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Abstract Dynamic optimization problems challenge
traditional evolutionary algorithms seriously since they,
once converged, cannot adapt quickly to environmen-
tal changes. This paper investigates the application of
memetic algorithms, a class of hybrid evolutionary algo-
rithms, for dynamic optimization problems. An adaptive
hill climbing method is proposed as the local search tech-
nique in the framework of memetic algorithms, which
combines the features of greedy crossover-based hill climb-
ing and steepest mutation-based hill climbing. In order
to address the convergence problem, two diversity main-
taining methods, called adaptive dual mapping and trig-
gered random immigrants respectively, are also intro-
duced into the proposed memetic algorithm for dynamic
optimization problems. Based on a series of dynamic
problems generated from several stationary benchmark
problems, experiments are carried out to investigate the
performance of the proposed memetic algorithm in com-
parison with some peer evolutionary algorithms. The ex-
perimental results show the efficiency of the proposed
memetic algorithm in dynamic environments.

Key words Genetic algorithm, memetic algorithm, lo-
cal search, crossover-based hill climbing, mutation-based
hill climbing, dual mapping, triggered random immi-
grants, dynamic optimization problems

1 Introduction

Many real-world optimization problems are dynamic op-
timization problems (DOPs), where the function land-
scapes may change over time and, thus, the optimum
of these problems may also change over time. DOPs
require powerful heuristics that account for the uncer-
tainty present in the real world. Since evolutionary algo-
rithms (EAs) draw their inspiration from the principles
of natural evolution, which is a stochastic and dynamic

process, they also seem to be suitable for DOPs. How-
ever, traditional EAs face a serious challenge for DOPs
because they cannot adapt well to the changing environ-
ment once converged.

In order to address DOPs, many approaches have
been developed [41] and can be grouped into four cate-
gories: 1) increasing population diversity after a change
is detected, such as the adaptive mutation methods [4,
33]; 2) maintaining population diversity throughout the
run, such as the immigrants approaches [11,39,40]; 3)
memory approaches, including implicit [10,32] and ex-
plicit memory [2,35,38,43] methods; 4) multi-population
[3,24] and speciation approaches [27]. A comprehensive
survey on EAs applied to dynamic environments can be
found in [14].

In recent years, there has been an increasing con-
cern from the evolution computation community on a
class of hybrid EAs, called memetic algorithms (MAs),
which hybridize local search (LS) methods with EAs
to refine the solution quality. So far, MAs have been
widely used for solving many optimization problems,
such as scheduling problems [13,19,20], combinatorial
optimization problems [8,30,31], multi-objective prob-
lems [9,12,18] and other applications [44,45]. However,
these problems for which MAs have been applied are
mainly stationary problems. MAs have rarely been ap-
plied for DOPs [6,7,36]. During the running course of
general MAs, they may always exhibit very strong ex-
ploitation capacity due to executing efficient local refine-
ment on individuals, but they may lose the exploration
capacity as a result of the population converging to one
optimum, which needs to be avoided in dynamic envi-
ronments. Therefore, it becomes an interesting research
issue to examine the performance of MAs, which are en-
hanced by suitable diversity methods, for DOPs.

In this paper, we investigate the application of a
MA with an adaptive hill climbing strategy, which com-
bines the features of crossover-based hill climbing and
mutation-based hill climbing in both cooperative and
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Procedure General GA-based MA:
begin

parameterize(pop size, pc, pm);
t := 0;
initializePopulation(P (0));
evaluatePopulation(P (0));
elite := selectForLocalSearch(P (0));
localSearch(elite);
repeat

P ′(t) := selectForReproduction(P (t));
P ′′(t) := crossover(P ′(t));
mutate(P ′′(t));
evaluatePopulation(P ′′(t));
P (t+ 1) := selectForSurvival(P (t),P ′′(t));
elite := selectForLocalSearch(P (t + 1));
localSearch(elite);
t := t+ 1;

until a stop condition is met
end;

Fig. 1 Pseudo-code for a general GA-based MA.

competitive fashions, to address DOPs. In order to ad-
dress the convergence problem, two diversity maintain-
ing approaches, an adaptive dual mapping and a trig-
gered random immigrants scheme, are introduced into
the proposed MA to improve its performance in dynamic
environments. The effect of introducing these two diver-
sity maintaining approaches into our MA for DOPs is
experimentally investigated.

The rest of this paper is organized as follows. Sec-
tion 2 describes the proposed MA with two hill climbing
strategies investigated in this paper. Section 3 introduces
a series of DOPs generated by a dynamic problem gen-
erator from the stationary test suite. Section 4 reports
the experimental results and relevant analysis. Finally,
Section 5 concludes this paper with some discussions on
relevant future work.

2 Investigated Algorithms

2.1 Framework of GA-based Memetic Algorithms

The memetic algorithms investigated in this paper are
a class of GA-based MAs, which can be expressed by
the pseudo-code in Fig. 1, where pop size, pc, and pm
are the population size, crossover probability, and muta-
tion probability respectively. Within these MAs, a pop-
ulation of pop size individuals are generated randomly
and then evaluated at the initialization step. Then, an
elite individual, i.e., an individual with the best fitness,
is improved by a local search (LS) strategy. At each sub-
sequent generation, individuals are selected randomly
or proportionally from the current population and un-
dergo the uniform crossover operation with a probabil-
ity pc. Uniform crossover is the generalization of n-point

crossover which creates offspring by deciding, for each
bit of one parent, whether to swap the allele of that bit
with the corresponding allele of the other parent. After
crossover is executed, the bit-wise mutation operator is
performed for each newly generated offspring individual,
which may change the allele in each locus of an offspring
bitwise (0 to 1 and vice versa) with a probability pm.
Then, the pop size best individuals among all parents
and offspring are selected to proceed into the next gen-
eration and an elite individual in the newly generated
population is improved by the LS strategy.

The convergence problem must be addressed when
an EA or MA is applied for DOPs. Some diversity main-
taining approaches, such as the dualism and immigrants
methods, have proved to be good choices for EAs to
address this problem. However, more economical diver-
sity methods should be introduced to MAs for DOPs,
given that the LS operations always cost a number of
extra evaluations. Hence, two diversity maintaining ap-
proaches will be introduced to our MA, which utilizes
the adaptive hill climbing strategy as the LS operator,
to address DOPs in the next section.

2.2 Hill Climbing

Within MAs, LS operators perform directive local refine-
ments to ensure sufficient exploitation during the course
of evolving the population. Among many LS methods
available in the literature, hill climbing (HC) is a com-
mon strategy. In the context of GAs, HC methods may
be divided into two ways: crossover-based hill climbing
[17,26] and mutation-based hill climbing [16,25]. The ba-
sic idea of HC methods is to use stochastic iterative hill
climbing as the move acceptance criterion of the search
(i.e. move the search from the current individual to a
candidate individual if the candidate has a better fitness)
and use crossover or mutation as the move operator in a
local area.

