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Abstract. Constructing timetables of work for personnel in healthcare institutions is known to be a highly con-

strained and difficult problem to solve. In this paper, we discuss a commercial system, together with the model it

uses, for this rostering problem. We show that tabu search heuristics can be made effective, particularly for obtaining

reasonably good solutions quickly for smaller rostering problems. We discuss the robustness issues, which arise

in practice, for tabu search heuristics. This paper introduces a range of new memetic approaches for the problem,

which use a steepest descent improvement heuristic within a genetic algorithm framework. We provide empirical

evidence to demonstrate the best features of a memetic algorithm for the rostering problem, particularly the nature

of an effective recombination operator, and show that these memetic approaches can handle initialisation parameters

and a range of instances more robustly than tabu search algorithms, at the expense of longer solution times. Having

presented tabu search and memetic approaches (both with benefits and drawbacks) we finally present an algorithm

that is a hybrid of both approaches. This technique produces better solutions than either of the earlier approaches

and it is relatively unaffected by initialisation and parameter changes, combining some of the best features of each

approach to create a hybrid which is greater than the sum of its component algorithms.

Keywords: nurse rostering, personnel scheduling, heuristics

1. Introduction

In Belgian hospitals, the personnel tend to prefer ‘ad

hoc’ schedules where they can express their personal

wishes instead of more rigid practices such as regu-

lar three-shift schedules that rotate weekly. Moreover,

the requirements of modern Belgian hospitals demand

a broader variety of services than just morning, day,

and night duties. The very time consuming task of con-

structing schedules that attempt to satisfy both the hos-

pital requirements and the preferences of personnel is

still performed manually in many cases. Recently, sev-

eral methods have been applied to solve the problem

automatically.

When we compare the nurse rostering problems de-

scribed in the literature to the problem we try to tackle,

the differences are numerous. In [1, 2] for instance,

the planning period is restricted to one week, while the

practice in Belgian hospitals is normally to try to plan

at least four weeks at a time. The number of possible

duties per day generally varies from 6 to 15 in the prob-

lems we tackle, whereas in [1, 3, 4] there are only three

different duties to be planned. The work described in

[1–7] does not consider the variety of constraints that

are required for our problem.

In some references [1, 2, 6, 8], we found that higher

skill classes can systematically replace the lower ones.

Other references [4, 9] did not mention any replacement
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possibility among qualification categories at all. In Bel-

gian hospitals, it is the case that only a small number

of people from a certain skill category or qualification

category (head nurse, regular nurse, caretaker, nurse

aid, etc...) can replace somebody from another category

(when required). For example, a head nurse would not

be expected to replace a caretaker.

A number of potential pitfalls must be addressed

when attempting to automatically solve this problem.

Unacceptable solutions usually arise when some of the

constraints for the roster are contradictory or when the

weight parameters for the different constraints create

landscapes in the search space which have very deep

narrow valleys that are particularly hard to find.

Burke, De Causmaecker, and Vanden Berghe have

presented tabu search algorithms and hybridisations

[10] that have been implemented in a commercial sys-

tem entitled Plane. Plane is a scheduling system that has

been commercially developed by Impakt1 and GET2 to

assist the scheduling of personnel in hospitals when the

demands for each qualification category can be deter-

mined over a fixed period of time and have to fulfil a

number of constraints, limiting their assignments. A de-

scription of Plane, its problem domain and its system

specific and functional requirements can be found in

[11]. Plane was first implemented in a hospital in 1995

but the system is still evolving to cope with the new

and more complicated real world problems that keep

appearing. So far, several hospitals in Belgium have

replaced their very time consuming manual scheduling

approach by employing this system.

In this paper, we will discuss the results from sev-

eral new evolutionary approaches, which we have de-

veloped for the nurse rostering problem described in

Section 2. Any successful solution method must be ro-

bust enough to cope with widely varying cost functions

and problem instances. Memetic approaches have al-

ready been shown to be powerful and robust approaches

for solving a range of optimisation problems [12–17].

A memetic algorithm can be defined as a genetic algo-

rithm where a local optimisation is performed before

the algorithm moves on to the next generation [18], so

that only locally optimal solutions are considered. We

demonstrate such an approach for the nurse rostering

problem.

The cost function used in each of these algorithms

is modular and can deal with all constraints that match

the types described in Section 2.2. The user is free to

define his own cost function to modify these constraints

and the penalties associated with constraint violation.

In Section 2 we discuss our model for the nurse

rostering problem. We consider the complex func-

tion, which we use for evaluating the schedules in

Section 2.3. Section 3 considers tabu search and vari-

ants; Section 4 presents several different genetic and

memetic algorithms and Section 5 brings together Sec-

tions 3 and 4 to consider hybridisations between the two

different approaches. In Section 6 we compare and con-

trast the performance of the algorithms on specific real

world problems. We present conclusions in Section 7.

2. Problem Description

In general, a ward consists of about 20 people, hav-

ing different qualifications and responsibilities. These

people are placed into categories based upon their

qualifications and job description (such as head nurse,

regular nurse, nurse aid, student, etc...). As explained

in Section 1 some of the nurses can replace people

from another category (depending upon their qualifi-

cations). One or two experienced regular nurses will,

for instance, have the necessary qualifications to re-

place the head nurse. This replacement is sometimes

necessary to cater for staff shortages, but it is not de-

sirable and will be penalised in the schedule evaluation

function as presented in Section 2.3.

Each instance of the nurse rostering problem has

a variety of specific hard and soft constraints and a

complex evaluation function. We are currently working

on a general format in which the detailed description

of test problems can be defined.

In the model we use, a solution is represented as a

two dimensional matrix, in which the rows represent

the personal schedules. For each shift on each day of

the planning period there is a column in the matrix. A

possible set of shifts is given in Fig. 1, and a part of the

solution matrix which might correspond to this set of

shifts is given in Fig. 2.

2.1. Hard Constraints

Personnel requirements are expressed in terms of a re-

quired number of nurses from each category for each

duty of the planning period, which is often one month.

