
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2012-64

2012

A Memory Access Model for Highly-threaded Many-core A Memory Access Model for Highly-threaded Many-core

Architectures Architectures

Lin Ma, Kunal Agrawal, and Roger D. Chamberlain

Many-core architectures are excellent in hiding memory-access latency by low-overhead context

switching among a large number of threads. The speedup of algorithms carried out on these

machines depends on how well the latency is hidden. If the number of threads were infinite, then

theoretically these machines should provide the performance predicted by the PRAM analysis of

the programs. However, the number of allowable threads per processor is not infinite. In this

paper, we introduce the Threaded Many-core Memory (TMM) model which is meant to capture

the important characteristics of these highly-threaded, many-core machines. Since we model

some important machine... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Ma, Lin; Agrawal, Kunal; and Chamberlain, Roger D., "A Memory Access Model for Highly-threaded Many-
core Architectures" Report Number: WUCSE-2012-64 (2012). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/89

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/89?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/89

A Memory Access Model for Highly-threaded Many-core Architectures A Memory Access Model for Highly-threaded Many-core Architectures

Lin Ma, Kunal Agrawal, and Roger D. Chamberlain

Complete Abstract: Complete Abstract:

Many-core architectures are excellent in hiding memory-access latency by low-overhead context
switching among a large number of threads. The speedup of algorithms carried out on these machines
depends on how well the latency is hidden. If the number of threads were infinite, then theoretically these
machines should provide the performance predicted by the PRAM analysis of the programs. However, the
number of allowable threads per processor is not infinite. In this paper, we introduce the Threaded Many-
core Memory (TMM) model which is meant to capture the important characteristics of these highly-
threaded, many-core machines. Since we model some important machine parameters of these machines,
we expect analysis under this model to give more fine-grained performance prediction than the PRAM
analysis. We analyze 4 algorithms for the classic all pairs shortest paths problem under this model. We
find that even when two algorithms have the same PRAM performance, our model predicts different
performance for some settings of machine parameters. For example, for dense graphs, the Floyd-
Warshall algorithm and Johnson’s algorithms have the same performance in the PRAM model. However,
our model predicts different performance for large enough memory-access latency and validates the
intuition that the Floyd-Warshall algorithm performs better on these machines.

https://openscholarship.wustl.edu/cse_research/89?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/89?utm_source=openscholarship.wustl.edu%2Fcse_research%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2012-64

A Memory Access Model for Highly-threaded Many-core Architectures

Authors: Lin Ma, Kunal Agrawal, Roger D. Chamberlain

Corresponding Author: lin.ma@cse.wustl.edu

Web Page: http://www1.cse.wustl.edu/~lin.ma/

Abstract: Many-core architectures are excellent in hiding memory-access latency by low-overhead context
switching among a large number of threads. The speedup of algorithms carried out on these machines depends
on how well the latency is hidden. If the number of threads were infinite, then theoretically these machines
should provide the performance predicted by the PRAM analysis of the programs. However, the number of
allowable threads per processor is not infinite. In this paper, we introduce the Threaded Many-core Memory
(TMM) model which is meant to capture the important characteristics of these highly-threaded, many-core
machines. Since we model some important machine parameters of these machines, we expect analysis under
this model to give more fine-grained performance prediction than the PRAM analysis. We analyze 4 algorithms
for the classic all pairs shortest paths problem under this model. We find that even when two algorithms have
the same PRAM performance, our model predicts different performance for some settings of machine
parameters. For example, for dense graphs, the Floyd-Warshall algorithm and Johnson’s algorithms have the
same performance in the PRAM model. However, our model predicts different performance for large enough
memory-access latency and validates the intuition that the Floyd-Warshall algorithm performs better on these
machines.

Notes:
Work submitted and accepted by ICPADS'2012

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

A Memory Access Model for Highly-threaded Many-core Architectures

Lin Ma, Kunal Agrawal, and Roger D. Chamberlain

Department of Computer Science and Engineering, Washington University in St. Louis

{lin.ma, kunal, roger}@seas.wustl.edu

Abstract—Many-core architectures are excellent in hiding
memory-access latency by low-overhead context switching among
a large number of threads. The speedup of algorithms carried
out on these machines depends on how well the latency is hidden.
If the number of threads were infinite, then theoretically these
machines should provide the performance predicted by the PRAM
analysis of the programs. However, the number of allowable
threads per processor is not infinite. In this paper, we introduce
the Threaded Many-core Memory (TMM) model which is meant
to capture the important characteristics of these highly-threaded,
many-core machines. Since we model some important machine
parameters of these machines, we expect analysis under this
model to give more fine-grained performance prediction than
the PRAM analysis. We analyze 4 algorithms for the classic all-
pairs shortest paths problem under this model. We find that
even when two algorithms have the same PRAM performance,
our model predicts different performance for some settings of
machine parameters. For example, for dense graphs, the Floyd-
Warshall algorithm and Johnson’s algorithms have the same
performance in the PRAM model. However, our model predicts
different performance for large enough memory-access latency
and validates the intuition that the Floyd-Warshall algorithm
performs better on these machines.

Keywords-PRAM, TMM, All-pairs Shortest Paths (APSP),
Many-core

I. INTRODUCTION

Highly-threaded, many-core devices such as GPUs have

gained popularity in the last decade; both NVIDIA and

AMD manufacture general purpose GPUs that fall in this

category. The distinctive features of these devices include (1)

a large number of hardware threads with low-overhead con-

text switching between them, (2) explicitly managed memory

hierarchies, and (3) high-latency-high-bandwidth data transfer

between fast and slow memories. Researchers have designed

algorithms to solve many interesting problems for these de-

vices, such as GPU sorting or hashing [5], [24], [36], [40],

linear algebra [14], [45], [47], dynamic programming [33],

[34], graph algorithms [25], [29], [37], [38], and many other

classic algorithms [13], [48]. These projects generally report

impressive gains in performance. These devices appear to be

here to stay. We are interested in analyzing and characterizing

performance of algorithms on these highly threaded many-

core machines in a more abstract, algorithmic, and systematic

manner. While there is a lot of folk wisdom on how to design

good algorithms for GPUs in addition to a significant body

of work on performance analysis [9], [26], [30], [32], [35],

there are no systematic theoretical models to analyze the

performance of programs on these machines.

