W),
a tropical wet forest; Barro Colorado Island (BCI), Panama
(9�9�N, 79�50�W), a seasonally deciduous tropical moist
forest; and Cocoli (8�58�N, 79�34�W), a tropical dry forest
(classified using the Holdridge system of forest classifi-
cation; Holdridge 1967). The seasonality and mean annual
rainfall of each forest was estimated using data that have
been collected monthly for 120 years at or near each site
by the Meteorology and Hydrology Branch, Panama Canal
Authority, Republic of Panama. Fort Sherman is located
on the Atlantic coast of Panama and receives 13,000 mm
mean annual rainfall (on the basis of 94 years of data).
The tropical moist forest of BCI is located in central Pan-
ama and receives approximately 2,600 mm mean annual
rainfall (72 years of data). Cocoli is located on the Pacific
side of Panama and receives approximately 1,750 mm
mean annual rainfall (20 years of data; see also Condit et
al. 2000). Each of these forests experiences a seasonal re-
duction in rainfall (dry season), which commonly lasts 3–
4 months from mid-December through mid-April (Leigh
1999; Condit et al. 2000, 2004). Of the three forests, Fort
Sherman has the least severe dry season, which lasts ap-
proximately 106 days. The dry season is longer on BCI,
lasting approximately 118 days, and BCI receives around
10% less rain during the dry season than Fort Sherman
over a comparable period of time. Cocoli has the longest
and most severe dry season, which is approximately 129
days long, and Cocoli receives approximately half as much
dry season rainfall as BCI over a comparable period (Con-
dit et al. 2004). Concordant with the severity of the dry
season, the leaf density of the canopy declines by approx-
imately 3%, 10%, and 19% during the dry season relative
to the wet season at Fort Sherman, BCI, and Cocoli, re-
spectively (Condit et al. 2000). There is some overlap in
tree species among the sites; however, the percentage of
canopy species that are deciduous differs substantially, with
14%, 28%, and 41% of the species being seasonally de-
ciduous at Fort Sherman, BCI, and Cocoli, respectively
(Condit et al. 2000).

Apart from differences in rainfall, other important cli-
matic conditions are similar in all three forests. Each forest
is mostly evergreen, and each experiences mean monthly
temperatures of around 27�C throughout the year, typical
of lowland tropical forest (Condit et al. 2000, 2004). The
forests have somewhat different histories, with the BCI
forest being the oldest and Cocoli the youngest. The BCI
forest used in this study was actually a mix of old growth
(1500 years) located on BCI and mature secondary forest
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located on an adjacent mainland peninsula (Gigante Pen-
insula; described in Leigh 1999). The census plots in these
two forests did not differ in liana abundance (3,521 �

ha�1 vs. ha�1), and thus the data were796 3,873 � 449
combined. The Fort Sherman forest appeared to have been
free of severe disturbance for 1200 years and has many
large, slow-growing trees (Condit et al. 2004). The Cocoli
forest is somewhat younger, estimated to be mature sec-
ondary forest around 120 years old (Condit et al. 2004).
Although the abundance of lianas may be higher in very
young secondary forests (!40 years old), in Panama, for-
ests older than 70 years do not appear to differ in liana
abundance and diversity from forests ∼100 and 1500 years
old (DeWalt et al. 2000), and thus forest age was probably
not an important factor in this study. Replication within
each forest consisted of eight and nine randomly selected

-m plots (100 m2) at Cocoli and Fort Sherman,10 # 10
respectively, and 16 plots that were m (864 m2)24 # 36
on BCI (eight) and Gigante Peninsula (eight). Although
plot size and number differed among the sites, each site
was censused at approximately the same time using iden-
tical methodologies.

To ascertain whether the patterns of liana abundance
across the isthmus of Panama were consistent with pat-
terns at the pantropical scale, I used a database that con-
sisted of all lianas, trees, and shrubs ≥2.5 cm diameter in
0.1-ha plots from lowland tropical forests around the
world (data collected by A. H. Gentry and summarized in
Phillips and Miller 2002). The main advantages of using
the Gentry data set are that it is well replicated and that
the methodology was consistent among the sites, ensuring
valid among-site comparisons. I restricted this data set to
forests that were classified as tropical lowland dry, moist,
or wet forests (on the basis of Holdridge 1967), had ≥500
mm of rainfall annually, and were ≤1,000 m above sea
level (sensu Dirzo 2001). Thus, I omitted forests that were
classified as subtropical, montane, and premontane to re-
duce confounding the differences in latitude, elevation,
and temperature among the sites. I also omitted the forests
classified as “rain” forests because this category included
only two sites that also met the other criteria.

In total, this data set included 66 tropical forests: 24 dry
forests, 31 moist forests, and 11 wet forests from sites
located in Africa (8), Asia (4), Central America (9), and
South America (45). Each of these four major geographic
locations included all three forest types, except the Asian
forests, which did not contain dry forests. I tested whether
liana abundance differed among the three forest types and
the four geographic locations using ANOVA (SAS Institute
2000). Because the abundance of lianas did not differ sig-
nificantly among the four geographic areas and there was
no significant interaction between forest type and geo-
graphic location, I reanalyzed the model omitting geo-

graphic location as a factor. I also examined the patterns
of liana and tree abundance over a gradient of total annual
precipitation using linear regression (SAS Institute 2000).
I ran this analysis both with and without the site with the
highest rainfall to test whether this one site dispropor-
tionately affected the analysis.