These requirements are the only hard constraints in the

problem. In practice, the number of required personnel

on a certain day is not absolutely strict. Experienced

planners know very well when it is reasonable to plan

more or less personnel than required. However, because
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Figure 1. An example of possible shift patterns.

Figure 2. Matrix representation of a staff roster.

Figure 3. Matrix representation of hard constraints.

there are no clear rules for decisions like this, in our

implementation the user can optionally choose to plan

the minimum number of required personnel (referred

to as R-min in this paper) or the preferred number of

personnel (R-pref). A matrix of hard constraints corre-

sponding to the roster matrix given in Fig. 2 is presented

in Fig. 3.

Another option is to plan at least the minimal re-

quired number of nurses and to add nurses towards

the preferred number whenever it does not increase the

evaluation function (referred to as R-min-pref, see [10].

If, for one or more days of the planning period, the

hard constraints are so strong that no feasible solu-

tion exists, planners can opt to relax some of them

(R-calc option) until there is some feasible solution.

In most cases it is obvious, after a preliminary check,

that some of the soft constraints, relating to staff re-

quests etc., cannot be satisfied and we use the evalua-

tion function discussed in Section 2.3 to decide which

soft constraints are to be violated.

The following situation, in which a ward consists

of 10 people, is a simple example to illustrate how

we to calculate that the number of people will not be

sufficient to satisfy the demand, where we would need

to use the R-calc scheduling option in order to arrive at

a feasible solution which satisfied all soft constraints.

Suppose that 10 people are available on a particular

day, and that the staff who are not working according

to a predefined pattern have special requests:

• 2 ask for a day off

• 1 person asks to work the late shift

The patterns for the other staff on that day are as

follows

• 2 people have a compulsory day off

• 2 people work a compulsory early shift

• 2 people work a compulsory night shift

Suppose 4 early shifts are required on the day in

question. Since, from the 10 people available, 7 are al-

ready planned for shifts other than an early shift, the soft

constraints above will certainly be violated by the hard

constraints. When chosing the R-calc option, the con-

straint for 4 early shifts that day, which would usually
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be a hard constraint, can be relaxed to 3. This relaxation

will allow all these soft constraints to be satisfied.

Once the user has decided whether he wants to sched-

ule according to R-min, R-pref or R-calc, the hard con-

straints can be imposed on the initial schedule. This is

simply done by planning all the required duties at ran-

dom in the schedule, while ignoring the soft constraints

such as limitations on the number of shifts each mem-

ber of staff may work. We modelled the problem and

the algorithms in such a way that during the solution

search, once an initial feasible solution is found, the

hard constraints will never be violated, no matter how

bad the evaluation function for the solution is. Our ma-

trix representation of the solution given in Fig. 2 is

very helpful for this. Once an initial feasible solution

has been found, no new duties can enter the schedule

or be removed from it (except for the SWT heuristic

given in Section 5). Scheduled duties can only move

vertically in the matrix, with the number of duties of

a certain type on a particular day remaining constant.

However, this is complicated by the fact that it is pos-

sible, though not desirable, for some staff to work at

levels slightly above or below their usual level.

2.2. Soft Constraints

It is very unusual in real world problems to find a

schedule that satisfies all the soft constraints. The aim

of the algorithms is to minimise the real impact of

violations of these constraints. The users of the sys-

tem specify all the constraints. Certain general con-

straints are recommended by the hospital (but in cer-

tain situations, they may need to be ignored). There

are other soft constraints that are normally created by

an agreement between the head nurse (or personnel

manager) and the individual nurses. At this moment

there are more than 30 types of soft constraint. A de-

tailed list of the constraints in Plane can be found at

http://www.impakt.be/plane/indexf.htm. Examples of

the most typical constraints used include:

— Legal or regulatory requirements:

• Minimum time between two assignments, de-

pending on the type of duties involved. It is

legally compulsory to have at least 11 hours rest

between two duties. The users of Plane can de-

cide to augment or diminish the rest time before

and after certain shifts. After the ‘wait duty’ the

rest time is often more than 11 hours. Before and

after very short duties (like a morning shift from

8 till 12) a shorter break can be acceptable. It

may sound unusual to put this legal requirement

among the soft constraints, however it is better to

violate the legally compulsory constraint on free

time between assignments, than to leave patients

unattended.

• Maximum and minimum number of work

hours during the planning period. These num-

bers also depend on the work regulations for the

hospital and the person involved (e.g. the person

may be full time, half time, a night nurse, etc...).

Overtime is very common in hospitals so an op-

tion is available that does not penalise the use of

overtime unless a certain threshold is exceeded.

— Working practices, arrived at by mutual agreement

between the head nurse (or personnel manager) and

the individual nurses:

• Maximum number of assignments during the

planning period. For full time nurses this is usu-

ally restricted to 20 assignments per 4 weeks.

Some hospitals prefer to allow one compensa-

tion day per month and limit this constraint to

19. This constraint can be set to 10 for half time

nurses.

• Working full weekends. This means that when

a shift is scheduled on a day of the weekend,

an assignment is required for the other day(s)

of the weekend. For this constraint, a weekend

can be either Saturday and Sunday, or Friday,

Saturday and Sunday. In the latter case, there is

an extra potential difficulty: a scheduled shift on

Friday does not necessarily imply working on

Saturday and Sunday but a scheduled shift on

Saturday or Sunday requires shifts on Friday and

Sunday/Saturday as well.

• Working according to a predefined pattern.

The length of a pattern can vary from a couple

of days to a number of months. At the end of a

pattern, the pattern will start all over again (it is

independent of the planning period). Each day, a

pattern can contain one of the following: a com-

pulsory shift, a compulsory shift of a certain type,

a compulsory shift of a certain duration, a com-

pulsory free day, a day on which certain shifts are

excluded and ‘no restriction on whether some-

thing is scheduled or not’.

• Maximum number of assignments of each

duty type during each week, and during the

entire planning period. This constraint can, for
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example, limit the number of night shifts per

week (not more than 4 night shifts per week) and

limit the total number of night shifts per month

(not more than 8 per month).