Theoretical analysis relies upon models that represent under-

lying assumptions; if a model does not capture the important

aspects of target machines and programs, then the analysis is

not predictive of real performance. Over the years, computer

scientists have designed various models to capture important

aspects of the machines that we use. The most fundamental

model that is used to analyze sequential algorithms is the

Random Access Machine (RAM) [4] model, which we teach

undergraduates in their first algorithms class. This model

assumes that all operations, including memory accesses, take

unit time. While this model is a good predictor of performance

on computationally intensive programs, it does not properly

capture the important characteristics of the memory hierarchy

of modern machines. Aggarwal and Vitter proposed the Disk

Access Machine (DAM) model [3] which counts the number of

memory transfers from slow to fast memory instead of simply

counting the number of memory accesses by the program.

Therefore, it better captures the fact that modern machines

have memory hierarchies and exploiting spacial and temporal

locality on these machines can lead to better performance.

Other models that consider the memory access costs of sequen-

tial algorithms include the cache-oblivious model [23], [39],

Hierarchical Memory Model (HMM) [1], Memory Hierarchy

(MH) model [7], Block Transfer model (BT) [2], and Uniform

Memory Hierarchy (UMH) model [6], [43].

For parallel computing, the analogue for RAM model is

the Parallel Random Access Machine (PRAM) model [22]

and there is a large body of work describing and analyzing

algorithms in the PRAM model [28], [42]. In the PRAM model,

the algorithm’s complexity is analyzed in terms of its work
— the time taken by the algorithm on 1 processor, and span
(also called depth and critical-path length) — the time taken

by the algorithm on an infinite number of processors. Given

a machine with P processors, a PRAM algorithm with work

W and span S completes in max(W/P, S) time. The PRAM
model also ignores the vagaries of the memory hierarchy,

however, and assumes that each memory access by the al-

gorithm takes unit time. For modern machines, however, this

assumption seldom holds. Therefore, researcher have designed

various models for distributed memory machines [19], [41],

[44], shared memory machines and multicores [8], [11], [12],

[15], [18] or the combination of the two [16], [17].

All of these models capture particular capabilities and

properties of the respective target machines, namely shared

memory machines or distributed memory machines. While

superficially, highly-threaded many-core machines such as

GPUs are shared memory machines, their characteristics are

very different from the traditional multicore or multiprocessor

shared memory machines. The high-level characteristics that

we will focus on are: (1) These many-core machines have a

large number of threads and a super fast context switching

mechanism. Therefore, if a thread stalls on a memory oper-

ation, some other thread may be scheduled in its place. (2)

Explicitly managed memory hierarchy (instead of hardware

managed caches) which allows programs to place data at a

particular level. (3) Automatic coalescing of memory accesses,

where if multiple threads access data from a slower memory

in a predictable pattern, this data can be fetched with just one

memory access instead of many. These aspects of the GPU-

style many-core machines make their algorithm design param-

eters very different from those used in multicore algorithm

design. In the multicore models in the literature, researchers

count the number of memory transfers from slow memory to

fast memory, and algorithms are designed to minimize these,

since memory transfers take a significant amount of time.

Since, nominally, only one thread is running on one processor,

this thread blocks on the memory transfer. Since many-cores

are explicitly designed to hide memory latency via thread

switching, in principle, the number of memory transfers does

not matter as long as there are enough threads to hide their

latency. Therefore, if there are enough threads, we should, in

principle, be able to use PRAM algorithms on GPUs.

In this work, we investigate this intuition. In particular, we

propose the Threaded Many-core Memory (TMM) model that

captures the performance characteristics of these many-core

machines. This model explicitly models the large number of

threads per processor and the memory latency to slow memory.

Note that while we motivate this model for GPU-like many-

core machines with SIMD computations, in principle, it can

be used in any system which has fast context switching and

enough threads to hide memory latency. So it would also apply

to multicore machines which implement fast context-switches.

If the latency of transfer from slow memory to fast memory

is small, or if the number of threads per processor is infinite,

then this model generally provides the same analysis results as

the PRAM analysis. It, however, provides more intuition. (1)

Ideally, we want to get the PRAM performance for algorithm

using the fewest number of threads possible, since threads do

have overhead. This model can help us pick such algorithms.

(2) It also captures the reality of when memory latency is large

and the number of threads is large but finite. In particular, it

can distinguish between algorithms that have the same PRAM
analysis, but one may be better at hiding latency than another

with a bounded number of threads.

This model is a high-level model meant to be generally

applicable to a large number of machines which allow a large

number of threads with fast context switching. Therefore, it

abstracts away implementation details of either the machine or

the algorithm, since it is meant to be general and applicable

to many machines which are in the similar paradigm. We

also assume that the hardware provides 0-cost and perfect

scheduling between threads. In addition, it also models the

machine as having only 2 levels of memory. In particular, we

model a slow global memory and fast local memory shared

in one multiprocessor. In practice, these machines may have

many levels of memory. However, we are interested in the

interplay between the farthest level, since the latencies are the

largest at that level, and therefore have the biggest impact on

the performance. We expect that the model can be extended

to also model other levels of the memory hierarchy.

We analyze 4 classic algorithms for the problem of comput-

ing All Pairs Shortest Paths (APSP) on a weighted graph in

this model. We compare the analysis from this model with the

PRAM analysis of these 4 algorithms to gain intuition about

the usefulness of both our model and the PRAM model for

analyzing performance of algorithms on GPU-style, many-core

machines. Our results validate the intuition that this model

can provide more information than the PRAM model for large

latency, finite thread case. In particular, we compare these

algorithms and find specific relationships between hardware

parameters (latency, fast memory size, limits on number of

threads) under which some algorithms are better than others

even if they have the same PRAM cost.

This paper is organized as follows. Section II describes

the TMM model. Section III provides the 4 shortest paths

algorithms and their analysis in both the PRAM and the TMM
model. Section IV provides the lessons learned from this

model; in particular, we see that algorithms that have the same

PRAM performance have different performance in the TMM
model since they are better at hiding memory latency with

fewer threads. Finally, Section VI provides the conclusions.

