
62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

A Memetic Algorithm for VLSI Floorplanning
Maolin Tang, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Floorplanning is an important problem in very large
scale integrated-circuit (VLSI) design automation as it determines
the performance, size, yield, and reliability of VLSI chips. From
the computational point of view, VLSI floorplanning is an NP-hard
problem. In this paper, a memetic algorithm (MA) for a nonslicing
and hard-module VLSI floorplanning problem is presented. This
MA is a hybrid genetic algorithm that uses an effective genetic
search method to explore the search space and an efficient local
search method to exploit information in the search region. The
exploration and exploitation are balanced by a novel bias search
strategy. The MA has been implemented and tested on popular
benchmark problems. Experimental results show that the MA can
quickly produce optimal or nearly optimal solutions for all the
tested benchmark problems.

Index Terms—Floorplanning, genetic algorithm (GA), local
search, memetic algorithm (MA), very large scale integrated
circuit (VLSI).

I. INTRODUCTION

F LOORPLANNING is important in very large scale
integrated-circuit (VLSI) design automation as it deter-

mines the performance, size, yield, and reliability of VLSI
chips. Given a set of circuit components, or “modules,” and
a net list specifying interconnections between the modules, the
goal of VLSI floorplanning is to find a floorplan for the modules
such that no module overlaps with another and the area of the
floorplan and the interconnections between the modules are
minimized.

The representation of floorplans determines the size of the
search space and the complexity of transformation between
a representation and its corresponding floorplan. Existing
floorplan representations can be classified into two cate-
gories, namely: 1) “slicing representation” and 2) “nonslic-
ing representation.” It is commonly believed that nonslicing
representations can contribute to better results than slicing
representations.

One of the most efficient nonslicing representations is the
ordered tree (O-tree) representation proposed by Guo et al. [1].
The representation not only covers all optimal floorplans but
also has a smaller search space. For a VLSI floorplanning

Manuscript received April 30, 2005; revised December 22, 2005 and
March 2, 2006. This work was supported in part by the National Natural Science
Foundation of China under Grant 60428202. This paper was recommended by
Guest Editor Y. S. Ong.

M. Tang is with Queensland University of Technology, Brisbane 4001,
Australia (e-mail: m.tang@qut.edu.au).

X. Yao is with the University of Birmingham, Birmingham B15 2TT, U.K.,
and also with the Nature Inspired Computation and Applications Laboratory,
Department of Computer Science and Technology, University of Science and
Technology of China, Hefei 230027, China (e-mail: x.yao@bham.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2006.883268

problem of n modules, the search space of the representation
is n!cn, where

cn =
1

2n+ 1

(
2n+ 1
n

)

which is significantly smaller than other floorplan representa-
tions. In addition, it only takes O(n) to transform between an
O-tree representation and its corresponding floorplan. More-
over, the representation gives geometrical relations among
modules, which is valuable for identifying meaningful build-
ing blocks when designing genetic operators of evolutionary
algorithms. Hence, the O-tree representation is adopted in this
paper.

Existing search methods for the VLSI floorplanning prob-
lem fall into two categories, namely: 1) “local search” and
2) “global search.” Generally, the local search methods are
efficient. However, they may not be able to produce an optimal
or nearly optimal solution sometimes as their search may be
trapped in a local region.

A widely used global search method for VLSI floorplanning
problems is genetic algorithm (GA). GAs have been success-
fully applied to solve slicing VLSI floorplanning problems
[2]–[4]. For nonslicing VLSI floorplanning, a GA has also been
presented [5]. Since the encoding scheme does not capture any
topological information of the floorplans, the performance of
the GA is not satisfactory. For example, for the two popular
benchmark problems, namely: 1) “ami33” and 2) “ami49,” the
area usage is less than 90%.

In this paper, we present a memetic algorithm (MA) [6]
for a nonslicing and hard-module VLSI floorplanning prob-
lem. MAs are population-based metaheuristic search methods
which are inspired by Darwin’s principle of natural selection
and Dawkins’ notion of meme [7], defined as a unit of in-
formation that reproduces itself while people exchange ideas,
and they have been successfully applied on many complex
problems [8]–[14].

