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Triptolide and celastrol are predominantly active natural products isolated from
the medicinal plant Tripterygium wilfordii Hook F. These compounds exhibit similar
pharmacological activities, including anti-cancer, anti-inflammation, anti-obesity, and
anti-diabetic activities. Triptolide and celastrol also provide neuroprotection and
prevent cardiovascular and metabolic diseases. However, toxicity restricts the further
development of triptolide and celastrol. In this review, we comprehensively review
therapeutic targets and mechanisms of action, and translational study of triptolide
and celastrol. We systemically discuss the structure-activity-relationship of triptolide,
celastrol, and their derivatives. Furthermore, we propose the use of structural
derivatives, targeted therapy, and combination treatment as possible solutions to
reduce toxicity and increase therapeutic window of these potent natural products from
T. wilfordii Hook F.

Keywords: Tripterygium wilfordii Hook F, triptolide, celastrol, mechanisms of action, structure-activity-
relationship

NATURAL PRODUCTS ORIGINATING FROM Tripterygium
wilfordii Hook F EXHIBIT DISTINCT PHARMACOLOGICAL
ACTIVITIES

Tripterygium wilfordii Hook F (TWHF), also known as Lei Gong Teng (Thunder God Vine),
has a long history of improving symptoms of RA (Peterson and Schreiber, 1998; Bao and Dai,
2011; Law et al., 2011). The root bark of TWHF exhibits pharmacological activities against
inflammation (Liu et al., 2010; Xue et al., 2012), autoimmune disorders (Chen Y.Z. et al.,
2010), fibrosis, atherosclerosis, neurodegeneration (Choi et al., 2010), and kidney diseases (Wan
Y.G. et al., 2014). TWHF extracts are used for treating autoimmune and inflammatory diseases
in clinical practice (Marks, 2011). In China, the Lei Gong Teng tablet and Lei Gong Teng
multiglycoside tablet have been developed for RA treatment since the 1970s (Tao et al., 2001).

Abbreviations: AMPK, AMP-activated protein kinase; ATP, adenosine triphosphate; BMP, bone morphogenetic protein;
CDC, cell division cycle; CDK, cyclin dependent kinase; CYP, cytochrome protein; DEN, diethylnitrosamine; ER,
endoplasmic reticulum; GCase, glucocerebrosidase; HCC, hepatocellular carcinoma; HSF, heat shock factor; HSP, heat shock
protein; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; MDR, multi-drug resistance; mTOR, mammalian target of
rapamycin; NF, nuclear factor; NLRP3, NLR family pyrin domain containing 3; NSCLC, non-small cell lung carcinoma;
RA, rheumatoid arthritis; ROS, reactive oxygen species; RXRα, retinoid X receptor-α; SHIP, inositol polyphosphate-5-
phosphatease; STAT, signal transducer and activator of transcription; TGF, transforming growth factor; TLR, toll-like
receptor; TNF, tumor necrosis factor; Treg, T regulatory; TWHF, Tripterygium wilfordii Hook F; XBP1, X box binding
protein 1.

Frontiers in Pharmacology | www.frontiersin.org 1 February 2018 | Volume 9 | Article 104

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00104
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2018.00104
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00104&domain=pdf&date_stamp=2018-02-14
https://www.frontiersin.org/articles/10.3389/fphar.2018.00104/full
http://loop.frontiersin.org/people/522539/overview
http://loop.frontiersin.org/people/497910/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00104 February 12, 2018 Time: 14:24 # 2

Chen et al. Triptolide and Celastrol

The chloroform/methanol extract of TWHF attenuates
inflammation in patients with Crohn’s disease by inducing
the differentiation of Foxp3+ T regulatory (Treg) cells and
suppressing the serum levels of pro-inflammation cytokines,
such as interleukin-10 and TGF-β (Li et al., 2014).

Several classes of bioactive substances have been isolated and
characterized from TWHF, including sesquiterpenes, diterpenes
(triptolide, tripdiolide, and triptonide), triterpenes (celastrol,
pristimerin, and wilforlide A), lignans, glycosides, and alkaloids
(Bao and Dai, 2011; Li et al., 2012b; Wang et al., 2013). Triptolide
and celastrol are considered as the most active and promising
components of TWHF. Thus, their pharmacological activities
and mechanisms of action have been extensively investigated in
many disease models (Table 1).

PHARMACOLOGICAL ACTIVITIES OF
TRIPTOLIDE

Triptolide, a diterpenoid triepoxide, was first isolated and
characterized from TWHF in Kupchan et al. (1972). Subsequent
studies revealed that triptolide exhibit potent pharmacological
activities against inflammation, fibrosis, cancer, viral infection,
oxidative stress, and osteoporosis (Chugh et al., 2012; Guo et al.,
2016; Long et al., 2016). Results from molecular docking and
dynamics simulation study suggest that triptolide has similar
structures as hormones and thus can also bind to nuclear
receptors (Liu X. et al., 2015). Triptolide selectively inhibits the
chaperone activity of peroxiredoxin I, an antioxidant enzyme
and molecular chaperone that plays essential functions in the
development of cancer and inflammation (Zhao Q. et al., 2015).
The XBP1 subunit of the transcription factor TFIIH core complex
is identified as one of the molecular targets of triptolide, which
was critical for the inhibitory activity of triptolide to RNA
polymerase II-mediated transcription (Titov et al., 2011). This
unique feature is the reason that triptolide is active to most type
of diseases in preclinical investigation, such as inflammation and
cancer (Han et al., 2012; Yi et al., 2016).