II. MODELING

The TMM model is meant to model the important character-

istics of GPU-style, many-core architectures while abstracting

away the details. In this section, we will describe the important

characteristics of these many-core architectures and our model

for analyzing algorithms for these architectures.

A. Many-core Architectures

Many-core architectures typically consist of a number of

multiprocessors, each containing a number of processors (or

cores),1 a fixed number of registers, and a fixed size of local

on-chip shared fast memory. A large global memory is shared

by all the multiprocessors. Registers are the fastest to access,

the shared local on-chip memory is slower than registers but

faster than the global memory. Accessing the global memory

may potentially take 100s of cycles.

These architectures support a large number of hardware

threads, much larger than the number of cores. Cores on a

single multiprocessor execute in SIMD style where groups of

threads execute in lock-step. When a thread group executing

on a multiprocessor stalls on a slow memory access, in theory,

a context switch occurs and another thread group is scheduled

on that multiprocessor. When servicing this memory stall, the

memory subsystem will coalesce memory accesses that are

within certain address range bounds (i.e., they are sufficiently

close together). The architecture is abstracted in Figure 1.

Note that this architecture abstraction ignores a number of

details about the physical machine, including warps, half-

warps, blocks, and block scheduling.

1A multiprocessor can also have a single core.

Fig. 1. Abstracted many-core architecture.

B. TMM Model Parameters

The TMM model captures the important characteristics of

a many-core architecture by using six parameters shown in

Table I. L is the latency for accessing the slow memory

(in our case, the global memory which is shared by all the

multiprocessors). P is the total number of processors (or

cores) in the machine. C is the maximum number of memory

accesses that can be coalesced while accessing global memory.

The parameter Z represents the size of local fast memory per

multiprocessor and Q represents the total number of cores

per multiprocessor. Note that we do not have a parameter for

the number of multiprocessors, that quantity is simply P/Q.

Finally X is the hardware limit on the number of threads

an algorithm is allowed to generate per core. This limit is

enforced due to many different constraints, such as constraints

on the number of registers each thread uses and an explicit

constraint on the number of threads. We unify these constraints

into one parameter.

TABLE I
ARCHITECTURE PARAMETERS.

Parameter Description

L Time for a global memory access
P Number of processors (cores)
C Coalesced granularity (SIMD width)
Z Size of fast local memory per multiprocessor
Q Number of cores per multiprocessor
X Hardware limit on number of threads per core

In addition to the architecture parameters, we must also

consider parameters which are decided by the algorithm. We

assume that the programmer has written a proper SIMD style

program and taken care to balance the workload across the

multiprocessors. The parameters decided by the program are

shown in Table II. T1 represents the work of the algorithm,

that is, the total number of operations that the program must

perform. T∞ represents the span of the algorithm, that is,

the total number of operations on the critical path. These are

similar to the analogous PRAM parameters of work and time

(or depth or critical-path length).

Next we come to program parameters that are specific to

TABLE II
PROGRAM PARAMETERS

Parameter Description

T1 The work or total number of operations
T∞ The span or the number of operations on the critical path
M Number of global memory operations
T Number of threads per core
S Amount of local memory used per thread

the many-core programs. M represents the total number of

global memory operations performed by the algorithm. Note

that this is the total number of operations, not total number

of accesses. If multiple accesses can be coalesced, then they

will only count as 1 operation when accounting for M . T
is the total number of threads created by the program per

core. We assume that the work is perfectly distributed among

cores. Therefore, the total number of threads in the system is

T P . On many-core architectures, thread switching is used to

hide memory latency. Therefore, it is beneficial to create as

many threads as possible. However, the maximum number of

threads is limited by both the hardware and the program. The

software limitation has to do with parallelism, the total number

of threads T ≤ T1/(T∞ · P). The hardware limits T ≤ X .

Finally, we have a parameter S, which is local memory used

per thread. S and T are related parameters, since there is

a limited amount of local memory in the system. The total

number of threads per core is at most T ≤ Z/(SQ).

C. TMM Analysis structure

In order to analyze a program performance in TMM model,

we must first calculate the program parameters for the partic-

ular program. Once we have calculated these values, we can

then try to understand the performance of the algorithm. We

first calculate the effective work of the algorithm TE . Effective

work should consider both work due to computation and work

due to memory accesses. Total work due to memory accesses

is M · L, but since this work is hidden by using threads, the

real effective work due to memory accesses is (M · L)/T
Therefore, we have

TE = max(T1,
M · L
T) (1)

Note that this expression assumes perfect scheduling (the

threads are context swapped with no overhead, as soon as

they are stalled) and perfect load balance between threads.

The time to execute on P cores is represented by TP and

is defined as:

TP = TE/P = max(T1/P, T∞,
M · L
T · P) (2)

Therefore, speedup on P cores, SP , is

SP = T1/TP = min(P, T1/T∞,
P · T1 · T
M · L) (3)

For linear speedup, SP should be P . More precisely, for

PRAM algorithms, SP = min(P, T1/T∞). Therefore, if the

first two terms in the min of equation (3) dominate, then a

many-core algorithm is the same as the corresponding PRAM
algorithm. On the other hand, if the last term dominates,

then the many-core algorithm’s performance depends on other

factors. If T could be unbounded, then the last term will

never dominate. However, as we explained earlier, T is not

an unlimited resource and has both hardware and algorithmic

upper bounds. Therefore, based on the machine parameters,

algorithms that have the same PRAM performance can have

different real performance on many-core machines. Therefore,

this model can help us pick algorithms that provide perfor-

mance as close as possible to PRAM algorithms.

III. ANALYSIS OF ALL PAIRS SHORTEST PATHS

ALGORITHMS USING TMM MODEL

In this section, we demonstrate the usefulness of our model

by using it to analyze 4 different algorithms for calculating

all pairs shortest paths in graphs. All pairs shortest paths is

a classic problem for which there are many algorithms. We

are given a graph G = (V,E) with n vertices and m edges.

Each edge e has a weight w(e). We must calculate the shortest

weighted path from every vertex to every other vertex. In this

section, we are interested in asymptotic insights, therefore, we

assume that the graphs are large graphs. In particular n > Z.

