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Conservation of energy to support growth solely from extracellular electron transfer was 24	

demonstrated for the first time in a methanogen. Methanosarcina acetivorans grew with 25	

methanol as the sole electron donor and the extracellular electron acceptor anthraquione-26	

2,6-disulfonate (AQDS) as the sole electron acceptor when methane production was 27	

inhibited with bromoethanesulfonate. Transcriptomics revealed that transcripts for the 28	

gene for the transmembrane, multi-heme, c-type cytochrome MmcA were 4-fold higher 29	

in AQDS-respiring cells versus methanogenic cells. A strain in which the gene for MmcA 30	

was deleted failed to grow via AQDS reduction whereas strains in which other 31	

cytochrome genes were deleted grew as well as the wild-type strain. The MmcA-deficient 32	

strain grew with the conversion of methanol or acetate to methane, suggesting that 33	

MmcA has a specialized role as a conduit for extracellular electron transfer. Enhanced 34	

expression of genes for methanol conversion to methyl-coenzyme M and components of 35	

the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-36	

respiring cells through a pathway that is similar to methyl-coenezyme M oxidation in 37	

methanogenic cells. However, during AQDS respiration the Rnf complex and reduced 38	

methanophenazine probably transfer electrons to MmcA, which functions as the terminal 39	

reductase for AQDS reduction. Extracellular electron transfer may enable survival of 40	

methanogens in dynamic environments in which oxidized humic substances and Fe(III) 41	

oxides are intermittently available. The availability of tools for genetic manipulation of 42	

M. acetivorans makes it an excellent model microbe for evaluating c-type cytochrome-43	

dependent extracellular electron transfer in Archaea. 44	

 45	

Importance 46	
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Extracellular electron exchange in Methanosarcina species and closely related Archaea 47	

plays an important role in the global carbon cycle and can enhance the speed and stability 48	

of anaerobic digestion, an important bioenergy strategy. The potential importance of 49	

c-type cytochromes for extracellular electron transfer to syntrophic bacterial partners 50	

and/or Fe(III) minerals in some Archaea has been suspected for some time, but the 51	

studies with Methanosarcina acetivorans reported here provide the first genetic evidence 52	

supporting this hypothesis. The results suggest parallels with Gram-negative bacteria, 53	

such as Shewanella and Geobacter species, in which outer-surface c-type cytochromes 54	

are an essential component for electrical communication with the extracellular 55	

environment. M. acetivorans offers an unprecedented opportunity to study mechanisms 56	

for energy conservation from the anaerobic oxidation of one-carbon organic compounds 57	

coupled to extracellular electron transfer in Archaea with implications not only for 58	

methanogens, but possibly also for anaerobic methane oxidation.     59	

Introduction 60	

 Extracellular electron exchange is central to the environmental function of diverse 61	

Archaea that oxidize and/or produce methane. Some methane-producing microorganisms 62	

can divert electron transfer from methane production to the reduction of extracellular 63	

electron carriers such as Fe(III), U(VI), V(IV), and anthraquinone-2,6-disulfonate 64	

(AQDS), a humic acid analog (1-9). Diversion of electron flux from methane production 65	

to extracellular electron transfer may influence the extent of methane production and 66	

metal geochemistry in anaerobic soils and sediments. Methanogens such as Methanothrix 67	

(formerly Methanosaeta) and Methanosarcina species can accept electrons via direct 68	

interspecies electron transfer from electron-donating partners, such as Geobacter species 69	
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in important methanogenic environments such as anaerobic digesters and rice paddy soils 70	

(10-12). Anaerobic methane oxidation also plays an important role in the global carbon 71	

cycle and diverse anaerobic methane-oxidizing archaea (ANME) transfer electrons 72	

derived from methane oxidation to extracellular electron acceptors, such as other 73	

microbial species, Fe(III), or extracellular quinones (13-19). The electrical contacts for 74	

extracellular electron exchange have yet to be definitively identified in any of these 75	

Archaea. 76	

 It has been hypothesized that outer-surface cytochromes enable electron transfer 77	

to electron-accepting microbial partners or Fe(III) in some ANME (13-19). Genes for 78	

multi-heme c-type cytochromes that are present in ANME genomes can be highly 79	

expressed and in some instances the proteins have been detected. The putative function of 80	

outer-surface cytochromes is terminal electron transfer to extracellular electron acceptors, 81	

similar to the role that outer surface c-type cytochromes play in extracellular electron 82	

transfer in Gram-negative bacteria such as Shewanella and Geobacter species (20-22).  83	

Similar c-type cytochrome electrical contacts have been proposed for Fe(III)-reducing 84	