Anti-inflammation Activities of Triptolide
Triptolide exhibits anti-inflammation activity in T helper cell-
mediated immunity especially against RA and inflammatory
bowel diseases. It primarily attenuates inflammatory response in
RA by inhibiting NF-κB, NF-κB/TNF-α/vascular cell adhesion
molecule-1, and TGF-β1/α-smooth muscle/vimentin signaling
pathways induced by TNFs and TLR4 (Huang J. et al., 2015; Gong
et al., 2017). In RA, triptolide down-regulates the expression
levels of myeloid cells-1 and DNAX-associated protein 12 (Fan
et al., 2016). In IL-10 deficient mice colitis model, triptolide
ameliorates post-surgical intestine inflammation by suppressing
the miRNA-155/inositol polyphosphate-5-phosphatease D
signaling pathway and producing of inflammatory cytokines
(Wu et al., 2013). Triptolide also suppresses IL-6/signal
transducers, the activators of transcription (STAT)3/suppressor
of the cytokine signaling (SOCS)3 signaling pathway, and
promotes apoptotic cell death of lamina propria mononuclear
cells (Li et al., 2013).

Triptolide suppresses abnormally activated innate immune
response and attenuates LPS-induced acute lung injury by
decreasing leukocyte numbers, myeloperoxidase activity, and
secretion of pro-inflammatory cytokines such as TNF-α, IL-
1β, and IL-6 (Wang et al., 2014). The suppression of
prostaglandin E2 receptor 2 signaling pathway leads to the
inhibitory activity of triptolide on LPS-induced inflammation
and expression of inducible nitric oxide synthase in microglia
(Zhang et al., 2015). Treatment with triptolide prevents kidney
damage by reducing the expression level of malondialdehyde
and increasing superoxide dismutase activity by modulating
the NF-κB signaling pathway in rats (Zhou Y. et al., 2016).
The formation of the NLRP3 inflammasomes is abrogated by
triptolide in transverse aortic constriction in mice (Li et al.,
2017). Triptolide diminishes neuroinflammation through the
downregulation of p38 MAPK and NF-κB signaling pathways
in rat models of depression or middle cerebral artery occlusion,
respectively (Wan B. et al., 2014; Xu et al., 2015; Bai et al.,
2016; Zhang B. et al., 2016; Hu G. et al., 2017; Hu X. et al.,
2017).

Anticancer Activities of Triptolide
Triptolide suppresses the proliferation and promotes apoptotic
cell death in various cancers, especially hard-to-treat types,
including prostate and pancreatic cancers. Prostate and
pancreatic cancers are the third and fourth leading causes
of cancer death in western countries, respectively (Isharwal
et al., 2015). Treatment with triptolide induces the nuclear
accumulation of p53 and apoptotic cell death in primary
cultures of human prostatic epithelial cells (Kiviharju et al.,
2002). The growth of prostate cancer xenograft in nude mice
is inhibited after triptolide decreases the expression levels of
SUMO-specific protease 1 and androgen receptor (Huang et al.,
2012). Furthermore, the sensitivity of gemcitabine-resistant
pancreatic cancer cells to cisplatin treatment is enhanced by
triptolide through activation of mitochondria-initiated cell death
pathway and suppression of HSP27 expression (Zhu W. et al.,
2012).

The generally recognized molecular target of triptolide is
the XBP1 subunit of transcription factor TFIIH (Titov et al.,
2011). Triptolide covalently binds to the Cys342 of XBP1 by
the 12,13-epoxide group (He et al., 2015), and thus inhibits
transcription and nucleotide excision repair activity of RNA
polymerase II in an ATP-dependent manner (Pan, 2010; Titov
et al., 2011). In addition, triptolide induces phosphorylation of
RPB1 subunit of RNA polymerase II on Ser1878 by activating
cyclin-dependent kinase (CDK)7, which promotes degradation of
RPB1 and subsequently induced cancer cell death (Manzo et al.,
2012).

Developing MDR is one of the biggest challenges for cancer
therapy (Joshi et al., 2017). Triptolide suppresses the expression
of MDR protein, and induces apoptotic cell death of drug-
sensitive parental KB cells and multidrug-resistant KB-7D and
KB-tax cells (Chen Y.W. et al., 2010). The inhibitory activity
on MDR cell lines is mediated through the suppression of
overall transcription mediated by RNA polymerase II in a CDK7-
dependent manner. In addition, triptolide alters the activity of
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TABLE 1 | Pharmacological activities of triptolide and celastrol in vivo.

