
A Media-Enhanced Vector Architecture
for Embedded Memory Systems

Christoforos Kozyrakis

Report No. UCB/CSD-99-1059

July 1999

Computer Science Division (EECS)
University of California
Berkeley, California 94720

A Media-Enhanced Vector Architecture
for Embedded Memory Systems

by Christoforos Kozyrakis

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, Uni-
versity of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor David A. Patterson
Research Advisor

(Date)

* * * * * * *

Professor Katherine Yelick
Second Reader

(Date)

A Media-Enhanced Vector Architecture
for Embedded Memory Systems

Christoforos Kozyrakis

M.S. Report

Abstract

Next generation portable devices will require processors with both low energy consump-

tion and high performance for media functions. At the same time, modern CMOS technology

creates the need for highly scalable VLSI architectures. Conventional processor architec-

tures fail to meet these requirements. This paper presents the architecture of Vector IRAM

(VIRAM), a processor that combines vector processing with embedded DRAM technology.

Vector processing achieves high multimedia performance with simple hardware, while em-

bedded DRAM provides high memory bandwidth at low energy consumption. VIRAM pro-

vides flexible support for media data types, short vectors, and DSP features. The vector

pipeline is enhanced to hide DRAM latency without using caches. The peak performance is

3.2 GFLOPS (single precision) and maximum memory bandwidth is 25.6 GBytes/s. With a

target power consumption of 2 Watts for the vector pipeline and the memory system, VIRAM

supports 1.6 GFLOPS/Watt. For a set of representative media kernels, VIRAM sustains on

average 88% of its peak performance, outperforming conventional SIMD media extensions

and DSP processors by factors of 4.5 to 17. Using a clustered implementation approach,

the modular design can be scaled without complicating control logic. We demonstrate that

scaling the architecture leads to near linear application speedup. We also evaluate the ef-

fect of scaling the capacity and parallelism of the on-chip memory system to die area and

sustained performance.

Contents

1 Introduction 1

2 The Architecture 3
2.1 Vector Register File . 3
2.2 Vector Functional Units . 5
2.3 Vector Pipeline for Embedded DRAM . 6

2.4 Instruction Chaining . 9
2.5 Support for Short Vectors . 10
2.6 Vector Unit Implementation . 10
2.7 Memory System . 11

2.8 Memory Management and Exception Processing 13
2.9 Support for Speculative Vector Execution 14
2.10 Network Interface and I/O . 15

3 Discussion 15
3.1 Support for Media Processing . 15
3.2 Energy Efficiency . 17

3.3 Design Scalability . 18

4 Performance 19
4.1 Base System Performance . 20
4.2 Scaled System Performance . 22
4.3 Memory System Scaling . 24

5 Related Work 27

6 Conclusions 29

References

Acknowledgments

1 Introduction

Over the past few years, technology drivers for microprocessors have changed significantly.
High-end systems for technical and scientific applications used to direct the evolution of
processor architecture. Now, consumer-level systems drive technology, due to their large
volume and attendant profits. Within this environment, important application and technol-

ogy trends have evolved. Media processing – such as video processing, speech recognition
and 3D graphics – is increasing in importance and will soon dominate the processing cycles
consumed in computer-based systems [11]. Unlike traditional applications, media kernels
are characterized by large amounts of data parallelism, tolerance to latency, demand for high

memory bandwidth, and, often, limited temporal locality [12].

At the same time, the popularity of portable electronics and mobile applications is shift-
ing the system focus from the desktop computer to personal mobile computing devices [23].

These devices require processors with low energy consumption and a high degree of integra-
tion (“system-on-a-chip”) to increase battery life and reduce size and cost. Providing more
natural human interfaces for these portable devices through speech and image recognition
will require greater performance for media functions.

Current high-performance microprocessors based on superscalar and out-of-order exe-
cution are poor matches for this new environment, as they have been optimized for appli-
cations with complex control flow and small working sets. To extract irregular instruction-
level parallelism (ILP) from sequential application code dynamically, they expend consid-

erable chip area on sophisticated control logic and speculation buffers, which adds to cost,
design complexity, and power consumption. To reduce average memory latencies, they use
large multilevel caches, often including an array of expensive and power-hungry off-chip
SRAM memories. Although caches are effective for applications that exhibit locality, they
increase memory latency and reduce effective memory bandwidth for codes that do not.

We expect these superscalar designs to scale poorly into future CMOS technologies. The
structures used to support dynamic ILP scale super-linearly with issue width. Worse, many
of these structures require global interactions which could impact cycle time given that in-

terconnect delays will limit communication speeds across future chip designs. Although it
may be possible to pipeline and cluster logic to remove long wires, this will further increase
design and compiler complexity for these designs.

This paper presents the architecture of the Vector IRAM (VIRAM) microprocessor.
VIRAM provides high multimedia performance with low energy consumption by integrat-
ing vector processing with embedded DRAM technology. Vector processing allows simple,
energy-efficient hardware to provide rapid execution of multimedia kernels. By eliminating

off-chip memory accesses, embedded DRAM technology provides both high sequential and

1

random memory bandwidth to large working sets with low energy consumption. The com-

ponent count for the whole system is decreased by integrating the processor and the memory
on the same die.

The major innovations in VIRAM compared to previous vector architectures include
flexible and scalable support for multimedia data types, optimizations for short vectors, the

design of a high-bandwidth memory system based on embedded DRAM, and support for
virtual memory and software speculative vector execution. The vector pipeline is designed
to hide the latency of DRAM accesses without a cache structure or the need for long vectors.
VIRAM supports 3.2 GFLOPS (single-precision) peak performance and 25.6 GByte/s peak
memory bandwidth. For a set of representative media kernels, 88% of the peak performance

is sustained on the average. The target power consumption for the vector unit and the mem-
ory system is 2 Watts, achieved by using the modest clock frequency of 200 MHz that allows
a 1.2 V power supply. The 1.6 GFLOPS/Watt provided by VIRAM enable computational
intensive applications like speech recognition to run on portable, battery-operated devices.

An alternative implementation could use a higher power supply and a 400 MHz clock fre-
quency, a feasible target in 0.18�m CMOS technology, to double the peak and sustained
performance.

The vector unit implementation is based on multiple identical (parallel) clusters, lead-

ing to a modular and highly scalable design. Scaling the number of clusters leads to near
linear application speedup without the need for recompilation. To observe performance im-
provements for applications with indexed or strided memory accesses, increasing the com-
putational power of the vector unit must be accompanied by a proportional increase of the
on-chip memory system performance. Memory system performance can be improved by

providing a large number of independent memory banks or with a smaller number of banks,
each of them organized as a collection of sub-banks. Independent banks allow memory ac-
cesses to be issued and executed in parallel, while sub-banks allow memory accesses to
overlap their execution. The use of sub-banks is of great importance for systems with re-

duced on-chip memory capacity, which usually employ a small number of banks for area
efficiency.

The remainder of this paper is organized as follows. Section 2 presents the microarchi-
tecture of VIRAM, including the pipeline structure and the memory system. In Section 3,
we discuss media processing and DSP support, energy consumption characteristics, and the

scaling properties of the design. Section 4 presents the performance of the base VIRAM
design and three scaled designs for a set of important media kernels. We also discuss the
effect of scaling the memory system capacity and parallelism on die area and sustained per-
formance. In Section 5, we discuss alternative or similar architectural approaches for media

processing or embedded systems.

2

2 The Architecture

VIRAM is a vector microprocessor for media processing with on-chip main memory. Fig-
ure 1 presents the block diagram of VIRAM. It contains a scalar unit, a vector coprocessor,

and a network interface all connected via a memory controller to the on-chip memory sys-
tem. It is being designed in a 0.18�m embedded DRAM technology with a target clock rate
of 200 MHz. The relatively low clock rate for this technology allows the low 1.2 V power
supply, used to reduce energy and power consumption.

The scalar unit 1 is a two-way superscalar core that implements the MIPS-IV instruc-
tion set [21]. It includes two integer datapaths, a decoupled floating-point unit, and a non-
blocking load/store unit. The scalar unit includes two-way set-associative primary instruc-
tion and data caches, each holding 16 KBytes. A general coprocessor interface is provided

to facilitate the exchange of instructions and data with a coprocessor.

The vector unit is attached to the scalar unit as a loosely-coupled coprocessor. It exe-
cutes a set of instructions defined as an extension to the basic MIPS ISA [27] that implement
a vector register architecture. Vector arithmetic instructions perform a set of identical opera-

tions on the elements of vector operands located in the vector register file. VIRAM provides
integer (fixed-point) and floating-point operations for 16-bit, 32-bit, and 64-bit data widths.
The vector instruction set also defines operations on 8-bit integers, which are not imple-
mented in order to reduce design complexity. Vector load and store instructions move data

between the register file and the multi-bank DRAM system. The instruction set also pro-
vides vector editing instructions such as compress and expand, extract operations for high-
speed reductions, and special instructions for memory management and exception handling.
The number of elements processed by a vector instruction is specified by the vector length
control register and can be set to any value between zero and the maximum number of vector

elements in a register.