A. Floyd-Warshall Algorithm: Dynamic Programming via Ma-
trix Multiplication

Our first algorithm is the Floyd-Warshall algorithm [46],

[21], which is a dynamic programming algorithm that uses

repeated matrix multiplication to calculate all pairs shortest

paths. The graph is represented as an adjacency matrix A
where Aij represents the weight of edge (i, j).

Al is a transitive matrix where Al
ij represents the shortest

path from vertex i to vertex j using at most l intermediate

edges. A1 is the same as the adjacency matrix A and we want

to calculate An−1 to calculate all pairs shortest paths.

A2 can be calculated from A1 as follows:

A2
ij = min

0≤k<n
(A1

ij , A
1
ik +A1

kj). (4)

Note that the structure of this equation is the same as the

structure of a matrix multiplication operation where the sum is

replaced by a min operation and the multiplication is replaced

by an addition operation. Therefore, we can use repeated ma-

trix multiplication which calculates An using O(lg n) matrix

multiplications.

PRAM Algorithm and Analysis: Parallelizing this algorithm

for the PRAM model simply involves parallelizing the matrix

multiplication algorithm such that each element in the ma-

trix is calculated in parallel. The total work of lg n matrix

multiplications using a PRAM algorithm is T1 = O(n3 lg n).2

The span of a single matrix multiplication algorithm is O(n).
Therefore, the total span of the algorithm is T∞ = O(n lg n).

2This can be done faster using Strassen’s algorithm. Using Strassen’s
algorithm will impact the PRAM and the TMM algorithms equally. Therefore,
we demonstrate our point using the simpler algorithm.

The time and speedup using P processors is

TP = O

(
max(

n3 lg n

P
, n lg n)

)
(5)

SP = O
(
min(P, n2)

)
(6)

Therefore, the PRAM algorithm gets linear speedup as long as

P ≤ n2.

TMM Algorithm and Analysis: TMM algorithms are tailored

to many-core architectures generally by using fast on-chip

memory to avoid accesses to slow off-chip global memory,

coalescing to diminish the time required to access slow mem-

ory, and threading to hide the latency of accesses to slow

memory. Due to its large size, the matrix is stored in off-chip

global memory. Following traditional block-decomposition

techniques, sub-blocks of the result matrix (whose size is

denoted by B) are assigned to multiprocessors for compu-

tation. The threads in a multiprocessor read in the required

input sub-blocks, perform the computation of equation (4) for

their assigned sub-block, and write the sub-block out to global

memory. This happens lg n times by repeated squaring.

The work and the span of this algorithm remain unchanged

from the PRAM algorithm. However, we must also calculate

M , the number of memory accesses. Let us first consider a

single matrix multiplication operation. There are a total of

n2 elements and each element is read for the calculation

of O(n/B) other blocks. However, due to the regularity in

memory accesses, each block can be read fully coalesced.

Therefore, the number of memory accesses for one matrix

multiply is O((n2/C)·(n/B)) = O(n3/(BC)). Also note that

since we must fit a B×B block in a local memory of size Z on

one multiprocessor, we get B = Θ(
√
Z). Therefore, for lg n

matrix multiplication operations, M = O(n3 lg n/(
√
Z · C)).

Now we are ready to calculate the time on P processors.

TP = O

(
max(

T1

P
, T∞,

M · L
T · P)

)
(7)

= O

(
max(

n3 lg n

P
, n lg n,

n3 lg n · L√
Z · C · T · P

)

)
(8)

Therefore, the speedup on P processors is

SP = T1/TP (9)

= O

(
min(P, n2,

√
Z · C · T

L
· P)

)
(10)

We can now compare the PRAM and TMM analysis and

note that the speedup is P as long as
√
ZCT /L ≥ 1. We

also know that T ≤ min(X,Z/(SQ)), and S = O(1), since

each thread only needs constant memory. Therefore, we can

conclude that the algorithm achieves linear speedup as long

as L ≤ min(
√
ZCX,Z3/2C/Q).

B. Johnson’s Algorithm: Dijkstra’s Algorithm using Binary
Heaps

Johnson’s algorithm [27] is an all-pairs shortest paths al-

gorithm that uses Dijkstra’s single source algorithm as the

subroutine and calls it n times from each source vertex.

Dijkstra’s algorithm is a greedy algorithm for calculating

single source shortest paths. The pseudo-code for Dijkstra’s

algorithm is given in Algorithm 1 [20]. The single source

algorithm consists of n insert operations, m decrease-key

operations and n delete-min operations. The standard way

of implementing Dijkstra’s algorithm is to use a binary or a

Fibonacci heap to store the array elements. We now consider

a binary heap implementation so that each operation (insert,

decrease-key, and delete-min) takes O(lg n) time. Note that

Dijkstra’s algorithm does not work when there are negative

weight edges in the graph.

Algorithm 1 Dijkstra

1: Input: Graph G = (V,E), |V | = n, |E| = m
2: Input: W is weight of edges, |W | = m
3: Input: S is source vertex

4: Output: dist[n]
{Initialize distance array}

5: for all u ∈ V do
6: dist[u] = ∞
7: end for
8: dist[S] = 0
9: for all u ∈ V do

10: Q ← dist[u]
11: end for

{Propagate the distance update to all vertices}
12: while Q not empty do
13: u = deletemin(Q)

14: for each edge (u, v) ∈ E do
15: if dist[v] > dist[u] +W [u, v] then
16: dist[v] = dist[u] +W [u, v]
17: decreasekey(Q, v)

18: end if
19: end for
20: end while

PRAM Algorithm and Analysis: A simple parallel imple-

mentation of Johnson’s algorithm using Dijkstra’s algorithm

consists of doing each single-source shortest path calculation

in parallel. The total work of a single-source computation is

O(m lg n+ n lg n). For simplicity, we assume that the graph

is connected, giving us O(m lg n). Therefore, the total work

for all-pairs shortest paths is T1 = O(mn lg n). The span is

T∞ = O(m lg n) since each single source computation exe-

cutes sequentially. The time and speedup using P processors

is

TP = O

(
max(

mn lg n

P
,m lg n)

)
(11)

SP = O (min(P, n)) (12)

Therefore, the PRAM algorithm gets linear speedup as long

as P ≤ n.