Archaea such as Ferroglobus and Geoglobus species (23, 24). However, the study of the 85	

mechanisms for extracellular electron transfer in these archaea has been stymied by the 86	

lack of microorganisms available in pure culture that can grow via extracellular electron 87	

transfer and are genetically tractable.   88	

 Tools are available for genetic manipulation of the methanogen Methanosarcina 89	

acetivorans (25-27). A methyl‐coenzyme M reductase from an uncultured ANME was 90	

introduced into M. acetivorans to generate a strain that could convert methane to acetate 91	

with simultaneous reduction of Fe(III) (28). Most of the electrons from the methane 92	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/590380doi: bioRxiv preprint 

https://doi.org/10.1101/590380


consumed were recovered in acetate (28) and it was not shown that energy was conserved 93	

from Fe(III) reduction. In vitro reactions catalyzed by membrane vesicles of wild-type M. 94	

acetivorans suggested that the membrane-bound heterodisulfide reductase HdrDE 95	

reduced Fe(III)-citrate and AQDS, and that an outer-surface multi-heme c-type 96	

cytochrome, might also function as a potential electron donor for Fe(III)-citrate reduction 97	

(29). However, in vitro assays with cell components are not a definitive approach for 98	

determining the physiologically relevant mechanisms involved in the reduction of Fe(III) 99	

and AQDS because many reduced co-factors and redox-proteins, including c-type 100	

cytochromes, can non-specifically reduce these electron acceptors (30). Analysis of the 101	

phenotypes of intact cells that result from specific gene deletions can provide more 102	

conclusive evidence. 103	

 Here we report that M. acetivorans can be grown in the absence of methane 104	

production with AQDS as the sole electron acceptor. Analysis of gene expression 105	

patterns and phenotypes of gene deletion strains suggest a mechanism for energy 106	

conservation during extracellular electron transfer.   107	

 108	

Results and Discussion 109	

Growth of M. acetivorans with AQDS as the sole terminal electron acceptor 110	

 In medium with methanol provided as the electron donor and AQDS as a potential 111	

electron acceptor, M. acetivorans simultaneously produced methane and reduced AQDS 112	

(Figure 1a).  The addition of bromoethanesulfonate (BES) inhibited methane production 113	

and increased the extent of AQDS reduction (Figure 1b; Supplementary Figure S1). 114	

Metabolism of methanol (Figure 1c) was accompanied by cell growth (Figure 1d). In the 115	
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BES-amended cultures 6.2 mM methanol was consumed with the reduction of 15.7 mM 116	

AQDS. When the need to divert some of the methanol metabolized to cell biomass is 117	

considered, this stoichiometry is consistent with the oxidation of methanol to carbon 118	

dioxide with AQDS serving as the sole electron acceptor:  119	

CH3OH + 3AQDS + H2O à 3AH2QDS + CO2.  120	

The greater consumption of methanol in the absence of BES (Figure 1c), was in 121	

accordance with the extent of AQDS reduction and the simultaneous conversion of 122	

methanol to methane:  4CH3OH à 3CH4 + CO2 + 2H2O. 123	

 The methanol oxidation coupled with AQDS reduction in the presence of BES 124	

described here is the first demonstration of a methanogen conserving energy to support 125	

growth with electron transfer to an external electron acceptor as the sole means of energy 126	

conservation. The ability of M. acetivorans to grow in this manner, and the availability of 127	

tools for genetic manipulation (25-27) provide the opportunity for functional analysis of 128	

extracellular electron transfer in an archaeon.   129	

Transcriptomics and gene deletion studies demonstrate that the multi-heme c-type 130	

cytochrome MmcA is important for AQDS reduction 131	

 In order to obtain insight into potential electron carriers involved in AQDS 132	

reduction, the transcriptome of cells grown with AQDS as the sole electron acceptor in 133	

the presence of BES was compared with the transcriptome of cells grown with methanol 134	

in the absence of AQDS or BES, so that methane production was the sole route of 135	

electron flux.  The median log2 RPKM value for the cells grown via methanogenesis (5.2) 136	

was substantially higher than for the cells grown via AQDS reduction (4.0). These results 137	

are consistent with the finding that cells grown via methanogenesis grew ~4 times faster 138	
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than cells respiring AQDS (generation time for AQDS-respiring cells was 3 days vs 0.7 139	

days for methanogenic cells). 140	

 Remarkably, despite the overall lower transcription rate of cells grown via AQDS 141	

reduction, the transcripts for gene MA0658, which encodes a seven-heme, outer-surface 142	

c-type cytochrome, were 4-fold higher in AQDS-reducing versus methanogenic cells 143	

(Table 1, Supplementary Table S1A). For future reference, this cytochrome was 144	

designated MmcA (membrane multi-heme cytochrome A). Multi-heme c-type 145	

cytochromes are of particular interest as potential electron carriers in extracellular 146	

electron transport because of the well-documented role of multi-heme c-type 147	

cytochromes in bacteria such as Shewanella and Geobacter species that are highly 148	

effective in extracellular electron transfer (20-22). MA3739, a gene coding for a five-149	

heme c-type cytochrome, was transcribed at similar levels as mmcA, and 4 fold more 150	

transcripts were detected in AQDS-reducing than methanogenic cells (Table 1). 151	