To enhance performance, the scalar and the vector unit do not operate in lock-step. The
vector unit includes instruction buffers that allow the scalar core to run ahead. The two units
are synchronized on vector unit exceptions, when vector unit state is read by the scalar core,

and on explicit synchronization instructions.

2.1 Vector Register File

The vector register file has a capacity of 8 KBytes and contains 32 general-purpose vec-
tor registers, each holding up to 32 64-bit elements. Vector registers can be subdivided to
hold 64 32-bit elements or 128 16-bit elements. If an application has vectors that exceed

1The scalar unit is designed by Sandcraft Inc., Santa Clara, CA.

3

VAFU VAFU

Flag Registers

VFFU

VMFU VMFU

VFFU

I/O
NI

SEND

Instruction
Cache

Data
Cache

Scalar
Core

...

0
1

BANK

DRAM

7

...

BANK

DRAM

8
9

15

MEMORY SYSTEM

RCV
NI

TRX

Vector Registers

VECTOR UNITSCALAR UNIT

Memory Interface

NETWORK INTERFACE

Figure 1: The Block diagram of VIRAM.

4

the length of a vector register, strip-mining must be used. The vector register file provides

operands for arithmetic operations, indices for indexed memory accesses and storage for
temporary vector results.

There are also 32 vector flag registers, each containing a single bit per vector element.
Flag registers are used to support conditional (predicated) vector execution, vector excep-
tion processing, and software vector speculation [2]. Almost all vector instructions are con-
ditional on a flag register that specifies which elements are active in an operation. The flag
register file has a capacity of 512 Bytes.

Two scalar register files are included in the vector unit. The first one stores control in-
formation used for exception handling, memory management, and I/O configuration. It also

holds the base addresses and stride values for vector memory accesses. The second one
holds scalar operands used with vector operations (vector-scalar form). Although the reg-
isters in the scalar unit could be used to provide scalar operands to vector instructions and
base addresses for vector memory references, separate register files are necessary in order
to comply with the MIPS coprocessor interface specification [21]. The interface does not

allow vector coprocessor instructions to read registers in the scalar core, but provides spe-
cial move instructions that exchange data between two scalar register files in the vector and
scalar units. Hence, every vector-scalar operation requires two instructions: one coproces-
sor move and one vector instruction. The scalar register file in the vector unit provides stor-

age for scalar operands so that the number of coprocessor move operations is minimized to
one per scalar operand needed, instead of one per vector-scalar instruction issued.

2.2 Vector Functional Units

There are six vector functional units in VIRAM: two arithmetic, two flag processing, and

two load-store. All vector functional units have multiple parallel datapaths to process mul-
tiple vector elements per cycle. Each arithmetic and memory unit has four 64-bit datapaths
that can be subdivided to perform eight 32-bit or sixteen 16-bit operations in parallel every
cycle.

Both vector arithmetic units support integer, fixed-point, and logical operations, but, to
reduce area, only one provides floating-point operations. The vector floating-point unit sup-
ports fused multiply-add. All operations are fully pipelined, excluding division, square root

and double precision floating-point multiplication. Divide and square root operations pro-
duce a single result bit per cycle. Multiplication has a latency of three cycles for integers,
four cycles for single precision, and seven cycles for double precision floating-point num-
bers. Apart from some instructions used to support fixed-point arithmetic, such as shift-&-

add, that have a two cycle latency, the rest complete in a single cycle. The arithmetic units

5

also process vector extract operations used for fast reductions.

Flag processing units provide boolean operations on flag registers and also support pop-
ulation count and priority encoding operations on flag vectors. Boolean operations on flags
have single cycle latency, while population count and priority encoding take two cycles. All
flag operations are fully pipelined.

The two load-store or memory units move data between the vector register file and the

memory system using one of three types of vector memory access: unit stride which ac-
cesses contiguous memory locations, strided which accesses locations separated by a fixed
distance, and indexed which uses a vector register to provide pointers to memory (scatter-
gather). Both memory units can perform unit stride operations, but only one can process

strided and indexed. A maximum of four independent addresses per cycle can be generated
for a strided or indexed access references. Vector memory operations transfer 8, 16, 32 or
64 bits per element. The only alignment restriction is that each element must be naturally
aligned. Each load-store unit exchanges up to 256 bits of data per cycle with the memory
system.

Vector memory accesses are not cached, but hardware maintains coherence between the
scalar cache and vector accesses. Coherence is achieved by generating invalidation requests
for cached data written by the vector unit. The data cache also uses a write-through update
policy. To reduce the invalidation bandwidth requirements for the data cache, invalidation

requests are first filtered in the vector unit using replica of the data cache tags. Filtering
eliminates invalidation requests for data not located in the data cache. Memory consistency
between the scalar and vector units is maintained in software by using explicit synchroniza-
tion instructions (memory barriers) and ordered vector stores [27]. Enforcing memory con-
sistency in hardware would result in execution serialization and limit performance even for

applications that have no memory consistency problems.

2.3 Vector Pipeline for Embedded DRAM

The main memory of VIRAM is based on embedded DRAM, which has significantly dif-
ferent performance characteristics than SRAM cache or SRAM main memory. An on-chip
multi-bank DRAM system can combine high capacity with main memory bandwidths on
the order of several tens of GBytes/s, but random access latency is at least 20 ns to 30 ns
(4–6 processor cycles), even for the most aggressive embedded DRAM technology [10] 2.

The latency of the processor-DRAM interconnect further increases access latency. In addi-
tion, DRAM has longer bank busy times than SRAM due to the potential need for restore,

2The random access latency for external DRAM is still considerably higher, typically between 100 ns and
200 ns [31].

6

precharge and row access operations.

High memory latency can reduce performance for an in-order vector pipeline even when
high memory bandwidth is available. Consider the pipeline presented in Figure 2(a), used

in many traditional vector architectures like the Cray C90 [9].

The vector unit holds issue of each instruction until it can start execution. Once issued,
a vector arithmetic instruction reads elements from the vector register file (VR), processes

them in several pipeline stages (X0, X1, ...) and writes back the result a few cycles later
(VW). A load instruction generates (G) and translates (T) addresses early, but can only write
back results at the end of the long DRAM access.

For the simple loop in Figure 3, instruction (3) will be stalled for several cycles after it is
issued, waiting for instructions (1) and (2) to fetch its operands from memory. Instruction
(3) is held in the issue stage, blocking the following instructions from being issued. The
same stall will occur on every iteration, leading to a large performance loss.

Memory latency can be tolerated by using static instruction scheduling techniques such
as software prefetching, loop unrolling and software pipelining. But loop unrolling and soft-

ware pipelining are of little use in the presence of short vectors and lead to significant code
size increase. Furthermore, static scheduling does not perform well in the presence of stat-
ically unpredictable branches or function calls into separately compiled code.

We handle DRAM latency by modifying the vector pipeline to include the memory ac-
cess latency. The execution of arithmetic operations is delayed by a fixed number of clock
cycles after issue to match the latency of a worst-case memory access, as presented in Fig-
ure 2(b). We call this the delayed vector pipeline. For the loop in Figure 3, instruction (3)

will be issued into a pipelined instruction buffer where it will be held until its operands are
available, thus freeing the issue stage to issue the following store instruction which can im-
mediately begin generating store addresses. The latency of memory accesses is effectively
hidden in all iterations. The instruction buffer has nine stages for VIRAM that account for
address generation and translation, DRAM access, and interconnect latency.

The worst-case memory reference requires precharge, row, and column accesses to
DRAM memory. The delayed pipeline accounts for the latency of all three operations, even

though the first two are not performed when the proper row is available (open) at the sense
amplifiers of the DRAM bank. A set of accesses to contiguous memory locations will appear
at a DRAM bank as one precharge and one row access, followed by a set of back-to-back
column accesses.

Although the delayed pipeline hides memory latency in most common cases, it exposes
the memory latency in others, such as reading a vector element into a scalar register or calcu-
lating addresses for an indexed vector memory reference. To reduce the frequency of scalar

accesses to vector elements, we incorporate hardware support for partially vectorized loops

7

F

DRAM Latency

VLOAD

VSTORE

VR X0 XN... VWVADD

D X W

Load -> Add RAW Hazard

Scalar Unit PipelineM

T VRG

T VWG

(a)

DRAM Latency

VLOAD

VSTORE

VR X0 ... VWXN

T VR

Delay Pipeline

XD M WF

VADD

Scalar Unit Pipeline

T VW

G

G

(b)

Figure 2: Vector pipeline models.