Empirical Evidence for the Patterns
of Liana Abundance

Across the isthmus of Panama, liana abundance was high-
est in the tropical dry forest, which had nearly five times
the number of lianas as the wet forest (fig. 1A). The abun-
dance of lianas in the seasonal moist forest of BCI was
slightly greater than in the wet forest of Fort Sherman,
but this difference was not significant. Gentry’s own data
reflected the same pattern, with liana abundance signifi-
cantly higher in the dry forests than either moist or wet
forests ( , , ; data not shown).P ! .01 F p 5.47 df p 2, 63
Liana basal area followed essentially the same pattern (fig.
1B), demonstrating that the higher abundance of lianas in
seasonally dry forests was not balanced by a comparable
decrease in liana basal area.

Regressing liana abundance onto mean annual precip-
itation for the 65 pantropical sites further revealed the
significant negative relationship between these two vari-
ables, consistent with the forest classifications (fig. 2). In
contrast, tree and shrub abundance increased with pre-
cipitation over the 65 sites, demonstrating the contrasting
patterns of abundance for lianas versus trees and shrubs
(fig. 2). Analyzing the smaller paleotropical data set (Africa
and Asia) revealed that the patterns of liana and tree abun-
dance with mean annual precipitation in these paleotrop-
ical forests were similar to those of the larger pantropical
data set (fig. 2; lianas: , , ; trees:2P p .12 R p 0.23 n p 12

, , ), although the lack of sig-2P p .07 R p 0.29 n p 12
nificance was probably due to the low sample size. Con-
sequently, although the majority of the data were from the
Neotropics, liana abundance also appears to decrease lin-
early with annual precipitation in the paleotropics.

The high abundance of lianas in forests with low pre-
cipitation and high seasonality is consistent with other
studies. For example, in the “liana forests” of Brazil, which
once covered approximately 100,000 km2 of Amazonia,
total annual rainfall is moderate (∼1,750 mm), but the
dry season is very strong with very little precipitation
(Balée and Campbell 1990; Gentry 1991). Likewise, lianas
are also extraordinarily abundant and diverse in highly
seasonal Bolivian forests on the rim of the Amazon basin,
where lianas can compose over 80% of the woody indi-
viduals and 44% of the woody species that are in the
canopy (Pérez-Salicrup et al. 2001). Lianas are also ex-
ceedingly abundant in moist and dry lowland forests of
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Figure 1: Abundance (A) and basal area (B) of lianas (≥0.5 cm diameter) across the rainfall and seasonality gradient of the isthmus of Panama
( SE). The three sites represent dry (Cocoli), moist (Barro Colorado Island [BCI]), and wet (Fort Sherman [FTS]) forests. Liana abundancemeans � 1
and basal area were significantly higher in the dry forest of Cocoli compared with the moist and wet forests of BCI and FTS (liana abundance:

, , ; basal area: , , ). BCI and FTS were not significantly different from one another in eitherP ! .0001 F p 21.34 df p 2, 30 P p .02 F p 4.69 df p 2, 30
abundance or basal area (Tukey HSD test). Both liana abundance and basal area were log transformed to normalize the residuals when necessary
to meet the assumptions of normality and equal variance. Nontransformed data are presented.
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Figure 2: Abundance of lianas (circles) and trees and shrubs (triangles; ≥2.5 cm diameter) in 66 tropical lowland forests elevation (≤1,000) from
Africa (8), Asia (4), Central America (9), and South America (45) regressed over mean annual precipitation (data from Phillips and Miller 2002).
Neotropical sites are represented by solid symbols and paleotropical sites by open symbols. Liana abundance decreased significantly with increasing
precipitation ( , , ), while the increase in tree abundance was marginally significant ( , , ). The2 2P p .01 R p 0.10 n p 65 P p .097 R p 0.10 n p 65
wettest site (∼7,500 mm precipitation), while shown, was excluded for curve fitting to provide a more conservative test. Inclusion of this site did
not alter the results for lianas ( , , ); however, the increase in tree abundance was highly significant with this point2P p .006 R p 0.11 n p 66
( , , ).2P p .008 R p 0.16 n p 66

India, increasing considerably in abundance with increas-
ing seasonality (Parthasarathy et al. 2004).

In contrast, lianas are relatively sparse in aseasonal wet
tropical forests. For example, Gentry’s own data demon-
strate that lianas (≥2.5 cm diameter) are significantly less
abundant in wet forests ( ha�1) than in dry forests533 � 72
( ha�1). Liana abundance and estimated biomass779 � 50
were more than 50% lower in the aseasonally wet forest
of La Selva Biological Station in Costa Rica than in the
seasonal moist forest of BCI (DeWalt and Chave 2004;
Mascaro et al. 2004). DeWalt and Chave (2004) censused
the lianas in four Neotropical forests and found that, al-
though the differences were not significant, the three sea-
sonal forests had, on average, more than twice the number
of lianas as the one aseasonal forest. Even in relatively
liana-dense wet forests, such as Yasunı́ in Ecuador, liana
abundance was considerably lower than in liana-dense sea-
sonally dry forests (see Pérez-Salicrup et al. 2001; Burnham
2002). Consequently, both new and previously published
data support the hypothesis that, as a general trend, liana
abundance and basal area decrease with increasing rainfall,
peaking in dry forests with relatively severe seasonal

droughts while remaining in low abundance in wet, less
seasonal forests.