Here, we propose two HCmethods, a greedy crossover-
based hill climbing (GCHC) and a steepest mutation-
based hill climbing (SMHC), in this section. They are
specially designed for MAs with binary encoding scheme,
which are our concern in this paper. We will consider a
class of binary encoded DOPs in our experiments to be
discussed later. The two HC methods are described as
follows.

1) GCHC: In this strategy, the elite individual is
taken as one parent and another parent is selected from
the current population using a roulette wheel. Then, a
special uniform crossover is executed between these two
parent individuals to generate an offspring. The offspring
will replace the elite individual in the current population
if it has a better fitness than the elite. This procedure
is outlined in Fig. 2, where a maximization optimization
problem is assumed.

2) SMHC: The steepest mutation means that the
chromosome only changes several bits randomly when
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Procedure GCHC(elite):
begin

calculate(ξ, pcls);
for i := 1 to ls size do

par chr := selectParentForCrossover(P );
for j := 1 to n do

if random() < pcls then

chi chr[j] := par chr[j];
else

chi chr[j] := elite[j];
endfor

evaluate(chi chr);
if f(chi chr) > f(elite) then elite := chi chr;

endfor

end;

GCHC’s parameters:
ξ: a population index used to renew the value of pcls
pcls: the crossover probability in GCHC
ls size: the step size of hill climbing
par chr: the proportionally selected parent individual
P : current population
n: individual length (problem dependent)
random(): a random number between 0 and 1
chi chr: the new individual generated by performing a

uniform crossover between par chr and elite

elite: the elite chromosome for hill climbing

Fig. 2 Pseudo-code for the GCHC operator.

executing one mutation operation on it. In SMHC, the
elite individual is picked out from the current popula-
tion and several random bits are changed. If the newly
mutated individual has a better fitness, it will replace
the elite individual. The SMHC strategy is outlined in
Fig. 3.

From Fig. 2 and Fig. 3, it can be seen that two im-
portant parameters, pcls in GCHC and nmls in SMHC
respectively, may affect the results of the local search.
In GCHC the smaller the value of pcls, the more the
offspring inherits from the elite individual. This means
executing one step LS operation in a smaller area around
elite. Similar results can be obtained for nmls in SMHC.
When the value of nmls is larger, SMHC will perform
the LS operation within a wider range around elite.

Therefore, the question that remains to be answered
here is how to set the two parameters. Generally speak-
ing, the methods of setting strategy parameters in GAs
can be classified into three categories [5]: deterministic
mechanism where the value of the strategy parameter is
controlled by some deterministic rules without any feed-
back from the search, adaptive mechanism where there
is some form of feedback information from the search
process that is used to direct the setting of a strategy
parameter, and self-adaptive mechanism where the pa-

Procedure SMHC(elite):
begin

calculate(ξ, nmls);
for i := 1 to ls size do

for j := 1 to n do

chi chr[j] := elite[j];
endfor

for k := 1 to nmls do

loc := random(1, n);
chi chr[loc] := 1− chi chr[loc];

endfor

evaluate(chi chr);
if f(chi chr) > f(elite) then elite := chi chr;

endfor

end;

SMHC’s parameters:
nmls: the number of bits mutated in SMHC
chi chr: the new individual generated by performing

steepest mutation upon the elite
loc: a random selected location for flipping
random(1, n): a random integer between 1 and n

Other parameters are the same as those for GCHC

Fig. 3 Pseudo-code for the SMHC operator.

rameter to be adapted is encoded into the chromosomes
and undergoes genetic operators.

Two different parameter-setting methods will be dis-
cussed for pcls and nmls in the later experiments. In the
deterministic method, both pcls and nmls are set to con-
stant values, which means that the LS operation will al-
ways be executed in a local area of a certain fixed range.
In the adaptive method, a population index ξ which can
measure the diversity of the population is considered as
the feedback information to direct the change of the val-
ues of pcls and nmls.

Let the normalized Hamming distance between two
individuals xi = (xi1, . . . , xin) and xj = (xj1, . . . , xjn)
be defined by:

d(xi,xj) =

∑n

k=1
|xik − xjk|

n
(1)

and ξ is calculated by the following formula:

ξ =

∑pop size

i=1
d(x∗,xi)

pop size
, (2)

where x∗ denotes the best individual achieved so far. Ob-
viously, the index ξ can measure the convergence state
of the population via the Hamming distance calculation.
When ξ decreases to zero, it means that the population
has lost its diversity absolutely.

With the definition of ξ, pcls and nmls can be calcu-
lated as follows:

pcls = min{α · ξ · (pcmax
ls − pcmin

ls ) + pcmin
ls , pcmax

ls } (3)
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nmls = min{β · ξ · (nmmax
ls −nmmin

ls )+nmmin
ls , nmmax

ls },
(4)

where pcmax
ls and pcmin

ls are the preset maximum and
minimum value of pcls respectively, nmmax

ls and nmmin
ls

are the preset maximum and minimum value of nmls

respectively, and α and β are the predefined constants
to control the decreasing or increasing speed of pcls and
nmls respectively. From these formulae, it is easy to un-
derstand that both GCHC and SMHC exhibit a wide
range LS operations in the presence of a high population
diversity (i.e., when ξ → 1) as a result of pcls → pcmax

ls

and nmls → nmmax
ls . This may help algorithms find the

optimum (maybe local optimum) more quickly. However,
when the population is converging (i.e., when ξ → 0),
pcls → pcmin

ls and nmls → nmmin
ls , which limits the LS

operations in a very small range in order to performmore
efficient local improvement for the elite individual.

2.3 Adaptive Hill Climbing (AHC)

It has been reported that multiple LS operators can be
employed in a MA framework [21,28,29]. This is because
each LS operator makes a biased search, which makes a
method efficient for some classes of problems but not
efficient for others. That is, LS is problem-dependent.
Therefore, how to achieve improved LS operators and
avoid utilizing inappropriate LS methods becomes a very
important issue. In order to address this problem, many
researchers have used multiple LS methods in their MAs.
In comparison with traditional MAs that use a single
LS operator throughout the run, MAs with multiple LS
methods can usually obtain a better performance.

The key idea of using multiple LS operators in MAs
is to promote the cooperation and competition of differ-
ent LS operators, enabling them to work together to ac-
complish the shared optimization goal. Some researchers
[15,23] have suggested that multiple LS operators should
be executed simultaneously on those individuals that are
selected for local improvements and that a certain learn-
ing mechanism should be adopted to give the efficient LS
methods greater chances to be chosen in the later stage.
However, Neri et al. [22] have also proposed a multiple
LS based MA with a non-competitive scheme, where dif-
ferent LS methods can be activated during different pop-
ulation evolution periods. Inspired by these researches,
an adaptive hill climbing (AHC) strategy that hybridizes
the GCHC and SMHC methods described in Section 2.2
is proposed in this paper.

