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A Mechanistic Model of Human 
Recall of Social Network Structure 
and Relationship Affect
Elisa Omodei 1, Matthew E. Brashears  2 & Alex Arenas  1

The social brain hypothesis argues that the need to deal with social challenges was key to our evolution 

of high intelligence. Research with non-human primates as well as experimental and fMRI studies in 

humans produce results consistent with this claim, leading to an estimate that human primary groups 

should consist of roughly 150 individuals. Gaps between this prediction and empirical observations 
can be partially accounted for using “compression heuristics”, or schemata that simplify the encoding 

and recall of social information. However, little is known about the specific algorithmic processes used 
by humans to store and recall social information. We describe a mechanistic model of human network 

recall and demonstrate its sufficiency for capturing human recall behavior observed in experimental 
contexts. We find that human recall is predicated on accurate recall of a small number of high degree 
network nodes and the application of heuristics for both structural and affective information. This 
provides new insight into human memory, social network evolution, and demonstrates a novel 

approach to uncovering human cognitive operations.

�e “Social Brain Hypothesis,” argues that human intelligence evolved to deal with social rather than physical 
challenges1. Studies of brain size and morphology support this argument2–4 and yield the prediction that human 
primary groups should contain roughly 150 individuals5,6 (i.e., “Dunbar’s Number”). �is estimate has received 
empirical support7,8, but may underestimate human primary social group size9,10. Recent work helps to resolve 
this discrepancy by showing that humans use schemata (i.e., preexisting frameworks for understanding infor-
mation that allow individuals to organize the learning experience and complete it more rapidly) as “compression 
heuristics”11 to facilitate the encoding and recall of social networks. �ese schemata allow individuals to discard 
most of the information on connections between individuals in favor of a heuristic for reconstructing the network 
from partial recall, allowing the compression of social information into a smaller memory space. Prior research 
has identi�ed several compression heuristics, including triadic closure12,13 (e.g., if A <−> B and B <−> C then 
A <−> C), kinship12,14 (i.e., whether, and what type, of kin two individuals are), and a�ective balance14 (i.e., con-
sistency with liked associates in a�ective judgments of third parties). �ese compression heuristics allow larger 
networks to be accommodated without concordant increases in brain mass. Related research shows that memory 
for social networks is fundamentally di�erent than memory for identically structured, but non-social, networks, 
demonstrating the need to study social memory in particular15,16. Compression heuristics have also been shown 
to in�uence moral dilemma decision time17, and are consistent with fMRI studies showing di�erential recruit-
ment of brain regions in the processing of kin and non-kin social ties18. We build on this research by using a 
mechanistic model to investigate the algorithmic processes employed by the brain to recall social information. 
Here we show that human network memory is consistent with a focus on accurate recall of a small number of high 
degree network nodes augmented by the application of heuristics for both structural and a�ective information.

�e brain is an information-processing organ responsible for interpreting stimuli and generating responses, 
both automatically and under conscious control. Brain imaging studies provide indications of where brain activity 
occurs, but fail to indicate what operations the brain is performing. By analogy, using instrumentation to study 
the patterns of activation in a digital computer would allow researchers to localize where and when components 
were active, but would not reveal the operations performed therein. Social network encoding and recall depends 
on the algorithmic behavior of the brain, which therefore in�uences human behavior at the individual and aggre-
gate levels. Recent fMRI research exhibits a sensitivity to this information processing logic, �nding that the brain 
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may run a number of social “daemons”, or automatic background processes that make social information cog-
nitively available19. Prior attempts to explore social algorithms revealed that triads appear to be the default unit 
of network encoding20. We extend this research by constructing a mechanistic model of human network recall. 
If such a model is capable of producing simulated recall data that is consistent with observed data derived from 
laboratory studies then we will have demonstrated a su�cient set of operations to account for the brain’s observed 
behavior. �is does not guarantee that the brain actually does execute this precise set of operations, but none-
theless allows parsimonious duplication of the brain’s observed behavior, thereby contributing to eventual com-
putational models of human cognition. �is research therefore provides new insight into human memory, social 
network evolution, and demonstrates a novel approach to uncovering human cognitive operations.