 There are three other putative c-type cytochrome genes in the M. acetivorans 152	

genome (31). Transcripts for MA0167, which encodes a mono-heme cytochrome with 153	

predicted localization in the cell membrane, were 6-fold more abundant in cells grown 154	

via AQDS respiration (Table 1). Functional analysis of the outer-membrane of G. 155	

sulfurreducens has suggested that a mono-heme c-type cytochrome may play a role in 156	

regulating the expression of multi-heme c-type cytochromes, possibly by providing a 157	

sensor function (32, 33). It is possible that the protein encoded by MA0167 is playing a 158	

similar role in M. acetivorans. The number of transcripts for MA2925 and MA2908, both 159	

of which encode two-heme c-type cytochromes, was comparable in AQDS-reducing 160	

versus methanogenic cells (Table 1). These cytochromes are homologous to methylamine 161	
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utilization protein G (MauG) and di-heme cytochrome c peroxidase (CcpA). MauG is 162	

required for aerobic methylamine metabolism (34-36), and CcpA proteins reduce 163	

hydrogen peroxide to water and protect the cell from reactive oxygen species (37, 38). 164	

Thus, it seems unlikely that either of these cytochromes is involved in extracellular 165	

electron transfer. 166	

 In order to evaluate the potential role of c-type cytochromes in AQDS reduction, 167	

deletion mutant strains were constructed in M. acetivorans for each c-type cytochrome 168	

gene in the genome (Table 1). Only the deletion of mmcA inhibited AQDS reduction 169	

(Figure 2a). Deletion of mmcA had a slight impact on methanogenic growth with 170	

methanol (Figure 2b).  171	

 These results suggest that MmcA is an essential component for extracellular 172	

electron transfer to AQDS, but not for the conversion of methanol to methane. This 173	

conclusion was further supported by the finding that mmcA was highly transcribed in 174	

AQDS-reducing cells, however, its expression levels were below the median log2 RPKM 175	

values for methanogenic cells (Table 1 and Supplementary Table S1).   176	

Previous studies have suggested that MmcA is part of the Rnf complex, which is 177	

required for acetoclastic methanogenesis (39) and that it is co-transcribed with Rnf genes 178	

located in the same region of the chromosome (40). However, deletion of the MmcA 179	

gene did not substantially impact growth on acetate (Figure 2B) or transcription of other 180	

genes from the Rnf complex (Supplementary Figure S2). Furthermore, the expression 181	

profiles of mmcA and genes for the Rnf complex were also different (Tables 1 and 2).   182	

Model for Electron Transport to AQDS via MmcA 183	
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 MmcA is a strong candidate for the terminal AQDS reductase because its 184	

localization in the cell membrane (40) is likely to provide access to AQDS and because 185	

of the well-known role of outer-membrane multi-heme c-type cytochromes in reduction 186	

of AQDS and various forms of Fe(III) in Gram-negative bacteria such as Shewanella and 187	

Geobacter species (20-22, 41). It was previously suggested that MmcA could be a 188	

terminal reductase for the reduction of soluble Fe(III)-citrate, based on the in vitro 189	

oxidation of MmcA in membrane vesicles upon addition of Fe(III)-citrate (29). Such in 190	

vitro assays can be poor predictors of in vivo activity because Fe(III)-citrate typically 191	

oxidizes c-type cytochromes in vitro, regardless of physiological function, due to its very 192	

positive redox potential. However, as detailed below, multiple lines of evidence support a 193	

model in which energy can be conserved when MmcA serves as the terminal reductase 194	

during methanol oxidation coupled to AQDS reduction (Figure 3).  195	

During methane production from methanol, methanol is converted to CH3-CoM 196	

by the activity of three enzymes, methyltransferase 1 (MtaB), methyltransferase 2 197	

(MtaA), and methanol corrinoid protein (MtaC) (42-44). The oxidation of one molecule 198	

of CH3-CoM to CO2 generates the reducing equivalents necessary to reduce three 199	

molecules of CH3-CoM to methane. During methanol oxidation coupled to AQDS 200	

reduction in the presence of BES, the step that reduces CH3-CoM to methane is blocked, 201	

but the option for CH3-CoM oxidation remains (Figure 3). Genes coding for enzymes 202	

involved in the oxidation of CH3-CoM to carbon dioxide were more highly expressed in 203	

methanogenic cells, consistent with increased overall transcriptional activity in 204	

methanogenic cells and the need for this pathway to generate reductants to support 205	

methanogenesis (Supplementary Table S2). However, transcription of genes coding for 206	
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enzymes involved in CH3-CoM oxidation were also well above the median log2 RPKM 207	

value in the AQDS-respiring cells, suggesting that this pathway is also important for 208	

methanol oxidation coupled to AQDS reduction (Supplementary Tables S1A).  209	

Differential expression of genes encoding isomers of MtaB, MtaA, and MtcC 210	

suggested that there might be some differences in the route for methanol conversion to 211	