8

for (i=0; i<N; i+=VectorLength) f

(1) vector load reg1, addrA

(2) vector load reg2, addrB

(3) vector add reg3, reg1, reg2

(4) vector store reg3, addrC

g

Figure 3: Simple example of application kernel.

including compress, expand, and vector extract operations, and support for software vector

speculation. For the other cases, we rely on software instruction scheduling to minimize the
impact of the memory latency.

An interesting trade-off in the design of the delayed pipeline is the alignment of the read

stage (VR) in the pipeline for arithmetic and store operations and the write stage (VW) in
the pipeline for load operations. If these stages are aligned, as shown in Figure 2(b), an
arithmetic operation issued a cycle after a load operation can use the loaded data without
experiencing any stalls. On the other hand, executing the vector register file earlier in the

pipeline for arithmetic and load instructions leads to smaller bank busy time for store op-
erations and reduces the cost of moving the result of a vector arithmetic instruction to the
scalar unit. Since for most multimedia applications it is easy to schedule load operations
several cycles before the arithmetic instructions that use their results, arithmetic and store
operations in VIRAM read the vector register file three pipeline stages prior to the point that

load operations write the register file.
The memory latency could also be hidden with a decoupled vector pipeline [14], which

also tolerates large variability in access latency. The delayed pipeline was preferred because
it has simpler control, it does not require large hardware data buffers, and because there is
little latency variation in VIRAM. The decoupled pipeline should also have increased en-
ergy consumption, because it has to write and read a data buffer on every memory reference.
For the specific architecture and memory system of VIRAM, the data buffer needed for the

decoupled pipeline would be a four-ported 8 KByte SRAM block. This is comparable to the
size and design complexity of the vector register file. Section 4 presents performance results
that demonstrate the effectiveness of the delayed pipeline for multimedia applications.

2.4 Instruction Chaining

The vector unit is fully interlocked, meaning the hardware generates stalls to preserve de-
pendencies on vector registers. Chaining, the extension of forwarding to vector architec-

tures [22], allows overlapping the execution of dependent instructions. The second instruc-

9

tion is allowed to access earlier element positions concurrently with the first instruction’s

access to later element positions in the same vector register. VIRAM supports chaining on
all three types of hazards: RAW, WAR and WAW. Although the case of chaining RAW haz-
ards is the most common and critical for performance, WAR chaining reduces pressure on
vector register usage and WAW chaining accelerates applications with multiple concurrent
conditional updates on the same register (vectorized if-then-else statements).

Chaining is implemented within the vector register file. The new value of any element
can be read on the same cycle it is written. Additional bypass paths in the functional units
could reduce the chaining latency by one cycle but would increase control complexity, die
area, and energy consumption.

2.5 Support for Short Vectors

We have optimized VIRAM’s performance for the case of short vectors to increase the range
of applications that achieve speedups through vectorization. Unlike with many vector su-
percomputers, the startup of all vector instructions is fully pipelined. There is no dead time

between instructions, and the vector pipelines can be saturated even with very short vectors.
The delayed pipeline can tolerate long memory latency even with short vector lengths.

Post-incrementing addressing is supported for unit-stride and strided memory accesses
to reduce the address manipulation overhead for short vectors. Due to limitations in the co-
processor interface, incrementing a vector base address would otherwise require one scalar

addition and move instructions that would transfer the value in a base address register of the
vector unit. The instruction bandwidth consumed for such operations would limit the per-
formance in the case of short vectors, where each vector instruction has shorter completion
time and higher instruction bandwidth is required to keep the functional units busy.

Finally, VIRAM monitors the maximum vector length used by an application to reduce
the overhead of saving and restoring state during a context switch. Only the vector register

elements actually used by the application need to be saved or restored on a context switch.

2.6 Vector Unit Implementation

The vector instruction set has been designed to support a clustered implementation of the

vector unit. Each hardware cluster, called a lane, includes one 64-bit datapath from each
arithmetic unit, part of the vector and flag register files, and two 64-bit ports to the memory
system. The register files are partitioned so that each lane stores the register elements that
are processed by the local datapaths. The elements of a vector register are partitioned among

lanes in a round-robin fashion. All lanes are identical and are given the same control signals

10

on every cycle. VIRAM has four 64-bit lanes as shown in Figure 4. Each functional unit has

a total datapath width of 256 bits and spans across all lanes. Each lane includes eight 64-bit
elements from every vector register and the corresponding masks from the flag register file.

There are several advantages to this implementation approach compared to a centralized
one. Communication between functional unit datapaths and the vector registers can be ac-
commodated using local interconnect within each lane. The register file design is simplified,

as the bandwidth requirements are equally divided among four independent element parti-
tions. Design complexity is reduced because a single lane design can be replicated. Vector
lanes are also important in scaling and improving the energy efficiency for this architecture.
These issues are discussed in Section 3.

The register file partition in each lane still needs to sustain eight read and four write

operations for 64-bit elements per cycle. We split the SRAM block into two interleaved
banks [3] to halve the port requirements per bank. By performing all writes in the first half
of the clock cycle and all reads in the second, we require only four bit lines and four word
lines per storage cell. Register bank access conflicts have little performance impact for most
applications [3].

2.7 Memory System

The basis of the memory system is the DRAM bank. Each bank can store 2 MBytes and has

a 256-bit synchronous interface3 with separate input and output signals. The interface is a
simplified version of the SDRAM interface that supports a restricted set of operations such
as precharge, row access (activate), column access (256-bit read/write access). No burst
access modes or auto-refresh is supported.

Bank accesses are pipelined and addresses can be received at the maximum rate of one

per clock cycle (5 ns). The DRAM cycle time for random read/write accesses is 20 ns. Peak
sequential bandwidth per bank is 6.4 GBytes/s, while the worst case random bandwidth is
1.6 Gbytes/sec. The memory system consists of eight to sixteen banks, leading to total ca-
pacity of 16–32 MBytes, depending on our final die size. To simplify interconnect and to
address manufacturing issues, banks are divided into two wings which are placed above and

below the scalar and vector units, as shown in Figure 5.

To connect the vector lanes and the memory banks, there are two pairs of crossbars, one
pair per wing. Each pair includes separate load and store crossbars, both 256 bits wide.
The data transferred may either be from contiguous memory locations or belong to four in-
dependent 64-bit words from different DRAM banks. Each crossbar can deliver one to four

3The 2 MByte DRAM bank is designed by IBM. The bank is asynchronous and the synchronous interface
is implemented in a “wrapper” logic block used to interface each macro to the rest of the system.

11

Elements
Vector Register
& Datapaths
Flag Registers

Datapath 0
Integer

Datapath 1
Integer

Floating-point
Datapath

Memory Port 0

Memory Port 1

Elements
Vector Register
& Datapaths
Flag Registers

Datapath 0
Integer

Datapath 1
Integer

Floating-point
Datapath

Memory Port 0

Memory Port 1

Elements
Vector Register
& Datapaths
Flag Registers

Datapath 0
Integer

Datapath 1
Integer

Floating-point
Datapath

Memory Port 0

Memory Port 1

Elements
Vector Register
& Datapaths
Flag Registers

Datapath 0
Integer

Datapath 1
Integer

Floating-point
Datapath

Memory Port 0

Memory Port 1

Lane 1 Lane 3Lane 2Lane 0

256 bits

64 bits

Figure 4: Clustering of functional unit datapaths and register file partitions into lanes.

I/
O Scalar

Unit

Bank
0

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

Bank

DRAM

1 2 3 4 5 6 7

8 9 10 11

LaneLaneLaneLane

0 1 2 3

Crossbar Pair

Crossbar Pair

12 13 14 15

Figure 5: DRAM banks and vector lanes placement in VIRAM’s floorplan (drawing not to
scale).

12

independent addresses per cycle to the banks of each wing. The combined peak bandwidth

of the crossbar structure is 25.6 GBytes/sec. Both memory units have equal access to either
memory wing.

The scalar unit and the I/O interfaces communicate with memory by “stealing” cycles
on the crossbar from the vector unit. As their bandwidth demands are relatively low, shar-
ing does not create performance problems. The scalar core needs to access the memory
system only on cache refills and write accesses. In addition, bandwidth intensive compu-
tations on data with limited locality are typically handled in the vector unit. To reduce the

latency of cache refills, we allow accesses from the scalar core to “skip” the precharge and
row access stages in the memory pipeline, if their data reside in open rows in the DRAM
system. DRAM refresh accesses are periodically generated in the vector unit using a set of
refresh counters. Refresh accesses also steal cycles from regular vector memory references

and have the higher priority from any other access type.

The support for multiple addresses in the memory system and including memory latency
in the vector unit pipeline structure allows VIRAM to sustain a large number of pending

accesses to memory with simple, pipelined hardware. Memory accesses for 72 64-bit ele-
ments with up to 45 independent addresses may be in progress on any cycle. Such numbers
are prohibitively expensive to support for other architectures.

