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A MECHANOCHEMICAL MODEL OF ANGIOGENESIS AND

VASCULOGENESIS

Daphne Manoussaki1

Abstract. Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation.
Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external
chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a
blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction
forces onto the extracellular matrix and that these forces may play an important role in the network
forming process. In order to study the role of the mechanical and chemical forces in both of these stages
of blood vessel formation, we present a mathematical model which assumes that (i) cells exert traction
forces onto the extracellular matrix, (ii) the matrix behaves as a linear viscoelastic material, (iii) the
cells move along gradients of exogenously supplied chemical stimuli (chemotaxis) and (iv) these stimuli
diffuse or are uptaken by the cells. We study the equations numerically, present an appropriate finite
difference scheme and simulate the formation of vascular networks in a plane. Our results compare
very well with experimental observations and suggest that spontaneous formation of networks can be
explained via a purely mechanical interaction between cells and the extracellular matrix. We find that
chemotaxis alone is not a sufficient force to stimulate formation of pattern. Moreover, during vessel
sprouting, we find that mechanical forces can help in the formation of well defined vascular structures.

Mathematics Subject Classification. 74H15, 92C10, 92C15, 92C17.

1. Introduction

The first blood vessels form during development as randomly distributed cells reorganize to form aggregates
and subsequently a network of vessels. The process of this initial vascular network formation is called vasculoge-
nesis [7,8]. As the organism develops, subsequent growth of the vascular network occurs mainly via angiogenesis,
whereby new vessels sprout from existing vessels into the surrounding tissue [22, 23].

Angiogenesis has been shown to be chemotactically-driven. In response to an angiogenic stimulus, the
endothelial cells that line blood vessels, will sprout from the existing vessels grow towards the source of the
stimulus forming a new vessel. This mechanism occurs also during tumor vascularization: new vessels sprout
from the neighbouring vasculature in response to chemical factors secreted by the tumor.

While chemotaxis, i.e. motion of cells up chemical concentration gradients, is important during angiogenesis,
mechanical cell-ECM interactions may play a significant role during vasculogenesis.
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In vitro models of vasculogenesis have shown that growth factors (VEGF-A) are required during these initial
stages of blood vessel formation but contractile forces that endothelial cells exert onto their surrounding extra-
cellular collagen material (ECM – extracellular matrix) may also play an important role in the formation of such
vascular networks [25, 27]. Mechanical interactions between cells and the ECM occur also in other processes of
vascular morphogenesis: During the development of the epicardiac cushion and heart, for example, Markwald
et al. [17], suggested that these structures appear in the embryo as the cardiac gelly is organized by endothelial
cells in “tracks” that subsequently serve as migratory pathways for the cells.

In order to study the factors influencing blood vessel formation, a number of mathematical models have been
presented ([10,14,24] or, for a review of earlier work see, for example, [4]). In these models blood vessel formation
has been studied in relation to cell motion along gradients of chemical concentration and/or adhesiveness. The
possible effects of cell forces during tumor-induced angiogenesis were explored in [12].

In [15, 16] we presented a mathematical model for vasculogenesis, which was the first model to show that
mechanical forces between cells and their surrounding collagen material could play the main role in the reorga-
nization of cells into a vascular network. We showed that the ECM is reorganized and the vascular networks
form as a result of the traction forces exerted by the cells onto the ECM, and that neither cell migration nor
anisotropic cell behavior are necessary for the pattern to form.

In this paper, we present a mathematical model that describes mechanical and chemical interactions dur-
ing blood vessel formation and study some of the effects of mechanochemical forces during angiogenesis and
vasculogenesis. The model is based on the theory presented by Murray, Oster and Harris [20, 21] and it is an
extension of the mechanical model describing vasculogenesis presented by Manoussaki et al. in [15,16,19], as it
also considers the chemical interaction between cells and sources of angiogenic stimuli. It consists of a system
of non-linear partial differential equations which include advection, diffusion and reaction terms. In particular:

- the cells are described as a population density that moves with velocities that are triggered either by
chemical gradients, random motion or by advection. If cell growing is also taken into consideration,
cells are modeled by a reaction-advection-diffusion equation;

- the collagen material is assumed to be a linear viscoelastic material which deforms under cell-exerted
stress;

- chemical production and uptake by the cells s modeled via a reaction-diffusion equation.

Reaction-diffusion and chemotaxis processes are found in many biological systems and have been studied ana-
lytically and numerically. However, as the mechanical aspects of the interactions between cells and their ECM
have been emphasized only in recent years, the techniques for studying the corresponding mathematical models
are less developed.

The equations of the present model contain nonlinear terms and are too difficult to solve analytically. In order
to study the model and test its pattern-forming capabilities, we resort to a numerical study of the equations.
We present a scheme for discretizing the equations using finite differences. In the discretization the different
dynamics of the equations (reaction-advection-diffusion) are calculated using a fractional step method, whereby
equations are solved by integrating each of the reaction, advection, diffusion terms separately.

Advection terms are solved using slope-limiter methods and stiff equations using Crank-Nicholson. Each
method separately is known and well studied, but they have not been applied to a similar set of equations
before and the methodology presented here appears to yield results which compare very well with experimentally
observed cellular networks.