In AHC, the GCHC and SMHC operators are both
allowed to work in the whole LS loop and are selected
by probability to execute one step LS operation at every
generation when the MA is running. Let pgchc and psmhc

denote the probabilities of applying GCHC and SMHC
to the individual that is used for a local search respec-
tively, where pgchc+psmhc = 1. At the start of this strat-
egy, pgchc and psmhc are both set to 0.5, which means

Procedure AHC(elite):
begin

if pgchc and psmhc are not initialized then

set pgchc = psmhc = 0.5;
calculate(ξ, pcls, nmls);
set ηgchc = ηsmhc = 0;
for i := 0 to ls size− 1 do

if random() < pgchc then // GCHC is selected
GCHC(elite);
update(ηgchc);

else // SMHC is selected
SMHC(elite);
update(ηsmhc);

endfor

recalculate(pgchc, psmhc);
end;

AHC’s parameters are defined the same as those for
GCHC and SMHC

Fig. 4 Pseudo-code for the AHC operator.

giving a fair competition chance to each LS operator. As
each LS operator always makes a biased search, the LS
operator which produces more improvements should be
given a greater selection probability. Here, an adaptive
learning approach is used to adjust the value of pgchc
and psmhc for each LS operator. Let η denotes the im-
provement degree of the selected individual when one LS
operator is used to refine it and η can be calculated by:

η =
|fimp − fini|

fini
, (5)

where fimp is the final fitness of the elite individual after
applying the local search and fini is its initial fitness
before the local search. At each generation, the degree
of improvement of each LS operator is calculated when a
predefined number (ls size) of iterations is achieved and
then pgchc and psmhc are re-calculated to proceed with
the local improvement in the next generation.

Suppose ηgchc(t) and ηsmhc(t) respectively denote the
total improvement of GCHC and SMHC at generation t.
The LS selection probabilities pgchc(t+1) and psmhc(t+
1) at generation (t+1) can be calculated orderly by the
following formulae:

pgchc(t+ 1) = pgchc(t) +∆ · ηgchc(t), (6)

psmhc(t+ 1) = psmhc(t) +∆ · ηsmhc(t), (7)

pgchc(t+ 1) =
pgchc(t+ 1)

pgchc(t+ 1) + psmhc(t+ 1)
, (8)

psmhc(t+ 1) = 1− pgchc(t+ 1), (9)

where ∆ signifies the relative influence of the degree of
the improvement on the selection probability. The AHC
operator can be expressed by the pseudo-code in Fig. 4.
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From the above discussion, the two different HC strate-
gies, GCHC and SMHC, may not only cooperate to im-
prove the quality of individuals, but also compete with
each other to achieve a greater selection probability in
the running process of AHC. To promote competition
between them, the selection probability of LS operators
can be re-calculated according to an adaptive learning
mechanism where the LS operator with a higher fitness
improvement is rewarded with more chance of being cho-
sen for the subsequent individual refinement.

2.4 Population Diversity

So far, almost all MAs are used for solving stationary
optimization problems, where the fitness landscape or
objective function does not change during the course of
computation. The LS operators are designed for exploit-
ing information in the current population and the genetic
operators, for example, mutation, are mostly responsi-
ble for enhancing the diversity of population in order
to make an efficient jump from a local optimum. Gen-
erally speaking, the population will converge to a small
area in the whole search space as a result of keeping the
sufficient exploitation for the global optimum. Therefore,
MAs may gradually loose their population diversity dur-
ing the running. However, in dynamic environments, the
fitness landscape may change over time. That is, the cur-
rent optimum point may become a local optimum and
the past local optimum may become a new global op-
timum point. Considering that a spread-out population
can adapt to these changes more easily, it is very impor-
tant and necessary to maintain a sufficient diversity of
the population for MAs all the time.

Obviously, a simple mutation operator can not main-
tain sufficient population diversity in MAs since LS op-
erators can make the population rapidly converge into
an optimum. In order to address this converge prob-
lem, two diversity-maintaining methods, called adaptive
dual mapping (ADM) and triggered random immigrants
(TRI), are introduced into our algorithm framework of
MAs, as shown in Fig. 5, for DOPs.

1) The ADM method: Dualism and complementarity
are quite common in nature, such as double-stranded
chromosome in DNA molecules. Inspired by the comple-
mentarity mechanism in nature, a primal-dual genetic
algorithm has been proposed and applied for DOPs [37].
In this paper, we investigate the application of dualism
[34,42] into MAs. For the convenience of description, we
first introduce the definition of a dual individual here.
Given an individual x = (x1, . . . , xn) ∈ I = {0, 1}n

of a fixed length n, its dual individual is defined as
x′ = (x′

1
, . . . , x′

n) ∈ I where x′
i = 1 − xi (i = 1, . . . , n).

With this definition, the dual (elite′) of an individual
(elite) is first evaluated before executing a LS on it. If
its dual is evaluated to be fitter (f(elite′) > f(elite)),
elite is replaced with elite′ before the local search is ex-
ecuted; Otherwise, elite will be refined by LS directly.

Procedure Proposed GA-based MA:
begin

parameterize(pop size, pc, pm);
t := 0;
initializePopulation(P (0));
evaluatePopulation(P (0));
calculate(ξ, ls size, pcls, nmls);
elite := selectForLocalSearch(P (0));
if ADM is used then

elite′ := dual(elite);
evaluateDualIndividual(elite′);
if f(elite′) > f(elite) then elite := elite′;

AHC(elite);
repeat

P ′(t) := selectForReproduction(P (t));
P ′′(t) := crossover(P ′(t));
mutate(P ′′(t));
evaluatePopulation(P ′′(t));
P (t+ 1) := selectForSurvival(P ′′(t), P (t));
calculate(ξ, ls size, pcls, nmls);
elite := selectForLocalSearch(P (t + 1));
if ADM is used then

elite′ := dual(elite);
evaluateDualIndividual(elite′);
if f(elite′) > f(elite) then elite := elite′;

AHC(elite);
if TRI is used then

if ξ < θ0 then

replace the worst im size individuals in
P (t+ 1) with random immigrants;

t := t+ 1;
until a stop condition is met

end;

Fig. 5 Pseudo-code for the proposed GA-based MA with
diversity maintaining techniques.