Methods and Materials
We reanalyze data derived from an earlier experiment14. In this prior study 295 participants (186 female, 109 
male) completed a 2 × 2 design intended to measure their ability to recall networks distinguished by their degree 
of a�ective balance21,22 and use of kin versus non-kin terminology. In a balanced network individuals share a�ec-
tive views of third parties with their positively tied associates (i.e., like those whom their friends like and dis-
like those whom their friends dislike), while imbalanced networks deviate from this pattern. Kin networks are 
described using kin labels for relationships (e.g., brother/sister) while non-kin networks are not (e.g., friend, 
coworker). All target networks were described in vignettes (i.e., short paragraphs of text presented to participants 
on a computer screen) without any visual aids. Arti�cial vignettes were used for three reasons. First, by construct-
ing a vignette from scratch rather than relying on measurements of existing social networks we can determine 
exactly what the true state of the network is. �is is essential for an investigation of memory. Second, vignettes 
allow the relationships to be presented in context (i.e., all ties presented together) whereas alternatives such as the 
paired-associates learning task present dyads in isolation. While it may appear to be unusual in real life to need to 
learn an entirely new network, it resembles the experience of entering a new social context (e.g., new job or club), 
which contains a set of existing relationships that must be learned as quickly as possible. Similarly, many forms of 
popular entertainment (e.g., television programs, movies, novels, etc.) require consumers to learn and track the 
relations between third-parties who are not known personally. As such, we expect most participants to be prac-
ticed at this task. �ird, humans routinely exchange social information linguistically (e.g., gossip) and thus should 
be comfortable with this manner of presentation, thereby avoiding biases stemming from unfamiliarity. All char-
acters and dyads were presented in the same order in all conditions, and none of the vignettes contained any plot 
or story, instead simply describing the relationships between the characters (e.g., “Henry is Alyssa’s brother, and 
they like each other, Henry is also Elizabeth’s son…”). �e absence of narrative distinguishes these vignettes from 
gossip in more natural contexts that likely o�en contains a plot. However, this is necessary in order to avoid pos-
sible confounds stemming from variation between conditions in how interesting or entertaining the narratives 
are perceived to be. Narratives that are perceived to be more interesting are, ceteris paribus, likely to be recalled 
more accurately. By eliminating narrative entirely this potential confound is avoided. All conditions contained 
15 characters and 23 undirected ties, while no condition contained directed ties, yielding a network density (i.e., 
number of observed ties divided by number of ties mathematically possible) of 0.219. �e network size of 15 was 
chosen with the intention of stressing the participants; the number of individuals depicted is roughly double the 
estimated maximum capacity of working memory and the potential number of undirected relations (i.e., 105) is 
more than an order of magnitude greater. All vignettes contained two disconnected components (i.e., sub-groups 
with no connections between them), and the components did not vary in size by condition. �e kin schema 
manipulation only impacted the terms used to describe the network and did not impact its structure. Both the 
balanced and imbalanced conditions consist of 15 undirected ties containing positive a�ect and 8 undirected 
ties containing negative a�ect. �us, all conditions have the same number of positive and negative ties and the 
balance manipulation only alters whether these are con�gured into balanced or imbalanced structures. Informed 
consent was obtained from all research subjects, all relevant regulations and guidelines concerning the protec-
tion of human subjects were followed, and all procedures were approved by the Cornell University Institutional 
Review Board.

Participants began the experiment by sitting at a computer terminal and answering a series of simple demo-
graphic questions. �e computer selected a vignette at random (one per participant) and presented it on screen 
as a paragraph of text. �e participants were instructed to commit the information contained in the vignette to 
memory. Participants had unlimited time to study the vignette and were allowed to take notes on provided sheets 
of paper, but knew that the notes would be con�scated before the recall phase. �e amount of time spent studying 
the vignette was measured without the participants’ knowledge. �e experimenter was blind to the participant’s 
experimental condition.

�e participant then completed a word span exercise23 with the experimenter, the task serving both as a 
standard measure of working memory, and as a means of clearing the participants’ working and sensory (i.e., 
auditory and visual) memory stores. In this exercise, the participant read a series of sentence sets out loud and, 
at pre-determined times, recalled the last word in each preceding sentence in the current set. �e number of 
sentences per set gradually increased from a low of two to a high of seven, ending when the participant is either 
unable to correctly recall the �nal words for two out of three sets of a given size or obtained the maximum score. 
�e sentences were drawn from popular press books, ensuring consistent readability, and contained between 13 
and 16 words. At the end of the word span task the experimenter entered the participant’s score into the computer 
terminal, which the participant then used to complete the recall phase.