1.1. Biological background

Endothelial cells are the key player in formation of blood vessels. Angioblasts, precursor cells to endothelial
cells, will reorganize within the embryo to eventually make the first vascular network via vasculogenesis. Subse-
quently, new vessels will form as endothelial cells sprout from existing vasculature, in resonse to external stimuli.
The cells will then migrate into the neighbouring tissue and join with other cells to form new capillaries.

In vitro angiogenesis systems have been developed in order to study the vessel forming potential of cells in
a controled manner [9]. In such systems endothelial cells (as well as other cell types, such as fibroblasts) are
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placed on a layer of a collagen gel (extracellular matrix-ECM). Matrigel, a commercially available such gel, is
often used in angiogenesis assays.

In in vitro models of vasculogenesis, cells are initially seeded randomly onto the ECM and they subsequently
reorganize into networks. During such experiments it was shown that when endothelial cells are seeded onto a
plane of Matrigel, they attach onto it and exert traction forces onto the ECM [25,27]. Pulling causes not only
the ECM to move, but also the cells that have adhered onto the moving gel. After a few hours, the cells appear
to form aggregates and the ECM appears to have become reorganized: most of it is accumulated underneath
cell clusters, while the remaining ECM has reorganized into a network of fibrous lines that tesselate the plane.
These matrical lines run between cell clusters and are used by the cells as a scaffold for their migration. The
cells progressively move from the clusters onto the adjoining lines, fill the lines, and eventually form a network
of cellular cords [25].

During development, subsequent remodelling of the vascular plexus depends on cellular proliferation and
reaction of the cells to chemical and mechanical stimuli. In particular, in response to concentration gradients of
angiogenic chemicals, (such as vascular endothelial growth factors), endothelial cells will degrade the adjacent
mesh-like basal lamina that surrounds a blood vessel, will sprout and grow towards the source of the angiogenic
stimulus, and new vessels will join together at the tips (anastomose) to form vascular loops. In the case of
tumors, vessels are elicited from the peripheral vasculature of the healthy tissue in response to gradients of
tumor secreted TAF (tumor angiogenesis factor).

While mechanical interactions appear to be key in the development of the initial vasculature, their role
in subsequent blood vessel sprouting and growth is less clear. Mathematical modeling can describe different
possible interactions in a cell-ECM environment and can help in testing the pattern forming capabilities under
different hypotheses.

2. Mathematical model

The formation of pattern will be quantified in terms of changes in the local cell density, amount of ECM
and ECM deformation. We use n(x, t) to denote the density of cells at time t and on a point x in space.
Cells apply forces to the ECM, so that each point of the ECM gets displaced by u = (u1, u2) from its original
location x0, where u = x(t)- x0. These displacements create a strain field ǫ (approximated for small strains by
ǫ = 1

2
(∇u+∇uT )) which can affect cellular movement. Cells, moreover, will respond to gradients of angiogenic

factors and will move up such gradients. The chemical concentration we will denote by c(x, t), while the amount
of ECM by ρ(x, t).

Note should be given in the distinction between biological cells and computational cells, which will be
mentioned later, as well as between the collagen substratum (extracellular-collagen-matrix), that will also be
refered to as “matrix”, which is, of course, different to the mathematical matrix.

2.1. Endothelial cell conservation equation

Local changes in cell density will take place as cells proliferate, die or move to neighbouring locations:

∂n

∂t
+ ∇ · Jcell = rn,

where the right hand term assumes a density-dependent growth of the cell population and r is the intrinsic
growth rate of the cells.

Jcell denotes the cellular flux. Depending on the biological assumtions, cell migration can depend on chemical
gradients (chemotaxis), on the strain of the collagen substratum, or the cells will move passively, with velocity
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v = d
dtu, if they adhere onto a deforming substratum (advection):

Jcell = −∇ · (D(ǫ)n) + nχ(c)∇c + ndu
dt ,

Flux = strain-dependent movement + chemotaxis + passive advection.

The term χ(c) = χ0

1+βc is a form that is presented in [5] and it assumes that chemical gradients take effect

when the chemical concentration is low; for high concentrations the corresponding receptors saturate and cannot
feel the gradient. D(ǫ) is a tensor describing strain-dependent movement and the form used here is presented
below.

2.1.1. Strain-dependent movement

In the absense of chemotactic movement, endothelial cells that were cultured on Matrigel, were observed to
leave clusters, where we assume collagen fibres have an orientation that is random, and move towards and onto
the matrix lines, that consisted of aligned collagen fibers [25]. We model this movement as a cellular movement
is a random, but biased towards the direction of principal strain.

The diffusion coefficient D(ǫ) is thus a tensor that depends on the strain ǫ and describes the preferential
movement of the cells along areas where fibers are compressed and aligned [6, 13] and is proportional in each
direction to the degree of fiber alignment due to strain.

Cook [6] derives a form for D using techiques presented by Advani and Tucker [1], and of his derivation we
present a short summary (for details, see [6]). D is calculated by considering:

Dij = D1

∫

f(ψ)ψ̂iψ̂jdψ, (1)

where D1 is a scalar parameter, ψ̂ is the unit orientation vector ψ̂ = [cosψ sin ψ]T and f(ψ) is the orientation
distribution of the fibres under a transformation M .