Our MA is a hybrid GA that uses an effective genetic
search method to explore the search space and an efficient
local search method to exploit information in the search region.
The exploration and exploitation are balanced by a novel bias
search strategy. The MA has been implemented and tested on
popular benchmark problems for nonslicing and hard-module
VLSI floorplanning. Experimental results show that the MA can
quickly produce optimal or nearly optimal solutions for all the
popular benchmark problems.

The remaining paper is organized as follows. Section II is the
problem statement. Section III reviews related work. The MA
is discussed in detail in Section IV, and empirical studies on the
MA are presented in Section V. Finally, we conclude the MA
in Section VI.

1083-4419/$25.00 © 2007 IEEE

TANG AND YAO: MEMETIC ALGORITHM FOR VLSI FLOORPLANNING 63

II. PROBLEM STATEMENT

A module mi is a rectangular block with fixed height hi

and width wi, M = {m1,m2, . . . ,mn} is a set of modules,
and N is a net list specifying interconnections between the
modules in M .

A floorplan F is an assignment of M onto a plane such that
no module overlaps with another. A floorplan has an area cost,
i.e., Area(F), which is measured by the area of the smallest
rectangle enclosing all the modules and an interconnection cost,
i.e., Wirelength(F), which is the total length of the wires
fulfilling the interconnections specified by N . To minimize the
costs, a module may be rotated 90◦. The cost of a floorplan F
is defined as follows:

cost(F) = w1 × Area(F)
Area∗

+ w2 × Wirelength(F)
Wirelength∗

. (1)

In the above equation,Area∗ andWirelength∗ represent the
minimal area and the interconnection costs, respectively. Since
we do not know their values in practice, estimated values are
used. w1 and w2 are weights assigned to the area minimiza-
tion objective and the interconnection minimization objective,
respectively, where 0 ≤ w1, w2 ≤ 1, and w1 + w2 = 1. The
interconnection cost is the total wire length of all the nets, and
the wire length of a net is calculated by the half perimeter of
the minimal rectangle enclosing the centers of the modules that
have a terminal of the net on it.

Given M and N , the objective of the floorplanning problem
is to find a floorplan F such that cost(F) is minimized. It
should be pointed out that although the optimization problem
has two objectives, multiobjective optimization techniques may
not be suitable for it as the two objectives are not equally
important and the weights assigned to the two objectives should
be controllable by the designer to meet various requirements for
the floorplanning problem.

III. RELATED WORK

A. O-Tree Representation

A floorplan with n rectangular modules can be represented
in a horizontal (vertical) O-tree of (n+ 1) nodes, of which n
nodes correspond to n modules m1,m2, . . . ,mn and one node
corresponds to the left (bottom) boundary of the floorplan [1].
The left (bottom) boundary is a dummy module with zero width
(height) placed at x = 0 (y = 0). In a horizontal O-tree, there
exists a directed edge from module mi to module mj if and
only if xj = xi + wi, where xi is the x coordinate of the left-
bottom position of mi, xj is the x coordinate of the left-bottom
position of mj , and wi is the width of mi. In a vertical O-tree,
there exists a directed edge from module mi to module mj if
and only if yj = yi + hi, where yi is the y coordinate of the
left-bottom position of mi, yj is the y coordinate of the left-
bottom position of mj , and hi is the height of mi. Fig. 1(a)
shows a floorplan and its horizontal O-tree representation.

An O-tree can be encoded in a tuple (T, π), where T is a
2n-bit string specifying the structure of the O-tree, and π is a
permutation of the nodes. For a horizontal O-tree, the tuple is

Fig. 1. Illustration of (a) O-tree representation and (b) encoding.

obtained by depth-first traversing the nodes and edges of the
O-tree. When visiting a node other than the root, we append
the node to π. When visiting an edge in descending direction,
we append a 0 to T , and when visiting an edge in ascending
direction, we append a 1 to T . The horizontal O-tree shown in
Fig. 1(a) is encoded into (00110100011011, adbcegf). The idea
of the encoding is illustrated in Fig. 1(b). We can use the same
idea to encode a vertical O-tree.

A floorplan is “admissible” if no module can be shifted
left or bottom without moving other modules in the floorplan.
Given a feasible floorplan (a floorplan on which no module
overlaps with another), we can derive an admissible floorplan
by compacting the modules to the left and bottom boundaries
of the floorplan. The cost of the admissible floorplan is equal
to or less than that of the original floorplan. Therefore, the
search space of the VLSI floorplanning problem is limited to
admissible floorplans.