TMM Algorithm and Analysis: The TMM algorithm is very

similar to the PRAM algorithm where each thread computes a

single source shortest path. Therefore, each thread requires a

min-heap of size n. Since n may be arbitrarily large compared

to Z/QT (the share of local memory for each thread), these

heaps cannot fit in local memory and must be allocated to

slow global memory.

The work and span are the same as the PRAM algorithm.

We must now compute M . Note that each time the thread

does a heap operation, it must access global memory, since the

heaps are stored in global memory. In addition, binary heap

accesses are not predictable and regular, so the heap accesses

from different threads cannot be coalesced. Therefore, the total

number of memory accesses is M = O(mn lg n).3

Now we are ready to calculate the time on P processors.

TP = max(
T1

P
, T∞,

M · L
T · P) (13)

= O

(
max(

mn lg n

P
,m lg n,

mn lg n · L
T · P)

)
(14)

Therefore, the speedup on P processors is

SP = O

(
min(P, n,

T
L

· P)

)
(15)

Note that this algorithm gets linear speedup only if T /L ≥
1. Therefore, the number of threads this algorithm needs

to get linear speedup is very large. We know that T ≤
min(X,Z/(SQ)), and S = O(1) for this algorithm. This

allows us to conclude that this algorithm achieves linear

speedup only if L ≤ min(X,Z/Q), since each thread needs

only constant memory. These conditions are much stricter than

those imposed by the previous algorithm.

C. Johnson’s Algorithm: Dijkstra’s Algorithm using an Array

This algorithm is similar to the previous algorithm in that

it still uses n single-source Dijkstra’s algorithm calculations.

However, instead of binary heaps, we use arrays to do delete-

min and decrease-key operations.

PRAM Algorithm and Analysis: The PRAM algorithm is

very similar to the algorithm that uses binary heaps. Each

single source shortest path is computed in parallel. However,

in this algorithm, we simply store the current estimates of the

shortest path of vertices in an array instead of a binary heap.

Therefore, there are n arrays of size n, one for each single

source shortest path calculation. Each decrease-key now takes

O(1) time, since one can simply reduce the key using random

access. Each delete-min, however, takes O(n) work, since one

must look at the entire array to find the minimum element.

Therefore, the work of the algorithm is T1 = O(n3 + mn)
and the span is O(n2 + m). We can improve the span by

doing delete-min in parallel, since one can find the smallest

element in an array in parallel using O(n) work and O(lg n)
time using a parallel prefix computation. This brings the total

span to T∞ = O(n lg n+m) while the work remains the same.

3There are other accesses that are not heap accesses, but those are
asymptotically fewer and can be ignored.

The time and speedup using P processors is

TP = O

(
max(

n3

P
, n lg n+m)

)
(16)

= O

(
max(

n3

P
, n lg n,m)

)
(17)

SP = O

(
min(P,

n2

lg n
,
n3

m
)

)
(18)

TMM Algorithm and Analysis: The TMM algorithm is sim-

ilar to the PRAM algorithm, except that each multiprocessor

is responsible for a single-source shortest path calculation.

Therefore, all the threads on a single multiprocessor (QT in

number) cooperate to calculate a single shortest path compu-

tation. Since we assume that n > Z, the entire array does

not fit in local memory and must be read with each delete-

min operation. Therefore, the span of the delete-min operation

changes. For each delete-min operation, elements are read into

local memory in size-Z chunks. For each chunk, the minimum

is computed in parallel in O(lgZ) time. Therefore, the span

of each delete-min operation is O((n/Z) lgZ). Therefore, the

total span is T∞ = O(n2 lgZ/Z). The work is the same as

the PRAM work.

We must now compute the number of memory operations,

M . There are n2 delete-min operations in total, and each reads

the array of size n coalesced. In addition, there are a total

of mn decrease key operations, but these reads cannot be

coalesced. Therefore, M = O(n3/C +mn).

TP = max(
T1

P
, T∞,

M · L
T · P) (19)

= O

(
max(

n3

P
,
n2 lgZ

Z
,
(n

3

C +mn) · L
T · P)

)
(20)

= O

(
max(

n3

P
,
n2 lgZ

Z
,

n3 · L
C · T · P ,

mn · L
T · P)

)
(21)

Speedup is

SP = O

(
min(P,

nZ

lgZ
,
C · T
L

· P ,
n2 · T
m · L · P)

)
(22)

Again, in this algorithm, T ≤ min(X,Z/(SQ)), and

S = O(1) since each thread needs only constant mem-

ory. Therefore, the PRAM performance dominates if L ≤
min(CX,CZ/Q, n2X/m,n2Z/(mQ)).

D. n iterations of Bellman-Ford Algorithm

This is another all-pairs shortest paths algorithm that uses

a single-source Bellman-Ford algorithm as a subroutine. The

algorithm is given in Algorithm 2 [31], [10].

PRAM Algorithm and Analysis: Again, one can do each

single source computation in parallel. Each single source

computation takes O(mn) work, making the total work of all

pairs shortest paths O(mn2) and the total span O(mn). One

can improve the span by relaxing all edges in one iteration in

parallel making the span O(n).

Algorithm 2 Bellman-Ford

1: Input: Graph G = (V,E), |V | = n, |E| = m
2: Input: W is weight of edges, |W | = m
3: Input: S is source vertex

4: Output: dist[n]
{Initialize distance array}

5: for all u in V do
6: dist[u] = ∞
7: end for
8: dist[S] = 0

{Update the distance for all vertices n− 1 times}
9: for i ∈ (n− 1) do

10: for each edge e(u, v) ∈ E do
11: if dist[v] > dist[u] +W [u, v] then
12: dist[v] = dist[u] +W [u, v]
13: end if
14: end for
15: end for

TP = O

(
max(

mn2

P
, n)

)
. (23)

SP = O (min(P,mn)) . (24)

TMM Algorithm and Analysis: The TMM algorithm for

this problem is more complicated and requires more data

structure support. Each multiprocessor is responsible for one

single-source shortest path calculation. For each single source

calculation, we maintain three arrays, A, B and W , of size

m, and one array D of size n. D contains the current guess

of the shortest path to vertex i. B contains ending vertices of

edges, sorted by vertex ID. Therefore B may contain multiple

instances of the same vertex if that vertex has multiple incident

edges. A[i] contains the starting vertex of the edge that ends

at B[i] and W [i] contains the weight of that edge. Therefore,

both D and B are sorted.