2) The TRI method: The random immigrants ap-
proach was first introduced by Grefenstette [11] where
in every generation the population is partly replaced by
randomly generated individuals. Though this method in-
troduces a constant diversity into the population, it is
more helpful that the random individuals migrate into
a converging population than a spread-out one. Thus, it
is not necessary that the population is always injected
by random individuals at every generation. Here, we in-
troduce a triggered random immigrants method via com-
bining a trigger mechanism with the random immigrants
scheme. In the triggered method, the random individu-
als will be immigrated into the population only when
its convergence degree is below a threshold. A triggered
generator may be designed using the index ξ (see Sec-
tion 2.2). When the value of ξ is less than a certain
threshold θ0, the random immigrants strategy will be
triggered and im size (here, im size = 10%× pop size)
lowest fitness individuals in the population are replaced
by the same amount of randomly generated ones.
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Based on the above description, the ADM method
can introduce a certain degree of diversity to the current
population if the elite individual makes a long jump to
its complement in the search space. Although just one
individual in the current population is allowed to execute
the dual mapping operation, this diversity method may
affect the algorithm very explicitly. This is because the
selected individual is the best fitness individual which
plays an important role in the running of investigated
MAs. The TRI method can bring a high degree of diver-
sity when the current population has converged below
a certain level. It is obvious that the TRI method may
just make an implicit influence on the performance of
algorithms as the fitness level of randomly generated in-
dividuals is usually very low.

One main problem that follows when the diversity
methods are introduced into MA is how much they af-
fect the LS operation. Just as introduced in Section 2.1,
the number of evaluations must be considered in the
framework of MAs for DOPs while the LS operation and
diversity maintaining operation both cost a number of
additional evaluations (ls size in LS, one in ADM, and
im size in TRI) per generation of the MA running. As
a generation index is used to set the change period of
environment in the later experiments, it is necessary to
maintain a constant number of evaluations in each gener-
ation in order to have fair comparisons among our inves-
tigated MAs and other peer EAs. Therefore, the LS step
size ls size will be re-calculated when ADM or TRI or
both are used. Let Num epg denote the number of eval-
uations per generation, ls size = Num epg−pop size−
1− im size if ADM and TRI techniques are both intro-
duced into MA. In fact, it is why we use the ADM and
TRI methods in our investigated MAs, with a view to
decrease the evaluations of useless diversity maintaining
operations as much as possible.

3 Dynamic Test Environments

In this paper, a series of dynamic test environments are
constructed by a specific dynamic problem generator
from a set of well studied stationary problems. Four 100-
bit binary-coded functions, denoted OneMax, Plateau,
RoyalRoad, and Deceptive respectively, are selected as
the stationary functions to construct dynamic test envi-
ronments. Each stationary function consists of 25 copies
of 4-bit building blocks and has an optimum value of 100.
Each building block for the four functions is a unitation-
based function, as shown in Fig. 6. The unitation func-
tion of a bit string returns the number of ones inside
the string. The building block for OneMax is an One-
Max subfunction, which aims to maximize the number
of ones in a bit string. The building block for Plateau
contributes 4 (or 2) to the total fitness if its unitation is
4 (or 3); otherwise, it contributes 0. The building block
for RoyalRoad contributes 4 to the total fitness if all

0 1 2 3 4
0

1

2

3

4

Unitation

F
itn

e
ss

OneMax
Plateau
RoyalRoad
Deceptive

Fig. 6 The building blocks for the four stationary functions
selected to construct dynamic test problems in this paper.

its four bits are set to one; otherwise, it contributes 0.
The building block for Deceptive is a fully deceptive sub-
function. Generally speaking, the four functions have an
increasing difficulty for GAs in the order from OneMax
to Plateau, RoyalRoad to Deceptive.

In [37,42], a DOP generator was proposed. The DOP
generator can generate dynamic environments from any
binary-encoded stationary function f(x) (x ∈ {0, 1}l) by
a bitwise exclusive-or (XOR) operator. The environment
is changed every τ generations. For each environmental
period k, an XOR maskM(k) is incrementally generated
as follows:

M(k) = M(k − 1)⊕T(k), (10)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕
0 = 1, 0 ⊕ 0 = 0) and T(k) is an intermediate binary
template randomly created with ρ × l ones for the k-th
environmental period. For the first period k = 1,M(1) =
0. Then, the population at generation t is evaluated as:

f(x, t) = f(x⊕M(k)), (11)

where k = ⌈t/τ⌉ is the environmental index. One advan-
tage of this XOR generator lies in that the speed and
severity of environmental changes can be easily tuned.
The parameter τ controls the speed of changes while
ρ ∈ (0.0, 1.0) controls the severity of changes. A bigger
ρ means more severe changes while a smaller τ means
more frequent changes.

The dynamic test environments used in this paper are
constructed from the four stationary functions using the
aforementioned XOR DOP generator. The change sever-
ity ρ parameter is set to 0.1, 0.2, 0.5, and 0.9 respectively
in order to examine the performance of algorithms in dy-
namic environments with different severities: from slight
change (ρ = 0.1 or 0.2) to moderate variation (ρ = 0.5)
to intense change (ρ = 0.9). The change speed parame-
ter τ is set to 10, 50, and 100 respectively, which means
that the environment changes very fast, in the moderate
speed, and slowly respectively.
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Table 1 The index table for dynamic parameter settings

τ Environmental Dynamics Index

10 1 2 3 4
50 5 6 7 8
100 9 10 11 12

ρ → 0.1 0.2 0.5 0.9

In total, a series of 12 different dynamic problems
are constructed from each stationary test problem. The
dynamics parameter settings are summarized in Table 1.

4 Experimental Study

4.1 Experimental Design

In this section, experiments are carried out in order to
study the major features of our proposed MAs and to
compare their performance with several existing peer al-
gorithms where similar dualism and immigrants meth-
ods are also used. The following abbreviations represent
GAs or MAs considered in this paper:

– CHMA: MA with the GCHC operator;
– MHMA: MA with the SMHC operator;
– AHMA: MA with the AHC operator;
– SGA: Standard GA;
– SGAr: SGA with restart from scratch whenever the

environment changes;
– RIGA: GA with the random immigrants scheme;
– EIGA: GA with the elitism-based immigrants scheme

[39]. In EIGA, a set of immigrant individuals are gen-
erated by bitwise mutating the elitist (the best indi-
vidual) from the previous generation to replace the
worst individuals in the population at each genera-
tion;

– DPBIL3: The population-based incremental learning
(PBIL) algorithm is a combination of evolutionary
computation and competitive learning [1]. At each
generation PBIL first generates a population of sam-
ples (solutions) according to a real valued probability
vector and then retrieves the best sample generated
to update (learn) the probability vector. With the
progress of such iterations, each element in the prob-
ability vector will eventually converge to either 0.0
or 1.0 and PBIL can always achieve high quality so-
lution with a high probability. In order to improve
the performance of PBIL in dynamic environments,
a PBIL variant, denoted DPBIL3, was investigated
in [42]. DPBIL3 integrates the dualism and immi-
grants approaches. Instead of using only one proba-
bility vector as in the standard PBIL, DPBIL3 uses
three different probability vectors, a pair of probabil-
ity vectors that are dual to each other and one central
probability vector. The three probability vectors gen-
erate their own sets of samples respectively and the

number of samples they generate changes adaptively
according to their relative performance. More details
on DPBIL3 can be found in [42].