2.8 Memory Management and Exception Processing

VIRAM provides full support for demand-paged virtual memory: a fully associative TLB
with 48 two-page entries caches virtual to physical address translations. The page sizes
supported are 4, 16, 64, and 256 KBytes, and 1, 4, and 16 MBytes. There are two multi-
ported micro-TLB structures to supply the necessary address translation bandwidth for vec-

tor memory accesses. The first one is two-ported – one port per load-store unit – and caches
translations for unit stride accesses. The second one caches translations for strided and in-
dexed accesses and has four ports, one per address generated for such accesses each clock
cycle. The two micro-TLB structures have four single-page entries each and use least-

recently-used replacement (LRU) policy. Micro-TLB misses are handled in hardware with
accesses to the main TLB, while misses in the main TLB are handled by a software page
table walk.

TLB miss exceptions and virtual memory exceptions are not precise, but they are
restartable. The vector unit postpones execution on such an exception in order to allow
a software handler to observe its state and perform the proper exception processing tasks.
When the exception has been served, the vector unit is allowed to continue execution at the

point it was interrupted. In the case of a context switch, vector unit state can be saved and

13

restored. The vector unit can be processing instructions for a different process than the one

running in the scalar unit. Therefore, periodical operating system handlers or processes that
do not use the vector unit do not require saving or restoring vector unit state.

Vector arithmetic exceptions, both integer and floating-point, are not raised immediately
when the exceptional condition occurs. They are noted instead in dedicated flag registers
[2], and an application can raise them by using trap barrier instructions. The flag registers
provide the information necessary for user-level handlers, such as exception type and the

vector elements that caused it.

2.9 Support for Speculative Vector Execution

Software speculative execution is supported to improve the scheduling of conditionally ex-
ecuted vector statements by moving instructions above mask dependencies and branches in

the same way speculative execution is used to increase ILP for a superscalar processor by
moving instructions above control dependencies [2]. It is also used to allow vectorization
of loops with data dependent exit conditions. While hardware speculation relies solely on
hardware to speculate dependencies and correct any mispredictions, in software speculative
execution the hardware provides the necessary support for explicit speculation of dependen-

cies by the programmer or the compiler.

The VIRAM architecture supports software speculative execution by providing specu-
lative versions of load operations and arithmetic instructions that may cause exceptions. A
speculative vector load operation executes normally, but if there is an address error, zero
is written in the proper vector element, and the corresponding mask is set in a dedicated

flag register for speculative load address errors. No address error exceptions are raised dur-
ing the execution of a speculative load. A speculative vector arithmetic instruction exe-
cutes normally as well, but writes exception flags into dedicated flag registers for specu-
lative arithmetic exceptions. These flag registers are different from those used to note the
arithmetic exceptions from regular, non-speculative, instructions.

To vectorize loops with data dependent exit conditions, one can use speculative instruc-

tions to execute loop iterations before the correct number of iterations is known 4. When
the exit condition is met, speculatively generated exceptions must be raised on discarded
as appropriate. The hardware provides an instruction that raises speculative load address
errors and merges the speculative arithmetic exception flags with those for non-speculative
instructions for the vector elements that correspond to iterations that were correctly exe-

4Because no speculative store instruction is supported, speculative results should be kept in registers.
Memory should be updated only when the speculation has been resolved, and the correct number of iterations
is known.

14

cuted. The flags for the remaining elements are discarded.

2.10 Network Interface and I/O

While VIRAM’s main application area is portable multimedia systems, support for parallel
systems is also provided. The network interface allows message-passing over four bidirec-
tional links, each capable of a 100 MByte/s transfer rate in each direction. VIRAM chips

can be connected with these links to create parallel systems of arbitrary topology. They also
allow a VIRAM chip to be used along with a hard disk drive as the building block for scal-
able data servers like ISTORE [7].

The structure of the network interface is similar to those in the Alewife [24] and Fugu
[26] systems. It is memory-mapped as a virtual resource and allows applications to send
short or long messages without invoking the operating system. Short messages can be cre-
ated by storing data directly into a message buffer in the network interface. For long mes-

sages, one or more DMA descriptors must be placed in the same buffer. A DMA engine will
replace each descriptor with the appropriate memory blocks before the message is trans-
mitted over a communication link. The DMA engines for sending and receiving messages
in memory use virtual addresses. Both polling and user-level interrupt based message re-
ception is supported. Protection is provided by bounding the duration of interrupt disable

periods and user-level exception handlers.

VIRAM also includes a system and a debugging interface. The system bus follows the

basic SysAD protocol for MIPS processors [20], extended to support split transactions. Its
peak bandwidth is 800 MBytes/s and it can be used to connect to various peripheral devices
and external DRAM. A separate DMA engine is available for data exchange over the system
interface.

3 Discussion

3.1 Support for Media Processing

The vector processing model is a good match for multimedia applications, since most media
kernels process arrays or streams of pixels or samples in a SIMD fashion [12][13]. VIRAM
offers additional support for media processing by providing operations on the narrow data
types frequently used in such applications and by implementing several features of digital

signal processors (DSP).

The data width of the vector unit can be changed to either 16-bit, 32-bit, or 64-bit by

writing to a control register. The narrower data widths allow more elements to be stored

15

* Right
Shift Round

+ Saturate
X

Y

Z
n/2

n/2

n

n

shift
amount

W

Vector Multiply Vector Shift - & - Add

n

Figure 6: The implementation of multiply-accumulate DSP operations in VIRAM.

in each vector register and more parallel operations in the vector unit datapaths. The peak
performance of VIRAM in terms of operations per cycle doubles each time the data width
is halved. Using a narrower data type reduces the dynamic instruction count as well, since
each instruction specifies a larger number of element operations.

DSP processors provide special features for accelerating media kernels. Several of those
are subsumed by the vector processing model. High-speed multiply-accumulate operations
can be achieved by chaining vector multiply and add instructions or using vector floating-
point fused multiply-add. Auto-increment addressing is equivalent to strided vector mem-

ory operations. Each vector instruction represents a zero overhead loop. The multi-bank
DRAM system provides high sequential and random memory bandwidth.

Some remaining DSP features, like support for fixed-point operations, require special
architectural care. We provide hardware support for saturating arithmetic to 8-bit, 16-bit

or 32-bit data widths. To implement accurate multiply-accumulate operations, a shift-&-
add operation is provided which shifts right and rounds the first operand, before adding it
to the second. All common DSP rounding modes, including round to even, are supported.
Figure 6 presents how integer multiply and shift-&-add instructions are used to implement
multiply-accumulate operations.

High-speed reductions are supported with a special vector extract instruction. This op-
eration extracts the second half of a vector register and places it into the first half of another.
It also halves the vector length for the following operation. This requires no inter-lane com-
munication for vector lengths larger than the number of lanes. Inter-lane communication for

shorter vector lengths is accelerated with a special bypassing path for reductions. Together
with regular vector arithmetic instructions (e.g. vector add), a variety of fast, tree-based
reductions can be implemented. Fast reductions are particularly important for short vector
dot-products which are a crucial component of many DSP applications.

Finally, we provide instructions that support the element permutation necessary in order

16

to perform one step of a butterfly exchange on a vector register. These instructions utilize

the same hardware resources used for implementing fast reductions and provide significant
speedup for applications like FFT. They can also be used to synthesize multiple short vectors
into a longer one.

3.2 Energy Efficiency

Low energy consumption is important for embedded microprocessors, particularly in

portable, battery-operated devices. Vector architectures have several inherent features that
lead to lower energy requirements compared to other high-performance architectures such
as superscalar and VLIW.

Instruction fetch, decode, and dispatch is performed once for a vector of operations,
significantly reducing control logic energy requirements. Vector instructions provide the

hardware with explicit dependence information about element operations, hence no com-
plex speculation, prediction, or re-order structure is needed to discover parallelism. Vector
instructions also naturally partition operations among vector lanes, with mostly local com-
munication within the lanes, thereby reducing interconnect energy.

By accessing main memory directly, no energy is wasted in caching data that has only

spatial locality, as is common in data-streaming media applications. Vector instructions also
access memory and vector register banks in a regular pattern which avoids energy consump-
tion in bank arbitration circuitry and enables power optimizations such as selective bank
activation.

Because vectors support highly parallel execution with low overhead, we can employ
voltage scaling to reduce energy per operation [6]. By doubling the number of vector lanes,
clock frequency can be halved without affecting the peak performance in terms of opera-
tions per cycle. Lowering the clock frequency allows a proportional decrease in the power
supply voltage. Energy consumption is proportional to C �V 2

dd
, where C is the total capaci-

tance being charged/discharged and Vdd is the power supply voltage. Even though datapath
and control capacitance (C) can be doubled (worst-case) by increasing the number of lanes,
the square factor of Vdd leads to reduced energy consumption for the same performance. We
design VIRAM to run at 200 MHz with a 1.2 V power supply and a target power consump-

tion of 2 W for the vector unit and the memory system.