CH3-CoM (Table 3). The genes for the isomers MtaB1, MtaA1, and MtaC1 were more 212	

highly expressed in methanogenic cells, whereas AQDS-respiring cells had higher 213	

transcript abundance for genes coding for the alternative MtaB, MtaA, and MtaC isomers 214	

(Table 3). Differences in the activity of these isomers are unknown, but in previous 215	

studies mtaA1, mtaB1, and mtaC1 genes were specifically transcribed during 216	

methanogenesis from methanol and MtaA1 was required for growth on methanol, 217	

whereas MtaA2 was dispensable (44).  218	

 Oxidation of methanol to carbon dioxide is expected to yield reduced ferredoxin 219	

and reduced F420 (F420H2). It is likely that the Rnf complex oxidizes reduced ferredoxin 220	

with electron transfer to MmcA (45). Despite the lower overall gene transcript abundance 221	

in AQDS-respiring cells, transcripts for genes coding for components of the Rnf complex 222	

were slightly higher than those in methanogenic cells (Table 2), suggesting an important 223	

role for the Rnf complex in energy conservation from methanol oxidation coupled to 224	

AQDS reduction.  225	

 In methanogenic cells the membrane-bound Fpo complex (F420:methanophenazine 226	

oxidoreductase) oxidizes F420H2 derived from methanol oxidation with the reduction of 227	

methanophenazine and proton extrusion (46-50). Transcript abundance for all Fpo 228	

subunit genes was higher in methanogenic cells than AQDS-reducing cells, as expected 229	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/590380doi: bioRxiv preprint 

https://doi.org/10.1101/590380


because of the importance of Fpo in oxidizing F420H2 in cells producing methane and the 230	

overall higher gene expression levels in methanogenic cells (Supplementary Table S3).  231	

However, the number of transcripts for all of the Fpo complex genes was significantly 232	

higher than the median log2 RPKM value in AQDS-respiring cells (Supplementary Table 233	

S1A), suggesting that Fpo is important for the oxidation of F420H2 generated in methanol-234	

oxidizing, AQDS-reducing cells. The reduced methanophenazine that Fpo generates from 235	

F420H2 oxidation can transfer electrons to MmcA (39, 40, 45, 51). Although it has also 236	

been proposed that reduced methanophenazine may be able to directly transfer electrons 237	

to extracellular electron carriers in M. acetivorans (29), the requirement for MmcA for 238	

growth via AQDS reduction indicates that this is an unlikely route for AQDS reduction. 239	

In methanogenic cells, reduced methanophenazine can also donate electrons to the 240	

membrane-bound heterodisulfide reductase HdrDE (50, 52-55). In vitro evidence with 241	

membrane-vesicles suggested that HdrDE can reduce AQDS with CoM-SH and CoB-SH 242	

oxidation to form CoM-S-S-CoB (29). However, the redox-active components of HdrDE 243	

responsible for electron transfer to an electron acceptor are localized to the cytoplasmic 244	

side of the membrane (50) and thus unlikely to access extracellular AQDS in vivo. The 245	

relative expression of hdrD and hdrE was slightly lower in AQDS-reducing cells than 246	

methanogenic cells (Supplementary Table S1). Furthermore, the inability of the MmcA-247	

deficient strain to grow via AQDS reduction indicates that HdrDE is not capable of 248	

functioning as the sole AQDS reductase to support growth. Thus, in the lack of strong 249	

evidence for a role for HdrDE, the likely simpler and more direct route for AQDS-250	

dependent oxidation of reduced methanophenazine is electron transfer to MmcA. 251	
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From these considerations, and the current understanding of the function of the 252	

redox proteins involved (50, 56, 57), a positive balance of Na
+
 and H

+ 
outside the cell to 253	

support the generation of ATP during AQDS respiration is possible (Figure 3). In this 254	

model two Na
+
 must be translocated into the cell for the initial oxidation of CH3-S-CoM. 255	

Two moles of F420H2 and one mole of reduced ferrodoxin are generated per mole of CH3-256	

S-CoM oxidized to carbon dioxide. Fpo oxidizes the F420H2 with H
+
 extrusion and the 257	

reduction of methanophenazine. The reduced methanophenazine transfers electrons to 258	