The following parameters are used in all algorithms:
the total number of evaluations per generation Numepg

is always set to 120 for all algorithms, and the popu-
lation size (pop size) is set to 100 for all MAs, RIGA
and EIGA, but is set to 120 for SGA, SGAr and DP-
BIL3 because the LS operation in MAs may be executed
ls size = 20 steps at most and the immigrant ratio is set
to 0.2 in RIGA and EIGA per generation. The uniform
crossover probability pc equals to 0.6 and the bit-wise
mutation probability pm is set to 0.01 for all GAs and
MAs. The specific parameters in our MAs are set as fol-
lows: α = β = 1, ∆ = 4 and θ0 = 0.1. Other parameters
in the studied peer algorithms are always the same as
their original settings.

For each experiment of an algorithm on a test prob-
lem, 20 independent runs were executed with the same
set of random seeds. For each run of an algorithm on
a DOP, 10 environmental changes were allowed and the
best-of-generation fitness was recorded per generation.

The overall offline performance of an algorithm is
defined as the best-of-generation fitness averaged across
the number of total runs and then averaged over the data
gathering period, as formulated below:

FBG =
1

G

G∑

i=1

(
1

N

N∑

j=1

FBGij
), (12)

where G is the number of generations (i.e., G = 10 ∗ τ),
N = 20 is the total number of runs, and FBGij

is the
best-of-generation fitness of generation i of run j.

In order to measure the behavior of an algorithm
during the course of running, another numeric measure is
defined as the best-of-generation fitness averaged across
the number of total runs and then averaged from the last
change generation τ ′ to the current generation t. More
formally, the running offline performance is defined as:

FBGt
=

1

t− τ ′

t−τ ′∑

i=τ ′

(
1

N

N∑

j=1

FBGij
) (13)

4.2 Experimental Study on the Effect of LS Operators

In the experimental study on LS operators, we first study
the influence of different settings of pcls in CHMA and
nmls in MHMA, with the aim of determining a robust
setting for these two parameters. In particular, we have
implemented CHMA that hybridizes the ADM and TRI
schemes just on stationary test problems. Three differ-
ent settings for pcls were used: pcls = 0.6 and pcls =
0.1 in the deterministic setting and pcmax

ls = 0.6 and
pcmin

ls = 0.1 in the adaptive setting scheme (see Sec-
tion 2.2). For each run of an algorithm on each problem,
the maximum allowable number of generations was set
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Fig. 7 Experimental results with respect to the running offline performance of CHMAs with different pcls settings on stationary
test problems: (a) OneMax, (c) RoyalRoad, and (d) Deceptive.
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Fig. 8 Experimental results with respect to the running offline performance of MHMAs with different nmls settings on
stationary test problems: (a) OneMax, (b) RoyalRoad, and (c) Deceptive.

to 1001. The experimental results are shown in Fig. 7,
where the data were averaged over 20 runs. The results
on the Plateau problem are similar to the results on the
RoyalRoad problem and are not shown in Fig. 7.

From Fig. 7, it can be seen that CHMA with adaptive
pcls always outperforms CHMAs with the deterministic
value of pcls on the OneMax, Plateau and RoyalRoad
problems and that a smaller pcls can help CHMA obtain
a better performance on the Deceptive problem. So the
adaptive setting scheme for pcls is always used in the
following experiments considering that the deterministic
setting scheme is problem-dependent and the adaptive
scheme for pcls always shows a better adaptive capacity
on different problems.

Similar experiments were also carried out to test the
influence of different settings of nmls on the performance
of MHMA, where the ADM and TRI methods are inte-
grated. The value of nmls was set to 4 and 1 respec-
tively for the deterministic scheme and nmmax

ls = 4 and
nmmin

ls = 1 in the adaptive setting scheme (see Section

1 The number of maximum allowable fitness evaluations is
actually 12000 since each algorithm has 120 fitness evalua-
tions per generation.

2.2). The experimental results with respect to the run-
ning offline performance are presented in Fig. 8.

From Fig. 8, it can be observed that the performance
curves of the three MHMAs almost overlap together on
the Plateau, RoyalRoad and Deceptive problems except
that MHMAwith nmls = 1 performs better than MHMA
with adaptive nmls and MHMA with nmls = 4 on the
OneMax problem. This indicates that adaptively varying
the search range of the SMHC operator may not improve
the performance of MHMA remarkably. Hence, the value
of nmls will always be set to 1 in the later experiments.

In the following experiments, we investigate the per-
formance of AHMA, MHMA, CHMA and SGA on the
stationary test problems in order to examine the validity
of LS operators. The two diversity maintaining methods
(ADM and TRI) are both used in all MAs and experi-
mental results with respect to the running offline perfor-
mance are shown in Fig. 9.

From Fig. 9, it can be seen that all MAs always
outperform SGA on all test problems. This shows that
the combination of proper LS techniques (here AHC
in AHMA, SMHC in MHMA, and GCHC in CHMA)
and some diversity methods (here, ADM and TRI) can
help MAs obtain a much better performance than SGA.
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Fig. 9 Experimental results with respect to the running offline performance of MAs and SGA on stationary test problems:
(a) OneMax, (b) RoyalRoad, and (c) Deceptive.

Table 2 Experimental results with respect to overall offline performance of AHMAs on dynamic test problems

Dynamics OneMax Problem Plateau Problem

τ ρ AHMA1 AHMA2 AHMA3 AHMA4 AHMA1 AHMA2 AHMA3 AHMA4

100 0.1 98.97±0.06 99.28±0.17 99.26±0.18 99.02±0.06 97.49±0.26 98.14±0.28 98.11±0.20 97.60±0.29
100 0.2 99.07±0.07 98.77±0.42 98.72±0.39 98.07±0.10 96.66±0.46 96.19±0.35 96.12±0.32 95.53±0.53
100 0.5 97.80±0.08 97.57±0.07 97.42±0.09 97.87±0.09 89.69±1.06 84.46±0.55 84.53±0.39 90.34±0.98
100 0.9 99.23±0.07 95.89±0.11 99.25±0.06 97.86±0.11 98.03±0.22 62.88±1.71 98.03±0.22 90.54±0.64

Dynamics RoyalRoad Problem Deceptive Function

τ ρ AHMA1 AHMA2 AHMA3 AHMA4 AHMA1 AHMA2 AHMA3 AHMA4

100 0.1 93.48±0.82 94.33±0.68 94.19±0.61 93.86±0.78 85.22±1.32 79.50±1.57 88.06±0.44 79.49±2.11
100 0.2 87.79±1.21 88.03±1.10 88.07±0.85 87.06±0.92 89.17±0.47 77.82±1.12 88.19±0.44 78.24±1.40
100 0.5 71.23±1.59 67.34±0.88 67.13±1.10 70.62±1.23 80.18±0.68 77.86±0.55 88.64±0.51 79.26±0.66
100 0.9 94.42±0.51 52.52±1.27 94.08±0.62 57.31±3.12 87.75±1.23 85.75±0.27 88.90±1.09 85.54±0.29

Of course, these conclusions have been drawn by many
researchers. On the OneMax problem, AHMA always
performs better than CHMA but is always beaten by
MHMA with a lower degree. On the Plateau and Roy-
alRoad problems, CHMA outperforms MHMA after a
period of early running and AHMA behaves similar as
CHMA but with a little inferior performance. On the De-
ceptive problem, MHMA always performs better than
AHMA and CHMA significantly while AHMA always
performs better than CHMA with a much high degree.