Conditional execution provides another opportunity for reducing energy consumption
by controlling circuit activation and clock gating at a fine granularity. By reading the mask
register early in the pipeline, we can disable datapaths corresponding to masked-off element
operations.

A final source of energy efficiency in VIRAM is the on-chip main memory. By elimi-

17

nating the need to drive off-chip, high capacitance buses for memory references, the energy

consumed in the memory system can be reduced by as much as a factor of four [16]. The
energy consumption of the memory system is also reduced by using low-swing interconnect
technology [41] in the design of the memory crossbar.

Despite the modest clock rate, the highly parallel design of VIRAM can support
3.2 GOPS (32-bit operations) or 1.6 GOPS/Watt. StrongArm SA-110 [28], the leading mi-
croprocessor in power/performance efficiency, achieves 0.11 GOPS/Watt, when clocked at
200 MHz with a 2.2 V power supply. SA-110 was designed in a 0.35 �m CMOS process,

its peak performance for 32-bit integer multiply-add operations is 0.1 GOPS, and its typi-
cal power consumption is 0.895 Watts. The next generation StrongArm processor [40], de-
signed in a 0.18 �m process at 600 MHz with a 1.3 V power supply, is expected to support
0.6 GOPS/Watt. VIRAM, an academic research project, outperforms both generations of

StrongArm in terms of power/performance efficiency by factors of 2.6 to 14.5.

3.3 Design Scalability

Scalability is an important consideration for processor architectures as transistor budgets,
the speed of integrated circuits and requirements for performance improvements increase

according to Moore’s law. There are two equally important sides to scaling an architecture:
scaling performance and scaling design complexity. Vector architectures have several ad-
vantages when we consider future scaling of the design, both in terms of performance and
design complexity.

Conventional architectures scale performance by increasing the operation frequency and
the number of arithmetic units in the design. The simplicity of vector unit hardware (simple
issue logic, increased locality within a lane) makes it easy to scale clock frequency. Still,

this may not be the most appropriate method for a energy-conscious design. Allocating ad-
ditional arithmetic units allows the execution of more vector instructions in parallel. One
would probably add memory units as well to keep the design balanced. However, each extra
functional unit requires additional vector register file ports which increases design complex-

ity.

Vector performance can be readily scaled up by adding parallel lanes, or scaled down by
removing lanes. This performance scaling can be made transparent to compiled code. The

balance between arithmetic and functional units is maintained when scaling the number of
lanes, as each lane contains both arithmetic datapaths and memory ports. Vector lengths
larger than the number of lanes are required to observe significant application speedup. For
many image processing kernels, the maximum application vector length is equal to the width

of an image or frame, typically in the order of hundreds of elements. Therefore, the number

18

of lanes in VIRAM can be doubled a few times and still lead to proportional improvements

in application performance.
Vector architectures are also capable of scaling into future fabrication technologies

which will be much more sensitive to interconnect delays. The majority of communica-
tion in the vector unit is held local to each lane, hence cycle time should not be affected
when scaling up the number of lanes. Vector performance is largely insensitive to vector

instruction broadcast latency which can be pipelined across the lanes. The memory cross-
bar and the inter-lane networks to support extraction operations represent the main places
where wire-delay scaling will be visible in future technologies. Since vector architectures
can tolerate latency if sufficient fine-grain parallelism is available [2], the interconnect can

be pipelined to reduce the effects of wire delay scaling. Instruction chaining can be used to
limit the effect of the extra latency to one occurrence per application kernel or loop.

The memory system can be scaled by allocating additional DRAM banks, increasing this
way both memory capacity and bandwidth. The performance of the memory system can be
improved without increasing the overall capacity by modifying the DRAM bank interface.

To reduce access latency, each bank is organized as set of sub-banks connected through a bus
to a shared interface. Exposing the existence of sub-banks through the bank interface allows
accesses to different sub-banks in the same bank to overlap. Effective memory bandwidth
is therefore increased. Such accesses would otherwise lead to a bank conflict and would be

serialized.
The rapidly increasing complexity of superscalar processor design [19][35] is a disad-

vantage when considering utilizing future high density fabrication processes. In contrast,
VIRAM has a modular design both in the vector unit and memory system that can be read-
ily scaled to larger designs. Control logic complexity grows only slowly with system size

whereas the design complexity of a superscalar, out-of-order design is a super-linear func-
tion of issue width.

4 Performance

Table 1 presents the peak performance for arithmetic operations for the various integer and
floating-point data types supported in the vector unit. These numbers do not include the
processing power of the scalar core. In general, peak performance doubles when data width

is halved. Peak floating-point performance depends on whether fused multiply-add can be
utilized by the application. Double precision floating-point performance for multiply and
multiply-add operations is lower than that for additions, because multiplication is not fully
pipelined for this data type.

We used a detailed performance model for our architecture to measure the sustained per-

19

Data Type Data Width Peak Performance

Integer 16b 6.4 GOPS
32b 3.2 GOPS
64b 1.6 GOPS

Floating-point 32b 3.2 GFLOPS
(multiply-add) 64b 0.8 GFLOPS

Floating-point 32b 1.6 GFLOPS
(multiply) 64b 0.4 GFLOPS

Floating-point 32b 1.6 GFLOPS

(add) 64b 0.8 GFLOPS

Table 1: The peak performance of VIRAM.

formance of VIRAM for a set of media kernels. The model simulates the vector unit and
the memory system in a cycle accurate fashion, excluding minor details such as DRAM
refresh cycles. We used the following set of representative media kernels: image composi-
tion, iDCT, color conversion, convolution, and matrix-vector multiplication. Composition

or alpha blending merges two 8-bit single channel images using a weight factor. iDCT per-
forms the 2D inverse discrete cosine transform on 8x8 blocks of 8-bit single channel im-
ages using the AAN algorithm [1]. Color space conversion translates 24-bit RGB images
to a YUV representation. Convolution applies a 3x3 box filter on an image. Finally, we im-
plemented matrix-vector (V xM) and vector-matrix (V TxM) multiplication both for integer

and floating-point numbers. The matrix size used was 1000x1000. The kernels were coded
directly in assembly and scheduled manually. Software pipelining was used for image com-
position, color conversion, and convolution. For iDCT and matrix-vector multiplication,
loop unrolling was also used.

4.1 Base System Performance

Table 2 presents the sustained performance of VIRAM for each kernel in terms of GOPS or
GFLOPS and percentage of peak performance. The type and width of arithmetic operations

for each kernel are also listed. A memory system with sixteen DRAM banks (32 MBytes)
was used. Sustained performance ranges from 48.5% to 100% of the peak with an average
of 88.8%. VIRAM efficiently exploits the data parallelism available in these applications,
and DRAM latency is hidden by the delayed pipeline. For iDCT, performance is limited by

the large number of bank conflicts and the restriction of four addresses per cycle for strided

20

Kernel Data Type GOPS or GFLOPS % of Peak

Composition Int (16b) 6.40 100.0%

iDCT Int (16b) 3.10 48.5%

Color Conversion Int (32b) 3.07 96.0%

Convolution Int (32b) 3.16 98.7%

MxV Multiply Int (32b) 2.77 86.5%

V
TxM Multiply Int (32b) 3.00 93.7%

MxV Multiply FP (32b) 2.80 87.5%

V
TxM Multiply FP (32b) 3.19 99.6%

Average 88.8%

Table 2: The sustained performance of VIRAM for the media kernels.

VIRAM MMX [8] VIS [33] TMS320C82 [18]

Composition 0.13 - 2.22 (17.0x) -

iDCT 0.75 3.75 (5.0x) - 5.70 (7.6x)

Color Conversion 0.77 8.00 (10.4x) - -

Convolution 1.21 5.49 (4.5x) 6.19 (5.1x) 6.5 (5.3x)

Table 3: Performance comparison between VIRAM, MMX, VIS, and TMS320C82. All
numbers are in cycles per pixel. The values in parentheses are the ratios of VIRAM’s per-

formance to that of the corresponding architecture. Ratios greater than 1.0 indicate higher
performance for VIRAM.

accesses 5. For matrix-vector multiplication, the MxV form is limited by the use of extract

operations for implementing reductions. These operations execute in one of the arithmetic
units but are not included in the arithmetic operation count for the kernel. The rest of the
kernels achieve operations throughput within a few percentage points from the peak.

To compare with other architectures, we present performance in terms of cycles per
pixel. Table 3 compares VIRAM to two general purpose architectures with SIMD exten-

sions and one DSP processor. MMX [29] and VIS [38] are 64-bit SIMD media extensions
used with the Pentium and UltraSparc processors respectively. The performance results for
MMX and VIS assume that all data is located in the primary cache 6. This is an optimistic

5For the 16-bit data type, an arithmetic instruction can process 16 vector elements per clock cycle, while
a strided or indexed access can only proceed at the rate of four elements per cycle.