• Restricting the order in which shifts and free

days may and may not be scheduled (for in-

stance never a night duty the day after a free

day). Some sequences that are highly unwanted

(like morning duty after an evening duty) can be

excluded with this constraint.

• Distributing the duty types uniformly over

people with the same work regulation. With

this constraint it is possible to schedule the same

number (within a certain deviation) of morn-

ing, night, waiting shifts, ... for all the full time

nurses.

— Ad-hoc personal preferences agreed between the

nurse and the head nurse or personnel manager:

• The request for holidays, days off, etc. ...

• The request to work a certain duty on a certain

day

• Leave due to illness

• Maternity leave

• Temporary secondment to another ward

It is usually the case that not all constraints can be

satisfied at the same time. When a contradiction be-

tween constraints occurs, the personal preferences of

staff (such as requests for holidays or requests to work

a certain duty on a certain day) are usually given more

weight than the other constraints.

2.3. Evaluation Function

The evaluation function for this problem is imple-

mented as a series of modules, each corresponding to a

soft constraint. The user fixes the parameters and sets

the penalty weight per unit violation of the constraint.

The evaluation function is the sum of the penalties for

each violated soft constraint. We give a simple example

to illustrate this. Assume that we have a ward in which

the constraint on the maximum number of night shifts

per person per week is set to 3 and the correspond-

ing penalty weight to 10. Consider a planning period

of 4 weeks and one person of the ward is assigned 3

night duties during week 1, 0 night duties in week 2,

5 night duties in week 3, and 4 night duties in week 4.

The total magnitude of the violation of the constraint

is 3 (0 for the 1st and 2nd week, 2 for the 3rd week,

and 1 for the 4th week). The value of the evaluation

function, corresponding to this particular constraint, is

3, the magnitude of constraint violation, multiplied by

10, the penalty weight per unit violation of the con-

straint. Similar calculations have to be done for each

constraint, and the results added to give an overall mea-

sure of schedule quality.

3. The Tabu Search Algorithm and Variants

In this section, we present a brief description of the

tabu search algorithm and its diversification heuristics

which were introduced in [10].

One of the main difficulties in this particular prob-

lem is that different categories of qualification can have

overlapping rosters. When the head nurse has a day off,

for instance, one of the qualified regular nurses can be

scheduled to do the head nurse’s job on that day. This

complicates the hard constraints as illustrated in Fig. 2.

In this case, we must avoid allocating other duties for

this substitute. Since we opted to plan each qualifi-

cation category separately (to reduce the complexity

of the problem), the partially solved schedules some-

times prevent the planning algorithm from finding good

quality solutions for the other qualification categories.

This is one of the main reasons why the tabu search

algorithms were not always satisfactory and why we

decided to investigate a population based approach. In

all the algorithms described in this section the qualifi-

cation categories are planned in the order given by the

user, usually starting from the most tightly constrained

category (e.g. head nurse) and ending with the most

loosely constrained (e.g. student nurse).

The first part of the scheduling algorithm involves the

construction of a feasible initial solution. We have de-

fined three possible strategies for initialisation: current

schedule, which is used particularly to generate a new

schedule quickly in response to unforeseen events such

as staff illness, schedule of the previous planning pe-

riod, which is useful when the previous and the current

planning periods have similar constraints, and random

initialisation, which starts from an empty schedule. In

each case, the schedule is made feasible before starting

the algorithms. This feasible solution is obtained by

adding or removing appropriate duties from the sched-

ule randomly, without taking into account any of the

soft constraints, until the hard constraints are met. In

Fig. 2, this corresponds to randomly adding appropri-

ate ticks until we achieve column sums corresponding

to R-min or R-pref.
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In the simplest tabu search algorithm, the only move

we consider is a move of a duty from one person to

another on the same day. Essentially we move one tick

within a column of the solution representation given in

Fig. 2. The move is not allowed if the goal person is

not of the right category of qualification or is already

assigned to that duty. Hence the hard constraints will

still be respected. At each iteration, the best move is

selected. If it improves the current solution, it is ac-

cepted. If no improving move is found then the best

non-improving, non-tabu move is accepted. When a

move is made a rectangular area around the original

tick and the new tick location are added to the tabu

list (see [10]). This simple algorithm turned out not

to be powerful enough to produce good solutions for

complex problems (see [10]).

Now we will briefly mention some heuristics that

can be employed (in conjunction with the tabu search

algorithm) to improve the solution.

Diversification 1: Complete Weekend. Although the

users of the program can assign a cost parameter to the

soft constraint of working complete weekends (see Sec-

tion 2.2) it is very hard to find schedules which satisfy

all of these constraints. Here we diversify by ignoring

all soft constraints except those concerning complete

weekends. This move often guides the algorithm to an

unexplored part of the solution space.

Diversification 2: Consider the Worst Personal Sched-

ule. If the complete weekend function (above) has

not changed the schedule it can be beneficial to look at

staff having the worst personal schedule (according to

the evaluation function). For every person (within the

category being scheduled) the effect on the evaluation

function is calculated after exchanging a part of his or

her schedule with the corresponding part of the worst

personal schedule, of a person within that qualification

category. The exchanged parts of the schedule always

contain full days and the maximum length is half the

planning period. After the time consuming process of

exploring all possible exchanges, the best exchange is

performed, with ties broken randomly. This process of-

ten results in a better solution.

Greedy Shuffling: Model Human Scheduling Tech-

niques. There was a problem with the results of the

tabu search algorithm because sometimes a human

could improve the result by making small changes. The

greedy shuffling process calculates all possible ‘Diver-

sification 2’ moves, above, for each pair of staff from

the same qualification category. After listing the gain

in the cost function for every possible exchange, the

shuffle leading to the best improvement will be per-

formed. Afterwards, the next best improvement in the

list is carried out, provided that none of the people in-

volved were already involved in an earlier shuffle. As

long as there are improving exchanges in the list, they

are carried out. The whole procedure starts over again

until none of the possible exchanges improves the cost

function. The improvements that can be obtained by

employing this procedure and tabu search (described

below) are considerable.