In the recall phase participants checked a series of boxes to indicate which characters had relationships with 
each other. On a second screen the participants indicated the valence (i.e., like vs. dislike) of each recalled rela-
tionship. Participants could return to the �rst screen of the recall phase and change their relationship selections 
as o�en as desired, but this cleared the relationship valence choices, and participants received no feedback on 
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their answers. Participants supplied all of their judgments about relationship existence (i.e., anywhere from a total 
absence of any ties to a fully saturated network containing all 105 possible ties) for all characters, and a�ect for 
all characters they recalled as connected, on these two screens. Once participants advanced beyond the valence 
screen they could not return. Finally, participants were compensated and debriefed. All participants were told 
that the amount of compensation they would receive for completing the study was contingent on their success at 
recalling the vignette, but in fact all participants were compensated equally. �e deception ensured that the par-
ticipants were motivated to recall the information accurately. �e experiment typically required forty-�ve to ��y 
minutes to complete, and all participants completed it.

In the current paper we make use of the 295 recalled networks, one for each participant, contained within the 
data generated by the original study. We use these recalled networks as comparison data for evaluating whether 
our mechanistic model produces networks similar to those generated by real human participants �ese data and 
other research materials are available from the corresponding author upon reasonable request.

Results
Prior research shows that network structure and dyadic a�ect are separable cognitive elements14 (i.e., recall of the 
existence of a tie is distinct from recall of the a�ect characterizing a dyad), so we begin by modeling network 
structure only. Because all conditions shared a common structure (the “reducible” network12; See Fig. 1), it is not 
necessary to distinguish this process by condition. We assume that individuals are able to recall all characters 
given in the vignette, which is reasonable given the size of our target networks as well as the limited number of 
ongoing close contacts maintained by individuals. First, the model selects all ties incident with one or more 
pre-selected individuals for recall. �is provides an initial, non-random set of recalled dyads. Next, the model 
considers all pairs of currently unconnected characters, one pair per iteration. If adding a tie between a pair of 

characters would complete a triad, then it is added with a probability, =PTriangle
T

T

Closed , or the number of closed 
triplets in the target network (TClosed) divided by the total number of connected triplets in the target network (T). 
For example, in Fig. 1 <Anne, Henry and Elizabeth> and <James, Henry and Elizabeth> are both connected 
triplets, but only the latter is a closed connected triplet, because all three members of that triplet are connected to 
each other. In contrast, in the former triplet Anne is not connected to Elizabeth and therefore the triangle is not 

closed. If the tie is not part of a connected triplet, the tie is added with a probability, =
−

−
P

E T

T

Closed

n n( 1)

2

, where n is the 

number of nodes in the target network and |E| is the number of edges in the target network. Adoption of TClosed 
re�ects the assumption that individuals perceive reasonably accurately how much closure is present within a 
network. As such, we should expect the participants to use this overall level of closure as a clue in deciding 
whether to close an incomplete triad. Likewise, the probability of adding a tie that is not part of a connected triplet 
P is based primarily on the assumption that participants recall the approximate density of the network. Denser 
networks should make participants more likely to infer that a given dyad contains a tie rather than is null. In both 
cases we use the true values from the target networks (i.e., those presented to the participants) under the assump-
tion that these are likely to capture the central tendency of participant assessments. Obviously, if these assump-
tions are not reasonably valid, then our model should prove quite poor at capturing the observed recall behavior 
of the participants. �e model is executed for various combinations of initially recalled ties incident to particular 
characters. Table 1 gives the number of ties initially recalled for each combination of characters tested. Given that 

Figure 1. Sociogram of stimulus network presented as text to participants in the Balanced-Family condition. 
Solid ties are positively valenced (liking) while dashed lines are negatively valenced (disliking). Inset highlights 
ties incident to characters Lewis and Alyssa in red.
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this is a stochastic model, estimation is repeated 1,000 times for each set of initial ties (i.e., the model is fully exe-
cuted 1,000 times for each set of initial ties). Any particular model execution is complete when all pairs of char-
acters have been considered. Model performance is assessed using precision, or the number of correctly recalled 
ties divided by the number of recalled ties, and coverage, or the number of correctly recalled ties divided by the 
number of ties present in the target network. Comparisons between model results and experimental results rely 
upon the metric σδ = | − |x x /model exp exp , where xmodel is the mean value of either precision or coverage as gener-
ated by the model and xexp is the corresponding value generated by experiment. σexp is simply the standard devia-
tion for precision or coverage as generated by experiment. If δ < 1, the mean of the model is within less than a 
standard deviation of the experimentally derived results.