The results indicate that LS operators are problem-
dependent and AHC always does well although it needs
to take some time to adjust its local search strategy.
Since it is almost impossible for an algorithm to achieve
all the characters of a problem in advance, the combina-
tion of multiple LS operators within a single MA frame-
work is a good choice for solving optimization problems.

4.3 Experimental Study on the Effect of Diversity
Maintaining Schemes

There are two diversity maintaining schemes, ADM and
TRI, within the investigated MAs. In the above exper-
iments, we used both of them in MAs. In order to in-
vestigate the effect of different diversity methods on the

performance of MAs, we further carry out experiments
on AHMAs on DOPs with τ = 100 and ρ set to 0.1,
0.2, 0.5 and 0.9 respectively. In order to make a conve-
nient description of the experiments, AHMA1, AHMA2,
AHMA3 and AHMA4 are used to denote AHMA with
both the ADM and TRI methods, AHMA without any
diversity scheme, AHMA with only the ADM scheme,
and AHMA with only the TRI method respectively.

The experimental results with respect to the overall
offline performance are presented in Table 2. The corre-
sponding statistical results of comparing algorithms by
the one-tailed t-test with 38 degrees of freedom at a 0.05
level of significance are given in Table 3. In Table 3, the
t-test results regarding Alg. 1−Alg. 2 are shown as “+”,
“−”, or “∼” when Alg. 1 is significantly better than, sig-
nificantly worse than, or statistically equivalent to Alg. 2
respectively. From Table 2 and Table 3, several results
can be observed and are analyzed below.

First, AHMA1 always performs a little worse than
other AHMAs on most dynamic problems just except
on the Deceptive problem when the change severity ρ is
very small (ρ = 0.1). This is because a new environment
is close to the previous one when the value of ρ is very
small. For such instances, executing sufficient LS oper-
ations for the elite individual in the current population
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Table 3 The t-test results of comparing the overall offline performance of AHMAs on dynamic test problems

t-test Result OneMax Problem Plateau Problem RoyalRoad Problem Deceptive Function

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA1 − AHMA2 − + + + − + + + − ∼ + + + + + +
AHMA1 − AHMA3 − + + ∼ − + + ∼ − ∼ + + − + − −
AHMA1 − AHMA4 − + − + ∼ + − + ∼ + ∼ + + + + +
AHMA2 − AHMA3 ∼ ∼ + − ∼ ∼ ∼ − ∼ ∼ ∼ − − − − −
AHMA2 − AHMA4 + + − − + + − − + + − − ∼ ∼ − +
AHMA3 − AHMA4 + + − + + + − + + + − + + + + +

may be more beneficial than introducing some popula-
tion diversity. As AHMA1 requires more “energy” than
other AHMAs in maintaining the population diversity,
it is beaten when the value of ρ is very small. How-
ever, AHMA1 begins to exhibit a better performance
with the increasing of the value of ρ. When ρ = 0.2,
AHMA1 always outperforms other AHMAs on most dy-
namic problems. When ρ increases to 0.5 or 0.9, AHMA1
also does well except being beaten by AHMA3 on the De-
ceptive problems and by AHMA4 on the OneMax and
Plateau problems with ρ = 0.5. Obviously, these results
confirm our expectation of introducing diversity main-
taining methods into AHMA.

Second, AHMA2 performs better just when the change
severity ρ is not very large because its converging popu-
lation can only adapt to such changes. However, the sit-
uation seems a little different on the Deceptive problem
where AHMA2 performs worse than other AHMAs when
ρ is small but performs a little better than AHMA4 when
ρ = 0.9. The reason lies in that the deceptive attractor
in the Deceptive problem may mislead the direction of
hill climbing in AHMA2, which may be escaped from by
other AHMAs via the diversity maintaining technique.
When the environment is subject to significant changes
(ρ = 0.9), the XOR operation may enable AHMA2 jump
out from the deceptive attractor.

Third, AHMA3 always performs better than AHMA2
and AHMA4 on the OneMax, Plateau and RoyalRoad
problems when ρ = 0.9 and on all Deceptive problems.
This is because the dualism mechanismmay help AHMA3
react to significant environmental changes rapidly and
also enable it to escape from the deceptive attractor in
the Deceptive problem.

Fourth, AHMA4 always exhibits a better performance
on most dynamic problems when a random environmen-
tal change occurs (ρ = 0.5). This is easy to understand.
When the environment changes with ρ = 0.5, almost all
building blocks found so far are demolished. Obviously,
AHMA4 can adapt to this environmental change more
easily as the TRI method ensures AHMA4 to always
maintain a certain population diversity level.

In order to understand the effect of the two diversity
schemes on the population diversity during the running
of an algorithm, we also recorded the diversity of the
population every generation. The diversity of the pop-

ulation at generation t in the k-th run of an MA on a
DOP is defined as:

Div(k, t) =

∑pop size

i=0

∑pop size

j 6=i d(xi,xj)

n · pop size(pop size− 1)
, (14)

where n is the encoding size and d(xi,xj) is the normal-
ized Hamming distance between the i-th (xi) and j-th
(xj) individuals in the population. The overall diversity
level of a MA on a DOP over 20 runs is calculated as
follows.

Div(k, t) =
1

G

G∑

t=1

1

20

20∑

k=1

Div(k, t), (15)

where G = 10 × τ = 500 is the total number of genera-
tions for a run.

The overall diversity of MAs on DOPs with τ = 50
and different values of ρ is plotted in Fig. 10. Form
Fig. 10, it can be seen that AHMA4 maintains the high-
est diversity level on most DOPs since the random immi-
grants may be introduced into the population once con-
verged. AHMA3 maintain a higher diversity level than
AHMA2 only on dynamic Plateau and RoyalRoad prob-
lems with ρ = 0.9 and all dynamic Deceptive problems.
This is because whether its population diversity is im-
proved depends on whether the elite individual makes
a long jump to its dual successfully. However, whether
the diversity schemes are helpful or not depends on the
MAs and DOPs. As analyzed before, AHMA1 outper-
forms other AHMAs on most dynamic problems though
it just maintains a middle diversity level, while AHMA2
performs well only in the slight changing environments
because of its poor population diversity.