After extensive testing of hybrid versions of the tabu

search algorithm and the above heuristics, two algo-

rithms were developed. The first one produces sched-

ules when a very short calculation time is required (as it

often is when planners must react to unforeseen events

such as staff absenteeism). The second algorithm needs

more calculation time but generates schedules of a con-

siderably higher quality. Both algorithms are briefly

described below.

Tabu Search + Diversification: TS1. The aim of this

algorithm is to provide reliable solutions in a very short

time. In practice this algorithm has proven to be very

useful to check whether the constraints are realistic. For

example: “Will it be possible to plan good schedules if

every person gets their desired holiday period?” etc.

The algorithm is constructed quite simply from the

original tabu search algorithm. If after a number of it-

erations no improvement is found, the complete week-

end diversification step is performed. If the weekend

step does not result in a different schedule, the second

diversification step is performed. After this diversifi-

cation step, the original tabu search algorithm is used

again, and so on. The calculations stop after a number

of iterations without improvement.

Tabu Search + Greedy Shuffling: TS2. This requires

more time but the results are considerably better. Anec-

dotal evidence suggests that the level of satisfaction

with schedules produced by this algorithm among users

is actually higher than the cost function indicates. The

main reason for this is that after the shuffling step the

users cannot easily improve the results.

It is important to carry out the greedy shuffling step

at the end of the calculations because its real aim is to

perform the exchanges that a human user would per-

form. It is because of the exhaustive search of the large
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neighbourhood given by shuffling to reach a local op-

timum, that this step takes a lot of time. It is very im-

portant to calculate this step until there are no further

improvements because otherwise the goal of excluding

manual improvements to the schedule might be lost.

This also holds for the population based algorithms

that will be described in the following sections.

4. Genetic and Memetic Algorithms

As mentioned above, the tabu search algorithms do

display considerable shortcomings, an important one

being that they are not robust enough to handle dif-

ficult problems well. This provided the motivation to

investigate population based approaches for the same

problem. A basic genetic algorithm with just mutation

and crossover operators can be employed but to reach

convergence it is important to have crossover operators

that combine parts of good parent solutions to produce

good child solutions. A common difficulty with roster-

ing problems is that the quality of a solution is not nec-

essarily a sum or a combination of the qualities of the

partial solutions. We have carried out a number of ex-

periments with several crossover operators, either con-

serving the “building blocks” as much as possible or re-

pairing the roster when it is destroyed by the crossover.

This section will describe a memetic algorithm that

incorporates the tabu search and hybrid tabu search al-

gorithms into a genetic algorithm. The components of

the algorithms described in this section and in Section 5

can be seen in Fig. 4. We will describe how the algo-

rithms can be constructed with the components dis-

played. In the memetic algorithm used for the nurse

rostering problem, an initial population consists of N

individuals, each of them feasible schedules generated

randomly using the initialisation techniques discussed

in Section 3. There are several possibilities for recom-

bination to create new offspring. It is very important

to organise the recombination so that the child rosters

inherit good characteristics of the parent generation.

Since the quality of a schedule is the sum of the sched-

ule quality for each person, it is important to get these

personal schedules right. The characteristics of the con-

straints are such that mixing up the scheduled events

for a person usually leads to very bad schedules. In the

following algorithms, we have used many variants of

the recombination operators. Some preserve personal

schedules to a great extent, others do not but preserve

the position of well-placed events. Each generation re-

quires significant calculation time, so we decided not

to plan a large number of generations. Each of our

memetic algorithms stops when no improvement arises

for two consecutive generations. The variants of the

memetic algorithm (described below) contain different

recombination mechanisms.

Original memetic algorithm: M In the simplest

memetic algorithm, a steepest descent is performed for

each individual. The steepest descent algorithm uses

the same neighbourhood for the moves as the simplest

tabu algorithm where the planning order of nurse cat-

egories is as given by the user. After evaluating all the

possible moves in the neighbourhood, the best one is

performed, unless this best move does not improve the

schedule, in which case steepest descent stops. After

this step, there is a simple tournament selection of the

best individuals for creating offspring. For each pair of

parents, two new individuals are created. The first child

contains the best personal schedule (referred to as ‘row’

in the schedule) from the first parent + the best per-

sonal schedule from the second parent (different from

the first one selected). The other personal schedules are

chosen in a pairwise tournament between the rows of

the parents. This normally does not result in a feasible

schedule, so to make the child schedules feasible, shifts

are added or taken away at random (where necessary).

This leads to diverse schedules of poor quality, prior to

the application of the steepest descent heuristic.

1. create N different schedules using random initiali-

sation

while stop criterion is not reached

(stop criterion: no improvement during two gene-

rations), repeat:

2. make all the schedules feasible by randomly adding

and deleting appropriate shifts (ticks in each column

in figure 2)

3. perform steepest descent on each of the individuals

4. select parents from the individuals by tournament

selection

5. recombine the parents,

per pair of parents, generate two children:

child 1:

best personal schedule (row) from parent 1

best personal schedule (row) from parent 2

(or the second best one if the same row is best for

both parents)

for the other child rows use tournament selection

from parent rows

child 2:

best personal schedule (row) from parent 2
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Figure 4. Diagram of the components of the genetic and memetic algorithms for the nurse rostering problem.

best personal schedule (row) from parent 1

(or the second best one if the same row is best for

both parents)

for the other child rows use tournament selection

from parent rows

Diverse memetic algorithm: DM With the short-

comings of the tabu search algorithms in mind, we de-

cided not to plan the qualification categories according

to the planning order chosen by the customers as in

algorithm M above. In the DM algorithm, each time

the steepest descent algorithm is performed, the plan-

ning order of the qualification categories is randomly

chosen for each schedule, causing additional diversity

in the population. All other features of the algorithm

are the same as for algorithm M.