B. Local Search Method

This section presents a local search method for the VLSI
floorplanning problem, which is employed by our MA. The
local search method is based on a deterministic algorithm
proposed by Guo et al. [1].

Given an initial floorplan encoded in an O-tree (T, π), the
local search method finds a local optimal solution through
systematically examining those O-trees that can be obtained
by removing a module from, and then putting it back to, the
O-tree. When a module is added, its orientation may be changed
if it leads to a smaller cost. The algorithm is shown below.

1) For each node mi in (T, π):
a) delete mi from (T, π);
b) insertmi in the position where we can get the smallest

cost value among all possible insertion positions in
(T, π) as an external node of the tree;

c) perform (a) and (b) on its orthogonal O-tree.
2) Output (T, π).

IV. OUR MA

Our MA is a hybrid GA that uses an effective genetic
search method to explore the search space and capitalizes on
the local search method introduced in the previous section to
exploit information in the search region. The exploration and
exploitation are balanced by a novel bias search strategy.

64 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

A. Genetic Representation

In our MA, each individual in the population is an admissible
floorplan represented by an O-tree and encoded in a tuple
(T, π), where T is a 2n-bit string identifying the structure of
the O-tree, and π is a permutation of the nodes.

B. Fitness Function

The VLSI floorplanning is a minimization problem, and the
objective is to minimize the cost of floorplan F , i.e., cost(F).
Thus, the fitness of an individual (T, π) in the population is
defined as follows:

f((T, π)) =
1

cost
(
F(T,π)

) (2)

where F(T,π) is the corresponding floorplan of (T, π), and
cost(F(T,π)) is the cost of F defined in (1).

C. Initial Population

An individual in the initial population is an O-tree (T, π)
representing an admissible VLSI floorplan F . A constructive
algorithm is designed to construct an admissible O-tree. The al-
gorithm starts with randomly generating a sequence of modules
π. Then, it inserts the modules into an initially empty O-tree
T in the randomly generated order. When inserting a module
into T , it checks all external insertion positions for the module
and inserts the module at the position that gives the best fitness.
The constructive algorithm is invoked iteratively to generate an
initial population of individuals.

D. Genetic Operators

1) Role of the Genetic Operators in the MA: The role that
the genetic operators play in our MA is different from that
in GAs. In GAs, crossover is used for both exploration and
exploitation, and mutation is used for exploration. In our MA,
however, the crossover and mutation operators are only used for
exploration, or discovering new promising search regions.

The crossover and mutation operators discover new promis-
ing search regions by evolving memes, or units of cultural
information, in a way analogous to biological evolution. Memes
can mutate through, for example, misunderstanding, and two
memes can recombine to produce a new meme involving ele-
ments of each parent meme.

It is observed that a subtree of the O-tree represents a
compact placement of a cluster of modules. Hence, subtrees
are used as memes in our MA. The memes are transmitted
and evolved through one crossover operator and two mutation
operators, which will be discussed in the following.
2) Crossover: Given two parents, both of which are admis-

sible floorplans represented by an O-tree, the crossover oper-
ator transmits the significant structural information from two
parents to a child. By recombining some significant structural
information from two parents, it is hoped that better structural
information can be created in the child.

Fig. 2. Crossover operator.

To create a child c1 from two parents p1 and p2, the crossover
randomly selects some top-level subtrees from p1, duplicates
them, and puts them in c1. Then, the crossover operator takes
a copy of p2 and removes those nodes that have been already
present in c1 and then adds the remaining structural components
to c1. In this way, the generated child carries the significant
structural information from both p1 and p2. Fig. 2 illustrates
the basic idea behind the crossover operator. Fig. 2(a) and (b)
are two parents, i.e., p1 and p2, and Fig. 2(c) is the child pro-
duced by the crossover operator. The corresponding admissible
floorplans are shown on the left-hand side of the figure.
3) Mutation: Two mutation operators are constructed and

used in our MA. The basic idea behind the mutation operators
is to discover a new search region by mutating the structure of
an individual.