4.4 Experimental Study on Comparing AHMA with
Several Peer EAs on DOPs

In the final experiments, we compare the performance of
AHMA, combining ADM and TRI methods, with several
other existing peer EAs proposed in the literature on
the DOPs constructed in Section 3. These peer EAs are
SGAr, RIGA, EIGA and DPBIL3, as described in Sec-
tion 4.1. The experimental results are plotted in Fig. 11
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Fig. 10 Experimental results with respect to the diversity of population of AHMAs on DOPs with τ = 50: (a) OneMax, (b)
Plateau, (c) RoyalRoad, and (d) Deceptive.

and the corresponding statistical results are given in Ta-
ble 4. From Fig. 11 and Table 4, several results can be
observed and are analyzed as follows.

First, AHMA always outperforms other peer EAs
on most dynamic problems and underperforms some of
these EAs on some dynamic problems when the envi-
ronment changes slowly, i.e., when τ = 50 or 100. When
the environment changes quickly, i.e., when τ = 10,
AHMA can always locate the optimum (maybe local op-
timum) more quickly than other EAs because the LS
operator may have a strong exploitation capacity. This
is why AHMA performs best on all dynamic problems
with τ = 10. When τ = 50 or 100, AHMA performs
a little worse than EIGA on dynamic OneMax prob-
lems with ρ = 0.1 or 0.2. This is because EIGA can
especially fit such a dynamic environment that changes
slowly and slightly for one thing and the elitism-based
immigrants can maintain a very high fitness level on the
OneMax problem for the other. AHMA is also beaten by
SGAr on the dynamic Plateau and RoyalRoad problems
with ρ = 0.5 and τ = 50 or 100. This happens because
the random environment always requires algorithms to
maintain a sufficient population diversity (see the rel-
evant analysis in Section 4.3) and the restart scheme
in SGAr can introduce the maximum diversity into the
population. The reason why SGAr outperforms AHMA
only on the Plateau and RoyalRoad problems lies in the

intrinsic characteristics of these problems. The OneMax
problem is simply unimodal, which is very suitable for a
HC search in AHMA. Both the Plateau and RoyalRoad
problems have higher-order building blocks, which take
a HC search much more time to achieve. The Decep-
tive problem may mislead SGAr’s evolution due to the
existence of deceptive attractor, which can be escaped
from by AHMA. The good performance of AHMA over
other peer EAs shows that our investigated AHMA has
a strong robustness and adaptivity in dynamic environ-
ments.

Second, on dynamic OneMax and Plateau problems
EIGA always outperforms SGAr and RIGA when ρ is
set to 0.1 or 0.2, but underperforms them when the
value of ρ is set to 0.5 or 0.9. On dynamic RoyalRoad
and Deceptive problems, the situations become a lit-
tle different. EIGA performs better than RIGA on dy-
namic RoyalRoad problems just when τ = 10 and bet-
ter than both SGAr and RIGA on all dynamic Decep-
tive problems. This happens because the elitism-based
immigrants scheme can introduce higher fitness indi-
viduals, which can adapt better to the current envi-
ronment, into EIGA’s population on dynamic OneMax
and Plateau problems when the environment changes
slightly, on dynamic RoyalRoad problems when the en-
vironment changes quickly, and on all dynamic Decep-



12 H. Wang et al.

1 4 5 8 9 12
0

20

40

60

80

100

Dyanmic Environmental Index

O
ve

ra
ll 

O
ff
lin

e
 P

e
rf

o
rm

a
n
ce

AHMA
SGAr
RIGA
EIGA
DPBIL3

1 4 5 8 9 12
0

20

40

60

80

100

Dynamic Environmental Index

O
ve

ra
ll 

O
ff
lin

e
 P

e
rf

o
rm

a
n
ce

AHMA
SGAr
RIGA
EIGA
DPBIL3

(a) (b)

1 4 5 8 9 12
0

20

40

60

80

100

Dynamic Environmental Index

O
ve

ra
ll 

O
ff
lin

e
 P

e
rf

o
rm

a
n
ce

 

AHMA
SGAr
RIGA
EIGA
DPBIL3

1 4 5 8 9 12
0

20

40

60

80

100

Dynamic Environmental Index

O
ve

ra
ll 

O
ff
lin

e
 P

e
rf

o
rm

a
n
ce

AHMA
SGAr
RIGA
EIGA
DPBIL3

(c) (d)

Fig. 11 Experimental results with respect to the overall offline performance of AHMA and peer EAs on dynamic test problems:
(a) OneMax, (b) Plateau, (c) RoyalRoad, and (d) Deceptive.

tive problems due to the intrinsic characteristics of these
four kinds of functions.

Third, the performance of DPBIL3 is exciting only
when the environment is subject to significant changes.
This also confirms the expectation of the dualism scheme
for our algorithms in dynamic environments. Of course,
the similar results have been obtained and relevant anal-
ysis were also given in the literature [42]. However, DP-
BIL3 performs worse than other peer EAs on most other
DOPs. The reason will be explained in the following ex-
perimental analysis.

Fourth, the performance of other peer EAs is differ-
ent on different dynamic problems. Generally speaking,
RIGA always performs better than SGAr on most dy-
namic problems when the value of ρ is small. The per-
formance of SGAr increases with the value of τ but does
not change with the value of ρ. Similar results have also
been observed in [39].

Finally, the environmental parameters affect the per-
formance of algorithms. The performance of all algo-
rithms increases when the value of τ increase from 10
to 50 to 100. It is easy to understand when τ becomes
larger, algorithms have more time to find better solu-
tions before the next change. The effect of the changing
severity parameter ρ is different. For example, when τ is
fixed, the performance curve of AHMA always declines

when ρ increases from 0.1 to 0.2 to 0.5, but rises when
ρ increases from 0.5 to 0.9.

In order to better understand the experimental re-
sults, we make a deeper look into the dynamic behavior
of these algorithms. The dynamic behavior of different
algorithms with respect to the running offline perfor-
mance is shown in Fig. 12 to Fig. 15, where τ is set
to 50 and ρ is set to 0.1, 0.2, 0.5 and 0.9 respectively.
From these figures, it can be easily observed that for
the dynamic periods SGAr always performs almost the
same as it did for the stationary period (the first 50
generations) and AHMA always outperforms other peer
EAs for the stationary period on all test problems while
their dynamic behaviors are different on different dy-
namic problems.