A Mechanistic Explanation for the Pantropical
Distribution of Liana Abundance

The unique ecological, anatomical, and physiological ad-
aptations of lianas may explain why they are found in the
greatest abundance in tropical forests that regularly ex-
perience seasonal droughts. Lianas have extremely deep
and efficient root and vascular systems and thus may be
able to tap water and nutrients that many trees and shrubs
are unable to access during drought conditions. In addi-
tion, light, which is typically limiting in tropical forests,
is more abundant during the dry season (Wright 1996;
Graham et al. 2003). Because lianas can access water, they
can capitalize on increased dry season solar radiation with
relatively high growth, whereas many competing trees and
shrubs cannot. High dry season growth rates would confer
a competitive advantage on lianas, which over decades to
centuries may result in their high abundance in seasonal
forests. In contrast, in aseasonal forests, where water is
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rarely limiting, lianas are suppressed by competition from
other plants because lianas do not have a dry season
growth advantage, thus explaining their relative paucity. I
further develop this theory and present several indepen-
dent lines of empirical evidence to support it.

The Unique Anatomy and Physiology of Lianas
and the Paradox of Liana Distributions

One of the primary ways in which lianas differ from trees
is that lianas have an extremely high canopy to stem ratio,
with long and narrow stems and a proportionally large
canopy that can completely cover that of its host tree (Putz
1983; Schnitzer and Bongers 2002). The length of a large
liana can far exceed that of even the tallest tree, and a
large liana can course through dozens of tree canopies
over distances of hundreds of meters (e.g., Putz 1984).
The relatively long and narrow stem of lianas, however,
also poses a considerable challenge for the transport of
sufficient amounts of water and nutrients necessary to
support the large canopy. To overcome this challenge, li-
anas have evolved extremely efficient vascular systems. Li-
anas have the widest and longest xylem vessel elements of
any plant growth form and a high sapwood to heartwood
ratio, both of which facilitate the efficient water transport
(Ewers and Fisher 1989; Gartner et al. 1990; Ewers et al.
1991; Holbrook and Putz 1996; Tyree and Ewers 1996).
Because water flow increases to the fourth power with the
radius of cylindrical vessel elements, the wide vessels of
lianas can transport water more efficiently than other vas-
cular plants (Holbrook et al. 1995). The vascular systems
of lianas are further modified with such adaptations as
reduced perforation plates, which decrease resistance to
water flow and enhance vascular transport efficiency (Carl-
quist 1991).

These adaptations for efficient vascular transport, how-
ever, come at an ecological cost: specifically, a higher risk
of embolism, which could force plants to become dormant
during seasonal droughts or else render vessels perma-
nently nonconductive (Ewers et al. 1990; Gartner et al.
1990). Additionally, the extremely wide vessel elements
housed in a slender stem result in each wide vessel con-
tributing a relatively high proportion to the total con-
ductive vascular area, and thus an embolized vessel may
be especially devastating to the functioning of the entire
plant. In contrast, shorter and narrower vessel elements
are less likely to become embolized, and a single, small
embolized vessel has a lower systemic impact (Sperry et
al. 1987). For example, lianas and trees growing in ex-
tremely dry forests appear to have slightly narrower vessels
than those of the same species in more mesic forests, re-
ducing the possibility of embolism (Gartner et al. 1990;
Sobrado 1993). Even within a dry forest, plants that retain

their leaves throughout the dry season appear to have
narrower vessels compared with plants that are drought
deciduous (Sobrado 1993; Holbrook et al. 1995). Lianas,
however, may be restricted to maintaining some relatively
large vessels because of their narrow stems and the ne-
cessity to transport water to a large canopy. Paradoxically,
lianas peak in abundance in strongly seasonal dry tropical
forests, where they are most vulnerable to embolism.

Resolving the Paradox: Lianas Avoid Embolism via
Tapping Deep Sources of Soil Moisture

This apparent paradox may be explained by the ability of
lianas to access deep sources of water, even in forests with
strong seasonal droughts. By developing exceptionally
deep and wide root systems, lianas may ensure a relatively
constant supply of water and thus reduce the risk of em-
bolism (Tyree and Ewers 1996; Wright 1996; Andrade et
al., forthcoming). For example, Restom and Nepstad
(2004) excavated liana seedlings of the species Davilla kun-
thii (Dilleniaceae) in a secondary forest in eastern Ama-
zonia and found that their root systems were often more
than eight times longer than the aboveground stem, with
the roots of very small individuals exceeding 10 m in
depth. In addition, liana root systems may be wider in
diameter than the stems that they supply. Tyree and Ewers
(1996) reported that the diameter of the root system of
the liana species Machaerium milleflorum (Fabaceae) was
nearly eight times wider than the diameter of its stem.
Lianas may be able to develop particularly deep and wide
root systems because they invest relatively little energy into
structural support compared with trees, and thus lianas
can grow to great lengths both aboveground and below-
ground (Holbrook and Putz 1996).

Having deep root systems may prevent lianas from suf-
fering as much water stress during the dry season as trees.
Using deuterium isotopes to determine the depth in the
soil at which woody plants accessed water throughout the
dry season on BCI in Panama, Andrade et al. (forthcom-
ing) found that lianas consistently tapped water from
deeper sources as the dry season progressed, whereas many
tree species in this forest did not (Meinzer et al. 1999).
Further evidence that lianas have access to sources of water
during the dry season is their ability to produce and ex-
pand stems, leaves, and flowers during this period (Lon-
gino 1986; Putz and Windsor 1987), processes requiring
a substantial supply of water. This production and expan-
sion during the dry season may be aided by the ability of
lianas to store small amounts of water in unlignified par-
enchymatous cells in their stems, which become depleted
during the day and recharged at night (Ewers et al. 1991;
Fisher and Ewers 1991).