Each thread is responsible for one index in the array and

relaxes that edge in each iteration. All threads relax edges in

parallel in order of B. The total work and span are the same

as the PRAM algorithm. We can now calculate the time and

speedup assuming threads can read all the arrays coalesced,

M = O(mn2/C + n3/C) = O(mn2/C) for connected

graphs.

TP = max(
T1

P
, T∞,

M · L
T · P) (25)

= O

(
max(

mn2

P
, n,

mn2 · L
C · T · P)

)
(26)

Therefore, the speedup on P processors is

SP = O

(
min(P,mn,

C · T
L

· P)

)
(27)

In this case, we get linear speedup if CT /L ≥ 1. Subject to

the limits on threads of T ≤ min(X,Z/(SQ)) and S = O(1)

for constant local memory usage per thread, this requires L ≤
min(CX,CZ/Q).

IV. COMPARISON OF THE VARIOUS ALGORITHMS

As our analysis of shortest paths algorithms indicates,

the TMM model allows us to take the unique properties of

many-core architectures into consideration while analyzing the

algorithms. Therefore, the model provides more nuance to

GPU algorithms than the PRAM model. In this section, we

will compare the running times of the various algorithms and

see what interesting things this analysis tells us.

Table III indicates the running times of the various algo-

rithms in both the PRAM model and the TMM model, as well

as the conditions under which TMM results are the same as the

PRAM results. We have ignored the span term, since the span

is small relative to work in all of these algorithms. As we can

see, if L is small, then many-core machines provide PRAM
performance. However, the cut-off value for L is different

for different algorithms. Therefore, the TMM model can be

informative for comparison purposes between algorithms.

A. Influence of Machine Parameters

As the table shows, the limits on machine parameters

to get linear speedup are different for different algorithms.

Therefore, even when two algorithms have the same PRAM
performance, their performance on many-core machines may

vary significantly. Let us consider a few examples:

1) Floyd-Warshall vs. Johnson’s Algorithm with Binary
Heaps when m = O(n2): If m = O(n2) (i.e., the graph

is dense), the PRAM performance for both algorithms is the

same. However when Z/Q < L < Z3/2C/Q, Johnson’s

algorithm has a significantly worse running time. Take the

example of L = O(Z3/2C/Q). The Johnson running time

is O(n3 lg n
√
ZC/P) while the running time of the dynamic

programming algorithm is simply O(n3 lg n/P).
2) Johnson’s Algorithm with Binary Heap vs. Johnson’s

Algorithm using an Array when m = O(n2/ lg n): If

m = O(n2/ lg n) (i.e., a somewhat sparse graph), these

two algorithms have the same PRAM performance, but if

Z/Q < L ≤ ZC/Q, then the array implementation is better.

For L = ZC/Q, the binary heap implementation has a running

time of O(n3C/P), while the array implementation has a

running time of simply O(n3/P).

B. Influence of Graph Size

The previous section shows the asymptotic power of the

model; the results there hold for large sizes of graphs asymp-

totically. However, the TMM model can also help decide on

what algorithm to use based on size of the graph. In particular

for certain sizes of graphs, some algorithms are better than

others even if they are asymptotically worse.

Consider the example of Floyd-Warshall vs. Johnson’s

Algorithm using Arrays. In the PRAM model, the Floyd-

Warshall algorithm is unquestionably worse than Johnson’s

algorithm. However, if L is large, say O(Z3/2C/Q), then

Johnson’s algorithm has a running time of O(n3
√
Z/P),

while the dynamic programming algorithm has a running

time of O(n3 lg n/P). As long as lg n <
√
Z, the dynamic

programming algorithm is better. We get a similar result when

comparing dynamic programming with Bellman-Ford when

m = O(n). In spite of being worse in the PRAM world, the

dynamic programming algorithm is better when lg n <
√
Z.

Our model therefore allows us to do two things. First, for a

particular machine, given two algorithms which are asymptot-

ically similar, we can pick the more appropriate algorithm for

that particular machine given its machine parameters. Second,

if we also consider the problem size, then we can do more. For

small problem sizes, the asymptotically worse algorithm may

in fact be better because it interacts better with the machine.

We will draw more insights of this type in the next section.

V. EFFECT OF PROBLEM SIZE

In Section IV, we explored the asymptotic insights that can

be drawn from the TMM model. However, the TMM model

can also inform insights based on problem size. In particular,

some algorithms can take advantage of smaller problems better

than others.

A. Vertices Fit in Local Memory

When n < Z, all the vertices fit in local memory. Note

that this doesn’t mean that the entire problem fits in local

memory, since the number of edges can still be much larger

than the number of edges. In this scenario, the number of

memory accesses by the first, second, and fourth algorithms

is not affected at all. In the dynamic programming algorithm,

we consider the array of size n2 and being able to fit a row

into local memory does not reduce the number of memory

transfers. In Johnson’s algorithm with binary heap, each thread

does its own single source shortest path. Since the local

memory Z is shared among QT threads, each thread cannot

hold its entire vertex array in local memory. In the Bellman-

Ford algorithm, the cost is dominated by the cost of reading

the edges. Therefore, the bounds do not change.

For Johnson’s algorithm which uses an array for storing

vertices, the cost is lower. Now each multiprocessor can store

the vertex array and does not need to access it from slow

memory. Therefore the bounds on the number of memory

accesses changes to M = O(n2/C + mn) = O(mn) for

connected graphs.