Disease
model

Natural
product

Animal model Experimental detail Outcome of the study Reference

RA Triptolide Bovine type II
collagen-induced
RA in male SD rats

30 µg/kg (s.c.) for
32 days

Downregulation of
RANKL-mediated ERK/AKT
signaling pathway

Gong et al., 2017

Celastrol Freund’s complete
adjuvant-induced
RA in C57BL/6
mice

0.5 mg/kg/day (i.p.) for
40 days

Suppression the
inflammatory activities of
neutrophils

Brand et al., 2007;
Yuan et al., 2017

Acute
promyelocytic
leukemia

Triptolide HL-60 cell
implanted xenograft
in female
NOD/SCID mice

2 or 4 mg/kg (i.p.) for
21 days

Activatation of
mitogen-activated protein
kinase kinase-3/p38
signaling pathway

Pan et al., 2017

Celastrol HL-60 cell
implanted xenograft
in nude mice

2 mg/kg/day (i.g.) for
21 days

Mitochondrial-initiated
apoptosis

Zhang X. et al.,
2016

Colitis Triptolide IL-10−/− mice 0.07 mg/kg/other day
(i.p.) for 8 weeks

Suppression of
IL-6/STAT3/SOCS3
signaling pathway

Li et al., 2013

Celastrol IL-10−/− mice 2 mg/kg (i.g.) for 7 days Induction of autophage Zhao J. et al., 2015

Celastrol DSS-induced colitis
in C57BL/6J mice

1 mg/kg (i.g.) for 7 days Apoptotic cell death Jia et al., 2015

Celastrol Caspase 1−/−

mice
1 mg/kg (i.g.) for 7 days Inhibiting activation of

NLRP3 inflammasommes
Yu X. et al., 2017

Hepatocellular
carcinoma

Triptolide Huh-7 xenograft in
nude mice

Minnelide (prodrug of
triptolide) 0.21 mg/kg
(i.p.) for 7 days

Inhibiting NF-κB activity Alsaied et al., 2014

Celastrol DEN-induced HCC
in rat

2, 4, and 8 mg/kg/day
(i.g.) for 20 weeks

Induction of apoptotic cell
death

Chang et al., 2016

Gastric
cancer

Triptolide SC-M1 cell
xenograft in SCID
mice

0.4 mg/kg (i.v.) for
3 weeks

Induction of apoptotic cell
death

Li et al., 2012a

Celastrol AGS cell xenograft
in mice

1–2 mg/kg/day (i.g.) for
12 days

Induction of apoptotic cell
death

Lee et al., 2014

Osteosarcoma Triptolide SAOS2 or U2OS
cell xenograft in
nude mice

150 nM for 1 to
5 weeks

Induction of apoptotic cell
death

Shi et al., 2013;
Jiang et al., 2017

Celastrol HOS cell xenograft
in nude mice

1–2 mg/kg/day (i.p.) for
7 days

Apoptotic cell death Li et al., 2015

Melanoma Triptolide B16-F10 cell
xenograft in
C57BL/6J mice

0.15–0.3 mg/kg daily
(i.g.) for 14 days

Regulation of inflammatory
T cell number and
expression of
pro-inflammatory cytokines

Liu et al., 2013

Celastrol B16 cell xenograft
in C57BL/6J mice

1–3 mg/kg (i.g.) once a
day for 20 days

Inhibition the
PI3K/Akt/mTOR signaling
pathway

Lee et al., 2012

Pancreatic
cancer

Triptolide SW1990 cell
xenograft in
BALB/c/nu/nu

0.2–0.4 mg/kg (i.p.) for
3 weeks

Supression of HIF-1α

through c-MYC-dependent
mechanism

Ding et al., 2015

Celastrol PANC-1 cell
xenograft in nu/nu
athymic female
mice

3 mg/kg (i.p.) for
70 days

Disturbing HSP90-CDC37
interaction

Zhang et al., 2008

Mesothelioma Triptolide H2373 or H513 cell
xenograft in
BALB/c/nu mice

0.42 mg/kg (prodrug of
Triptolide, i.p.) for
28 days

Suppression of HSP70
expression

Jacobson et al.,
2015

Colon
cancer

Triptolide Genotoxic colonic
carcinogen- and
DSS- induced
model in male Crj:
CD-1 (ICR) mice

0.1–1 mg/kg (i.g.) for
20 weeks

Reducing inflammation,
restrict tumor formation and
growth

Wang et al., 2009

(Continued)
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TABLE 1 | Continued

Disease
model

Natural
product

Animal model Experimental detail Outcome of the study Reference

Celastrol Azoxymethane
(AOM) and DSS
induced colon
cancer in
C57BL/6J mice

2 mg/kg/day by gavage
for 14 weeks

Suppressing inflammatory
response and
epithelial–mesenchymal
transition

Lin et al., 2015

Lung
cancer

Triptolide Orthotopic lung
cancer model in
nude rats

400 µg/kg intranasal
instillation for 8 weeks

Targeting the
HA-CD44/RHAMM
signaling axis

Song et al., 2017

Celastrol A549 or H1975 cell
xenograft in Balb/c
nude mice

1 or 3 mg/kg/days, or
5 mg/kg, twice/week
(i.p.) for 3 weeks

Inhibiting CIP2A-Akt
pathway

Liu Z. et al., 2014

Neuroinflammation Triptolide Middle cerebral
artery occlusion in
male SD rats

0.2 mg/kg (i.p.) at the
beginning for 24 h

Inhibition of NF-κB activity Bai et al., 2016

Celastrol Optic nerve crush
(ONC) in adult
Brown Norway rats

1–5 mg/kg (i.p.) for
2 weeks

Activation of
TNF-α-mediated cell death

Kyung et al., 2015

Diabetes Triptolide High-fat and
high-sucrose
diet-induced
diabetes in Wistar
rats