Embolism repair via positive root pressure has been
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proposed as an alternative strategy for lianas to remain
active during seasonal droughts (e.g., Holbrook and Putz
1996). This strategy, however, does not appear to be used
by many tropical lianas. In a study of predawn root pres-
sures of 32 liana species from 13 families on BCI (n p

), Ewers et al. (1997) reported that none of the 29 di-65
cotyledonous lianas generated root pressures that were suf-
ficient to repair embolized vessels in the canopy of the
plants. Twenty-six of these species did not generate positive
root pressures at all, and the three species that did, all
members of the family Dilleniaceae, generated pressures
that were too weak to refill vessels higher than 6.4 m on
their 18�-m-tall stems. Two other liana species, a climbing
fern (Lygodium venustrum) and a climbing bamboo (Rhi-
pidocladum facemiflorum), generated root pressures suf-
ficient to refill embolized vessels in the canopy of the plant.
Both of these species, however, are relatively small in stat-
ure, and thus only modest positive root pressures were
necessary to push water up to their canopies (Tyree and
Ewers 1996).

Lianas Remain Photosynthetically Active
during Seasonal Droughts

Another strategy of plants to avoid embolism and water
stress during seasonal droughts is to become deciduous or
physiologically dormant. Although many broad-leaved
plants employ this strategy, most lianas appear to retain
leaves and remain active throughout the dry season in
many forests. For example, in the seasonal moist forest on
BCI, nearly all of the 175 species of liana remain evergreen
throughout the year, whereas nearly 30% of the trees lose
their leaves at some point during the dry season (Croat
1978; Putz and Windsor 1987; Condit et al. 2000). Like-
wise, in a dry forest in the Guanacaste Province in north-
west Costa Rica, which has severe and extended seasonal
droughts, Opler et al. (1991) reported that many liana
species were evergreen throughout the dry season and that
production of new leaves began late in the dry season,
presumably when water was the most scarce. Kalácska et
al. (2005) also found that lianas retained their leaves
throughout most of the dry season in a dry forest in the
Guanacaste Province, with liana species becoming decid-
uous only at the very end of the season, far later than
most of the trees.

Lianas appear to remain photosynthetically active dur-
ing seasonal droughts. In the seasonal moist forest of BCI,
Zotz and Winter (1996) reported that the tropical liana
Uncaria tomentosa maintained the same rate of photosyn-
thesis during the dry and wet seasons. Additional support
comes from Castellanos (1991), who found that the sto-
matal conductance of the only liana measured during the
dry season in a Mexican tropical dry forest (Aristolochia

sp.) was similar to the wet season stomatal conductance
of other liana species, suggesting that liana stomatal con-
ductance remains high throughout the year. During the
particularly severe El Niño drought in 1997–1998, Andrade
et al. (forthcoming) found that sap flow in six liana species
on BCI continued throughout the dry season, indicating
that lianas remained active even during severe seasonal
droughts despite increasing air saturation deficit. Similar
sap flow patterns were also observed in two liana species
in a very dry tropical forest in Mexico (Fichtner and
Schulze 1990).

Does Effective Water Foraging Translate into Increased
Liana Growth Rates during the Dry Season?

Reduced cloud cover during the dry season increases solar
radiation, which can increase leaf production, carbon fix-
ation, and reproduction in those plants that are not water
stressed (Wright and van Schaik 1994; Wright 1996; Zotz
and Winter 1996; Graham et al. 2003). On BCI, daily
photosynthetically active radiation recorded above the can-
opy increased by nearly 50% during the dry season com-
pared with the wet season (Wright and van Schaik 1994).
In addition, canopy leaf cover declined by 10% from the
wet to dry seasons on BCI and by nearly 20% in the dry
forest of Cocoli (Condit et al. 2000). More light reaching
the canopy and fewer canopy leaves to intercept that light
will allow more light to reach the forest floor during the
dry season. By experiencing less water stress during the
dry season and being able to rapidly respond to increases
in light (Avalos and Mulkey 1999), lianas should be able
to capitalize on the increase in light with superior growth
rates compared with trees. Over decades, the advantage of
relatively high dry season growth rates may allow lianas
to increase in abundance in seasonal forests.

I tested the hypothesis that lianas grow proportionally
more rapidly than trees during the dry season compared
with the wet season in the shaded understory of an old-
growth seasonal moist forest on BCI. During a 12-month
period in 1998 and 1999, I measured the height growth
of 10 liana and 12 tree species (384 individuals total) from
19 genera and 17 families (table 1). All individuals were
between 1 and 2.5 m tall. In April 1998, at the beginning
of the wet season, I marked individuals precisely 5 cm
below the tip of the apical meristem with a black per-
manent marker. I measured the height of all individuals
8 months later at the end of the wet season, in December
1998, and again 4 months after that at the end of the dry
season, in April 1999. For all lianas and trees, I converted
mean seasonal height growth per species to an annual rate
and compared these growth rates using an ANOVA, with
the mean height growth rate per species as the unit of
replication and growth form, season, and the interaction
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Table 1: Liana and tree species (and family) for which growth rates were measured
during the wet and dry seasons on Barro Colorado Island, Panama