Diverse memetic algorithm with random selection:

DMR Here we use the steepest descent approach and

other features of the DM algorithm, but rather than
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choose the rows of the child rosters by tournament

selection, each personal schedule is chosen randomly

from one of the parents.

Memetic algorithm with string recombination:

MSR In this algorithm, a different technique is used

to generate offspring. It no longer copies an entire

schedule from one of the parents. For each person (row)

in the schedule, a time unit (day and shift, correspond-

ing to a column of Fig. 2) is randomly chosen. The part

of the schedule between the start of the planning period

and this time unit is copied from the first parent and the

remainder from the second parent. The procedure is re-

peated for the second child, except that the first part of

each row of this child is taken from the second parent

and the remainder from the first parent. Apart from this

new recombination operator, this algorithm is the same

as the DM algorithm.

Memetic algorithm copying the x best events: MEx

The difference between the MEx algorithm and the

DM algorithm considered previously, is the way in

which child schedules are generated from their par-

ents. Good results were found when copying the ‘best

placed’ events for every person, from the parents to the

children. The ‘best placed’ events are those events that

would lead to the worst increase in the cost function

when removed. Experiments have been carried out that

copy x = 2, 3, 4, and 5 events per parent to the child. If

the best personal events are the same in both parents,

this will lead to only x events in the offspring. Again,

the schedules are made feasible by randomly adding

the other events, which leads to greater diversity.

5. Combining the Qualities of the Hybrid Tabu

Search and the Evolutionary Algorithm

Tabu search algorithms using different initial so-

lutions and randomising the planning order of the

qualifications: TSPOP The tabu search algorithm

(without hybridisations) and the memetic algorithms

do not always lead to excellent solutions for the compli-

cated problems hospital planners have to deal with. Un-

fortunately, the quality of the solution depends strongly

on the initial schedule. This is not to say that the sched-

ule has to be good. On the contrary, very good initial

schedules are sometimes hard to improve by the meth-

ods considered. The problem is actually that the small

move made during the tabu search (Section 3) cannot

lead the solution away from some of the local minima.

In the commercial version of the program, only the hy-

brid versions of the tabu search algorithm are used. The

users’ informal feedback about the hybrid algorithms

points to insensitivity to the random seed (initial solu-

tion). The strength of the memetic algorithm approach

is that many different starting points are taken and a di-

versity of different schedules is maintained throughout.

An even bigger advantage is the possibility of planning

the qualification categories in different orders. It might

be argued that starting our tabu search from multi-

ple different starting points might produce solutions of

comparable quality to the memetic algorithms and hy-

brids. In order to compare the performance of our tabu

search approaches and our memetic approaches and

hybrids, given similar time, the TSPOP algorithm first

produces a population of initial solutions that are (one

by one) improved by the TS1 algorithm (Section 3) ex-

cept that the ordering of qualification categories is ran-

dom. Greedy shuffling (also explained in Section 3),

is applied to the best individual solution of the

population (see also Fig. 4).

Memetic algorithm with human improvement func-

tions: MEH If we combine the extra functions of

the tabu search algorithm with the memetic algorithm,

either by using them as local improvement functions

or by performing them on the best individual of the

memetic algorithm, the resulting solutions are much

improved. The solutions thus found are of the same

quality as, or better than the solutions found with the

hybrid tabu search algorithm. Better solutions are found

due to the diversification of the algorithm. By starting

the calculations from different starting situations, and

by changing the planning order of the qualification cat-

egories, the probability of finding better solutions is

increased. For the tests, we used the ME4 algorithm

from Section 4. We then apply the greedy shuffling

step (Section 3) to the best individual obtained with

this ME4 algorithm.

1. create N random individual solutions

while the stop criterion is not reached

(stop criterion: no improvement during two

generations), repeat steps 2 to 5:

2. make all the schedules feasible by adding and re-

moving appropriate shifts at random

3. perform the TS1 on each of the individuals

(choose the planning order of the qualifications at

random)

4. select parents from the individuals by tournament
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5. recombine the parents as explained in the ME4 al-

gorithm

6. perform the greedy shuffling step on the best indi-

vidual

Switch: SWT In all the previous algorithms, the

number of staff of each type in each shift remained

constant once the initial feasible solution was found.

Here we add an additional move where, every now and

then, the schedule is randomly changed, for a random

person and at a random day and shift. In case nothing

was scheduled for this person at this time, we introduce

a new ‘event’ in the schedule (i.e. if there is a blank at

that row and column in Fig. 2, we insert a tick). In

case something was scheduled already, we remove the

scheduled event (i.e. if there is a tick at that row and

column in Fig. 2, we remove it). The random changes

may not violate the hard constraints. We allow a change

so long as the number of staff in a given qualification

category for each shift is not lower than the minimum

number and not higher than the preferred number. Let

us for example assume that the number of late shifts for

caretakers is minimum 2 and preferably 3 on a certain

day in the planning period. Let us also assume that in

the current solution 3 late shifts are scheduled on that

day. Assume that the ‘switch’ move, described in this

section, randomly picks this day and the late shift for the

move. In the case where the randomly chosen person

was not assigned to the late duty that day, the algorithm

cannot change this because adding a late duty for that

person would violate the hard constraints (4 late duties

planned instead of the preferred number of 3). The other

possibility is that the algorithm picks at random a per-

son who was already scheduled for the late duty. In that

case, the late duty will be removed. The removal causes

no violation of the hard constraints since the minimal

required number of scheduled late duties is still sched-

uled. With the ‘switched’ tabu search algorithm, we

allow more flexibility for staff to be scheduled at lower

or higher levels than usual, where this is permitted, as

discussed in Section 2.1. We decided to alternate the

ordinary tabu search and the switch function within the

SWT algorithm, since after a switch the resulting so-

lution is often of poor quality. The SWT algorithm is

the ME4 algorithm with this additional change.