100 µg/kg (i.g.) for
8 weeks

Inhibiting inflammation and
macrophage infiltration

Ma et al., 2013

Celastrol High energy diet
and streptozotocin-
induced diabetes in
male SD rats

1–6 mg/kg (i.p.) for
8 weeks

Anti-oxidant activity Guan et al., 2016

Obesity Triptolide Ob/Ob diabetic
mice with diabetic
nephropathy

25 and 50 µg/kg day
for up to 12 weeks

Attenuating albuminuria
and renal lesion
accompanied with
dyslipidaemia and obesity

Gao et al., 2010

Celastrol High fat
diet-induced
obesity in
C57BL/6J mice

1–3 mg/kg (i.g.) for
2–8 weeks

Increasing sensitivity to
leptin through activtion
transcription of
HSF1-PGC1α

Ma et al., 2015

Celastrol Nur77−/− mice
injected with
LPS+GalN

0.2 or 0.5 mg/kg (i.p.)
once 12 h before LPS
injection

Promoting nuclear receptor
77 translocation from
nucleus to mitochondria

Hu M. et al., 2017

Celastrol Ob/Ob mice 100 µg/kg (i.p.) for
11 days

Increasing leptin sensitivity Liu J. et al., 2015

Renal
damage

Triptolide Renal ischemia in
SD rats

4.17 µmol/day (i.v.) for
3 days before renal
surgery

Inhibiting proinflammatory
cytokines and chemotactic
cytokines expression

Fu et al., 2016

Celastrol Renal ischemia in
rat

4–6 mg/kg (i.p.) once
30 min before renal
ischemia

Inhibiting NF-κB activation
and inflammation

Chu et al., 2014

Cardiovascular
disease

Triptolide Ischemia–
reperfusion surgery
in Wistar rats

25, 50, and 100 µg/kg
1 h before surgery

Activation of nuclear factor
2/heme oxygenase 1
signaling pathway

Yu et al., 2016

Celastrol High-fat/high-
cholesterol diet
model in apoE−/−

mice

1–2 mg/kg (i.p.) for
4 weeks

Inhibiting lectin-like oxidized
low density lipprotein

Gu et al., 2013

Lung
inflammation

Celastrol Intranasal
administration of
LPS in male Babl/c
mice

1–50 µg/kg (i.v.) at the
beginning for 12 h

Inhibiting NF-κB signaling
pathway

Wang et al., 2014

Celastrol NB4 cells-model of
differential
syndrome in male
NOD/SCID mice

300 µg/ml (i.p.) for
6 days

Reducing cytokimes,
chemokines, and adhesive
molecule expression

Xu et al., 2014
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p-glycoprotein drug efflux and mRNA level of MDR genes (Yi
et al., 2016).

PHARMACOLOGICAL ACTIVITIES OF
CELASTROL

Pharmacological Activities of Celastrol
Mediated through HSP90
Celastrol was first reported to inhibit HSP90 by promoting the
nuclear translocation of HSF1, a transcription factor regulating
HSP genes by binding to the heat shock elements in yeast and
mammalian cells (Trott et al., 2008; Akerfelt et al., 2010; Der
Sarkissian et al., 2014). Thus celastrol was defined as a HSP90
inhibitor.

Classical HSP90 inhibitors suppress the ATPase activity of
HSP90 (Fontaine et al., 2015). Celastrol induces the degradation
of HSP90 and its client proteins without interfering the bonds
between ATP and HSP90 in pancreatic cancers and NSCLC in
micromolar concentration (Zhang et al., 2008; Fan et al., 2014).
Treatment with celastrol also induces the dephosphorylation and
degradation of HSP90/CDC37 client protein kinases, including
Raf family proteins, AKT, MEK1/2, CDK4, and epidermal growth
factor receptor (EGFR) in HCC cells, leading to the inhibition of
proliferation and induction of apoptotic cell death (Wei et al.,
2014). Suppressing the expression of HSP90 by celastrol also
sensitizes glioblastoma cells to celastrol treatment (Boridy et al.,
2014).

HSP90 activity can be modulated through celastrol treatment.
Celastrol restores the disrupted association between HSP90
and its co-chaperone CDC37/HSP90-HSP70 complex, and thus
reduces HSP90-mediated degradation of glucocerebrosidase
(GCase) (Yang et al., 2014; Van Rossum and Holsopple, 2016).
The resulting increased quantity and catalytic activity of GCase
compensates for glucosidase mutation, which is the primary
cause of Gaucher disease (Irun et al., 2013; Yang et al.,
2014). Treatment with celastrol also induces expression of
HSP72, phosphorylation, and nucleus accumulation of HSF1,
which abrogates proteasome activity in dexamethasone-induced
atrophy (Gwag et al., 2013).

Anticancer Activities of Celastrol
Independent of HSP90
Celastrol effectively inhibits the growth of melanoma xenograft
in mouse by triggering ROS-mediated caspase-dependent and
caspase-independent apoptotic cell death, and inactivating the
PI3K/AKT signaling pathway with the dosage of 1 mg/kg
(Lee et al., 2012). Treatment with celastrol also suppresses
the proliferation of osteosarcoma and bladder cancer cells via
ROS/c-JNK and mitochondrial apoptotic pathways, and induces
apoptosis and autophagy both in vivo and in vitro (Li et al., 2015;
Yu et al., 2015).