6SRAM caches usually have access latency and bank busy time of one or two processor cycles.

21

Kernel 1 Lane System 2 Lane System 4 Lane System 8 Lane System

Composition 1.60 (100%) 3.20 (100%) 6.40 (100%) 10.24 (80%)

iDCT 0.96 (60%) 1.85 (58%) 3.10 (48%) 3.63 (27%)

Color Conversion 0.79 (99%) 1.56 (98%) 3.07 (96%) 5.90 (92%)

Convolution 0.8 (100%) 1.59 (99%) 3.16 (99%) 6.05 (95%)

MxV Multiply 0.73 (91%) 1.45 (91%) 2.77 (87%) 4.78 (75%)

V
TxM Multiply 0.79 (99%) 1.55 (97%) 3.00 (94%) 5.8 (91%)

MxV Multiply 0.75 (94%) 1.48 (93%) 2.80 (88%) 4.91 (77%)

V
TxM Multiply 0.79 (99%) 1.59 (99%) 3.19 (99%) 6.38 (99%)

Average Efficiency 92.1% 90.8% 88.8% 78.2%

Table 4: The Sustained performance for VIRAM configurations with one, two, four, and
eight lanes. The values in parentheses are the achieved percentages of the peak performance

for the corresponding configuration.

assumption, especially in the case of streaming media applications where temporal data lo-
cality is limited. TMS320C82 [18] combines a RISC core with two 32-bit DSP cores archi-
tected for media processing. All three systems can perform multiple narrow operations on

wider datapaths in parallel. Despite accessing directly the DRAM main memory instead of a
SRAM primary cache, VIRAM outperforms the SIMD extensions by factors of 4.5 to 17. A
factor of four results from the use of four 64-bit lanes, leading to datapaths four times wider
than those in MMX and VIS. The remaining improvement is due to the benefits from im-
plementing a complete vector instruction set, such as support for vector memory references.

VIRAM outperforms TMS320C82 by factors of 5.3 and 7.5 for convolution and iDCT re-
spectively, demonstrating that the architecture efficiently supports DSP processors features.

4.2 Scaled System Performance

To demonstrate the scaling properties of our architecture, we simulated three additional
VIRAM systems with one, two and eight lanes respectively. Scaling the number of lanes
adds both datapaths and memory ports to the system. We also scale the number of addresses

per cycle generated for strided and indexed accesses, and the number of addresses that can
be transfered by each crossbar to match the number of lanes. The rest of the system is the
same as the four-lane VIRAM we have presented. The same executables were used with all
four configurations. Table 4 presents the sustained performance for each configuration and

Figure 7 shows the speedup over the single lane system. Excluding iDCT, the speedup is

22

S
pe

ed
up

0

1

2

3

4

5

6

7

8

Composition ConvolutioniDCT VM INT (32b)MV INT (32b) MV FP (32b)Color
Conversion

VM FP (32b)

1 Lane 2 Lanes 4 Lanes 8 Lanes

Figure 7: The speedup of four VIRAM configurations over the single lane system.

S
pe

ed
up

0

1

2

3

4

5

6

7

8

1 Lane 2 Lanes 4 Lanes 8 Lanes

1 sub-bank 2 sub-banks 4 sub-banks 8 sub-bank

60% 60% 60% 60%

58% 58% 58%58%

39%

48%
58%58%58%27%

50% 51%

Figure 8: The speedup for iDCT with four different DRAM bank designs, each with a dif-
ferent number of sub-banks. The percentage of peak performance achieved for each con-
figuration is presented above the speedup column.

near linear, which shows that increasing the number of lanes leads to proportional increases
in application performance without rescheduling and recompilation.

For iDCT, speedup is severely limited by bank conflicts in the memory system. As ex-
plained in Section 2, conflicts can be reduced by modifying the DRAM bank interface to
expose the existence of sub-banks. Figure 8 shows the speedup for iDCT for systems with
one, two, four and eight sub-banks per bank. Excluding the sub-banks, each configuration

is the same with the one described in the previous paragraph, and the same executable was
used. The system with four lanes and one sub-bank per bank is the one described in Section
2. Four sub-banks provide sufficient parallelism in the memory system to achieve near lin-
ear speedup and sustained performance between 50% and 60% of the peak. At this point,

the main performance bottleneck is the number of addresses generated per cycle for strided

23

8 MBytes 32 MBytes16 MBytes

Memory Capacity

A
re

a
(m

m
2)

0

50

100

150

200

250

300

350

400

450

Memory Area (1 MByte Banks)

Die Area (1 MByte Banks)

Memory Area (2 MByte Banks)

Die Area (2 MByte Banks)

Figure 9: The area for memory and the total die area for VIRAM systems with memory
capacity of 8, 16, and 32 MBytes. The area for systems using 1 and 2 MByte banks as the

basic building block is presented.

accesses. Scaling the number of addresses for strided and indexed accesses is an expensive

enhancement since it requires additional resources for address generation and translation,
scalar cache invalidations, and crossbar address paths.

4.3 Memory System Scaling

Apart from scaling the computational power of the architecture, scaling the memory ca-
pacity is also of great interest. With die cost being a super-linear function of die area [22],
matching the memory capacity of a VIRAM chip to the application requirements is impor-
tant for consumer-level applications systems. The initial commercial implementations of

VIRAM will probably have less than 32 MBytes of memory on-chip to reduce cost. In this
section, we examine the effect of scaling down the memory capacity to die area and sus-
tained performance.

Memory capacity can be decreased by reducing the number of independent DRAM
banks in the system. Figure 9 shows the area occupied by DRAM memory and the total

die area for VIRAM configurations with memory capacity of 8, 16, and 32 MBytes. Area
values for memory systems using 1 and 2 MByte DRAM banks as the building block are
presented. All configurations have four lanes in the vector unit. The numbers presented re-
flect the IBM 0.18mm2 embedded DRAM technology used to implement VIRAM, which is

based on a logic process and is optimized for low latency. Memory density for this technol-

24

G
O

P
S

 o
r

G
F

LO
P

S

0

1

2

3

4

5

6

7

16 Banks 8 Banks 4 Banks 4 Banks (2 Sub-banks)

Composition iDCT Color
Conversion

MV Int (32b)Convolution MV FP (32b) VM Int (32b)VM Int (32b)

Figure 10: The performance of VIRAM for systems with 16, 8, and 4 memory banks. For
the 4 bank system we also present performance with two sub-banks per bank. For all the
other cases, one sub-bank per bank is assumed.

G
O

P
S

0

1

2

3

4

1 Sub-bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

16 Banks 4 Banks8 Banks

Figure 11: The performance of VIRAM for iDCT for systems with 16, 8, and 4 memory
banks and 1 to 8 sub-banks per bank.

ogy is 1.8 to 2 times lower than that of embedded DRAM technologies optimized for area.
While using another process will lead to different area values, we believe that the trends
observed will be similar.

A VIRAM system with 32 MBytes of DRAM requires almost 400mm2. On the other
hand, a system with 8 MBytes takes up 150mm2, a reasonable die size for commercial mi-

croprocessors. For any memory capacity, using 2 MByte banks is more efficient than using
a larger number of 1 MByte banks. Larger banks amortize better the fixed area overhead
per bank for control and test logic. Systems using the 1 MByte bank are 5% to 10% larger
than those using the 2 MByte one. A smaller number of banks also simplifies the memory

controller design in the vector unit as well.

25

Number of Banks Bank Capacity Memory Capacity Memory Area Die Area
(MBytes) (MBytes) (mm2) (mm2)

8 1.00 8 88.4 158.4
8 1.25 10 106.2 176.2

8 1.50 12 124.0 194.0
8 1.75 14 143.1 213.1
8 2.00 16 160.9 230.9

16 1.00 16 176.9 246.9

16 1.25 20 212.4 282.4
16 1.50 24 248.1 318.1
16 1.75 28 286.4 356.4
16 2.00 32 321.9 391.9

Table 5: The memory and die area for a four lane VIRAM system using DRAM banks with

capacity between 1 and 2 MBytes. Bank capacity is incremented by 0.25 MBytes. The area
of systems with 8 and 16 DRAM banks. is presented.

Figure 10 presents how scaling the number of banks affects the performance of a four
lane VIRAM system. By eliminating DRAM banks, the parallelism in the memory system
is reduced. Less addresses can be issued and processed in parallel, and it becomes more

difficult to hide DRAM bank busy time. Still, the performance for most kernels is not af-
fected, even with the four bank system. For image composition, a kernel with three indepen-
dent address streams, performance is significantly reduced with four banks due to the large
number of memory conflicts 7. Exposing the existence of two sub-banks per bank is enough

to restore the original performance in this case. The use of sub-banks in systems with few
banks is more critical for applications with strided or indexed accesses like iDCT. Figure 11
presents the performance for iDCT as a function of the number of banks and sub-banks per
bank. For the four bank system, eight sub-banks do not provide sufficient parallelism and
performance is 12% lower than that for the 16 bank system with one sub-banks per bank.