6. Results

We tested our algorithms on four difficult real world

rostering problems arising in Belgian hospitals. Due

to complex confidentiality and operating requirements,

gathering each set of problem data required significant

amounts of time and effort. Each of the four rostering

problems has different characteristics and consistent

performance across these four different problems pro-

vides strong empirical evidence of performance over-

all. It is not appropriate to test our algorithms using

random data that would not have the same difficul-

ties as those encountered in practice. The results of

applying our heuristics to the problems are given in

Tables 1–4. We have given the value of the evalua-

tion function and the time taken for the planning of the

minimal staff requirements (R-min), planning towards

the preferred numbers of staff at each qualification (R-

min-pref), and planning the recalculated requirements

which will aid satisfaction of the soft constraints (R-

calc) as explained in Section 2.1. In all the tables, the

column ‘Value’ shows the value of the evaluation func-

tion (cost parameter per soft constraint multiplied by

the extent to which the constraint is violated). The col-

umn ‘Time’ contains the calculation times on an IBM

Power PC RS6000.

Problem 1 is large with many conflicting soft con-

straints. It is by far the most difficult problem of this

group. Problems 2 and 4 are smaller problems with few

soft constraints and are much easier than problem 1.

Problem 3 is of intermediate complexity.

The original tabu search algorithm TS is very good at

producing a reasonable starting solution from a random

initialisation in a short time. It is, however, a very slow

method if it is restarted several times in order to gener-

ate good solutions. Though the results of the hybrid tabu

search algorithms TS1 and TS2 are considerably better

they are often far from optimal. Unacceptable solutions

usually arise when the constraints on the problem are

contradictory. It is then very hard to find the very nar-

row valleys in the solution space, which contain good

schedules. Giving a very high value to the cost pa-

rameter corresponding to a particular constraint does

not necessarily guarantee that the solution will be free

from violations of this constraint. There are particular

difficulties when the requirements for people within a

certain qualification category are higher than the num-

ber of people available. In the tabu search algorithm

every ward is planned qualification category by quali-

fication category. The customers can freely decide upon

the order in which this planning is carried out. When

planning such a qualification category, the algorithm is

free to place the required shifts on every day that the

people within the category under consideration (or with
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Table 1. Comparison between the algorithms for problem 1.

R-min R-min-pref R-calc

Problem 1 Value Time Value Time Value Time

M (10 generations) 1445 52′33′′ 1296 52′42′′ 1103 50′18′′

M (100 generations) 1435 4h46′34′′ 1293 4h59′04′′ 1100 4h22′41′′

DM 1334 52′40′′ 1298 52′58′′ 1091 50′28′′

DMR 1993 1h00′01′′ 1829 1h00′20′′ 1716 59′01′′

MSR 1991 31′14′′ 1806 31′49′′ 1695 34′51′′

ME2 1397 1h24′25′′ 1266 1h24′36′′ 1203 1h16′57′′

ME3 1300 2h10′18′′ 1209 2h10′40′′ 1120 2h13′45′′

ME4 1208 2h08′30′′ 1087 2h08′41′′ 1003 2h00′43′′

ME5 1322 2h02′43′′ 1199 2h02′52′′ 1127 1h58′22′′

TS 2435 2′05′′ 2214 2′06′′ 1928 1′59′′

TS1 1341 6′00′′ 1089 5′59′′ 929 5′27′′

TS2 1264 20′15′′ 1011 24′39′′ 809 28′08′′

TSR 2893 2′20′′ 2714 2′21′′ 2983 2′22′′

TS1R 1911 18′33′′ 1692 35′14′′ 1573 35′03′′

TS2R 1911 34′16′′ 1691 53′55′′ 1573 40′09′′

TSPOP (12 individuals) 1352 1h38′33′′ 1089 1h42′55′′ 736 1h41′47′′

TSPOP (24 individuals) 1352 3h40′16′′ 1083 3h07′30′′ 746 2h52′02′′

MEH 1192 2h22′04′′ 904 2h28′28′′ 769 2h31′51′′

SWT 1090 1h45′17′′ 1094 2h20′26′′ 807 30′14′′

this category as an alternative possibility) are available.

When this step of the algorithm stops, the shifts planned

for this qualification category are frozen. This some-

times causes difficulties in planning the shifts for other

qualification categories, because of the overlap caused

by staff who may work in more than one qualification

category.

Since the test problems consist of wards with dif-

ferent qualification categories, we also carried out ex-

periments to determine the influence of changing the

planning order. These results are only significant for the

tabu search experiments, in which the user of the system

is free to define a planning order for the qualification

categories. The other algorithms use a random ordering

of these categories. Practical experiments have shown

that the best strategy is to plan those categories which

are understaffed first. However, determining the order-

ing of the categories is difficult and requires the human

planner’s expertise. We present here the results of plan-

ning the qualification categoriess in the reverse of the

order initially chosen by the experienced planner. We

suppose this to be the worst case and our results cer-

tainly support this hypothesis. The results for Problem 1

and Problem 2 are in the TSR, TS1R and TS2R rows

of Tables 1 and 2 respectively.

We see that, in general, using a poor ordering of qual-

ification categories produces much poorer results. This

is particularly true for the difficult problem 1. Surpris-

ingly, the TS2 algorithm produces slightly (2%) better

results for the relatively easy problem 2 when the plan-

ning order is reversed in TS2R. This behaviour is due

to the greedy shuffling step performed at the very end of

the TS2 algorithm’s calculation. This step goes through

all the qualification categories following the planning

order again, at the end of the solution process. It is thus

possible to make changes in the schedule of previously

planned categories again. The original TS tabu search

algorithm and TS1 go through the schedule qualifica-

tion by qualification, visiting each category only once,

with no chance to rectify poor choices later. They are

thus more strongly affected by the bad planning order

of the qualification categories.

Unless indicated otherwise in the tables, all the

memetic algorithms stop after two generations with-

out improvement. This is typically less than 20

generations. All the algorithms used to produce the
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Table 2. Comparison between the algorithms for problem 2.