MmcA, which reduces AQDS. The Rnf complex oxidizes the reduced ferredoxin coupled 259	

with Na
+
 translocation and the reduction of MmcA. MmcA may transfer protons as well 260	

as electrons during AQDS reduction as observed in other c-type cytochromes (58-63). 261	

The ATP synthase couples both Na
+
 and H

+
 transport to ATP synthesis (64), but the 262	

H
+
/Na

+
 antiporter complex Mrp can be important for balancing external Na

+
/H

+
 ratios 263	

(65). Genes for Mrp were highly expressed in AQDS-reducing cells (Table 2). 264	

Uncertainties in the stoichiometry of Na
+
/H

+
 transport per ATP synthesized and 265	

the total amount of H
+ 

translocated prevent an accurate estimate of the theoretical ATP 266	

yield per mole of methanol oxidized with the reduction of AQDS. However, it is clear 267	

that net ATP synthesis is likely from the proposed metabolic route, consistent with the 268	

observed growth of M. acetivorans with methanol oxidation coupled to AQDS reduction. 269	

 270	

Implications 271	

The discovery that M. acetivorans can conserve energy to support growth from 272	

the oxidation of a one-carbon compound coupled to the reduction of an extracellular 273	

electron acceptor has important implications for the biogeochemistry of anaerobic soils 274	
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and sediments and provides a genetically tractable model microbe for further analysis of 275	

the mechanisms of extracellular electron transfer in Archaea. Humic substances and 276	

Fe(III) are often abundant extracellular electron acceptors in a wide variety of anaerobic 277	

soils and sediments and their availability for microbial respiration can reduce the extent 278	

of methane production (66-69). Competition for electron donors between methanogens 279	

and Fe(III)- and humics-reducing microorganisms is one factor (70, 71). However, the 280	

finding that some methanogens may conserve energy by reducing extracellular electron 281	

acceptors suggests a mechanism for methanogens to survive in environments in which 282	

Fe(III) and oxidized forms of humic substances are abundant and then rapidly switch to 283	

methane production as these extracellular electron acceptors are depleted.   284	

 A comprehensive survey of the ability of diverse methanogens to conserve energy 285	

to support growth from electron transport to extracellular electron acceptors is warranted. 286	

Most methanogens, including other Methanosarcina species, lack membrane-bound 287	

multi-heme cytochromes like MmcA and would need other mechanisms for extracellular 288	

electron transfer. The finding that MmcA is not essential for methane production, and 289	

that expression of mmcA was increased when AQDS served as an electron acceptor, 290	

suggests that the primary role of MmcA is extracellular electron transfer. If so, the 291	

presence of MmcA in M. acetivorans further suggests that there are environments in 292	

which the capacity for extracellular electron transfer substantially benefits M. 293	

acetivorans.  294	

 A wide diversity of archaea are capable of extracellular electron transfer (72), but 295	

the mechanisms are poorly understood. For archaea such as Ferroglobus placidus (23), 296	

Geoglobus ahangari (24), and diverse ANME (13-19) it has been proposed that outer-297	
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membrane cytochromes are the terminal reductase. The rapid non-physiological reduction 298	

of extracellular electron acceptors by a range of redox-active proteins and co-factors in 299	

vitro necessitates genetically tractable model organisms for physiologically relevant 300	

functional studies. Thus, M. acetivorans may serve as an important model organism for 301	

better understanding cytochrome-based extracellular electron transfer in Archaea.    302	

Materials and Methods  303	

Strains and growth conditions 304	

Methanosarcina acetivorans strains were routinely cultured under strict anaerobic 305	

conditions at 37°C in the previously described (25) medium with either 8.5 mM methanol 306	

or 40 mM acetate provided as substrates.  307	

 M. acetivorans mutant strains were constructed with M. acetivorans WWM1 308	

(∆hpt) (73) as the parent strain as described previously (26). For construction of 309	

MA0658, MA3739, MA2908, MA0167, and MA2925 deletion strains, genes were 310	

replaced with the pac gene (puromycin resistance gene). First, regions 500-1000 bp 311	

upstream and downstream from the target genes were amplified by PCR (Supplementary 312	

Table S4).  The DNA fragments of the upstream and downstream regions of MA0658 313	

were digested with SacI/XbaI and EcoRI/XhoI. Upstream and downstream regions of 314	

MA3739 were digested with SalI/XbaI and SacI/NotI. Upstream and downstream regions 315	

of MA2908, MA0167, and MA2925 were digested with XhoI/HindIII and BamHI/NotI. 316	

The upstream fragment was ligated into the pJK3 plasmid (25). The downstream 317	

fragment was ligated into the pJK3 plasmid already containing the upstream fragment. 318	