Given an admissible floorplan represented as an O-tree, one
mutation operator first identifies the top-level subtrees of the
O-tree and then randomly changes the order of the subtrees.
This mutation operator is illustrated in Fig. 3, in which
Fig. 3(a) shows the initial O-tree and Fig. 3(b) shows the
mutated O-tree.

TANG AND YAO: MEMETIC ALGORITHM FOR VLSI FLOORPLANNING 65

Fig. 3. Mutation operator 1.

Note that the mutated floorplan may not be admissible.
Therefore, the mutation operator makes it admissible by mov-
ing the modules to the left-hand side and the bottom. When
making the mutated floorplan admissible, some of the structural
components might be broken and reorganized. However, the
mutated floorplan might preserve most of the structural infor-
mation that the original floorplan has, and therefore, the fitness
distance between the mutated and original floorplans would not
be long.

A second mutation operator used by our MA randomly
selects a subtree at any level, removes it, and then inserts it
back to the O-tree. Since the mutated floorplan may not be
admissible as in the first mutation operator, it also makes the
mutated floorplan admissible in the same way as in the first
mutation operator. Fig. 4 illustrates the basic idea behind the
mutator. In the figure, (a) shows the initial O-tree and (b) shows
the mutated O-tree in which the subtree with root e is being
moved.

The two mutation operators are randomly selected and used
by our MA to discover new search regions that have different
fitness distances from the mutating individual.

E. Strategy to Bias the Search

The search space of the VLSI floorplanning problem is
huge, and the number of optima might grow exponentially
when the size of the problem increases. Hence, it is impossible
for our MA to exploit all the regions. A technique that is
usually used to deal with the problem is to use a bias search
strategy [15], [16].

In our MA, we use a novel strategy to bias its search. Instead
of exploiting all the search points generated by the genetic
operators, our MA only exploits those search points (admissible
floorplans) whose fitness value is equal to or greater than a
threshold v and ignores those search points whose fitness value
is less than v. This basic idea behind the bias search strategy is
illustrated in Fig. 5.

In Fig. 5, the curve depicts the fitness landscape of a VLSI
floorplanning problem. The points o1 and o2 are two local
optima, and the points p1, p2, and p3 are three search points
generated by the genetic operators. The horizontal line is the
threshold v. Because the fitness of p1 and p2 is less than v, the
local search method is not applied on them. The local search
method is only applied on p3.

If the local search method is applied to p1, the MA would
find the optimum o1, which is remarkably poor. Therefore, by
using this bias search strategy, the MA can sort out the search

Fig. 4. Mutation operator 2.

Fig. 5. Strategy to bias the search.

regions where the fitness value of the local optimum is less
than v. The MA does not apply the local search method on p2

because the local search method is computationally expensive,
and it takes more time for the local search method to find the
optimum o2 from p2 than from p3. (The local search method is
a hill-climbing one. Thus, the better starting search points, the
shorter the computation time given two starting search points
on the same hill.)

The threshold v is very important. It determines the balance
between the exploration and exploitation of our MA. If its value
is too big, then some promising search regions may be ignored,
and therefore, the chance for our MA to find a global optimum
is limited; if its value is too small, then our MA may waste
too much time on exploiting less promising search regions, and
therefore, the efficiency of our MA is decreased. It is desirable
to find a threshold v such that our MA can minimize the use of
the local search method without compromising its optimality.
An empirical study of the threshold v can be found in Section V.

To test the effectiveness of the threshold strategy, we have
compared it with a random search strategy. As its name sug-
gests, the random search strategy randomly picks up individu-
als for exploitation. Experimental results have shown that the
threshold strategy is significant. The details about the compari-
son can also be found in Section V.