R-min R-min-pref R-calc

Problem 2 Value Time Value Time Value Time

M (10 generations) 1245 4′9′′ 1245 4′9′′ 1060 4′12′

M (100 generations) 1245 10′53′′ 1245 10′53′′ 1060 10′22′′

DM 800 4′10′′ 800 4′10′′ 823 4′40′′

DMR 1037 2′56′′ 1037 2′56′′ 992 2′56′′

MSR 1104 2′51′′ 1104 2′51′′ 1080 2′59′′

ME2 1123 22′02′′ 1123 22′02′′ 1130 22′02′′

ME3 752 22′16′′ 752 22′16′′ 748 21′42′′

ME4 698 22′01′′ 698 22′01′′ 707 22′10′′

ME5 782 21′51′′ 782 21′51′′ 769 22′05′′

TS 1189 57′′ 1189 58′′ 933 1′03′′

TS1 843 3′18′′ 843 3′18′′ 867 2′14′′

TS2 809 6′25′′ 809 6′25′′ 588 10′19′′

TSR 2614 48′′ 2614 50′′ 1584 49′′

TS1R 1875 1′04′′ 1875 1′06′′ 554 8′21′′

TS2R 790 15′10′′ 790 15′11′′ 554 9′37′′

TSPOP (12 individuals) 885 29′36′′ 885 29′37′′ 464 32′34′′

TSPOP (24 individuals) 892 50′19′ 892 50′21′′ 457 53′48′′

MEH 980 23′54′′ 980 23′54′′ 535 24′42′′

SWT 992 19′09′′ 992 19′09′′ 578 19′26′′

Table 3. Comparison between the algorithms for problem 3.

R-min R-min-pref R-calc

Problem 3 Value Time Value Time Value Time

M (10 generations) 567 23′46′′ 560 23′58′′ 547 21′20′′

M (100 generations) 552 1h37′14′′ 541 1h37′25′′ 547 1h15′14′′

DM 403 23′57′′ 402 24′10′′ 396 24′10′′

DMR 636 28′45′′ 629 28′58′′ 620 27′51′′

MSR 612 27′12′′ 610 27′30′′ 604 27′28′′

ME2 526 1h17′17′′ 521 1h17′30′′ 518 1h11′42′′

ME3 472 57′03′′ 466 57′16′′ 459 56′54′′

ME4 398 1h16′43′′ 392 1h16′41′′ 391 1h00′23′′

ME5 397 1h09′55′′ 393 1h10′05′′ 390 1h04′42′′

TS 422 2′05′′ 418 2′08′′ 415 2′06′′

TS1 398 7′38′′ 389 7′42′′ 390 7′38′′

TS2 391 13′52′′ 380 13′56′′ 377 14′11′′

TSPOP (12 individuals) 624 1h35′50′′ 620 1h48′06′′ 583 1h32′27′′

TSPOP (24 individuals) 608 2h56′11′′ 608 3h16′12′′ 583 2h55′00′′

MEH 378 1h20′44′′ 379 1h22′45′′ 369 1h28′03′′

SWT 381 1h17′09′′ 375 1h30′10′′ 364 1h26′32′′
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Table 4. Comparison between the algorithms for problem 4.

R-min R-min-pref R-calc

Problem 4 Value Time Value Time Value Time

M (10 generations) 226 8′47′′ 226 8′47′′ 224 8′09′′

M (100 generations) 225 33′27′′ 225 33′27′′ 224 32′54′′

DM 241 9′21′′ 241 9′21′′ 237 9′42′′

DMR 266 9′33′′ 266 9′33′′ 260 10′39′′

MSR 273 8′40′′ 273 8′40′′ 265 9′15′′

ME2 200 42′11′′ 200 42′11′′ 205 39′23′′

ME3 184 46′31′′ 184 46′31′′ 184 46′22′′

ME4 186 45′40′′ 186 45′40′′ 187 47′19′′

ME5 191 42′16′′ 191 42′16′′ 190 44′57′′

TS 231 52′′ 231 53′′ 227 1′03′′

TS1 190 2′21′′ 190 2′23′′ 189 2′14′′

TS2 189 4′25′′ 189 4′26′′ 186 4′38′′

TSPOP (12 individuals) 269 22′16′′ 269 23′09′′ 266 24′28′′

TSPOP (24 individuals) 264 39′03′′ 264 40′21′′ 263 43′10′′

MEH 182 23′54′′ 182 24′35′′ 175 24′42′′

SWT 179 19′09′′ 179 19′59′′ 176 19′26′′

test results in Tables 1 to 4 have a population size

of 12.

We can see that for each of the problems, the extra

benefit from allowing our original memetic algorithm

M to run ten times longer produces little improvement

in the final solution, since this approach does not gener-

ate sufficient diversity. However, we see that for prob-

lems 1, 2, and 3 the DM heuristic produces better ros-

ters than the M heuristic, since the random ordering of

qualifications gives greater population diversity. How-

ever, we can also see that the DMR heuristic, which

introduces still more diversity through choosing ran-

dom rows from the parent schedules instead of the best

rows in each case has produced results which are worse

than those for the DM heuristic. The same could be said

for heuristic MSR which takes an appropriate segment

of each row from each parent and has a similar perfor-

mance. Each of these memetic algorithms has a pop-

ulation size of at least 12, which explains their slower

running time. We will consider below the comparison

between the memetic approaches and a multistart tabu

search approach TSPOP.

Copying large parts schedules from high quality par-

ent schedules to the child schedules is ineffective. Since

the steepest descent technique used by the memetic

algorithms is not powerful enough to improve the

children, so that the algorithm performs like a pure

genetic algorithm. We have obtained better results by

copying small parts (with good qualities) from the par-

ent schedules, so that the degree of freedom after mak-

ing feasible solutions is high enough to provide diver-

sity. Hence we see that the memetic algorithms ME2,

ME3, ME4, and ME5 which are more selective about

which parental traits are passed on generate signifi-

cantly better schedules than the algorithms M, DM,

DMR, and MSR. The algorithms copying the small-

est parts of the parent schedules are the MEx algo-

rithms. We found that the number x of events which

are copied per person (row) has a significant influence

on final solution quality. The results of copying 2, 3,

and 4 events per row are increasingly better but from

5 events on the results get worse again. We believe

that these ‘best placed’ events strongly influence the

position of all the other events, so that the freedom of

the solution to evolve is restricted to good areas of the

search space and the steepest descent heuristic is par-

ticularly effective in improving the diverse schedules

generated. ME4 represents the best compromise be-

tween a diverse population of solutions and the ability

to focus on interesting areas of the search space.