Figure 2 depicts the results for precision (Panel A) and coverage (Panel B) as a function of di�erent combi-
nations of initially selected ties, as well as the corresponding δ values for each (Panels C & D, respectively). �e 
le� most section of Panels A and B give the experimentally derived values, and standard errors, for precision and 
coverage, respectively. �e right hand sections of Panels A and B provide the values produced by models using 
initially recalled ties incident to the characters listed in the column label. �e best results for both precision and 
coverage are obtained when 8 to 9 ties are recalled initially, incident to one high-degree character in each compo-
nent (e.g., Lewis + Alyssa). �is is consistent both with estimates that human working memory can accommo-
date roughly seven discrete pieces of information at a time24,25, and with the �nding that many networks, social 
and non-social, are scale-free26. In such networks, initially remembering edges incident to high-degree nodes 
would be an excellent strategy for recalling large portions of the network structure.

Characters Number of ties

Isabelle 2

Victoria 3

James 3

Alyssa 4

Catherine 4

Lewis 5

Peter 5

James + Isabelle 5

Alyssa + Isabelle 6

James + Victoria 6

Catherine + Isabelle 6

Peter + Isabelle 7

Alyssa + Victoria 7

Catherine + Victoria 7

Lewis + Isabelle 7

Catherine + James 7

Lewis + Victoria 8

Peter + Victoria 8

Lewis + James 8

Peter + James 8

Catherine + Alyssa 8

Lewis + Alyssa 9

Peter + Alyssa 9

Catherine+James+Isabelle 9

Peter+James+Isabelle 10

Catherine+James+Victoria 10

Lewis+James+Isabelle 10

Catherine+Alyssa+Isabelle 10

Peter+Alyssa+Isabelle 11

Lewis+James+Victoria 11

Lewis+Alyssa+Isabelle 11

Peter+James+Victoria 11

Catherine+Alyssa+Victoria 11

Lewis+Alyssa+Victoria 12

Peter+Alyssa+Victoria 12

Table 1. List of tested values of initially recalled ties. �e �rst column indicates the characters(s) whose ties are 
correctly recalled in the initial phase, and the second column reports the total number of ties incident to the 
named characters.
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As a robustness check, we �xed the set of initial ties to those incident to Lewis + Alyssa (See Fig. 1 inset) 
and varied the values of PTriangle and P by altering the value of TClosed to capture the possibility that individu-
als may mis-remember the triadic density (the value of P is impacted by this approach because it captures the 
density of the non-triadic portions of the target network). We selected Lewis+Alyssa because each is a high 
degree character in their own component and because Welch’s t-test shows that the mean of the model results 
for precision, coverage, and quality does not signi�cantly di�er from experimentally derived values in any but 
one (Imbalanced-Non-Kin precision) case. �e results (Figure S1) show that coverage (Panel B) is relatively 
insensitive to mis-recall of TClosed while precision (Panel A) is more impacted, though in virtually all cases the 
experimentally-derived values remain within a standard error of model predictions. Likewise, the δ metric 
shows that in virtually all cases for precision (Panel C) the model is within a standard deviation of experimen-
tally derived results, while in all cases modeled coverage values are within a standard deviation of experimen-
tally derived values (Panel D). Our approach therefore appears to capture observed recall of network structure 
accurately.

Next, we consider the valence of the ties, determining whether they are positive (i.e., liking) or negative (i.e., 
disliking). We begin by assuming that the valences of initially recalled ties are also recalled correctly. �is is 
equivalent to assuming that the process of reconstructing the a�ective makeup of a network begins with a small 
number of ties about which the individual is certain, much as recall of network structure begins with a handful of 
correctly recalled ties. Next, new ties are created in the manner given above. If the new tie completes a connected 
triplet then it will be assigned a positive valence if the sign product of the open triplet is positive, and a negative 
valence if the sign product of the open triplet is negative. In the event that the tie closes multiple triplets, the 
valence is assigned based on the average of the sign products of the open triplets, with a positive average yielding 
a positive valence and a negative average yielding a negative valence. �is rule ensures that recalled valences max-
imize triadic balance in accordance with established research27,28 as well as the �nding that balance appears to be 
a default heuristic14. In the event that the new tie does not close a connected triplet, the tie is assigned a positive 
valence in accordance with the positivity bias described in prior studies29. Model �t is assessed using quality, 
de�ned as the number of correctly recalled valences divided by the number of correctly recalled ties.

Results indicate that in the imbalanced conditions this procedure reproduces the experimental results quite 
accurately, but in the balanced conditions it accurately reproduces the target network while signi�cantly overes-
timating the quality obtained in the experimentally derived networks. To correct this issue we assume that a cer-
tain proportion, x, of the initially recalled ties are remembered with randomly-chosen valences. We �nd (Fig. 3) 
that a value of x = 30% produces results that are a good �t to experimentally determined values in the balanced 
conditions (Panel A), and yields essentially unchanged model results for the imbalanced conditions (Panel B). 