This recombinant plasmid was then linearized and used for transformation. The deletion 319	

and replacement of all genes with pac was verified with primers (Supplementary Table 320	
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S4). All transformants were selected on medium supplemented with puromycin (2 µM 321	

final concentration), as previously described (25). 322	

Additions of anthraquinone-2,6,-disulphonate (AQDS) were made from a 323	

concentrated stock to provide a final concentration of 16 mM. Cysteine was omitted from 324	

all cultures. When noted, 2-bromoethanesulfonate (BES) was added from a concentrated 325	

stock to provide a final concentration of 15 mM. Growth with AQDS was measured by 326	

determining numbers of cells stained with acridine orange with epifluorescence 327	

microscopy (74). For comparing methanogenic growth in wild-type and mutant cells, 328	

growth was monitored by spectrometry at an absorbance of 600 nm (75). 329	

Analytical techniques 330	

 Methanol concentrations were monitored with a gas chromatograph equipped 331	

with a headspace sampler and a flame ionization detector (Clarus 600; PerkinElmer Inc., 332	

CA). Methane in the headspace was measured by gas chromatography with a flame 333	

ionization detector (Shimadzu, GC-8A) as previously described (76). Production of 334	

reduced AQDS reduction was monitored by spectrophotometry at an absorbance of 450 335	

nm as previously described (77). 336	

RNA extraction 337	

 Cells were harvested from triplicate 50 mL cultures of M. acetivorans grown with 338	

methanol (10 mM) provided as the electron donor and AQDS (16 mM) in the presence of 339	

the methanogenesis inhibitor BES (15 mM) or via methanogenesis with 40 mM methanol 340	

provided as substrate. Cells were split into 50 mL conical tubes (BD Sciences), mixed 341	

with RNA Protect (Qiagen) in a 1:1 ratio, and pelleted by centrifugation at 3,000 x g for 342	

15 minutes at 4ºC. Pellets were then immediately frozen in liquid nitrogen and stored at -343	
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80 ºC. Total RNA was extracted from all six cell pellets according to the previously 344	

described protocol (78) and cleaned with the RNeasy Mini Kit (Qiagen). All RNA 345	

samples were then treated with Turbo DNA-free DNase (Ambion, Austin, TX). In order 346	

to ensure that samples were not contaminated with genomic DNA, PCR with primers 347	

targeting the 16S rRNA gene was done with RNA that had not been reverse transcribed. 348	

Further enrichment of mRNA was done with the MICROBExpress kit (Ambion), 349	

according to the manufacturer’s instructions.  350	

 351	

RT-PCR analysis 352	

Total RNA was prepared from M. acetivorans hpt and ∆MA0658 strains grown 353	

methanogenically with acetate (40 mM). Complementary DNA (cDNA) was prepared by 354	

reverse transcription with AMV reverse transcriptase (New England Biolabs, MA) with 355	

primers TCAGCATGCCTCATTCCAAC (MA0659) or 356	

TCGCAGACAGCCTTAACGTC (MA0664) according to the manufacturers 357	

specifications. This cDNA was then used as a template for PCR with the following 358	

primer pairs: CAGTGACCTCGCTTATGTCC/TCAGCATGCCTCATTCCAAC 359	

(MA0695) or TGTGGAGGTTGCGGATTTGC/TCGCAGACAGCCTTAACGTC 360	

(MA0664). The amplified fragments were analyzed by agarose gel electrophoresis.  361	

 362	

Illumina sequencing and data analysis. 363	

 Directional multiplex libraries were prepared with the ScriptSeq™ v2 RNA-Seq 364	

Library Preparation Kit (Epicentre) and paired end sequencing was performed on a Hi-365	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/590380doi: bioRxiv preprint 

https://doi.org/10.1101/590380


Seq 2000 platform at the Deep Sequencing Core Facility at the University of 366	

Massachusetts Medical School in Worchester, Massachusetts. 367	

All raw data generated by Illumina sequencing were quality checked by 368	

visualization of base quality scores and nucleotide distributions with FASTQC 369	

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Initial raw non-filtered 370	

forward and reverse sequencing libraries contained an average of 124,551,285 +/- 371	

8,421,388 reads that were ~100 basepairs long. Sequences from all of the libraries were 372	

trimmed and filtered with Trimmomatic (79) with the sliding window approach set to 373	

trim bases with quality scores lower than 3, strings of 3+N’s, and reads with a mean 374	

quality score lower than 20. Bases were also cut from the start and end of reads that fell 375	

below a threshold quality of 3, and any reads smaller than 50 bp were eliminated from the 376	

library. These parameters yielded an average of 115,861,910 +/- 2,278,492 quality reads 377	

per RNAseq library.  378	

All paired-end reads were then merged with FLASH (80), resulting in 45,331,795 379	