Trees Lianas

Alseis blackiana (Rubiaceae) Callichlamys latifolia (Bignoniaceae)
Capparis frondosa (Capparidaceae) Coccoloba parimensis (Polygonaceae)
Desmopsis panamensis (Annonaceae) Connarus turczaninowii (Connaraceae)
Faramea occidentalis (Rubiaceae) Doliocarpus olivaceus (Dilleniaceae)
Garcinia intermedia (Clusiaceae) Hiraea reclinata (Malpighiaceae)
Hirtella triandra (Chrysobalanaceae) Paullinia bracteosa (Sapindaceae)
Hybanthus prunifolius (Violaceae) Paullinia fibrigera (Sapindaceae)
Mouriri myrtilloides (Melastomataceae) Paullinia pterocarpa (Sapindaceae)
Pouteria reticulata (Sapotaceae) Paullinia turbacensis (Sapindaceae)
Protium panamense (Burseraceae) Petrea aspera (Verbenaceae)
Swartzia simplex (Caesalpinioideae)
Tetragastris panamensis (Burseraceae)

term as the independent variables (SAS Institute 2000).
To ensure that the mean liana height growth rates were
not biased by the four congeneric Paullinia species, I also
analyzed the data using the mean of all of the four con-
generics combined rather than treating them as indepen-
dent replicates ( ). The results of these two analysesn p 7
did not differ, so I present the results from the larger data
set ( ).n p 10

Both lianas and trees grew significantly more in height
during the wet season than during the dry season (P p

, , ), demonstrating that both.001 F p 12.02 df p 1, 42
growth forms suffered from water stress during the dry
season. The annual growth rate of lianas was significantly
greater than that of trees ( , ,P p .009 F p 7.59 df p

; fig. 3), and lianas grew nearly two times more than1, 42
trees during the wet season. In the dry season, however,
liana growth rate outpaced that of trees by nearly seven-
fold, demonstrating that lianas suffered substantially less
water stress than trees. In fact, trees grew very little during
the dry season, perhaps because they shut down in order
to survive the seasonal drought. These findings support
the hypothesis that liana abundance is high in seasonal
forests because of their ability to grow more than com-
peting trees during the periods of seasonal drought. In
contrast, the decrease in tree abundance and forest pro-
ductivity with decreasing precipitation may be explained
by the inability of trees to grow during the dry season
combined with the intense competition with lianas (e.g.,
Schnitzer and Bongers 2002; Grauel and Putz 2004).

Additional Evidence That Lianas Are Not
Water Stressed during the Dry Season

Wright and van Schaik (1994) suggested that there should
be strong selection on plants to produce new leaves during
the dry season because new leaves are more photosyn-
thetically efficient than are older leaves, and thus they can

take advantage of the increase in dry season radiation. In
addition, young leaves, which are attacked preferentially
by herbivores, may avoid being eaten during the dry sea-
son, when herbivore abundance is low (Coley 1983). How-
ever, the ability to expand new leaves, flowers, and stems
requires an ample supply of water (Holbrook et al. 1995),
and thus selection should favor the production of new
leaves during the dry season only for plants that are less
susceptible to water stress.

Because lianas can access deep soil moisture, they may
provide better support for the model proposed by Wright
and van Schaik (1994) than other plant groups. Indeed,
Putz and Windsor (1987) examined the phenology of 43
liana species on BCI and reported that nearly all species
produced new leaves throughout the dry season. In con-
trast, less than half of the 26 species of tree they examined
produced new leaves during this season (Putz and Windsor
1987). A substantial proportion of liana species also pro-
duced flowers during the dry season, whereas very few
trees flowered during this period (Putz and Windsor 1987).
Longino (1986) reported similar results in a seasonal forest
in Costa Rica, where the shoot production of the liana
Passiflora pittieri was extremely high during the dry season.

Not only are lianas able to access deep sources of water
through extensive root systems, but they also appear to
be better competitors for shared soil resources than are
trees. For example, in an experimental study disentangling
aboveground versus belowground competition of lianas
on trees in a disturbed forest, S. A. Schnitzer, M. Kuzee,
and F. Bongers (unpublished manuscript) demonstrated
that belowground competition, rather than aboveground
interaction, was the mechanism by which lianas signifi-
cantly reduced the aboveground growth of tree saplings.
In a seasonal tropical forest in Bolivia, Pérez-Salicrup and
Barker (2000) experimentally cut lianas from Senna mul-
tijuga trees and found that, although soil moisture did not
measurably change, the predawn water potential of these
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Figure 3: Annual height growth rate (scaled to 12 months) of lianas ( ) and trees ( ) during the wet and dry seasons on Barro Coloradon p 10 n p 12
Island, Panama. Growth rates for both lianas and trees were significantly higher in the wet season than the dry season ( , ,P p .001 F p 12.02

), and lianas grew significantly more than trees ( , , ). Liana growth rate was nearly twice as much as treesdf p 1, 42 P p .009 F p 7.59 df p 1, 42
during the wet season but more than seven times that of trees during the dry season. These differences were the same regardless of whether growth
was annualized or examined over the 4-month dry season and 8-month wet season.

trees became significantly less negative within 1 day after
cutting the lianas, suggesting strong competition for water
between lianas and this particular tree species (but see
Barker and Pérez-Salicrup 2000). In a series of controlled
competition experiments between sweetgum trees (Liq-
uidambar styraciflua) and two species of temperate zone
lianas, competition from lianas for nitrogen drastically re-
duced tree growth (Dillenburg et al. 1993a, 1993b, 1995).
Indirect evidence also suggests that belowground com-
petition plays a potentially large role in liana-tree com-
petition. In a study in the Darien region of Panama, Grauel
and Putz (2004) compared the growth of trees in plots in
which all of the lianas were removed and plots in which
lianas were left uncut, and they found that trees grew
significantly more in the absence of lianas. On a per tree
basis, however, this relationship was largely independent
of the number of lianas in the canopy of a given tree,
suggesting that lianas were competing more for a shared
soil resource than for light. Collectively, these studies sup-
port the hypothesis that lianas are adept at acquiring be-
lowground resources and efficiently transporting them to
their canopy.