Celastrol treatment initiates programmed cell death by
activating glycogen synthase kinase-3β (Feng et al., 2013). The
treatment induces cell cycle arrest, activation of caspase 3/7,
and apoptosis in c-Met-deficient Huh7 cells, Bel 7402 cells,

and diethylnitrosamine-induced liver cancer in rats (Chang
et al., 2016). It inhibits the viability of HepG2 cells by
suppressing the TLR4-NF-κB signaling pathway when used
alone (Shen et al., 2016), and suppresses EGFR expression when
combined with lapatinib (Yan et al., 2014). Celastrol also inhibits
cancer growth by activating TNF-α-induced NF-κB signaling
pathway (Kang et al., 2013), inhibiting the mTOR/ribosomal
protein S6 kinase/eIF4E/AKT and ERK signaling pathway,
and down-regulating hypoxia-inducible factor-1α (HIF-1α) (Ma
et al., 2014). Celastrol inhibits the growth of MCF-7 breast cancer
cells through AMPK (Kim et al., 2013), and induces apoptosis
in HT-29 colon adenocarcinoma cells through the canonical
WNT/β-catenin pathway (Lu et al., 2012). Furthermore, celastrol
suppresses the proliferation and invasion of ulcerative colitis-
related colorectal cancer and NSCLC by inhibiting epithelial–
mesenchymal transition, increasing E-cadherin expression,
down-regulating N-cadherin, vimentin, and snail (Lin et al., 2015;
Lo Iacono et al., 2015).

Treatment with celastrol inhibits the proliferation, migration,
and invasion of chondrosarcomas cells by suppressing the
inhibitor of the protein phosphatase 2A-Akt signaling pathway
in vivo (Liu Z. et al., 2014). Celastrol rapidly reduces the
expression level of c-MYC protein and stimulates an energy crisis
by depleting ATP, inducing accumulation of neutral lipid, and
activating AMPK, thereby ultimately induces cell cycle arrest
and apoptotic cell death in human cancer cells (Wang et al.,
2015). In addition, celastrol inhibits the growth of head and neck
cancer cells by activating C/EBP-homologous protein and XBP1s,
which increase the transcription of ER stress target genes and
subsequently induces ER stress (Fribley et al., 2015).

Anti-inflammation Activities of Celastrol
Independent of HSP90
Treatment with celastrol reduces inflammation in several disease
models independent of HSP90. Celastrol significantly suppresses
inflammation by reducing the secretion of IL-1β and IL-18,
and inactivating the NLRP3 inflammasomes and caspase-1 in
LPS/ATP-primed macrophage cells (Xin et al., 2017; Yu X. et al.,
2017). Celastrol ameliorates colitis in IL-10-deficient mice by
reducing colon myeloperoxidase concentration and inhibiting
colonic pro-inflammatory cytokines via PI3K/Akt/mTOR
signaling pathway (Zhao J. et al., 2015). It also ameliorates
dextran sulfate sodium-induced colitis in caspase-1−/− mice
by inhibiting the activation of NLRP3 inflammasomes and the
subsequent secretion of IL-1β (Yu X. et al., 2017). Celastrol
potentiates mitochondrial damage and inflammation in
palmitate-induced insulin resistance in C3A hepatocytes (Abu
Bakar et al., 2017). Treatment with celastrol also inhibits acute
liver inflammation through the Nur77-dependent pathway
and activation of autophagy in LPS and D-galactosamine-
induced inflammation in mice (Greenhill, 2015). Although it
inhibits the differentiation of Th17 cells, celastrol enhances
the production of Treg cells by restricting the activation of
STAT3 and its downstream target genes. In adjuvant arthritis
rats, these processes suppress joint inflammation (Astry et al.,
2015).
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Activities of Celastrol in Metabolic
Diseases
Metabolic diseases are often associated with over-activated
inflammatory response, for example obesity and diabetes
(Straub, 2017). Delaminating pathogenic factors of the disease
progression lead to reduced inflammation. Celastrol inhibits
obesity and metabolic dysfunction by increasing energy
expenditure, activation of brown adipose tissue, and expression
of mitochondrial genes in vivo. Treatment with celastrol
activates the transcription of HSF1 and expression of peroxisome
proliferative activated receptor coactivator-1α in mouse adipose
tissues and muscle (Ma et al., 2015), promoting thermogenesis
and the remodeling of white adipose tissues. In addition,
celastrol inhibits high fat diet-induced obesity in Nur77−/− mice
by activating autophagy and promoting the interaction between
Nur77 and TRAF2 (Hu M. et al., 2017). Celastrol treatment
reduces body weight gain and food intake in both high fat-fed
obese in diabetes (db/db) and leptin-deficient (ob/ob) mice by
potentiating STAT3-dependent leptin signaling and inhibiting
ER stress (Liu J. et al., 2015).