+/- 3,260,585 reads with an average read length of 145 basepairs. After merging the QC-380	

filtered reads, SortMeRNA (81) was used to separate all ribosomal RNA (rRNA) reads 381	

from non-ribosomal reads.  382	

Mapping of mRNA reads  383	

Trimmed and filtered mRNA reads from the triplicate samples for the two 384	

different culture conditions were mapped against the M. acetivorans strain C2A genome 385	

(NC_003552) downloaded from IMG/MER (img.jgi.doe.gov). Mapped reads were 386	

normalized with the RPKM (reads assigned per kilobase of target per million mapped 387	

reads) method (82, 83) using ArrayStar software (DNAStar). Analysis of reads from all 388	
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three biological replicates for each condition demonstrated that results were highly 389	

reproducible. Therefore, all reported values were obtained after merging and averaging 390	

replicates. Expression levels were considered significant only when the log2 RPKM value 391	

was higher than that of the median log2 RPKM. Out of the 4721 predicted protein-coding 392	

genes in the M. acetivorans C2A genome, 2360 and 2362 had expression levels that were 393	

higher than the median in AQDS-respiring or methanogenic cells, respectively 394	

(Supplementary Table S1). 395	

Reads were also normalized and processed for differential expression studies 396	

using the edgeR package in Bioconductor (84). Genes with p-values < 0.05 and fold 397	

changes > 2 were considered differentially expressed. Using these criteria, 827 genes 398	

were up-regulated and 778 genes were down-regulated in AQDS-respiring cells 399	

compared to methanogenic cells (Supplementary Table S5). 400	

Genome data analysis 401	

Gene sequence data for M. acetivorans C2A was acquired from the US 402	

Department of Energy Joint Genome Institute (http://www.jgi.doe.gov) or from Genbank 403	

at the National Center for Biotechnology Information (NCBI) 404	

(http://www.ncbi.nlm.nih.gov). Initial analyses were done with tools available on the 405	

Integrated Microbial Genomes (IMG) website (img.jgi.doe.gov).  Some protein domains 406	

were identified with NCBI conserved domain search (85) and Pfam search (86) functions. 407	

Transmembrane helices were predicted with TMpred (87), TMHMM (88), and 408	

HMMTOP (89) and signal peptides were identified with PSORTb v. 3.0.2 (90) and 409	

Signal P v. 4.1 (91).  410	

 411	
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Accession numbers 412	

Illumina sequence reads have been submitted to the NCBI database under 413	

BioProject PRJNA501858 and submission number SUB4712594. 414	
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 685	

Figure legends 686	

Figure 1. Growth of Methanosarcina acetivorans with methanol provided as an electron 687	

donor and AQDS as an electron acceptor in the presence or absence of BES. (A) Methane 688	

and AHQDS concentrations generated by cultures grown without BES; (B) Methane and 689	
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AHQDS concentrations generated by cultures grown with BES; (C) Methanol 690	

concentrations and (D) cell numbers from cultures grown in the presence or absence of 691	

BES. The complete inhibition of methane production in the presence of BES is also 692	

shown on an expanded scale in Supplementary Figure S1.  693	

Figure  2. Impact of deletion of c-type cytochrome genes on growth of M. acetivorans 694	

under different conditons. (A) AHQDS production during growth with methanol as the 695	

electron donor and AQDS as the acceptor in the presence of BES. The locus ID for the 696	

deleted cytochrome gene is designated next to the corresponding symbol. (B) Growth of 697	

wild-type and ∆MA0658 strains under methanogenic conditions as measured by A600 with 698	

methanol or acetate provided as substrates. 699	

Figure 3. Proposed model for extracellular electron transport to AQDS by 700	

Methanosarcina acetivorans when methanol is provided as the electron donor and 701	

methanogenesis is prevented with the addition of BES. 702	

 703	

 704	

 705	

 706	
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Table	1.	Differential	expression	of	genes	coding	for	c-type	cytochrome	proteins	in	M.	acetivorans	cells	grown	with	methanol	

provided	as	the	electron	donor	and	AQDS	as	the	electron	acceptor	in	the	presence	of	BES,	or	cells	grown	via	methanogenesis	

with	methanol	as	the	substrate.	Genes	were	only	considered	differentially	expressed	if	the	fold	change	was	>	2	and	the	P-value	

and	FDR	(False	Discovery	Rate)	were	<0.05.	