Does Liana Abundance Decrease in
Extremely Dry Tropical Forests?

In theory, liana abundance should begin to decrease in
exceedingly dry forests, where even lianas themselves can-
not tolerate the high water stress, air saturation deficit,
and threat of drought-induced embolism. The point along
the rainfall and seasonality gradient where lianas begin to
decrease in abundance, however, has not yet been deter-
mined. The mean abundance of lianas of the two driest
lowland forests from the Gentry data set (mean annual
rainfall: 500 and 800 mm) was essentially the same as in
the mean of the rest of the dry forests, which ranged in
mean annual rainfall from 1,000 to 1,920 mm (81.5 �

vs. lianas 0.1 ha�1, respectively; Phillips24.5 78.2 � 6.9
and Miller 2002). Mean liana abundance was also similar
in the extremely dry forest at Chamela Biological Station
in Jalisco, Mexico ( individuals 0.1 ha�1; Phil-77.7 � 31.9
lips and Miller 2002), where mean annual rainfall is only
748 mm per year, with merely ∼150 mm of rain falling
during the 8-month dry season (Lott et al. 1987). Indeed,
even at Chamela, some select lianas remained evergreen
during the dry season (Fichtner and Schulze 1990; Gartner
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et al. 1990). These evergreen species, however, probably
resided in the relatively moist arroyos, where vines were
three times more abundant than on the dry hillsides (Lott
et al. 1987; Phillips and Miller 2002).

Explaining the Local Distribution of
Lianas in Tropical Forests

The same mechanism that enables lianas to proliferate in
seasonally dry tropical forests may also explain their abun-
dance at the local scale within forests. Although several
hypotheses have been proposed to explain the clumped
distribution of lianas within a given forest (reviewed in
Schnitzer and Bongers 2002), the hypothesis that distur-
bance promotes liana proliferation and maintains liana
abundance has received the most convincing empirical
support (e.g., Putz 1984; Smith 1984; Teramura et al. 1991;
Schnitzer and Carson 2000, 2001; Schnitzer et al. 2000,
2004). For example, at the relatively small spatial scale of
a treefall gap, Schnitzer and Carson (2001) demonstrated
that lianas in a tropical forest in Panama were more than
twice as abundant in 5- and 10-year-old naturally occur-
ring treefall gaps when compared with the same-sized non-
gap sites, whereas tree abundance did not differ between
the gap and nongap sites. Large-scale forest disturbances
from both natural and anthropogenic forces also result in
considerable increases in liana abundance. For example,
in a chronosequence of tropical forests in central Panama,
liana abundance was significantly greater in regenerating
young secondary forests (20–40 years old) than in older
forests (70, 100, and 1500 years old; DeWalt et al. 2000).
Other large-scale disturbances, such as those from hur-
ricanes, can also result in substantial increases in liana
abundance (Horvitz et al. 1998; but see Rice et al. 2004).
Likewise, forest fragmentation appears to increase liana
abundance. In central Amazonia, liana abundance was sig-
nificantly higher within 100 m of forest edges than in forest
interiors (Laurance et al. 2001).

The attributes that enable lianas to compete well in
seasonally dry tropical forests may also allow them to pro-
liferate following disturbance. The relatively high temper-
atures and evaporative gradients as well as the low hu-
midity in treefall gaps, young secondary forests, and forest
edges are often too severe for the survival of many plants,
especially those adapted to the conditions of the shaded
understory (Mulkey and Wright 1996). These relatively
harsh conditions, however, may be similar to those found
in tropical dry forests, and the ability of lianas to tolerate
dry conditions may allow them to capitalize on the high
light availability following disturbance. Furthermore, when
light is no longer the most limiting factor, as is commonly
the case following disturbance, belowground competition
may become more intense (e.g., Putz and Canham 1992),

which would favor the deep and efficient root systems of
lianas over more shallow-rooted plants, such as many tree
species (Dillenburg et al. 1993a, 1995; Pérez-Salicrup and
Barker 2000). Consequently, lianas may be particularly
abundant in disturbed forests and in disturbed areas within
forests, because they are able to capitalize on the high light
availability while suffering relatively low water stress.

Although disturbance may explain the local distribution
of lianas within a given forest, disturbance rate as a pre-
dictor of liana abundance among forests may be relatively
weak compared with annual precipitation and seasonality.
Tropical wet forests, where liana abundance is more con-
sistently low (fig. 2), have the highest frequency of treefall
gaps, presumably because of the combination of high
winds and waterlogged soils (reviewed by Denslow and
Hartshorn 1994). Liana abundance is also low in the ev-
ergreen forests in Puerto Rico, which experience high dis-
turbance from hurricanes (Rice et al. 2004). The loss of a
dry season advantage (because soil moisture availability
may always remain fairly high), combined with the rela-
tively low light conditions in the understory and the bur-
den of year-round competition from other plants, may
suppress liana abundance, regardless of the relatively high
rates of disturbance. In contrast, only in seasonal forests,
where lianas have the potential to reach relatively high
abundance because of their ability to capitalize on light
during the dry season, will local factors, such as distur-
bance, contribute to local liana abundance. The contri-
bution of local factors may be indicated by the relatively
high variability in liana abundance among seasonally dry
forests (figs. 1, 2).