Figure 2. Panels A and B provide experimentally derived values (le� most pane) for precision (Panel A) and 
coverage (Panel B). Right hand sections of Panels A and B provide precision and coverage, respectively, results 
for models based on ties incident to characters given in the corresponding column. Panels C and D provide δ 
values for precision and coverage, respectively.
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Corresponding δ results for the balanced (Panel C) and imbalanced (Panel D) conditions shows model quality 
results are solidly within a one standard deviation window of experimentally derived values. In a series of robust-
ness checks we �xed the initially recalled ties to those incident to Lewis + Alyssa and varied the value of x. Results 
show that the model performs well for the imbalanced conditions across all values of x (Figure S2, Panels B and 
D), while �tting best for the balanced conditions when x = 20–45% (Figure S2, Panels A and C).

Discussion
�e mechanistic model described above produces networks that strongly resemble the experimental results. �is 
does not guarantee that human brains are actually executing identical procedures in recalling social networks, 
but shows that these operations are su�cient to reproduce the observed outcomes. However, there are several 
indications that our mechanistic model is capturing the decision behavior of the human brain. First, our model 
works best with an initially recalled number of ties that is consistent with the empirically estimated capacity of 
working memory. While individuals can doubtless remember more total ties in long-term memory than this, it 
suggests that when loading a network into working memory individuals add directly recalled ties until they expe-
rience memory pressure, and then rely on heuristics to supply the rest. �is in turn implies that heuristics may be 
primarily useful when recovering networks from memory, rather than in encoding them initially.

Second, the model achieves the best �t to data when the initially recalled edges are incident to a highly con-
nected individual in each component of the target network. �is suggests that human memory may be biased 
in favor of recalling the associates of high degree individuals (hubs). Or, more directly, our recall tends to be 
focused on those who are most popular30. Not only is this consistent with the well-known tendency for indi-
viduals to value connections to popular others, but it is consistent with the �nding that many social networks 
present a power law degree distribution. In such networks, relatively small numbers of nodes have large numbers 
of connections, and so recall focused on these high degree individuals would be quite successful. �is �nding is 
especially interesting given that the original target networks were not designed to be power law distributed and 
do not exhibit this tendency, and so its emergence here is not simply a demand characteristic of the experiment.

�ird, our initial model for dyadic valence was accurate for imbalanced networks, but far more accurate than 
experimentally derived values for the balanced networks. Subsequent modi�cations showed that if slightly less 
than one initial dyad out of three was remembered with a random valence, model prediction �t experimental 
results quite well. �is is consistent with humans who have imperfect, though still good, direct memory of dyadic 
a�ect but who nonetheless reliably follow a set of heuristics in reproducing the network. In short, while we cannot 
demonstrate that the human brain actually uses these speci�c operations, its behavior appears to be consistent 
with these speci�c operations. Even if our model does not precisely replicate the algorithms used by the human 

Figure 3. Panels A and B provide experimentally derived values (le� most pane) for balanced (Panel A) and 
imbalanced (Panel B) conditions. Right hand sections of Panels A and B provide quality results for balanced and 
imbalanced conditions, respectively, for models based on ties incident to characters given in the corresponding 
column at x = 30%. Panels C and D provide δ values.
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brain, it does provide a parsimonious way of generating predictions for what should be recalled on average. 
Deviations from these predictions can be used to further re�ne the model, eventually contributing to a computa-
tional model of human social cognition. Such a model would permit understanding of how the brain calculates 
social behavior, helping to bridge the gap between brain localization and behavior. However, the current mecha-
nistic model represents only a small part in that larger project and should not be expected to apply equally well to 
all possible social memory tasks. Our model was constructed using data from a laboratory experiment, and thus 
is an oversimpli�cation of more natural recall processes. Social interaction in “the wild” includes more, and more 
complex, input and therefore our model should be viewed as only a �rst step.

Our results show that the amount of variance in outcomes for precision, coverage, and quality seems to be con-
siderably greater in the model results than between experimental condition averages. �is quite sensibly indicates 
that the success of compression heuristics is heavily dependent on the initial set of seeds that those heuristics 
reconstruct the network from. If humans systematically rely upon recall of high-degree individuals when recon-
structing the network, we should anticipate that the experimental results will be more tightly clustered simply 
because the model explores a wider swath of the parameter space. By uncovering several of the algorithmic pro-
cesses used to recall social networks this research both adds to our understanding of network cognition, and helps 
uncover the algorithms at work in the human mind.
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