For these small problem sizes, the TMM model can provide

even more insight. As an example, compare the two versions of

Johnson’s algorithm, the one that uses arrays and the one that

uses heaps. When m = O(n2/ lg2 n), the algorithm that uses

heaps is better than the algorithm that uses arrays in the PRAM
model. But in the TMM model, for large L, the algorithm that

uses heaps has the running time of O(Lmn lg n/(T P)) =
O(Ln3/(T P lg n)), while the algorithm that uses arrays has

the running time of O(Ln3/(T P lg2 n)). Therefore, the algo-

rithm that uses arrays is better. Note that asymptotic analysis

is a little dubious when we are talking about small problem

sizes; therefore, this analysis should be considered skeptically.

However, the analysis is rigorous when we consider the

TABLE III
ALGORITHM RUNNING TIMES AND CONSTRAINTS.

Algorithm Time (PRAM) Time (TMM) Constraints

Floyd-Warshall n3 lgn
P

n3 lgn·L√
ZCT P

L ≤
√
ZCX L ≤ Z3/2C/Q

Johnson’s (Binary Heap) mn lgn
P

mn lgn·L
T P

L ≤ X L ≤ Z/Q

Johnson’s (Array) n3

P

n3L
CT P

, n2

m
≥ C L ≤ CX L ≤ Z/Q · C

mnL
T P

, n2

m
< C L ≤ n2X/m L ≤ n2Z/(mQ)

n iteration Bellman-Ford n2m
P

mn2L
CT P

L ≤ CX L ≤ CZ/Q

circumstance that local memory size grows with problem size

(i.e., Z is asymptotic). Moreover, this type of analysis can

still provide enough insight that it might guide implementation

decisions under the more realistic circumstance of bounded

(but potentially large) Z.

B. Edges Fit in the Combined Local Memories

When m = O(PZ/Q), the edges fit in all the memories

of the multiprocessors combined. Again, the running time of

the first, second, and third algorithms do not change, since

they cannot take advantage of this property. However, the

Bellman-Ford algorithm can take advantage of this property

and each thread across all multiprocessors can be responsible

for relaxing a single edge. Now a portion of the arrays A,

B and W fits in each multiprocessor’s local memory and

they never have to be read again. Therefore, the number of

memory operations reduces to M = O(n3/C). And the run

time under TMM model is reduced to O(n3L/(CT P)). Again,

compare the Bellman-Ford algorithm with Johnson’s algorithm

using heap. When m = O(n2/ lg n), Johnson’s algorithm that

uses heap is better than Bellman-Ford algorithm in PRAM
model. However, in TMM model, Johnson’s has run time of

O(Lmn lg n/(T P)) = O(Ln3/(T P)), while the Bellman-

Ford’s with run time of O(Ln3/(CT P)) flips to be the better

one.

VI. CONCLUSION

In this paper, we present a memory access model, called the

TMM model, that is well suited for modern highly-threaded,

many-core systems that employ wide SIMD processing and

fast context switches to hide memory latency. The model

analyzes the significant factors that affect performance on

many-core machines. In particular, it requires the work and

depth (like PRAM algorithms), but also requires the analysis

of the number of memory accesses. Using these three values,

we can properly order algorithms from slow to fast for many

different settings of machine parameters on GPU-like many-

core machines. We analyzed 4 shortest paths algorithms in

the TMM model and compared the analysis with the PRAM
analysis. We find that algorithms with the same PRAM per-

formance can have different TMM performance under certain

machine parameter settings. In addition, for certain problem

sizes which fit in local memory, algorithms which are faster

on PRAM may be slower under the TMM model. Therefore,

TMM is a model well-suited to compare algorithms and decide

which one to implement under particular environments. To our

knowledge, this is the first attempt to formalize the analysis of

algorithms for GPU-like, many-core computers using a formal

model and asymptotic analysis.

There are many directions of future work. One obvious

direction is to design more algorithms under the TMM model.

Ideally, this model can help us come up with new algorithms

for highly-threaded, many-core machines. In addition, our

current model only incorporates 2 levels of memory hierarchy.

While in this paper we assume that it is global memory vs.

memory local to multiprocessors, in principle, it can be any

two levels of fast and slow memory. We would like to extend

it to multi-level hierarchies which are becoming increasingly

common. One way to do this is to design a “parameter-

oblivious” model where algorithms do not know the machine

parameters. Other than Floyd-Warshall, all of the algorithms

presented in this paper are, in fact, parameter-oblivious. And

matrix multiplication in Floyd-Warshall can easily be made

parameter-oblivious. In this case, the algorithms should per-

form well under all settings of parameters, allowing us to apply

the model at any two levels and get the same results.

ACKNOWLEDGEMENT

This work was supported by NSF grants CNS-0905368 and

CNS-0931693 and Exegy, Inc.

REFERENCES

[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir, “A model for
hierarchical memory,” in Proc. of 19th ACM Symposium on Theory of
Computing, 1987, pp. 305–314.

[2] A. Aggarwal, A. K. Chandra, and M. Snir, “Hierarchical memory with
block transfer,” in Proc. of 28th Symposium on Foundations of Computer
Science, 1987, pp. 204–216.

[3] A. Aggarwal and J. Vitter, “The input/output complexity of sorting and
related problems,” Communications of the ACM, vol. 31, no. 9, pp.
1116–1127, 1988.

[4] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer
Algorithms. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1974.

[5] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzen-
macher, J. D. Owens, and N. Amenta, “Real-time parallel hashing on
the GPU,” Dec. 2009.

[6] B. Alpern, L. Carter, and E. Feig, “The uniform memory hierarchy model
of computation,” Algorithmica, vol. 12, no. 2-3, 1994.

[7] B. Alpern, L. Carter, and T. Selker, “Visualizing computer memory
architectures,” in Proc. of the 1st Conference on Visualization, 1990,
pp. 107–113.

[8] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava, “Fundamental
parallel algorithms for private-cache chip multiprocessors,” in Proc. of
20th Symp. on Parallelism in Algorithms and Architectures, 2008, pp.
197–206.

[9] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-M.
Hwu, “An adaptive performance modeling tool for GPU architectures,”
in Proc. of 15th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming, 2010, pp. 105–114.

[10] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, pp. 87–90, 1958.

[11] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran,
S. Chen, and M. Kozuch, “Provably good multicore cache performance
for divide-and-conquer algorithms,” in Proc. 19th ACM-SIAM Symp.
Discrete Algorithms, 2008, pp. 501–510.