TRANSLATIONAL DEVELOPMENT OF
TRIPTOLIDE AND CELASTROL

Despite the various activities offered, clinical application of
triptolide and celastrol remains limited due to their narrow
therapeutic window and poor solubility (Wang et al., 2016).
The major toxicity of triptolide includes hepatic and cardiac
toxicity. Triptolide induces hepatotoxicity by suppressing
the transcription of four major cytochromes P450 (CYP)
isoforms, namely CYP3A, CYP2C9, CYP2C19, and CYP2E1,
thus decreasing the substrate affinities and activities of these
CYP enzymes, which are vital to normal metabolism regulation
(Lu et al., 2017). Decrease in CYP enzymes antagonizes the
activity of other drugs metabolized through these CYP
isoforms (Lu et al., 2017). Treatment with triptolide leads
to cardiac cytotoxicity through induction of oxidative stress,
mitochondrial dysfunction, and apoptotic damage regulated
by the mitochondria-mediated apoptotic signaling pathway
in cardiomyocytes (Zhou et al., 2014). Considerable effort has
been exerted for the reduction of toxicity of triptolide and
celastrol, including combination therapy, nanoparticle coating
for enhancement of water solubility and targeted delivery, and
development of water-soluble analogs of triptolide and celastrol.
The structural basis of the toxicity of TWHF compounds
can be determined through in-depth understanding of the
relationship between structures and activities of their functional
analogs.

Combination Treatment for Toxicity
Reduction
Lowering the dosage used of TWHF compounds by combining
them with agent(s) effectively reduces their cytotoxicity and
related adverse effects. Combination treatment offer new
opportunities for the translational development of triptolide and

celastrol. Active components from the same herb can synergize
with other compounds isolated from the same herb (Zhou X.
et al., 2016). For example, combination treatment of triptolide
and celastrol synergistically inhibits cell growth, induces cell cycle
arrest at G2/M phase and apoptosis, and increases intracellular
ROS accumulation in many types of cancer cells, including H1299
and H157 lung cancer cells (Jiang et al., 2015).

Triptolide has been used for the reduction of resistance
against chemotherapeutic agents. Low doses of triptolide reverses
resistance to cytarabine and doxorubicin in acute lymphoblastic
leukemia cell line NALM-6/R and primary cells isolated from
patients with relapsed or refractory acute lymphoblastic leukemia
in the mouse xenograft model (Zhao et al., 2016a). The
combination treatment of triptolide and oxaliplatin significantly
inhibits the proliferation of colon cancer cell lines by regulating
the Wnt/β-catenin pathway in nanomolar concentration (Liu
Y. et al., 2014). Triptolide together with hydroxycamptothecin
exhibits broad-spectrum anticancer activities by regulating
MAPK and Akt signaling pathways (Meng et al., 2015).
Combination treatment with farnesoid X receptor activator
GW4064 relieves triptolide-induced hepatic toxicity (Jin et al.,
2015). The treatment reduces incidence of spontaneous lung
cancer from 70 to 10% by potentiating the NF-κB signaling
pathway-mediated production of proinflammatory cytokines
in vivo when used in a low dose (1 mg/kg body weight) and in
combination with aspirin (Zheng et al., 2017).

The combined treatment of celastrol and histone deacetylases
inhibitor suberoylanilide hydroxamic acid simultaneously
activate the NF-κB and E-cadherin signaling pathway, thus
substantially inhibit growth of human cancer cells in vitro
and in vivo (Zheng et al., 2014). When combined with ABT-
737, a BH3 mimetic inhibitor of Bcl-xL, Bcl-2, and Bcl-w,
celastrol synergistically suppresses the proliferation of HCC
cells and induces apoptotic cell death (Zhu H. et al., 2012). The
combination treatment with triptolide and celastrol exhibits
synergistic anticancer activity in H1299 human NSCLC cells and
H157 human oral carcinoma xenografts by inhibiting HSP90
activity and reducing ROS level (Jiang et al., 2015).

Nanoparticle Coating to Enhance
Solubility and Organ Targeting
Nanoparticle is used as drug delivery system to improve
therapeutic efficacy by increasing solubility and organ targeting
through electrostatic interactions or receptor and/or membrane
binding (Zhou et al., 2017).

Follicle-stimulating hormone (FSH)-β-peptide modified
nanoparticle is used to increase water solubility and reduce
cytotoxicity of triptolide in ovarian cancer mouse model
(Chen X.Y. et al., 2015). Administration of FSH-β-peptide
nanoparticle containing triptolide suppresses the serum level
of antimullerian hormone, reduces prominent ovarian fibrosis,
vacuolar changes, and follicle numbers (Chen X.Y. et al.,
2015). A nanoparticle formed with PF-A299-585 (amino
acid 299–585) peptide fragment of human serum albumin
increases the kidney targeting property of triptolide, and exhibits
comparable anti-inflammatory activity with less cytotoxicity
in LPS-stimulated Madin-Darby canine kidney cells and in
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membranous nephropathic rodent model (Yuan et al., 2015).
Triptolide packed with the reduction-sensitive lipid-polymer
hybrid nanoparticles inhibits proliferation of human oral
cavity squamous cell carcinoma cells more effectively with
a low combination index with doxorubicin and reduced
cytotoxicity (Wu et al., 2017). Coating with pH-sensitive floating
nanoparticles allows specific uptake of triptolide by liver cancer
cells, results in improved efficacy as well as reduced cytotoxicity
compared with triptolide alone in vivo and in vitro (Ling et al.,
2014). Disodium phosphonooxymethyl nanoparticle extends
the shelf life of triptolide, reduces the dosage required to inhibit
growth of human ovarian cancer xenograft compared with that
of triptolide (Patil et al., 2015).