When M = I − ∇yu represents the transformation matrix of a small element of the cell culture, from the
deformed state (with coordinates y = (x2, y2)), to the reference state (whose coordinates are (x, y)) and when
the fibre orientation distribution is uniform in the reference state, then in the deformed state the orientation
distribution of the fibres is given by

f(ψ) =
1

2π
r2|M |.

The stretch factor r = r(ψ) for the deformation corresponding to an angle ψ is given by

r2 =
1

ψ̂T MT Mψ̂
· (2)

It is derived by considering that the radius of a unit circle is rotated from an angle θ to an angle ψ and stretched
from length 1 to length r via the transformation M−1, so that

M−1θ̂ = rψ̂.

We thus have that 1 = θ̂T θ̂ = r2ψ̂T MT Mψ̂ from which equation (2) follows.
For small strains equation (1) takes the form

D(ǫ) = D̂1

(

2 + ǫ11 − ǫ22 ǫ12 + ǫ21
ǫ12 + ǫ21 2 − ǫ11 + ǫ22

)

,

where ǫ11, ǫ12, ǫ21, ǫ22 are the strains in the individual directions and D̂1 = D1

2
.
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2.2. Matrix conservation equation

In development the collagen matrix is produced by cells, and it is subsequently reorganized by them, as cells
pull on it or migrate on it. In vitro there is often no significant production or degradation of matrix, and so we
assume that local changes in matrix thickness occur just because the cells rearrange it on the culture dish:

∂ρ

∂t
+ ∇ · (

du

dt
ρ) = 0.

In considering the above form we shall assume that in general matrix production or degradation plays a less
important role in the patterning process.

2.3. Force balance equation

The substratum (collagen matrix) reorganizes as a result of the traction forces that the cells exert onto it.
We consider the forces exerted by the cells are approximately in balance with the viscoelastic resistance offered
by the matrix (pseudo- steady state) and external body forces:

∇ · (σcell + σECM ) + Fdrag = 0.

The total traction exerted by the cells is proportional to the cell density

σcell = τ0

1

1 + αn2
In,

where τ = τ0
1

1+αn2 I is the intrinsic traction per cell, which we assume is isotropic and that it saturates at high

cell densities. We assume that the matrix responds to the traction forces as a linear viscoelastic material (Voigt
body), so that the stress developed in the matrix when a strain ǫ is applied, is

σECM = µ1ǫt + µ2θtI +
E

ν + 1

(

ǫ +
ν

1 − 2ν
θI

)

.

Additionally, the resistance to the movement of the matrix across the domain is modeled as a viscous drag

Fdrag = −s
1

ρ

du

dt
,

giving the following equation for the balance of forces:

∇ ·

(

τ0

1

1 + αn2
I + µ1ǫt + µ2θtI +

E

ν + 1

(

ǫ +
ν

1 − 2ν
θI

))

− s
1

ρ

du

dt
= 0.

The following are constant model parameters: τ0 (traction per cell), α (a measure for cell traction saturation),
µ1, µ2 (shear and bulk viscosities), E (Youngs Modulus), ν (Poisson ratio), and s measure of viscous drag.

2.4. Endothelial activators

Cells will also move along gradients of certain chemical factors (chemotaxis). For example, in tumor angio-
genesis, formation of capillary sprouts are considered to be up gradients of tumor angiogenesis factor (TAF),
which is also uptaken by the cells [3, 11], or vascular endothelial growth factor (VEGF). Here, we assume that
such an angiogenic factor c(x, t) is uptaken by the endothelial cells and diffuses. In the model allow also forits
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Table 1. Values of characteristic quantities.

Parameter Description Value range

N Average seeding cell density 1.2−1.8 × 104 cells/cm2

ρ0 Average matrix thickness 10 µm−1 mm

L Characteristic length 10−1−101 mm

T Characteristic time scale 1−20 h

potential secretion by the endothelial cells:

∂c
∂t = D2∇

2c + γn – δ nc
Km+c ,

diffusion + production by cells – uptake by cells,

where γ is the rate of production of c by the cells, while the uptake is governed by Michaelis-Menten kinetics [5].

2.5. Dimensional analysis

The model we analyze is:

nt + ∇ ·

(

n
du

dt

)

= ∇ · ∇(D1(ǫ)n) −∇ · (nχ(c)∇c) + rn, (3)

ρt + ∇

(

ρ
du

dt

)

= 0, (4)

s
ut

ρ
= ∇ ·

[

(µ1ǫt + µ2θtI) +
E

1 + ν

(

ǫ +
νθI

1 − 2ν

)

+
τ0nI

1 + n2α

]

, (5)

∂c

∂t
= D2∇

2c + γn − δ
nc

Km + c
, (6)

where du
dt = v = ∂u

∂t + (v · ∇)u is the velocity of the matrix.
We introduce as non-dimensional variables:

n∗ = n/N, u∗ = u/L, ρ∗ = ρ/ρ0,

c∗ = c/C, t∗ = t/T = tV
L , x∗ = x/L,

y∗ = y/L, v∗ = v/V, ǫ∗ = ǫ.