Multiple sub-banks allow accesses to the same bank to overlap, but they do not allow ac-
cesses to be issued in parallel.

An alternative way to decrease memory capacity is scale the capacity of the DRAM

banks. Most embedded DRAM manufacturers provide a variety of DRAM banks sizes or
even compilers that can generate custom bank configurations. These banks usually differ in

7Most of these conflicts could be eliminated with intelligent memory allocation by an optimizing compiler
that is aware of the memory system structure.

26

Memory Capacity (MBytes)

8 10 12 14 16 18 20 22 24 26 28 30 32

A
re

a
(m

m
2)

0

50

100

150

200

250

300

350

400

450

Memory Area (16 Banks) Die Area (16 Banks)

Memory Area (8 Banks) Die Area (8 Banks)

Figure 12: The memory and die area for a four lane VIRAM system using DRAM banks
with capacity between 1 and 2 MBytes. Bank capacity is incremented by 0.25 MBytes. The

area of systems with 8 and 16 DRAM banks is presented.

the number DRAM rows they contain. Using banks with reduced capacity is less area effi-
cient than reducing the number of (larger) banks, due to the area overhead for control and

test logic per bank. On the other hand, keeping the number of banks constant does not ef-
fect the memory system parallelism and performance. The use of smaller banks also allows
scaling the memory capacity in late stages of the design process with minimal implications
to the rest of the system. Table 5 and Figure 12 present the DRAM memory and die area
for VIRAM systems with 8 or 16 banks, where the bank capacity varies between 1 and 2

MBytes at increments of 0.25 MBytes. The total memory capacity of the system is between
8 and 32 MBytes and die area varies between 160 and 390 mm2. Die area scales linearly
with memory capacity. Performance, on the other hand, is only affected by the number of
banks in the memory system, not by bank capacity.

5 Related Work

Several other research efforts have focused on architectural enhancements for media-centric
applications. The majority of these systems are based on one of the following approaches:

VLIW, SIMD, reconfigurable logic, and stream processing.

27

VLIW systems, such as Trimedia [37] and VelociTI [39], exploit both regular and irreg-

ular parallelism at compile time. For vectorizable code running from a high latency mem-
ory system, they require much greater instruction bandwidth and more sophisticated com-
piler technology when scheduling loops in the presence of high memory latency. VLIW ma-
chines must also adopt a clustered approach if they are to scale, which further complicates
the compilation task. The compiler will be aware of both intra- and inter-cluster communi-

cation latencies. Increased code size is another disadvantage of VLIW systems.

SIMD extensions to existing processor architectures [29, 30] are essentially narrow vec-
tor designs without support for vector memory operations. They have limited scalability
because each instruction specifies a fixed number of operations. To utilize additional hard-

ware resources in the future, one has to either increase the superscalar issue width or modify
the instruction set to increase the width of SIMD operations. Most extensions do not sup-
port SIMD memory operations, therefore exposing data alignment to user software [32].
Certain instructions, such as random permutations, will not scale well due to interconnect

delay scalability problems. Recent simulation studies have demonstrated that, for media
applications, a two-way in-order superscalar processor with a vector unit can outperform a
four-way out-of-order design with SIMD extensions by a factor of three [25].

Reconfigurable processors like PipeRench [17], based on FPGA technology, can pro-
vide large speedups on some media applications. Reconfigurable systems excel at very nar-

row bit width operations but incur large die area and power consumption overheads when
implementing wide arithmetic structures such as multipliers.

Imagine [34] is a stream processor which also relies on vector parallelism to reduce in-
struction bandwidth and to cluster functional units. It has small register files local to each

functional unit backed up by a 64 KByte global stream register file. VIRAM has a vector
register file distributed across lanes backed up by the on-chip memory. Whereas VIRAM
provides lanes with arbitrary random access to the larger on-chip memory, Imagine restricts
arithmetic clusters to access the stream register file using only sequential streams. Imagine

is an attached processor that has been designed to process long streams residing in a sepa-
rate memory space from the host processor. In contrast, the VIRAM vector unit is tightly
coupled to the scalar unit sharing the same instruction stream and memory space, and it has
been designed to accelerate even short vector operations.

VIRAM is most similar to the T0 vector microprocessor [4] which was also targeted

towards multimedia. T0 had a much simpler SRAM memory system and lacked support
for virtual memory, floating-point arithmetic, and partitionable datapaths. Other vector ma-
chines include vector super-computers like the SGI/Cray SV1 [15] which have been op-
timized for super-computer applications rather than low-energy embedded media applica-

tions.

28

Embedded DRAM processors, such as the M32R/D [36], are also available. These

merely integrate a simple RISC pipeline in an existing DRAM chip with limited enhance-
ments for utilizing the increased memory bandwidth. In previous work, we have demon-
strated the limited performance benefits of this approach [5]. The memory capacity of such
processors is usually limited to 4 MBytes, and the memory system organization is similar
to that of traditional DRAM chips.

The architecture we present in this paper is targeted towards multimedia applications
for embedded, mobile systems. Its pipeline and memory system are designed for embedded
DRAM. Unlike other approaches, energy efficiency and scalability of both performance and
physical design are major points of focus.

6 Conclusions

Microprocessor architectures for next generation portable devices must provide both high-
performance for media functions and reduced energy consumption. In addition, the scaling
characteristics of CMOS technology require modular designs, that have mostly local inter-
connect or can tolerate communication latency. Conventional microprocessors fail to meet
these requirements.

In this paper we presented VIRAM, a vector microprocessor with embedded mem-
ory, optimized for multimedia applications. VIRAM addresses the requirements of future
portable devices by integrating vector processing and embedded DRAM. Vector processing
provides high performance for media functions with simple, scalable hardware, while em-
bedded DRAM provides high memory capacity and bandwidth at low energy consumption.

Media processing is enhanced in VIRAM by providing flexible support for both narrow
and wide data types and a set of DSP features like saturated arithmetic and fast reductions.
The vector pipeline is optimized for short vectors and can tolerate high memory latency.
Conditional execution, software vector speculation, and virtual memory are also supported.

The memory system consists of multiple synchronous DRAM banks interconnected with
a high bandwidth crossbar structure. The vector unit design is modular. It is implemented
using multiple identical lanes, each one containing one datapath from every functional unit,
two memory ports and a register file partition. Performance can be scaled by increasing the
number of lanes without complicating control or issue logic. The highly parallel design can

provide high performance at low operational frequency and power supply, thus enabling
high energy efficiency.

VIRAM is designed for 0.18�m technology with a 200 MHz clock frequency and 1.2
V power supply. The target power consumption for the vector unit and the memory sys-

tem is 2 Watts. Peak performance is 6.4 GOPS (16-bit operations) or 3.2 GFLOPS (single-

29

precision). For a set of important media kernels, VIRAM achieves on average 88% perfor-

mance efficiency and outperforms DSP processors or architectures with SIMD media ex-
tensions by factors of 4.5 to 17.

While the base design includes four lanes, we demonstrated that performance scales al-
most linearly with the number of lanes in the system. For applications with indexed and
strided accesses, scaling the memory system performance in parallel with increasing the

computational power is necessary to observe performance benefits. Memory system per-
formance can be improved by allocating more memory banks or exposing the existence of
sub-banks within each banks. Sub-banks are also important for improving the performance
of VIRAM systems with reduced memory capacity, which use a small number of banks for

area efficiency.
Future work includes completing the physical design of VIRAM, and evaluating its

performance and energy characteristics using an actual demonstration system that includes
VIRAM with several peripheral devices. The microprocessor presented in this paper is one
possible implementation of the VIRAM instruction set architecture. We intend to investi-

gate through simulations alternative organizations, both for the vector unit and the memory
system. All architectural and implementation alternatives will be evaluated both for per-
formance and energy efficiency. Some of the interesting issues are the number, mix, and
capabilities of functional units, the timing parameters of the memory system, and support

for density-time implementations of vector conditional execution.

30

References

[1] Y. Arai, T. Agui, and M. Nakajima. A Fast DCT-SQ Scheme for Images. Transactions of the

IEICE, E 71(11):1095, November 1988.

[2] K. Asanović. Vector Microprocessors. PhD thesis, Computer Science Division, University of

California at Berkeley, 1998.

[3] K. Asanović. VLSI Vector Register File Design. Submitted for Publication, December 1998.

[4] K. Asanović, B. Kingsbury, B. Irissou, J. Beck, and J. Wawrzynek. T0: A Single-Chip Vec-

tor Microprocessor with Reconfigurable Pipelines. In The Proceedings of the 22nd European

Solid-State Circuits Conference, September 1996.

[5] W. Bowman, C. Cardwell, C. Kozyrakis, C. Romer, and H. Wang. Evaluation of Existing Ar-

chitectures in IRAM Systems. In The Workshop on Mixing Logic and DRAM, ISCA 24, June

1997.