Edaphic factors, such as soil nutrient and moisture avail-
ability, may, to some extent, also explain local and pan-
tropical liana distribution, particularly in seasonally dry
forests. Soil nutrient availability tends to vary negatively
with mean annual precipitation in tropical forests (Cline-
bell et al. 1995), and thus low liana abundance in wet
forests could be attributed, in part, to low levels of soil
nutrients (Putz and Chai 1987; Laurance et al. 2001;
DeWalt and Chave 2004). Empirical support for the hy-
pothesis that nutrient levels control liana abundance and
distribution within and among forests, however, is limited
(reviewed by Schnitzer and Bongers 2002). Although lianas
tend to increase in abundance slightly with increasing nu-
trient levels, this relationship is highly variable and rela-
tively unpredictable (Gentry 1991; Schnitzer and Bongers
2002; DeWalt and Chave 2004). The variance in soil mois-
ture availability with different soil types may provide a
better explanation for local liana abundance, with lianas
competing best in soils that contain just enough moisture
to enable them to grow but cause substantial water stress
in other growth forms.
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Figure 4: Latitudinal gradient in liana abundance from tropical lowland forests (23.5�S–23.5�N) to Northern Hemisphere lowland forests. Each
forest had a mean annual rainfall ≥500 mm and was ≤1,000 m in elevation (data from Phillips and Miller 2002). The dashed line represents the
approximate location of the Tropic of Cancer (23.5�N). There was a significant linear decrease in liana abundance with increasing latitude (P !

, , ), but the decrease in liana abundance with latitude is better represented by a step function, with liana abundance varying2.0001 R p 0.46 n p 155
considerably in the tropics but suppressed at relatively low levels north of the Tropic of Cancer.

Explaining the Latitudinal Distribution of Lianas

The mechanism to explain pantropical patterns of liana
abundance presented here also provides a framework with
which to explain the distribution of lianas over a latitudinal
gradient. Liana abundance is highly variable within the
tropics but decreases sharply north of the Tropic of Cancer
(fig. 4). The explanation for this precipitous decrease in
liana abundance at the boundary of the tropical and tem-
perate zones is that the same general adaptations that allow
lianas to efficiently transport water to support a large can-
opy and thus thrive in tropical forests become maladaptive
to their survival in temperate climates (Sperry et al. 1987;
Ewers et al. 1991). Specifically, the large vessel elements
and relatively thin stems that lack insulation make lianas
particularly vulnerable to prolonged freezing conditions.
Tropical lianas exposed to freezing temperatures could suf-
fer freezing-induced embolism or even the rupturing of
vessel elements, which in either case would render the
vascular system inoperable and ultimately kill the plant
(Sperry et al. 1987; Ewers et al. 1991, 1997). This expla-
nation is consistent with the pattern shown in figure 4,
where the threshold at which liana abundance plummets
is close to the latitude where freezing temperatures occur.

The ecological and physiological adaptations of the liana
species that persist in the temperate zone support the hy-
pothesis that lianas are limited in range by their vulner-

ability to cold winter temperatures. For example, some
members of the mostly temperate liana family Vitaceae
(the grape family) have extremely large vessel elements but
have adapted to cold winter temperatures by completely
draining their vessels prior to the onset of winter, thus
protecting them from catastrophic freezing and the de-
struction of their vessel elements (Sperry et al. 1987). In
the spring, these species generate extremely high positive
root pressures, allowing them to fill their vessels completely
before they produce leaves (Sperry et al. 1987; Ewers et
al. 1991). In contrast, Oriental bittersweet (Celastrus or-
biculatus), which is currently invading forests of North
America, exhibits no positive root pressure but instead
may survive freezing winters by producing new functional
xylem in the spring (Tibbets and Ewers 2000). Other liana
species deal with cold winter temperatures by changing
their physiognomy. Poison ivy (Toxicodendron radicans),
which commonly grows as a large climbing liana in much
of the eastern and midwestern portions of the United
States, is present only as a low-growing, trailing vine in
the extremely cold climate of the far northern United
States and in Canada (Voss 1985). The low-growing and
climbing forms of poison ivy may be different but closely
related species (Gillis 1971), and, if so, it is possible that
the adaptation to the cold climate was the mechanism for
this divergence. Other temperate liana species may have
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smaller than average vessel elements, which in theory could
allow them to survive in moderately cold temperatures,
such as the conditions found at low temperate latitudes
or higher altitudes in the tropics.

Lianas may suffer an additional disadvantage in tem-
perate forests because they may lose their leaves earlier
than tree species in order to prevent vessel damage from
occasional early frosts. For example, leaves of many liana
species, such as Vitis spp., Parthenocissus spp., and T. rad-
icans, begin to senesce and fall much earlier than those of
their host trees, resulting in a growing season that is shorter
than that for many trees (Stiles 1982). Although Stiles
(1982) argued that early senescence by the lianas Par-
thenocissus spp. and T. radicans is an adaptation for seed
dispersal (foliar fruit flag hypothesis), this early senescence
may also be determined by the vulnerability of lianas to
early frosts and their need to prepare for winter (e.g., drain
their vessel elements in the case of the Vitaceae). Collec-
tively, these examples support the hypothesis that the strik-
ing decrease in liana abundance north of the tropics is
driven by trade-offs of fast growth, slender stems, and a
highly efficient vascular system, all of which are beneficial
in warm climates but detrimental in cold ones.