PEGylated distearoyl phosphatidylcholine liposomes packed
with celastrol exhibits higher efficiency in inducing apoptotic cell
death in prostate cancer cells, compared with celastrol dissolved
in dimethyl sulfoxide (Wolfram et al., 2014). This formula
prolongs the blood circulation time of celastrol, increasing
bioavailability and reducing the frequency of dosing (Wolfram
et al., 2014). Celastrol nanoparticles significantly inhibits suture-
induced corneal neovascularization by reducing macrophage
infiltration and decreasing the expression of vascular endothelial
growth factor and matrix metalloproteinase 9 in rat cornea
(Li et al., 2012c; Sanna et al., 2015). Mesoporous silica
nanoparticle and axitinib in PEGylate lipid bilayers increases the
inhibitory activity of celastrol on angiogenesis and mitochondrial
function, and enhances its anticancer activity in SCC-7, BT-474,
and SH-SY5Y cells (Choi et al., 2016). Glucose-functionalized
mesoporous silica nanoparticles significantly enhances tissue
targeting and inhibitory activity of celastrol toward Hela and
A549 cancer cells (Niemela et al., 2015). Celastrol-albumin
nanoparticles exhibits tissue targeting property to mesangial
cells, and attenuates proteinuria, inflammation, and glomerular
hypercellularity in mesangial cell-mediated glomerulonephritis
(Guo et al., 2017). Celastrol-albumin nanoparticles reduces the
accumulation of free celastrol in off-target organs and tissues,
thus successfully reducing the systemic toxicity of celastrol
(Guo et al., 2017).

Development of Water-Soluble Analogs
of Triptolide and Celastrol
Several water-soluble analogs of triptolide and celastrol were
synthesized and evaluated in laboratory animal models and
clinical trials. PG490-88, as a water-soluble succinate salt analog
of triptolide, more specifically and effectively blocks pulmonary
fibrosis in intratracheal bleomycin mouse model than triptolide
(Krishna et al., 2001). PG490-88 also inhibits the growth of
cancer-derived primary cultures of human prostatic epithelial
cells in a p53-dependent manner (Kiviharju et al., 2002). MRx
102, a triptolide derivative with C-14-hydroxyl modification
of amine ester group, differentially regulates the expression of
retinoid X receptor-α (RXRα) but not the level of full length of
RXRα, and inhibits cancer cell growth through the inhibition of
AKT signaling pathway (Wang et al., 2017).

(5R)-5-hydroxytriptolide (LLDT-8) is a triptolide analog
with a favorable safety profile, the efficacy of which will
be examined for the treatment of RA and cancer in phase

II clinical trials (Wang L. et al., 2012; Qi et al., 2017).
LLDT-8 maintains the immune suppressive activity of triptolide
(Zhang et al., 2017). Treatment with LLDT-8 ameliorates anti-
GBM glomerulonephritis by regulating the Fcγ receptor signaling
(Qi et al., 2017). LLDT-8 exhibits anti-inflammation activity and
inhibits transcription in a similar fashion as triptolide (Chen
et al., 2016). However, testis toxicity is associated with long-term
LLDT-8 treatment due to its upregulation of TGF-β activated
kinase 1 (Yu C. et al., 2017).

Minnelide, a phosphonooxymethytriptolide disodium salt,
was synthesized by reacting triptolide with acetic anhydride in
dimethyl sulfoxide at room temperature for 5 days (Chugh et al.,
2012). Minnelide inhibits the growth of multiple cancers in pre-
clinical studies (Chugh et al., 2012; Jacobson et al., 2015; Oliveira
et al., 2015; Arora et al., 2017; Isharwal et al., 2017), for example,
colon cancer and metastasis to liver (Oliveira et al., 2015). The
growth of pancreatic cancer in KRas and TP53 mutant mouse
model (KRasG12D; Trp53R172H; Pdx-1Cre) is also attenuated by
minnelide (Chugh et al., 2012). No overt signs of toxicity is
observed during more than 1 year’s treatment of minnelide in
athymic nude mice bearing human pancreatic cancer xenograft
(Chugh et al., 2012); thus the therapeutic window of minnelide
is greatly enhanced than that of triptolide. The efficacy of
minnelide in patients with refractory pancreatic cancer is
currently evaluated in phase II clinical trial (NCT03117920).

Few C6-indole modified water soluble analogs of celastrol
were synthesized. NST001A, a sodium salt of celastrol, inhibits
the growth of human colon cancer cell-Colo 205 colon cells
in vitro and in vivo (Tang et al., 2014). Two celastrol derivatives
(NST001 and NST001B) also exhibits enhanced potency against
the growth of HCC cells than celastrol (Tang et al., 2014). CEL20
disrupts the interaction of HSP90-CDC37 more efficiently than
celastrol in A549, MCF7, and pancreatic Panc-1 human cancer
cell lines (Jiang et al., 2016).

Structure-Activity-Relationship of
Compounds Isolated from TWHF
The structural-activity-relationship of major compounds
isolated from TWHF against key signaling pathways regulating
inflammation have been studied by many groups, aiming to
evaluate SAR for the future modifications of TWHF compounds.