We set the non-dimensional parameters:

µ̂i =
µi(1 + ν)

TE
, τ̂ =

τ0N(1 + ν)

E
, ŝ =

s(1 + ν)L2

TEρ0

,

ν̂ =
ν

1 − 2ν
, α̂ = αN2, d1 =

L2

T
,

χ̂0 =
TC

L2
χ0, β̂ = βC, r̂ = rT,

D̂2 = D2

T

L2
, γ̂ = γ NT

C , δ̂ = δ
NT

C
,

K̂m =
Km

C
, D̄∗ = D̂1/d1.
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The non-dimensional form of the equations ((3)-(5)), dropping the asterisks on the non-dimensional variables
for simplicity, are:

nt + ∇ · (utn) = ∇ · ∇ ·
(

D̄(ǫ)n
)

−∇ ·

(

χ̂0

1 + β̂c
n∇c

)

+ r̂n, (7)

ρt + ∇ · (utρ) = 0, (8)

ŝ
ut

ρ
= ∇ · [(µ̂1ǫt + µ̂2θtI) + (ǫ + ν̂θI) +

τ̂nI

1 + α̂n2
], (9)

∂c

∂t
= D̂2∇

2c + γ̂n − δ̂
nc

K̂m + c
, (10)

with

D̄(ǫ) = D

[(

1 −
θ

2

)

I + ǫ

]

= D

(

1 + ǫ11−ǫ22
2

ǫ12+ǫ21
2

ǫ12+ǫ21
2

1 − ǫ11−ǫ22
2

)

.

Since v = du
dt = ut + v · ∇u ⇒ v · (I −∇u) = ut, we can make the approximation du

dt ≈ ut for infinitesimal
strains, an assumption which we used in equations ((7)-(9)).

2.6. The model

Seeking numerical solutions, we drop the hat notation on the nondimensional parameters, and rewrite the
model equations as:

nt + [u1tn + χ(c)cxn]x + [u2tn + χ(c)cyn]y = (D11n)xx + 2(D12n)xy + (D22n)yy + rn, (11)

ρt + (u1tρ)x + (u2tρ)y = 0, (12)

s

ρ
u1t − µu1xxt −

µ1

2
u1yyt − (1 + ν)u1xx −

1

2
u1yy = τ

(

n

1 + αn2

)

x

+ G(n, u2), (13)

s

ρ
u2t −

µ1

2
u2xxt − µu2yyt −

1

2
u2xx − (1 + ν)u2yy = τ

(

n

1 + αn2

)

y

+ G(n, u1), (14)

ct = γn − δ
nc

Km + c
+ D2∇

2c, (15)

where

G(n, v) =

(

1

2
+ ν

)

vxy −
(µ1

2
− µ

)

vxyt,

and µ = µ1 + µ2.
Equation (11) describing the cell density n has reaction terms (rn), advection terms (with advection velocity

v = (u1t + χ(c)cx, u2t + χ(c)cy)) and diffusion terms (where the Dij components of the diffusion tensor are
given below).

Equation (12) is a conservation equation for the ECM density ρ.
Equations (13) and (14) originated from the description of the forces that act on the ECM. They describe the

displacement u of the ECM and contain τ n
1+αn2 , a nonlinear term in n, which describes cell traction saturation

at high densities.
Lastly, equation (15) is a reaction-diffusion equation for the chemical concentration, with nonlinear dynamics

for the uptake of the chemical by the cells.
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2.7. Boundary conditions

As conditions at the boundary ∂B we require that

- no cells cross the boundary of our domain (in the experiments, no cells go beyond the experimental dish
sides):

θ̂ · Jcell = 0;

- zero ECM flux across the boundary:

θ̂ · (utρ) = 0;

- no chemical diffusion across the domain boundary:

θ̂ · ∇c = 0;

- the ECM is attached to the dish sides, i.e. we have no ECM displacement at the boundary:

u = 0,

where θ̂ is the outward pointing normal at ∂B.
In [16] we also considered no cellular diffusion across the domain, which gives an alternative boundary

condition for the cells:

θ̂ · ∇

[(

D11 D12

D12 D22

)

n

]

= 0,

where

D11 =
D

2
(2 + u1x − u2y),

D12 =
D

2
(u1y + u2x),

D22 =
D

2
(2 − u1x + u2y).

3. Numerical discretization

We will first describe the discretization methods employed for each of the five equations of the model, followed
by the predictor-corrector scheme employed to solve these coupled equations.

We solve the equations numerically on square domains (their size is [0 4] × [0 4], unless otherwise stated).
The domain is discretized into a uniform m × m Cartesian grid. By a point (i, j) of the grid, we will mean
the point in our domain with x = ih, y = jh (h = ∆x = ∆y = 4

m ). By nij we will denote the numerical
approximation to the average value for the cell density n on a square of dimensions h × h and center at the
point (i + 1

2
, j + 1

2
) of the grid. The values of ρij , u1ij , u2ij are defined the same way. The boundary lies along

the lines x = 1 + 1

2
, x = m + 1

2
and y = 1 + 1

2
, y = m + 1

2
.

3.0.1. Discretization outline

Equations (11) and (12) are discretized explicitely. The equation describing cells has terms that are parabolic
or hyperbolic in character. We solve the equation by integrating each component of the equation separately,
using a fractional step method.