When we compare the best of our memetic algo-

rithms, ME4, with TS2, the best of our tabu search
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algorithms, we see that significantly better solutions

are produced by the ME4 algorithm for problems 1

and 2 and comparable results for problems 3 and 4, at

the expense of longer running times. A very important

advantage of the memetic algorithms with respect to

the tabu search algorithms, however, is the fact that the

results of the memetic algorithms are not dependent on

the planning order of the qualification categories cho-

sen by the user. The chance of becoming trapped in a

local minimum, which is very far from the optimal, is

reduced. Problem 1 has a high number of very strict soft

constraints, with high cost parameters attached to them.

Problem 2, on the other hand, has fewer personnel and

duty types and has few soft constraints. Problem 1’s

search space (only depending on soft constraints) will

thus be much hillier and full of traps for algorithms

based upon neighbourhood search, so the problem will

differentiate more clearly between the algorithms. This

explains why the improvements of the hybridisations

TS1 and TS2 are considerably better for problem 1 than

those of the original tabu search algorithms TS, and

the additional improvements yielded by the memetic

approaches.

We can see in the TSPOP rows of Tables 1 to 4

that applying the TS1 algorithm using random order-

ing of qualification categories starting from a num-

ber of different initial solutions (without any recom-

bination or switch) is not effective—showing clearly

the dependence upon the human planner’s knowl-

edge of the sequencing which must be applied to the

ordering of nurse qualification categories. It seems

to be a good idea not to do the time consuming

greedy shuffling step on every individual but only

on the best one. The algorithms make use of a ran-

dom generator (to create an initial solution and to

choose among equally good steps). This explains why

some of the experiments with more individuals lead

to worse solutions than with fewer individuals. How-

ever, the memetic hybrids SWT and MEH and the

memetic algorithm ME4 demonstrate that the recom-

bination operator consistently improves performance

over the TSPOP algorithm (which has no recombi-

nation) given similar time to solve the problems, and

moreover, they do not require the user to specify the

order in which nurse qualification categories should be

scheduled.

The memetic/tabu hybrid MEH shows excellent per-

formance over the more difficult problems 1 and 4

(bettering all other solution methods except the hy-

brid SWT algorithm). This demonstrates the better

solutions obtainable and the increased robustness of-

fered by a hybrid approach.

Originally, when planning R-min-pref, we start by

planning the minimum personnel requirements and in

the end add duties to the schedule whenever this does

not introduce new violations of soft constraints. We are

inclined to think that better results can be obtained by

adding duties while the planning algorithm is still ac-

tive. The SWT algorithm, which was developed to test

this, indeed leads to good results for all the examples

tested. Note that this algorithm has no greedy shuffling

step in the end, in contrast to the TSPOP and the MEH

algorithms.

7. Conclusion

By automating the nurse rostering problem for Belgian

hospitals, the scheduling effort and calculation time are

reduced considerably from the manual approach that

was previously used. The time for automatic schedule

generation can be tailored to suit the time available.

Fast tabu search algorithms can quickly find reasonably

good schedules in response to events such as staff ab-

senteeism. The memetic algorithms are robust enough

to produce excellent solutions to hard problems when

more time is available. The quality of the automati-

cally produced schedules is much higher than the qual-

ity of the manual schedules. The users of Plane often

place an emphasis on the higher quality of the solu-

tion because the system provides an objective schedule

in which all nurses are treated equally and in which

the number of violated constraints is very low. Plan-

ners are pleased by the ability of the system to gener-

ate consistently better solutions than manual planning

procedures, demonstrating a high level of robustness.

They acknowledge also that experienced planners can-

not improve the schedules generated to improve the

results manually.

This paper deals with real world problems and some

of the algorithms are currently in use. We have de-

scribed several memetic approaches and compared

them to previously published tabu search results [10].

The hybrid tabu search algorithm runs quickly and

does produce good solutions but it is highly depen-

dent on the initialisation parameters, requiring the ex-

pertise of human planners to judge the correct order

of qualification categories and displays a lack of ro-

bustness to generate good schedules for all problems.

The memetic approaches take much longer to run than

the tabu search approaches. Those memetic approaches
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which copy only a carefully selected part of each parent

schedule to the child schedules use this extra time to

good effect to produce better solutions and the depen-

dence on the initialisation and parameter changes is

very much reduced. The hybrid memetic algorithms,

which combined the basic approach with the hybrid

tabu search, provide good solutions in a similar time to

the other memetic algorithms. The solutions are signifi-

cantly better than the best tabu search solution and they

are relatively unaffected by initialisation and parameter

changes. We believe that these approaches are particu-

larly robust and can handle the variety of instances that

occur in the real world.

For many practical scheduling problems, the higher

quality of the solutions produced by the hybrid algo-

rithm compared to the simple tabu search algorithm

compensates for the increase in calculation time. Dif-

ferent users will choose different algorithms, depend-

ing on their opinions and their requirements. The run-

time/quality trade-off depends very much on the in-

dividual user. Some users are really interested in the

lowest possible value of the evaluation function, no

matter how long the calculations take, particularly in

smaller hospitals where a single planning officer gen-

erates the roster for the whole hospital and will not

mind if roster generation takes an overnight run. Oth-

ers, for instance in very big hospitals with many wards

to be scheduled by individual head nurses, prefer quick

calculations where a slightly lower schedule quality is

good enough, since each head nurse may have a very

tight window in which to generate a schedule.

Notes

1. Impakt N.V., Ham 64, B-9000 Gent.

2. GET, General Engineering & Technologie, Antwerpse Steenweg

107, B-2390 Oostmalle.
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