NS:	no	significant	difference	in	read	abundance	between	conditions	
Locus ID # heme 

groups 

# transmembrane 

helices 

Predicted 

Localization 

Fold up-regulated in 

AQDS/BES vs 

methanogenesis 

P-value FDR 

MA0658 7 1 Membrane 3.95 0.002 0.006 

MA3739 5 0 Unknown 4.14 0.009 0.02 

MA0167 1 1 Membrane 5.97 0.002 0.006 

MA2925 2 1 Membrane 1.21 (NS) 0.29 0.37 

MA2908 2 1 Membrane 1.03 (NS) 0.87 0.89 
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Table	2.	Comparison	of	transcripts	from	genes	coding	for	components	of	the	Rnf	and	Mrp	complexes	in	M.	acetivorans	cells	

grown	with	methanol	and	AQDS	in	the	presence	of	BES,	or	cells	grown	via	methanogenesis	with	methanol.	egative	values	

indicate	that	genes	were	more	significantly	expressed	in	methanogenic	cells.	Genes	were	only	considered	differentially	

expressed	if	the	fold	change	was	>	2	and	the	P-value	and	FDR	(False	Discovery	Rate)	were	<0.05.	
NS: no significant difference in read abundance 

 
Locus ID Annotation Gene Fold up-

regulated in 

AQDS/BES vs 

methanogenesis 

P-value FDR 

MA0659 electron transport complex protein RnfC  rnfC 1.52 (NS) 0.02 0.04 

MA0660 electron transport complex protein RnfD  rnfD 1.23 (NS) 0.19 0.26 

MA0661 electron transport complex protein RnfG  rnfG 1.66 (NS) 0.006 0.01 

MA0662 electron transport complex protein RnfE  rnfE 1.45 (NS) 0.02 0.05 

MA0663 electron transport complex protein RnfA  rnfA 1.66 (NS) 0.006 0.01 

MA0664 electron transport complex protein RnfB  rnfB 1.57 (NS) 0.008 0.01 

MA4572 

 

multisubunit sodium/proton antiporter, 

MrpA subunit 

mrpA 5.44 8.87x10
-8

 8.13x10
-6

 

MA4665 

 

multisubunit sodium/proton antiporter, 

MrpB subunit 

mrpB 5.41 1.57x10
-7

 1.07x10
-5

 

MA4570 

 

multisubunit sodium/proton antiporter, 

MrpC subunit 

mrpC 6.50 1.21x10
-7

 9.14x10
-6

 

MA4569 

 

multisubunit sodium/proton antiporter, 

MrpD subunit  

mrpD 4.84 2.05x10
-7

 1.18x10
-5

 

MA4568 

 

multisubunit sodium/proton antiporter, 

MrpE subunit  

mrpE 3.70 6.32x10
-6

 8.86x10
-5

 

MA4567 

 

multisubunit sodium/proton antiporter, 

MrpF subunit 

mrpF 4.79 5.21x10
-7

 1.86x10
-5

 

MA4566 

 

multisubunit sodium/proton antiporter, 

MrpG subunit  

mrpG 4.57 5.70x10
-7

 1.98x10
-5
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Table	3.	Differential	expression	of	genes	coding	for	methanol	methyltransferase	enzymes	in	M.	acetivorans	cells	grown	with	

methanol	provided	as	an	electron	donor	and	AQDS	provided	as	an	electron	acceptor	in	the	presence	of	BES	or	cells	grown	via	

methanogenesis	with	methanol.	Negative	values	indicate	that	genes	were	more	significantly	expressed	in	methanogenic	cells.	

Genes	were	only	considered	differentially	expressed	if	the	fold	change	was	>	2	and	the	P-value	and	FDR	(False	Discovery	Rate)	

were	<0.05.	

NS: no significant difference in read abundance 
Locus ID Annotation Gene Fold up-

regulated in 

AQDS/BES vs 

methanogenesis 

P-value FDR 

MA4379 Co-methyl-5-

hydroxybenzimidazolylcobamide:2-

mercapto-ethanesulphonic acid 

methyltransferase, isozyme 1 

mtaA1 -1.68 0.008 0.02 

MA0455 methanol:5-

hydroxybenzimidazolylcobamide 

methyltransferase, isozyme 1 

mtaB1 -6.84 0.002 0.007 

MA0456 corrinoid-containing methyl-

accepting protein, isozyme 1 

mtaC1 -7.95 0.001 0.005 

MA4392 

 

methanol:5-

hydroxybenzimidazolylcobamide 

methyltransferase, isozyme 2 

 

mtaB2 68.55 1.53x10
-10

 6.88x10
-7

 

MA4391 

 

corrinoid-containing methyl-

accepting protein, isozyme 2 

mtaC2 48.28 8.34x10
-10

 1.25x10
-6

 

MA1615 

 

Co-methyl-5-

hydroxybenzimidazolylcobamide:2-

mercapto-ethanesulphonic acid 

methyltransferase, isozyme 2 

mtaA2 5.39 3.40x10
-7

 1.50x10
-5

 

MA1616 

 

methanol:5-

hydroxybenzimidazolylcobamide 

methyltransferase, isozyme 3 

 

mtaB3 9.66 7.45x10
-8

 7.56x10
-6

 

MA1617 

 

corrinoid-containing methyl-

accepting protein, isozyme 3 

mtaC3 8.49 3.78x10
-7

 1.55x10
-5
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