Advection terms are discretized using upwinding, with second order, slope-limiter correction. The diffusion
component, parabolic in character is usually solved using implicit methods. However, the parameter values that
are relevant for the cell movement are small (D ≈ 10−11), so that an explicit scheme for solving the parabolic
equations suffices.
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Equations (13) and (14) for the displacement (u1, u2) are discretized using an implicit scheme. Spatial
derivatives are discretized with a centered in space scheme, time is discretized using the trapezoidal rule (TR),
and the space and time discretization results in a Crank-Nicholson scheme.

3.0.2. Time discretization

The time discretization is governed by various conditions necessary for stability, as these arise in the dis-

cretizations of our equations. In general, the time point r = N will correspond to real time TN =
∑r=N

r=1
kr

where kr will denote the time step considered at point r in our time discretization. In particular, if kN1, kN2 are
the time steps required for stability, as determined by each of the equations for n, ρ, then the time step kN+1

from time point r = N to the time point r = N + 1 is determined by

kN+1 = min{kN1, kN2, km},

where km is the maximum allowable step in time.

3.1. Matrix conservation equation

We start with the discretization of equation (12) since it is the simplest one. This advection equation we
discretize as

ρN+1
i,j = ρN

i,j − ∆t

(

f1i+ 1

2
,j − f1i− 1

2
,j

h
+

f2i,j+ 1

2

− f2i,j− 1

2

h

)

, (16)

where f1, f2 are the numerical approximations for the two components of the ECM flux JECM = (u1tρ, u2tρ)
and are defined as:

f1i+ 1

2
,j = vN

1i+ 1

2
,jρ

N
i+ 1

2
,j.

f2i,j+ 1

2

is defined similarly to f1i+ 1

2
,j . In the above equation,

vN
1i+ 1

2
,j =

1

∆t

(

uN+1

1i+ 1

2
,j
− uN

1i+ 1

2
,j

)

is the velocity at (i + 1

2
, j), defined implicitely in u, which means that we require knowledge of uN+1

1i+ 1

2
,j

in order

to determine ρN+1
i,j . We calculate uN+1

1i+ 1

2
,j

via a predictor-corrector scheme which we present in Section 3.6.

Without loss of generality, when defining values at the half points, we can drop the index corresponding to
the other direction, to keep notation simpler. The value at point (i − 1

2
) is calculated using upwinding: we

calculate the value based on the direction of the velocity v, which describes the direction information is coming
from. We define

ρi− 1

2

= ρi−1 + 1

2
(h − vk)σi−1 if v > 0,

ρi + 1

2
(h − vk)σi if v < 0,

where

σi = σi

(

ρi+1 − ρi

∆x
,
ρi − ρi−1

∆x

)

,

is one of the standard limiters (MinMod, vanAlbada, van Leer).
To ensure stability for the advection step we impose the CFL condition:

|vN |
kN1

∆x
< 1,

where vN is the maximum velocity occuring at time N .
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3.2. Cell conservation equation

In discretizing (11) we use a time splitting:

- first solve the advection part of the equation, using first order upwinding, just as we did for the ma-
trix conservation equation. The advective flux is a combination of the passive movement due to the
matrix deformation (utn) and the cell movements along gradients of increasing chemical concentration
(χ(c)∇(c)n).

We carry out the calculations over a full time step ∆t = k and arrive at an intermediate solution
n∗

i,j :

n∗

i,j = nN
i,j − ∆t

(

g1i+ 1

2
,j − g1i− 1

2
,j

h
+

g2i,j+ 1

2

− g2i,j− 1

2

h

)

, (17)

where (g1, g2) are the numerical approximations to the components of the cell flux

Jcell = ((χ(c)cx + u1t)n, (χ(c)cy + u2t)n) .

g1i+ 1

2
,j represents the x component of the cell flux at the midpoint between (i + 1, j) and (i, j), and

similarly for the other fluxes;
- we then apply the diffusion part by calculating it over time ∆t. We discretize diffusion using a nine

point stencil and we step in time applying forward Euler:

nN+1
ij = n∗

ij + D
k

h2

(

Axx(D11,i,jn
∗

i,j) + 2Axy(D12,i,jn
∗

i,j) + Ayy(D22,i,jn
∗

i,j)
)

.

Axx, Axy, Ayy are the standard central differencing operators, for example

AxxUij =
1

∆x2
(Ui−1,j − 2Uij + Ui+1,j) .

We chose the time step ∆t = kN2 small enough so that kN2

h2 |Dij | < 1

2
, for all (i, j). Since the values of

D that are relevant are very small (Dij ≤ 10−3), the time step can be fairly large, depending on h2.
It turns out that the time step k is determined by the CFL condition is considerably smaller than the
time step required for stability in solving the diffusion part of the cell conservation equation. Numerical
solution of the diffusion part of the cell conservation equation are shown in Figure 2;

- reaction terms are discretized using an explicit, forward Euler scheme.

When cell proliferation is taken into consideration, we can also apply a Strang splitting. If A∆t,D∆t,R∆t are
the solution operators for the advection, diffusion and reaction step respectively, to solve for nN+1 we apply the
operators as

nN+1 = A∆t/2D∆t/2R∆tD∆t/2A∆t/2n
N .