F. Description of Our MA

Initially, the MA randomly generates a population of individ-
uals using the technique described above. Then, the MA starts
evolving the population generation by generation. In each gen-
eration, the MA uses the genetic operators probabilistically on
the individuals in the population to create new promising search
points (admissible floorplans) and uses the local search method
to optimize them if the fitness of the admissible floorplans is
greater than or equal to v. The process is repeated until a preset
runtime is up. An outline of the MA is as follows:

1) t := 0;
2) generate an initial population P (t) of size PopSize;
3) evaluate all individuals in P (t) and find the best individ-

ual best;

66 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

TABLE I
STATISTICS FOR THE TEST RESULTS ON THE PERFORMANCE OF THE MA

TABLE II
KRUSKAL–WALLIS TEST RESULTS FOR THE COMPARISON BETWEEN THE mDA, GA, AND MA

4) while the preset runtime is not up:
a) t := t+ 1;
b) for each individual in P (t):

i) this individual becomes the first parent p1;
ii) select a second parent using roulette wheel selection
p2;

iii) probabilistically apply crossover to produce a child
c1;

iv) if fitness(c1) ≥ v, then optimize c1 using the local
search method;

v) if fitness(c1) ≥ fitness(p1), then p1 := c1;
vi) if fitness(c1) ≥ fitness(best), then best := c1;

vii) probabilistically apply the two mutators (picked up
randomly) on c1 to produce a new individual f ;

viii) if fitness(f) ≥ v, then optimize f using the local
search method;

ix) if fitness(f) ≥ fitness(p1), then p1 := f ;
x) if fitness(f) ≥ fitness(best), then best := f .

5) output best.

V. EMPIRICAL STUDIES ON THE MA

In this section, we use two popular benchmarks to empiri-
cally study the performance of the MA, the determination of
the value of the threshold v, the effectiveness of the threshold
bias search strategy, and the effect of weights assigned to the
two optimization objectives on the performance of the MA.

The benchmarks used in the empirical studies are two pop-
ular MCNC benchmark problems for the VLSI floorplanning
problem: ami33 and ami49 [17]. The benchmark ami33 has
33 modules, 123 nets, 480 pins, and 42 input–output (IO) pads.
The benchmark ami49 has 49 modules, 408 nets, 931 pins, and
42 IO pads.

A. On the Performance of the MA

To study the performance of the MA, we have implemented
the MA in C# on Microsoft Visual Studio .NET 2003. We have
also implemented a multistart deterministic algorithm (mDA)
and a GA in the same programming language on the same
platform for fair comparisons.

The mDA randomly generates search points (admissible
floorplans) and optimizes the admissible floorplans using the
local search method of the MA. The difference between the
mDA and MA lies in their exploration method. The mDA
generates search points randomly, whereas the MA generates
search points using the genetic operators. Thus, the comparison

between the mDA and MA is to justify the effectiveness of the
exploration of the MA.

The GA is the MA with the local search method removed.
The procedure for generating the initial population, genetic
operators, and selection scheme are exactly the same with those
used in the MA. Thus, the GA uses the genetic operators for
both exploration and exploitation, whereas the MA uses the
genetic operators for exploration and uses the local search
method for exploitation. Thus, the comparison between the GA
and MA is to justify the effectiveness of the exploitation of
the MA.

To compare the three algorithms fairly, we run the three
algorithms for the same amount of time to see which of the
algorithms produces the best result for a test problem. We
tested the three algorithms on each the benchmark problems
for 30 times, recorded the results obtained from each run, and
compared the results obtained by the three algorithms.

For the MA, the population size was set to 10, the prob-
abilities for crossover and mutation were both 0.5, and the
threshold v was 0.6 for all the test problems because it was
the best configuration found empirically for the MA. For the
GA, the population size was set to 100, the probability for
crossover was 0.95, and the probability for mutation was 0.05
for all test problems as it was the best configuration found
empirically for the GA. We did not use the same configuration
for the MA and the GA because it would disadvantage either
of them if the other party’s best configuration is used. The
runtime was 1800 s. In this experiment, the weights for the area
minimization and the interconnection minimization objectives
were set to 1 and 0, respectively (w1 = 1 and w2 = 0), which
means the MA focused on minimizing the area of the floorplan.
All experiments were carried out on Pentium IV computers with
a 2.0-GHz CPU and a 512-MB RAM. For each of the three
algorithms, we recorded the minimal floorplan area obtained in
the 30 runs. Table I shows the statistics for the experiment.

It can be seen from Table I that for the benchmark problems,
the MA has 1.10% to 2.94% and 0.36% to 2.46% improvement
in the best and average solutions, respectively, over the mDA,
and has 1.55% to 4.23% and 1.85% to 5.56% improvement in
the best and average solutions, respectively, over the GA. To
examine the significance of the statistical results, we further
performed a Kruskal–Wallis test on the results using a statistical
software Analyse-it [18]. The statistical test results are shown
in Table II.