[6] R.W. Brodersen, A. Chandrakasan, and S. Sheng. Design techniques for portable systems. In

The International Solid-State Circuits Conference, Digest of Technical Papers, pages 168–9,

February 1993.

[7] A. Brown, D. Oppenheimer, K. Keeton, R. Thomas, J. Kubiatowicz, and D. Patterson. IS-

TORE: Introspective Storage for Data-Intensive Network Services. In The Proceedings of the

7th Workshop on Hot Topics in Operating Systems (HotOS-VII), March 1999.

[8] Intel Corporation. MMX Technology Application Notes.

http://developer.intel.com/drg/mmx/appnotes/, 1996.

[9] Cray Research, Incorporated, Chippewa Falls, WI 54729. Cray Y-MP C90 System Programmer

Reference Manual, 001 edition, June 1993. CSM-0500-001.

[10] S. Crowder, R. Hannon, H. Ho, D. Sinitsky, S. Wu, K. Winstel, B. Khan, S. Stiffler, and S. Iye.

Integration of trench DRAM into a high-performance 0.18 �m logic technology with copper

BEOL. In The Proceedings of IEEE International Electron Devices Meeting, pages 1017–20,

December 1998.

[11] W. Dally. Tomorrow’s Computing Engines. Keynote Speech, Fourth International Symposium

on High-Performance Computer Architecture, February 1998.

[12] K. Diefendorff and P. Dubey. How Multimedia Workloads Will Change Processor Design.

IEEE Computer, 30(9):43–45, September 1997.

[13] P. Dubey. Architectural and Design Implications of Mediaprocessing. Tutorial, The Hot Chips

XI Symposium, August 1997.

[14] R. Espasa and M. Valero. Decoupled Vector Architecture. In The Proceedings of the Second

International Symposium on High-Performance Computer Architecture, February 1996.

[15] G. Faanes. A CMOS Vector Processor with a Custom Streaming Cache. In The Proceedings

of Hot Chips X Symposium, August 1998.

[16] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, P. Patterson, T. Anderson,

and K. Yelick. The Energy Efficiency of IRAM Architectures. In The Proceedings of the 24th

Annual International Symposiumon Computer Architecture, June 1997.

[17] S. Goldstein, H Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and R. Laufer. PipeRench:

a Coprocessor for Streaming Multimedia Acceleration. In The 26th International Symposium

on Computer Architecture, March 1999.

[18] J. Golston. Single-Chip H.324 Videoconferencing. IEEE Micro, 16(4):21–33, August 1993.

[19] G. Grohoski. Challenges and Trends in Processor Design: Reining in Complexity. IEEE Com-

puter, 31(1):41–42, January 1998.

[20] J. Heinrich. MIPS R4000 Microprocessor User Manual. MIPS Technologies Inc., 2nd edition,

1994.

[21] J. Heinrich. MIPS RISC Architecture, 2nd Edition. Silicon Graphics, Inc., 1998.

[22] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach, second edi-

tion. Morgan Kaufmann, 1996.

[23] C.E. Kozyrakis and D.A. Patterson. A New Direction in Computer Architecture Research.

IEEE Computer, 31(11):24–32, November 1998.

[24] J. Kubiatowicz and A. Agarwal. Anatomy of a Message in the Alewife Multiprocessor. In

Proceedings of the 7th ACM International Conference on Supercomputing, July 1993.

[25] C. Lee and M. Stoodley. Simple Vector Microptocessors for Multimedia Applications. In The

Proceeding of the 31st International Symposium on Microarchitecture, December 1998.

[26] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee, A. Agarwal, and M Kaashock. Ex-

ploiting two-case delivery for fast protected messaging. In Proceedings of the Fourth Inter-

national Symposium on High-Performance Computer Architecture, pages 231–42, February

1998.

[27] D. Martin. Vector Extensions to the MIPS-IV Instruction Set Architecture. Computer Science

Division, University of California at Berkeley, January 1999.

[28] James Montanaro, Richard T. Witek, Krishna Anne, Andrew J. Black, Elizabeth M. Cooper,

Daniel W. Dobberpuhl, Paul M. Donahue, Jim Eno, Alejandro Fatell, Gregory W Hoeppner,

Davidk Kruckmeyer, Thomas H. Lee, Peter Lin, Liam Madden, Daniel Murray, Mark Pearce,

Sribalan Santhanam, Kathryn J. Snyder, Ray Stephany, and Stephen C. Thierauf. A 160MHz

32b 0.5W CMOS RISC Microprocessor. In IEEE International Solid-State Circuits Confer-

ence, Slide Supplement, February 1996.

[29] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Architecture. IEEE Micro,

16(4):42–50, August 1996.

[30] M. Phillip. A Second Generation SIMD Microprocessor Architecture. In The Proceedings of

Hot Chips X Symposium, August 1998.

[31] B. Prince. High performance memories : new architecture DRAMs and SRAMs, evolution and

funtion. Chichester, 1996.

[32] P. Ranganathan, S. Adve, and N. Jouppi. Performance of Image and Video Processing with

General-Purpose Processors and Media ISA Extensions. In The Proceeding of the 26th Inter-

national Symposium on Computer Architecture, May 1999.

[33] D.S. Rice. High-Performance Image Processing Using Special-Purpose CPU Instructions: The

UltraSPARC Visual Instruction Set. Technical Report CSD-96-901, University of California

at Berkeley, 1996.

[34] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-Lagunas, P. Mattson, and J. Owens. A

Bandwidth-Efficient Architecture for Media Processing. In The 31st Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, November 1998.

[35] P. Rubinfeld. Challenges and Trends in Processor Design: Managing Problems in High Speed.

IEEE Computer, 31(1):47–48, January 1998.

[36] T. Shimizu. M32R/D - A Single Chip Microcontroller with A High Capacity 4MB Internal

DRAM. In The Proceedings of Hot Chips X Symposium, August 1998.

[37] G. Slavenburg, S. Rathnam, and H. Dijkstra. The Trimedia TM-1 PCI VLIW Media Processor.

In The Proceedings of Hot Chips 8 Symposium, August 1996.

[38] M. Tremblay, J. O’Connor, V. Narayanam, and H. Liang. VIS Speeds New Media Processing.

IEEE Micro, 16(4):10–20, Aug 1996.

[39] L. Truong. The VelociTI Architecture of the TMS320C6x. In The Proceedings of Hot Chips

XI Symposium, August 1997.

[40] J. Turley. StrongArm Speed to Triple. Microprocessor Report, 32(6), May 1999.

[41] H. Zhang and J. Rabaey. Low-swing Interconnect Interface Circuits. In The 1998 International

Symposium on Low Power Electronics and Design, August 1998.

Acknowledgments

There are several people to acknowledge. First of all my advisor, professor David Patterson,
for his guidance and friendship throughout this work, and for showing me how to perform
computer systems research. I also want to thank professor Krste Asanović (MIT) for teach-
ing me me all I know about vector architectures. His Ph.D. thesis has been the source of

many ideas used in VIRAM.
I would like to thank all the members of the IRAM group in U.C. Berkeley, from whom

I have learned so much. So far, they have managed to put up with my Greek accent and
stubborn character. In particular, I wish to thank Rich Fromm and David Martin for working
together on the VIRAM architecture and for developing the all the simulation infrastructure.

None of this work would be possible without them. Professor Kathy Yelick and professor
John Kubiatowicz are also major contributors to this architecture, and have provided great
assistance with understanding broad system issues.

I also want to acknowledge the following people for their support, technical advice and

feedback: J. Beck (ICSI), M. Beunder (Silicon Access), J. Bier (BDTI), Y. Choi (Mosaid), J.
Choquette (Sandcraft), D. Dobberpuhl (SiByte), M. Katevenis (U. of Crete), C. Lee (ATI),
S. Perissakis (U.C. Berkeley), S. Scott (SGI/Cray), J. Veenstra (Sandcraft), and N. Yeung
(Sandcraft).

I wish to thank my parents, Manolis and Litsa, and two sisters, Maria and Natasa, for

all their love, support and encouragement during my graduate studies and my “adventure”
in America. I also want to thank my best friends Maria, Rena, Angelos, and Dimitris for
making my life more beautiful, and for always being there for me when I needed them. Fi-
nally, I wish to acknowledge all my friends in Berkeley for being my “second family” since
August 1996, and in particular Amanda, Iason, Kostas, and Stelios for helping me with a

rather tough adjustment to living away from Greece.
This thesis is dedicated to the memory of two wonderful people, my late grandparents

Christoforos and Anastasia.

“What we have to learn, we learn by doing it”

Aristotle, Nicomachean Ethics, 350 B.C.

	Title
	Abstract
	Contents
	Introduction
	The Architecture
	Discussion
	Performance
	Related Work
	Conclusions
	References
	Acknowledgments