3.3. Force balance equation

The force balance equation yields

Au1xxt + Bu1yyt + Cu1xx + Du1yy + Eu1t = Fx(n) + Wu2xy + Y u2xyt, (18)

Au2yyt + Bu2xxt + Cu2yy + Du2xx + Eu2t = Fy(n) + Wu1xy + Y u1xyt, (19)

where
A = µ, B = µ1

2
, C = ν + 1, D = 1

2
,

E = − s
ρ , F (n) = τn

1+αn2 , W = −
(

1

2
+ ν

)

, Y =
(

µ1

2
− µ

)

.

We discretize the above using Crank-Nicolson and get an m − 1 × m − 1 system of equations of the form

aijU1N+1
i,j−1 + bijU1N+1

i−1,j + cijU1N+1
ij + dijU1N+1

i+1,j + eijU1N+1
i,j+1 = q1ij , (20)



A MECHANOCHEMICAL MODEL OF ANGIOGENESIS AND VASCULOGENESIS 591

with

aij =
1

2h2

(

µ1 +
k

2

)

,

bij =
1

h2

(

µ +
k

2
(1 + ν)

)

,

cij = −
2

h2

[

µ +
k

2
(1 + ν) +

1

2

(

µ1 +
k

2

)]

− s
(

ρ̄N+1
ij

)−1
,

dij =
1

2h2

(

µ +
k

2
(1 + ν)

)

,

eij =
1

2h2

(

µ1 +
k

2

)

.

We employ an equivalent discretization for u2.
Boundary conditions for the equations are uij = 0 at boundary points and these values are incorporated

in q1ij . The systems are solved using the NAG Mark 15, routine D03EBF, which solves equations of exactly
the same form as (20). The routine derives the residual of the latest approximate solution and then uses the
approximate LU factorization of the Strongly Implicit Procedure, with the necessary acceleration parameter.

3.4. Chemical reaction-diffusion equation

In discretizing (15) we use once more a time splitting, whereby we solve diffusion and reaction terms sepa-
rately. If Dc∆t,Rc∆t are the diffusion and reaction solution operators respectively for the chemical concentra-
tion, we calculate cN+1 as

cN+1
ij = Dc∆t/2Rc∆tDc∆t/2c

N
ij .

3.5. Initial conditions

For the numerical simulations of cellular network formation we use the following initial conditions:

n0
ij = 1.0 ± 0.05 ∗ rand(i, j),

ρ0
ij = 1.0,

u0
ij = 0.

The random numbers were generated by the built-in FORTRAN function ran, which distributes the random
numbers uniformly in the interval [0, 1).

For the numerical simulation of sprout formation towards an angiogenic stimulus, we used as initial conditions:

n0
ij = 1.0, if i < 12 or j > 70,

= 0, otherwise, and

ρ0
ij = 1.0,

c0
ij = 0,

u0
ij = 0.

3.6. Predictor-corrector scheme – the algorithm

On calculating ρN+1
ij , nN+1

ij we need to use values of uN+1
1ij , uN+1

2ij while we have not yet solved for uN+1
1 , uN+1

2 .

To overcome the problem, we use a prediction for the values of u1, u2, which we will denote by uN+1
1p , uN+1

2p .
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Figure 1. A square patch of cell density n = 1.1 contracts, when the surrounding cell density
is lower (here, it is n = 1). From left to right, the grids used were: 50 × 50, 100 × 100 and
200 × 200, all uniform Cartesian grids. Parameter values for the model equations are given in
Table 2.

The values for ρN+1
ij , nN+1

ij thus calculated are not accurate, since their calculation involved predicted, not
calculated values of the other dependent variables. This inaccuracy will affect the further calculations. To solve
the problem, we use a predictor-corrector scheme, whereby we iterate a few times within the same time step
through the equation solvers, until successive calculations for one of the dependent variables, say u1, are equal
within a certain error tolerance.

This predictor corrector scheme between time step N and N + 1 is expressed by the following steps:

(1) predict the values for uN+1
1p , uN+1

2p , using some extrapolation method;

(2) use uN+1
1p , uN+1

2p to get approximate values for n∗N+1, ρ∗N+1;

(3) use n∗N+1, ρ∗N+1 to get a better approximation for uN+1
1 , uN+1

2 ;
(4) continue the iterations until the difference between successive approximations of n, say, are less than a

tolerance: ∆n = |n∗N+1 − n∗∗N+1| < δ.

3.7. Convergence and accuracy of the methods employed

3.7.1. Convergence

The model equations are nonlinear and therefore standard techniques for verifying the stability (Von Neumann
analysis) and accuracy of the model are not applicable. In this paper we shall examine only the computational
stability required for our algorithm to work properly. Instead, we perform various tests on the discretized model
to check its robustness. We consider the program predictions when the mesh size of a fixed size domain is
varied. In Figure 1, we compare a square of cells evolving in a 50× 50 grid with mesh size h = 0.08, a 100× 100
grid with mesh size h = 0.04 and on a 200× 200 grid with mesh size h = 0.02. The size of the central square is
1.12 × 1.12. We observe a fairly good agreement in the solutions that appear with the three discretizations.

3.7.2. Accuracy

We employ a combination of schemes, some first order in time (forward Euler) and others second order in
time (trapezoidal). We therefore expect our scheme to be approximately first order accurate in time. For the
spatial derivatives we have employed second order discretizations.