On the OneMax problem (see Fig. 12), the dynamic
behavior of AHMA for each dynamic period is almost
the same as that for the stationary period when ρ is
not very large. When ρ increases to 0.9, AHMA per-
forms better for the dynamic periods than it does for
the stationary period. This is because that on the One-
Max problem the LS operator can help AHMA trace the
changing optimum quickly during one change period of
environment while LS’s effect is enhanced greatly by the
ADM operation when ρ = 0.9. The dynamic behavior
of both RIGA and EIGA is affected by the value of ρ.
With the increment of dynamic periods, their perfor-
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Table 4 The t-test results of comparing the overall offline performance of AHMA and peer EAs on dynamic test problems

t-test Result OneMax Problem Plateau Problem RoyalRoad Problem Deceptive Function

τ = 10, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA − SGAr + + + + + + + + + + + + + + + +
AHMA − RIGA + + + + + + + + + + + + + + + +
AHMA − EIGA + + + + + + + + + + + + + + + +

AHMA − DPBIL3 + + + + + + + + + + + + + + + +
SGAr − RIGA − − + + − − + + − − ∼ + − − − −
SGAr − EIGA − − + + − − + + − − ∼ − − − − −

SGAr − DPBIL3 − ∼ + − − ∼ + − − + + + ∼ + + ∼
RIGA − EIGA − − + + − − ∼ − − − ∼ − − − − −

EIGA − DPBIL3 + + + − + + + − + + + + + + + +

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA − SGAr + + + + + + − + + + − + + + + +
AHMA − RIGA + + + + + + + + + + + + + + + +
AHMA − EIGA − − + + ∼ + + + + + + + + + + +

AHMA − DPBIL3 + + + + + + + + + + + + + + + +
SGAr − RIGA − − + + − − + + − − + + − − − −
SGAr − EIGA − − + + − − + + − − + + − − − −

SGAr − DPBIL3 + + + + + + + + + + + + + + + +
RIGA − EIGA − − + + − − + + + ∼ + + − − − −

EIGA − DPBIL3 + + + + + + + + + + + + + + + +

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA − SGAr + + + + + + − + + + − + + + + +
AHMA − RIGA + + + + + + + + + + ∼ + + + + +
AHMA − EIGA − − + + + + + + + + + + + + + +

AHMA − DPBIL3 + + + + + + + + + + + + + + + +
SGAr − RIGA − − + + − − + + − − + + − − − −
SGAr − EIGA − − + + − − + + − + + + − − − −

SGAr − DPBIL3 + + + + + + + + + + + + + + + +
RIGA − EIGA − − + + − − + + + + + + − ∼ − −

EIGA − DPBIL3 + + + + + + + + + + + + + + + +

mance upgrades consistently when ρ = 0.1, while their
behavior for the dynamic periods underperforms that for
stationary period when ρ = 0.5 or 0.9. For DPBIL3, its
performance curve rises continuously on the first several
environmental periods but drops heavier and heavier in
the later environmental periods when the value of ρ is
set to 0.1, 0.2 or 0.9. The reason lies in the convergence
problem of probability vectors in DPBIL3. When the
environment changes slightly or significantly, a pair of
dual probability vectors in DPBIL3 can always keep its
evolutionary process to achieve a high fitness solution.
However, this pair of probability vectors may converge
during this course. Once converged, DPBIL3 can not
adapt well to the changing environment. This is the rea-
son why DPBIL3 is beaten by other peer EAs on most
DOPs.

On the Plateau and RoyalRoad problems (see Figs. 13
and 14), with the increment of dynamic periods, AHMA’s
performance drops a little when ρ = 0.5, while rises when
ρ = 0.1, 0.2 and 0.9. The reason is that AHMA does
not find the optimum in the stationary period on these
two problems. When the environment changes slightly or
very significantly, AHMA always reruns from the start-
ing points with a higher fitness in the dynamic periods

than that in the stationary period, while when ρ = 0.5,
AHMA can only obtain worse starting points in the dy-
namic periods. The dynamic behaviors of RIGA, EIGA
and DPBIL3 on these problems are similar to that on
the OneMax problem.

On the Deceptive problem (See Fig. 15), with the in-
crement of dynamic periods, AHMA’s performance main-
tains the same when ρ = 0.1 or drops a little when
ρ = 0.2 or 0.5. When ρ is set to 0.9, AHMA’s dynamic
behavior is sort of switching between odd and even envi-
ronmental periods. The reason is that after the station-
ary period for the following odd period the environment
is in fact greatly returned or repeated from previous odd
period given ρ = 0.9.

5 Conclusions and Future Work

In this paper, the application of memetic algorithms with
an adaptive hill climbing (AHC) strategy for dynamic
optimization problems is investigated. In the proposed
memetic algorithm, two local search methods, the greedy
crossover-based hill climbing (GCHC) and the steepest
mutation-based hill climbing (SMHC), are used to refine
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Fig. 12 Dynamic behavior of AHMA and peer EAs on dynamic OneMax problems with τ = 50 and ρ is set to: (a) ρ = 0.1,
(b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9.
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Fig. 13 Dynamic behavior of AHMA and peer EAs on dynamic Plateau problems with τ = 50 and ρ is set to: (a) ρ = 0.1,
(b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9.
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Fig. 14 Dynamic behavior of AHMA and peer EAs on dynamic RoyalRoad problems with τ = 50 and ρ is set to: (a) ρ = 0.1,
(b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9.
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Fig. 15 Dynamic behavior of AHMA and peer EAs on dynamic Deceptive problems with τ = 50 and ρ is set to: (a) ρ = 0.1,
(b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9.
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the individual that is selected for local improvements.
A learning mechanism, which gives the more effective
LS operator greater chance for the later individual re-
finement, is introduced in order to execute a robust lo-
cal search. To maintain a sufficient population diversity
for the algorithms to adapt well to the environmental
changes, two diversity maintaining methods, adaptive
dual mapping (ADM) and triggered random immigrants
(TRI), are introduced into our proposed MA.

From the experimental results, we can draw the fol-
lowing conclusions on the dynamic test problems.

First, MAs enhanced by suitable diversity methods
can exhibit a better performance in dynamic environ-
ments. For most dynamic test problems, our MA always
outperforms other peer EAs.

Second, the ADM and TRI approaches are both effi-
cient for improving the performance of MAs in dynamic
environments. However, the two diversity methods have
different effect in different dynamic environments. The
ADM method does better when the environment in-
volves significant changes (i.e., ρ = 0.9) and the TRI
method performs better when the environmental sever-
ity ρ = 0.5. It is a good choice that the two diversity
methods are both introduced into MAs in dynamic en-
vironments.

Third, the LS operator is problem dependent. The
AHC strategy can help MAs execute a robust individual
refinement since it employs multiple LS operators under
the mechanism of cooperation and competition.

Fourth, the difficulty of DOPs depends on the en-
vironmental dynamics, including severity and speed of
changes and the difficulty of the base stationary prob-
lems. In our experiments, MAs perform better with the
increasing of the frequency of changes and the effect of
the severity of changes is problem dependent.

Generally speaking, the experimental results indicate
that the proposed MA, where the adaptive hill climbing
operator is used as a local search technique for individual
refinement, with adaptive dual mapping and triggered
random immigrants schemes seems a good EA optimizer
for dynamic optimization problems.

For the future work, it is straightforward to intro-
duce other mechanisms, such as memory-based methods
[38] and multi-population approaches [27], into MAs for
dynamic optimization problems. Another interesting re-
search work is to extend the triggered immigrants and
dual mapping scheme to other EAs and examine their
performance in dynamic environments. In addition, it is
also valuable to carry out the sensitivity analysis on the
effect of parameters, e.g., θ0, α, β, and δ, on the perfor-
mance of MAs in the future.
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