To study the dynamic performance of the mDA, GA, and
MA, we captured the dynamically changing minimal cost

TANG AND YAO: MEMETIC ALGORITHM FOR VLSI FLOORPLANNING 67

Fig. 6. Dynamic performance comparison between the mDA, GA, and MA
on benchmark ami33.

Fig. 7. Dynamic performance comparison between the mDA, GA, and MA
on benchmark ami49.

obtained by these algorithms in each run for each of the
benchmarks and worked out the average dynamic performance
of the three algorithms. Figs. 6 and 7 display the dynamic
performance of the mDA, GA, and MA for benchmarks ami33
and ami49, respectively. It can be seen from the figures that
the dynamic performance of the algorithms for the two bench-
mark problems are consistent. The MA is the quickest algo-
rithm that converged to a satisfactory solution of the three
algorithms.

B. On the Determination of the Value of the Threshold v

The threshold v is very important because it determines
the balance between the exploration and exploitation of the
MA, which affects the computation time and the optimality of
solutions. To determine the value of v, we developed a program
to randomly generate 100 search points (admissible floorplans)
and used the local search method to optimize them. We applied
the program on the two benchmark problems and recorded
the fitness values of the initial floorplan and its corresponding
optimized floorplan. The experimental results are intuitively
shown in Fig. 8. In the figure, the x axis and y axis represent

Fig. 8. Determination of the value of the threshold v.

the fitness values of the initial floorplan and its corresponding
optimized floorplan, respectively.

There are two observations for all the benchmark problems
(Fig. 8).

• The average fitness value of the optimized floorplans from
those initial floorplans whose fitness value is less than 0.6
is significantly poorer than that of the optimized floorplans
from those initial floorplans whose fitness is equal to or
greater than 0.6.

• The best of the 100 optimized floorplans is generated
from an initial floorplan whose fitness value is equal to
or greater than 0.6.

The two observations suggest that the threshold v should
be set to 0.6 for the two benchmark problems. By doing so,
the MA may ignore a number of search regions and therefore
reduce computation time without compromising the optimality
of solutions.

C. On the Effectiveness of the Threshold Strategy

To test the effectiveness of the threshold strategy, we de-
veloped two MAs, one using the threshold strategy to pick up
individuals for local optimization and one randomly picking up
30% of individuals for local optimization (Since there are about
30% of individuals who are selected for local optimization
in the threshold strategy, the random selection strategy also
picks up 30% of individuals for local optimization for a fair
comparison.), and we tested on the benchmark ami33. For
each MA, we repeatedly tested on the benchmark problem
for ten times. Table III shows the Mann–Whitney statistical
test results for the hypothesis “the cost obtained by the MA
using the threshold strategy is less than or equal to the cost
obtained by the MA using the random picking up strategy.” The
difference between the medians of the costs obtained by the two
MAs is −0.009, and the confidence interval for that is 95.5%.

68 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

TABLE III
MANN–WHITNEY TEST RESULTS FOR THE HYPOTHESIS “THE COST OBTAINED BY THE MA USING THE THRESHOLD STRATEGY

IS LESS THAN OR EQUAL TO THE COST OBTAINED BY THE MA USING THE RANDOM PICKING UP STRATEGY”

TABLE IV
KRUSKAL–WALLIS STATISTICAL TEST RESULTS

ON DIFFERENT CONFIGURATIONS

The statistical test results show that the threshold bias search
strategy is significant.

D. On the Tradeoff Between the Two Optimization Objectives

To study the tradeoff between the two optimization objec-
tives, i.e., the minimal area and minimal interconnection, we
tested the MA on the benchmark ami33 with three differ-
ent configurations of weighs, i.e., {w1 = 1, w2 = 0}, {w1 =
0.5, w2 = 0.5}, and {w1 = 0, w2 = 1}. For each of the con-
figurations, we tested the MA on the benchmark for ten times
and recorded the test results. Table IV shows the statistical test
results.

The statistical test results reveal that the configuration {w1 =
1, w2 = 0} produced the best cost, followed by the configura-
tion {w1 = 0, w2 = 1}. The configuration {w1 = 0.5, w2 =
0.5} generated the worst cost.