3.7.3. Conservation of mass

In the absence of cell multiplication, equation (11) is a conservation equation for the cell density. To test
the code, we kept track of the total cell density within our domain and found that to be conserved to machine
epsilon.

3.7.4. Cell diffusion

Through simple numerical simulations, we test the behavior of the discretization of the diffusion operator.
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A CB

Figure 2. A square patch of cells diffusing on an unstrained matrix. Parameter values are
given in Table 2.

Figure 3. Cells diffusing along areas of matrix compression. The strain field is shown in
the left picture. Gray denotes unstrained areas, Black denotes compression and white denotes
stretched (expanded) matrix. Parameter values are given in Table 2.

Table 2. Dimensional model parameters simulation parameters for the test simulation figures,
unless stated otherwise.

Model parameters Value

Traction τ 0.005 dyne/cell

α 10−9 /cell2

Diffusion D 0.7 × 10−12 cm2/sec

Poisson ratio ν 0.2

Shear viscosity µ1 3.2 × 107 poise

Bulk viscosity µ2 6.5 × 107 poise

Youngs Modulus E 20 dyne/cm2

Anchoring parameter s 1010 dynes · sec/cm3

Simulation parameters

Max. time step kmax 0.2

Initial time step k0 10−4

Grid 50 × 50

Mesh size 0.1

Error tolerance between

successive solution estimates 10−14

We consider cells on a fixed, unstrained matrix. We hold the matrix fixed at its original position for all times
and let the cells perform an unbiased diffusive motion. The results are presented in Figure 2.

We also consider cells in a strained environment. We should expect cells to move along compressed areas.
Figure 3 shows an initial square patch of cells diffusing along a line of compression. The strain field is shown
on the leftmost picture. Black denotes areas of compression and white denotes areas of dilation. Gray areas are
unstrained. We observe that the cells move along the line of compression.
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Figure 4. Numerical simulation of vascular network formation. Cells reorganize into networks,
assuming a purely mechanical interaction between cells and the ECM (i.e. chemotaxis is not
taken into account in the above simulation). Initially cells are approximately uniform, but
slowly areas of higher cell densities form (white) which exert traction onto the matrix and
generate areas devoid of cells (black). Simulations were performed on an 80 × 80 uniform grid,
corresponding to a square 3.2 × 3.2 mm2. Here, we assume no diffusive cell flux across the
boundary. The patterns do not reach a steady state, but continue growing, with some capillary
loops growing larger and others closing in, in a sphincter-like manner. Parameter values: τ =
0.01 dynes/cell, E = 20 dyne/cm2, ν = 0.2, µ1 = 1.4 ×107 poise, µ2 = 1.2 ×108 poise, n0 =
104 cells/cm2.

4. Results

Mechanical forces lead to formation of networks

During vascular network formation, cells that are initially distributed throughout the domain of concern,
reorganize themselves into networks. Vernon et al. proposed that the cells move and the ECM reorganizes into
a network under the influence of cellular forces [25, 26].

To test the hypothesis, we consider only the mechanical interactions within the model and ignore cell move-
ment under chemical gradients as well as cell proliferation. We model the initial condition as an almost uniform
distribution of cells, matrix, chemical density, throughout the domain. Numerical results, shown in Figure 4,
suggest formation of cellular networks that compare very well with experimentally observed networks (see, for
example [25, 26]).

We assume that the pattern forming mechanism works as follows: A small (random) perturbation in the
otherwise uniform cell population creates local gradients in the cell density. As the total traction in one point is
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Figure 5. Left: If traction is too low, cells will contract towards the center of the domain.
Right: If traction is sufficiently high (as predicted by linear stability analysis), networks will
form. The simulation results assume zero cell flux as the boundary condition. Simulations were
performed on an 80 × 80 grid, total side length 3.2 mm. Parameter values: τ = 0.01 dynes/cell
(right), τ = 0.005 dynes/cell (left), E = 20 dyne/cm2, ν = 0.2, µ1 = 5.8 ×108 poise, µ2 = 2
×108 poise, n0 = 104 cells/cm2.

proportional to the cell density, the gradient in n will result in a net force, with direction from lower to higher
cell density. This force is resisted by the mechanical behavior of the ECM. As we have shown before [16, 19], if
the cell traction is large enough to overcome the resistance by the ECM stiffness, cells will move from regions
of lower density to regions of higher density, thus generating small perforations in the collagen and cell layer.
The movement will start at a small scale, and, as the clusters grow, so will the areas devoid of cells, until we
get a network of cells. If the ECM is too stiff, then no pattern will form.

The above claim is confirmed by linear stability analysis: We assume solutions to the model equations of the
form

(n, ρ, u, c) = (n0, ρ0,u0, c0) + (n∗, ρ∗,u∗, c∗)eσt+ik x,

where the asteriscs denote small quantities, i.e. we assume the variables near the uniform steady state (n0, ρ0,
u0, c0) will grow or decay exponentially.