[12] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri,
“Scheduling irregular parallel computations on hierarchical caches,” in
Proc. of 23rd ACM Symp. on Parallelism in Algorithms and Architec-
tures, 2011, pp. 355–366.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using CUDA,” J. Parallel Distrib. Comput., vol. 68, no. 10,
Oct. 2008.

[14] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on GPUs,” in Proc. of 15th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming, 2010.

[15] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran,
“Oblivious algorithms for multicores and network of processors,” in
Proc. of 24th IEEE Int’l Parallel and Distributed Processing Symp.,
Apr. 2010, pp. 1–12.

[16] R. A. Chowdhury and V. Ramachandran, “The cache-oblivious Gaussian
elimination paradigm: Theoretical framework, parallelization and exper-
imental evaluation,” in Proc. of 19th ACM Symp. on Parallel Algorithms
and Architectures, 2007, pp. 71–80.

[17] ——, “Cache-efficient dynamic programming algorithms for multi-
cores,” in Proc. of 20th Symp. on Parallelism in Algorithms and
Architectures, 2008, pp. 207–216.

[18] R. Cole and V. Ramachandran, “Efficient resource oblivious algorithms
for multicores,” CoRR, vol. abs/1103.4071, 2011.

[19] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: towards a realistic model
of parallel computation,” in Proc. of 4th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, 1993.

[20] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
NUMERISCHE MATHEMATIK, vol. 1, no. 1, pp. 269–271, 1959.

[21] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, 1962.

[22] S. Fortune and J. Wyllie, “Parallelism in random access machines,” in
Proc. of 10th ACM Symp. on Theory of computing, 1978.

[23] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” in Proc. of 40th Symposium on Foundations of
Computer Science, 1999, pp. 285–297.

[24] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A memory
model for scientific algorithms on graphics processors,” in Proc. of
ACM/IEEE Conf. on Supercomputing, 2006.

[25] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proc. of 16th ACM Symp. on
Principles and Practice of Parallel Programming, 2011.

[26] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in Proc. of 36th
Int’l Symp. on Computer Architecture, 2009, pp. 152–163.

[27] D. B. Johnson, “Efficient algorithms for shortest paths in sparse net-
works,” J. ACM.

[28] R. M. Karp, “A survey of parallel algorithms for shared-memory
machines,” University of California at Berkeley, Berkeley, CA, USA,
Tech. Rep., 1988.

[29] G. J. Katz and J. T. Kider, Jr, “All-pairs shortest-paths for large graphs on
the GPU,” in Proc of 23rd ACM SIGGRAPH/EUROGRAPHICS Symp.
on Graphics Hardware, 2008.

[30] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100X GPU vs. CPU myth: an evaluation

of throughput computing on CPU and GPU,” in Proc. of 37th Int’l Symp.
on Computer Architecture, 2010, pp. 451–460.

[31] J. Lestor R. Ford and D. R. Fulkerson, Flows in Networks. Princeton,
NJ, USA: Princeton University Press, 1962.

[32] W. Liu, W. Muller-Wittig, and B. Schmidt, “Performance predictions
for general-purpose computation on GPUs,” in Proc. of Int’l Conf. on
Parallel Processing, 2007.

[33] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, “Streaming al-
gorithms for biological sequence alignment on GPUs,” IEEE Trans.
Parallel Distrib. Syst., pp. 1270–1281, 2007.

[34] Y. Liu, B. Schmidt, and D. L. Maskell, “CUDASW++2.0: Enhanced
Smith-Waterman protein database search on CUDA-enabled GPUs based
on SIMT and virtualized SIMD abstractions,” BMC Research Notes,
vol. 3, 2010.

[35] L. Ma and R. D. Chamberlain, “A performance model for memory
bandwidth constrained applications on graphics engines,” in Proc. of
Int’l Conf. on Application-specific Systems, Architectures and Proces-
sors, 2012.

[36] L. Ma, R. D. Chamberlain, J. D. Buhler, and M. A. Franklin, “Bloom
filter performance on graphics engines,” in Proc. of Int’l Conf. on
Parallel Processing, 2011, pp. 522–531.

[37] K. Matsumoto, N. Nakasato, and S. G. Sedukhin, “Blocked all-pairs
shortest paths algorithm for hybrid CPU-GPU system,” in Proc. of IEEE
Int’l Conf. on High Performance Computing and Communications, 2011,
pp. 145–152.

[38] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” in Proc. of 17th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, 2012, pp. 117–128.

[39] H. Prokop, “Cache-oblivious algorithms,” MIT, 1999, Master’s thesis.
[40] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting

algorithms for manycore GPUs,” in Proc. of IEEE Int’l Symp. on Parallel
and Distributed Processing, 2009.

[41] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, Aug. 1990.

[42] U. Vishkin, G. C. Caragea, and B. Lee, “Models for advancing PRAM
and other algorithms into parallel programs for a PRAM-On-Chip
platform,” in Handbook of Parallel Computing: Models, Algorithms and
Applications. CRC Press, 2007.

[43] J. S. Vitter and M. H. Nodine, “Large-scale sorting in uniform memory
hierarchies,” J. Parallel Distrib. Comput., vol. 17, no. 1-2, pp. 107–114,
Jan. 1993.

[44] J. S. Vitter, E. A. M. Shriver, and E. A. M. S. Z, “Algorithms for parallel
memory I: Two-level memories,” Algorithmica, vol. 12, pp. 110–147,
1994.

[45] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear
algebra,” in Proc. of ACM/IEEE Conf. on Supercomputing, 2008.

[46] S. Warshall, “A theorem on boolean matrices,” J. ACM, vol. 9, no. 1,
Jan. 1962.

[47] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the
GPU,” in Proc. of 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2010.

[48] Y. Zhang and J. Owens, “A quantitative performance analysis model for
GPU architectures,” in Proc. of IEEE Int’l Symp. on High Performance
Computer Architecture, Feb. 2011, pp. 382–393.

	A Memory Access Model for Highly-threaded Many-core Architectures
	Recommended Citation
	A Memory Access Model for Highly-threaded Many-core Architectures

	tmp.1415131658.pdf.SVkcf