Tripterygium wilfordii Hook F compounds including
triptolide with epoxide are attacked by a well-positioned -SH,
which is one of the determinant factors for their pharmacological
activities (He et al., 2015). Triptolide binds to the cysteine
residues of target proteins through covalent bond; and thus
modifies the properties and activities of the target proteins.
However, no epoxide moiety is observed on other TWHF
compounds such as withaferin A and celastrol, although they
exhibits the same activities as triptolide (Zhao Q. et al., 2015).
In withaferin A and celastrol, 1,4-dipolar structure constructed
by the carbonyl and adjacent double carbon-carbon bond
that binds to the cysteine residues of the target proteins. The
epoxide and 1,4-dipolar structure are both electrophilic groups
that can be attacked by -SH via ring-opening and Michael
reactions, respectively. Therefore, the covalent bond between
the electrophilic structure of TWHF compounds and cysteine
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TABLE 2 | Activities of major compounds isolated from THWF on different signaling pathways.

Nature
product

Activity (EC50
a, detection method) Cell type and viability at EC50

(detection method)
Reference

Triptolide Inhibit TRAIL-induced NF-κB at
20 ng/ml (reporter assay)

Lung cancer A549 and NCI-H1299 cell
lines, 75–90% (MTT assay)

Lee et al., 1999, 2002

Triptolide Inhibit IL-6-stimulated STAT3 at 30 nM
(reporter assay)

Colon cancer cell line SW480 cells,
10% (MTT assay)

Wang et al., 2009

Triptolide Inhibit TGF-β1-activated SMAD2/3 at
10 nM (Western blot analysis)

Airway smooth muscle cells, 70%
(MTT assay)

Chen M. et al., 2015

Celastrol Inhibit TGF-β1-stimulated NF-κB at
1000 nM (Western blot analysis)

Squamous cell carcinoma 228 cell,
90% (MTT assay)

Freudlsperger et al.,
2013

Celastrol Inhibit TNF-α-stimulated NF-κB at
3000 nM (reporter assay)

Human embryonic kidney subclone
A293 cells, 80% (MTT assay)

Sethi et al., 2007

Celastrol Inhibit IL-6-stimulated STAT3 at
1000 nM (Western blot analysis)

Multiple myeloma U266 cells, 90%
(MTT assay)

Kannaiyan et al., 2011

Pristimerin Inhibit NF-κB p65/DNA binding activity
at 300–400 nM (ELISA assay)

BXPC-3, PNCA-1, and AsPC-1
pancreatic cancer cells, 50%
(cell counting)

Wang Y. et al., 2012

Pristimerin Inhibit NF-κB p65 protein expression at
600 nM (Western blot analysis)

PNCA-1 cells, 25% (MTS assay) Deeb et al., 2015

Pristimerin Inhibit LPS-stimulated NF-κB activation
through TLR4 at 500 nM
(p65/DNA binding assay)

Cellosaurus BV2 cells, 100%
(MTT assay)

Hui et al., 2018

a50% inhibition of efficacy to signaling pathway to untreated control.

residues on target proteins could be considered as determinant
factor for the SAR of TWHF compounds.

The difference in the Michael addition and ring-opening
reactions of celastrol, pristimerin, and triptolide may have led
to the huge difference among the biological activities of these
TWHF compounds. TWHF compounds with the electrophilic
structure, including triptolide, celastrol, and pristimerin exhibit
similar inhibitory activities against NF-κB, STAT3, and SMAD2/3
signaling pathways (Table 2). Comparatively, the potency

of celastrol and pristimerin against key signaling pathways
regulating inflammation is lower than that of triptolide (Table 2).
Especially that the concentration of pristimerin required to
suppresses NF-κB activation already reduces cell viability,
suggesting that the immune suppressive activity of pristimerin
is due to the inhibition of cell growth. This is in line
with other reports that pristimerin minimally inhibits the
proliferation of cancer cells (Huang S. et al., 2015; Zhao et al.,
2016b).

FIGURE 1 | Chemical structures of compounds isolated from Tripterygium wilfordii Hook F. Red color labeled moieties essential to maintain biological activities.
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Inspired by the epoxide’s effect on protein proposed by
Zhao Q. et al. (2015), the epoxide moieties on the C-6a and
C-7a positions of triptolide could act as acceptors for cysteine
(Figure 1). Triptolide directly binds to cysteine via the ring-
opening interaction between epoxide and -SH moiety of cysteine,
which could lead to the dissociation of these proteins to their
downstream target elements. Instead of epoxide, the 1,4-dipolar
structure constructed by the carbonyl on C-2 and its adjacent
alkenyl on celastrol and pristimerin acts as an acceptor of
cysteine (Figure 1). This structure can combine with -SH by the
Michael reaction. The activities of the Michael addition and ring-
opening reaction might have caused the differences among the
pharmacological activities of celastrol, pristimerin, and triptolide.
Wilforlide A without epoxide or 1,4-dipolar structure is inactive
to all these signaling pathways, and only exhibits marginal
potency against inflammation in RA rats (Xue et al., 2010).
Optimized derivatives with reduced toxicity may be used for
further translational development.

SUMMARY

On the basis of the pharmacological activities of compounds
isolated from THWF, especially triptolide and celastrol, we

conclude that the systemic evaluation of the in vivo activities
of these compounds is still needed. Targeted delivery systems,
structure modifications, and the mechanisms of action of these
compounds are essential in the design of novel derivatives
with reduced cytotoxicity, improved efficacy, and increased
therapeutic index.
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