If we substitute the above into the equations, and ignoring small terms (n∗2, u∗2
1 , etc.), we get the dispersion

relation, which associates different wavenumbers k with their corresponding growth rate σ(k2). For pattern
to grow we require that at least for certain k the corresponding growth rate is positive, i.e. the initial small
perturbation will grow, giving rise to pattern. Using the method presented in [16] it can be shown that we will
have positive growth rates if

τ

E
>

1

1 − ν2

1

n0

(1 + an2
0)

2

1 − αn2
0

,

where E is the matrix stiffness, τ is the traction per cell, ν is the Poisson ratio, n0 is the initial uniform cell
density, and α determines the decrease in total cell traction upon confluence. The result suggests that pattern
can form if cellular traction τ is sufficiently high or matrix stiffness E sufficiently low. If cellular traction is too
low no networks form (Fig. 5). The kinetic parameters of chemical production or uptake do not contribute to
a positive growth rate of an initial perturbation. We do not mean that chemotaxis is not important. It plays a
key role in the sprouting of endothelial cells from extant vasculature and its role has been discussed at length
in mathematical models of angiogenesis (e.g. [2,5]). What our results suggest is that chemotaxis alone is not a
sufficient force to stimulate formation of pattern if we start with a perturbation about the uniform initial steady
state, a situation that is a closer model for vasculogenesis, rather than angiogenesis (sprouting).

Cell chemotaxis leads to sprout formation

Other models of angiogenesis also suggest that sprout development towards a source of chemoattractant
cannot be resolved by assuming only chemotaxis of cells and that other mechanisms also come into effect (e.g.
haptotaxis, [5], cellular inhibition [18], etc.). Here we test the combination of chemotaxis with mechanical forces
as a minimum mechanism for angiogenic sprout formation.
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Figure 6. If cells are made unable to pull (top figure), four cell clusters placed symmetri-
cally around a central source of chemoattractant (positioned at the center of the domain), will
move up gradients of increasing chemoattractant density. If cells can also exert traction (bot-
tom figure), the cells will form more concentrated clusters and will move faster towards the
chemoattractant source. In the absence of chemoattractant, cell clusters will move very little
or not at all, depending on the distance between neighbouring clusters (not shown).

In the presence of a chemoattractant source, cells move up the gradient of a chemoattractant (Fig. 6), and
cell traction accelerates the movement of the cell clusters towards each other.

Previous models of chemically-driven angiogenesis simulate growth of vessels that starts out from pre-existing
sprouts (see, for example [2,12]). Here, we consider an inital uniform band of cells, which models a vessel placed
near a source of chemoattractant. We observe that at the point nearest to the chemoattractant source, the cells
start moving towards the source. When no cell traction is included, cells from a wide section of the original vessel
migrate towards the chemical source. When cell traction was included, the band of cells initially contracted due
to cell-exerted traction. After some time (nondimensional time t = 18), cells sprout from the parent vessel and
slowly grow towards the center, forming better defined, narrower structures (Fig. 7).

5. Conclusion

We presented a mathematical model for endothelial cells-ECM interactions during the initial stages of blood
vessel formation. The model describes the traction the cells exert onto the ECM and models the ECM response
as that of a linear viscoelastic material. We assumed cells can move passively, when they adhere on moving
ECM, do strain-biased random walk, and move along chemical gradients.
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Figure 7. Starting from two continuous bands of cells, placed on the left and top of the figure,
cells will move towards a centrally placed source of chemoattractant. In the top figure, no cell
traction is assumed. In the lower figure, the bands of cells initially contract a little, under
cell-exerted traction. Cells sprout slowly (t = 18) and grow towards chemoattractant source.
The structures formed are narrower, and better defined when cellular traction is considered
(cell traction values same as in Figure 4, chemotactic parameters provided in Table 3).

Table 3. Nondimensional parameter values for the simulation results with chemotaxis.

Model parameters Value

χ0 0.25

D2 0.02

β 0

γ 0

δ 0.0065

We studied the equations numerically: we presented an algorithm that was based on a fractional step method,
whereby we treated advection, diffusion and reaction terms of the equations separately, using suitable methods.
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When we simulated cellular movement in the absense of potential cell interactions with chemical gradients and
no cell proliferation, we predicted formation of network structures (Fig. 4) that resemble the cellular networks
observed in in vitro experiments as well as examples of early planar vasculature. The agreement of the networks
predicted by our model with those of in vitro models of vasculogenesis suggest that cellular networks could form
via a purely mechanical mechanism in these early stages of vascular development.

Further remodelling of the plexus is determined by the chemotactic response of endothelial cells to angiogenic
stimuli. Our model confirmed the work of other researchers in that it showed chemotaxis alone is not sufficient
in giving rise to new vasculature and that a mechanical interaction with the ECM is necessary. The difference
in our model is that the only mechanical interaction we consider is the traction of the cells onto the ECM and
the ECM viscoelastic response. Our model predicts that chemical gradients together with cellular traction can
make cells sprout away from the parent vessel and towards a source of chemoattractant. We did not predict
capillary anastomoses, confirming what others have shown, that regulation of the cell movement and adhesion
dynamics via fibronectin is likely to play an important role in the mechanism for capillary loop formation [2,5].

In summary, we presented a model that showed that a simple mechanical and chemical interaction was able
to predict the basic features of the two main mechanisms (angiogenesis and vasculogenesis) of blood vessel
formation.

Acknowledgements. The author would like to thank professors Peter J. Schmid (University of Washington) and Theodoros
Katsaounis (University of Crete) for their valuable suggestions and remarks with the numerical methods.
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