Implications for Forest Dynamics

Understanding the mechanisms responsible for patterns
of plant species abundance and distribution may lead to
insights into the regeneration and dynamics of plant com-
munities. For instance, the theory presented here allows
for clear and testable predictions of how liana distributions
may change with changing climatic conditions. If seasonal
droughts in the Neotropics, such as those associated with
El Niño or deforestation, are increasing in frequency or
duration, as some have argued (Trenberth and Hoar 1997;
Timmerman et al. 1999), then the theory presented here
would predict that liana abundance and biomass will also
increase in this region.

Increases in liana abundance and biomass may already
be occurring throughout the Neotropics. Phillips et al.
(2002) reported that the proliferation of large lianas (110
cm diameter) throughout nonfragmented Amazonian for-
ests has increased as much as 4.6% per year over the last
2 decades, nearly doubling in abundance over this 20-year
period. Wright et al. (2004) supported these findings, re-
porting that liana leaf litter in the old-growth forest on
BCI increased by nearly 40% over the 17-year period from
1986 to 2002.

On the basis of the theory presented here, the increases
in liana abundance and biomass could be due to the de-
crease in precipitation or the increase in the rate of dis-
turbance. The forest on BCI, where Wright et al. (2004)
found such profound increases in liana abundance, has

experienced a steady decrease in annual precipitation of
nearly 20% during the 60-year period from 1930 until 1990
(data averaged over a 10-year period; Meteorology and
Hydrology Branch, Panama Canal Authority, Republic of
Panama). Even though rainfall has subsequently increased
nearly back to 1930 levels during the 1990s, the 60-year
decrease may have favored the growth of lianas over that
of trees. Likewise, forests throughout the Neotropics may
also suffer from increased water stress because of an in-
crease in the frequency of El Niño–related droughts (Dun-
bar 2000), which can increase the abundance of lianas by
extending the duration and severity of the dry season as
well as by increasing treefall gap formation in subsequent
years (Condit et al. 1995). Forest productivity also appears
to be increasing in the Amazon (Phillips and Gentry 1994;
Phillips 1998; Laurance et al. 2004), resulting in higher
rates of tree mortality and disturbance, which would pro-
vide the habitat favorable for liana proliferation. An al-
ternative but not mutually exclusive explanation for the
increase in liana abundance is the increase in atmospheric
carbon, which may elevate liana growth rates and thus
elevate their competitive ability (Granados and Körner
2002; Hättenschwiler and Körner 2003). This latter ex-
planation, however, remains to be tested under natural
conditions.

Over the last 45 years, some liana species (e.g., Par-
thenocissus sp.) have increased substantially in abundance
in temperate forests (S. A. Schnitzer, unpublished data).
One potential explanation for this increase may be attrib-
uted to increased forest disturbance and fragmentation in
temperate forests in North America over the last half cen-
tury, mainly because of deforestation and road construc-
tion (Ritters and Wickham 2003). The steady increase in
minimum winter temperatures over the last several dec-
ades (e.g., Walther et al. 2002) may also contribute to the
increase in liana abundance as more lianas survive the
winter. Warmer winter temperatures may also allow lianas
to expand poleward into forests that were previously liana
free (sensu Root et al. 2003).

The explanations for the increase in liana abundance in
temperate regions may be extended to predict the increase
in liana abundance with increasing altitude in the tropics.
Currently, lianas are scarce in tropical montane forests
(Gentry 1991), possibly because the abundant clouds and
year-round precipitation work against the competitive
strengths of lianas. The trend of increasing temperature
and lower cloud cover and precipitation in high-altitude
tropical forests (Still et al. 1999), however, may permit
lowland lianas to invade these forests.

Conclusions

Liana abundance increases with decreasing precipitation
and increasing seasonality, peaking in tropical dry forests.
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I propose that the mechanism responsible for this pattern
is the extensive root and efficient vascular systems of lianas,
which allow them to suffer less from water stress and thus
grow substantially more than trees during the dry season.
This capacity of lianas to grow while competing trees are
mostly dormant confers a competitive advantage that, over
time, may explain the high abundance of lianas in seasonal
forests throughout the tropics. In contrast, the consistent
paucity of lianas in aseasonal wet forests may be due to
the lack of this dry season competitive advantage. The
ability of lianas to increase in abundance following dis-
turbance within a given forest may be due to a similar
mechanism. Specifically, lianas may suffer less water stress
in the relatively harsh conditions following disturbance
and thus are better able to capitalize on the abundant light
than many other growth forms.

This proposed mechanism may be extended to explain
the latitudinal distribution of lianas, where liana abun-
dance decreases dramatically outside of the tropics. The
slim stems and efficient vascular systems that confer an
advantage to lianas in seasonal tropical forests become an
impediment to survival in cold climates, and only a small
subset of lianas has the appropriate adaptations that permit
survival outside of the tropics. The mechanistic explana-
tion for the global patterns of liana abundance presented
here allow for clear and testable hypotheses for the po-
tential change in liana abundance and distribution with
increasing global change, including increases in distur-
bance, temperature, and the severity and duration of sea-
sonal droughts in forests worldwide.
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