This paper indicates that the MA is sensitive to the config-
uration and that the two objectives are mutually constrained
with each other. To find the optimal configuration is a tedious
job, and the optimal configuration may be different for different
problems.

VI. CONCLUSION

This paper has presented an MA for a nonslicing and hard-
module VLSI floorplanning problem—a challenging optimiza-
tion problem in VLSI design automation. This MA is a hybrid
GA that uses an effective genetic search method to explore the
search space and an efficient local search method to exploit in-
formation in the search region. The exploration and exploitation
are balanced by a threshold bias search strategy. Experimental
results have shown that the MA outperforms both the mDA and
GA for the benchmark problems.

This paper represents our first effort toward efficient MAs for
VLSI floorplanning. There are some interesting issues that need
to be further investigated.

First, the current MA uses a static threshold bias search
strategy—The value of the threshold v is a constant and never
changes during the evolution. It is conjectured that if v can
dynamically change in the light of the status of the population of
the MA, the performance of the MA could be further improved.
Therefore, one of the issues that we are going to investigate is
dynamic threshold bias search strategies.

In addition, it has been observed that solutions obtained by
the MA generally have smaller area but longer interconnection
compared with those obtained by the mDA. Our preliminary re-
search on the crossover operator has revealed that the crossover
operator is more favorable to the area minimization objective
than the interconnection minimization objective. When recom-
bining two parents to produce a child, the crossover operator
can more efficiently preserve those good memes contributing to
a compact floorplan, but less efficiently preserve those memes
contributing to a short interconnection. Thus, how to improve
the crossover operator such that it can effectively preserve
good memes contributing to both area and interconnection
minimizations is another issue we will investigate in the future.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editors and
anonymous reviewers for their valuable comments. Part of this
work was done while the first author was visiting the Cen-
ter of Excellence for Research in Computational Intelligence
and Applications, School of Computer Science, University of
Birmingham, U.K.

REFERENCES

[1] P.-N. Guo, T. Takahashi, C.-K. Cheng, and T. Yoshimura, “Floorplanning
using a tree representation,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 20, no. 2, pp. 281–289, Feb. 2001.

[2] J. Cohoon, S. Hegde, W. Martin, and D. Richards, “Distributed genetic
algorithms for the floorplan design problem,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 10, no. 4, pp. 483–492, Apr. 1991.

[3] M. Rebaudengo and M. Reorda, “GALLO: A genetic algorithm for
floorplan area optimization,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 15, no. 8, pp. 943–951, Aug. 1996.

[4] C. Valenzuela and P. Wang, “VLSI placement and area optimization using
a genetic algorithm to breed normalized postfix expressions,” IEEE Trans.
Evol. Comput., vol. 6, no. 4, pp. 390–401, Aug. 2002.

[5] B. Gwee and M. Lim, “A GA with heuristic based decode for IC floor-
planning,” Integr., VLSI J., vol. 28, no. 2, pp. 157–172, 1999.

[6] P. Moscato, “On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms,” California Inst. Technol.,
Pasadena, Tech. Rep. 826, 1989.

[7] R. Dawkins, The Selfish Gene. Oxford, U.K.: Oxford Univ. Press, 1976.
[8] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic algo-

rithms for the quadratic assignment problem,” IEEE Trans. Evol. Comput.,
vol. 4, no. 4, pp. 337–352, Nov. 2000.

[9] E. Burke, P. Cowling, P. Causmaecker, and G. Berghe, “A memetic
approach to the nurse rostering problem,” Appl. Intell., vol. 15, no. 3,
pp. 199–214, Nov. 2001.

[10] A. Quintero and S. Pierre, “A memetic algorithm for assigning cells to
switches in cellular mobile networks,” IEEE Commun. Lett., vol. 6, no. 11,
pp. 484–486, Nov. 2002.

[11] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective permu-
tation flowshop scheduling,” IEEE Trans. Evol. Comput., vol. 7, no. 2,
pp. 204–223, Apr. 2003.

[12] K.-H. Liang, X. Yao, and C. Newton, “Larmarckian evolution in global
optimization,” in Proc. 26th Int. Conf. Ind. Electron., Control and
Instrum. and 3rd Asia-Pacific Conf. Simul. Evol. and Learning, 2003,
pp. 331–334.

TANG AND YAO: MEMETIC ALGORITHM FOR VLSI FLOORPLANNING 69

[13] Y. S. Ong and A. Keane, “Meta-Lamarckian learning in memetic algo-
rithms,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 99–110, Apr. 2004.

[14] N. Krasnogor and J. Smith, “A tutorial for competent memetic algorithms:
Model, taxonomy, and design issues,” IEEE Trans. Evol. Comput., vol. 9,
no. 5, pp. 474–488, Oct. 2005.

[15] H. Ishibuchi and T. Murata, “A multi-objective genetic local search algo-
rithm and its application to flowshop scheduling,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 28, no. 3, pp. 392–403, Aug. 1998.

[16] K.-H. Liang, X. Yao, and C. Newton, “Evolutionary search of approxi-
mated n-dimensional landscapes,” Int. J. Knowl.-Based Intell. Eng. Syst.,
vol. 4, no. 3, pp. 172–183, Jul. 2000.

[17] The MCNC Benchmark Problems for VLSI Floorplanning. [Online].
Available: http://www.mcnc.org

[18] The Analyse-it General Statistics Software for Microsoft Excel. [Online].
Available: http://www.analyse-it.com

Maolin Tang (M’04) received the B.S. degree in
computer science from Huazhong University of
Science and Technology, Wuhan, China, the M.S.
degree in computer science from Chongqing Uni-
versity, Chongqing, China, and the Ph.D. degree in
computer systems engineering from Edith Cowan
University, Perth, W.A., Australia.

He is currently a Senior Lecturer with the Faculty
of Information Technology, Queensland Univer-
sity of Technology, Brisbane, Qld., Australia. His
research interests include evolutionary computa-

tion, evolutionary VLSI physical design and optimization, and web-based
computation.

Xin Yao (M’91–SM’96–F’03) received the B.Sc.
degree from the University of Science and Tech-
nology of China (USTC), Hefei, China, in 1982,
the M.Sc. degree from the North China Institute of
Computing Technology, Beijing, China, in 1985, and
the Ph.D. degree from USTC, Hefei, in 1990.

He was an Associate Lecturer and Lecturer from
1985 to 1990 with USTC while working on the Ph.D.
degree. His Ph.D. work on simulated annealing and
evolutionary algorithms was awarded the President’s
Award for Outstanding Thesis by the Chinese Acad-

emy of Sciences. In 1990, he took up a postdoctoral fellowship at the Com-
puter Sciences Laboratory, Australian National University, Canberra, A.C.T.,
Australia, and continued his work on simulated annealing and evolutionary al-
gorithms. In 1991, he joined the Knowledge-Based Systems Group, Common-
wealth Scientific and Industrial Research Organization (CSIRO) Division of
Building, Construction, and Engineering, Melbourne, Vic., Australia, working
primarily on an industrial project on automatic inspection of sewage pipes. In
1992, he returned to Canberra to take up a lectureship at the School of Com-
puter Science, University College, University of New South Wales, Australian
Defence Force Academy, Kensington, N.S.W., Australia, where he was later
promoted to Senior Lecturer and Associate Professor. Attracted by the English
weather, he moved to the University of Birmingham, Birmingham, U.K., as a
Professor (Chair) of computer science on April 1, 1999. He is currently the
Director of the Centre of Excellence for Research in Computational Intelli-
gence and Applications, Birmingham, a Distinguished Visiting Professor of the
University of Science and Technology of China, Hefei, and a Visiting Professor
of three other universities. He has been invited to give more than 45 invited
keynote and plenary speeches at conferences and workshops worldwide. He has
more than 200 refereed research publications. His research has been supported
by research councils, government organizations, and industry (more than £
4M in the last four years). His major research interests include evolutionary
computation, neural network ensembles, and their applications.

Prof. Yao serves as the Editor-in-Chief of the IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, an associate editor or editorial board mem-
ber of several other journals, and the Editor of the World Scientific book series
on “Advances in Natural Computation.” He is also a Distinguished Lecturer of
the IEEE Computational Intelligence Society. He is the recipient of the 2001
IEEE Donald G. Fink Prize Paper Award for his work on evolutionary artificial
neural networks.

