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Abstract

This paper proposes a memory-efficient bit-split string matching scheme for deep packet in-

spection (DPI). When the number of target patterns becomes large, the memory require-

ments of the string matching engine become a critical issue. The proposed string matching

scheme reduces the memory requirements using the uniqueness of the target patterns in

the deterministic finite automaton (DFA)-based bit-split string matching. The pattern group-

ing extracts a set of unique patterns from the target patterns. In the set of unique patterns, a

pattern is not the suffix of any other patterns. Therefore, in the DFA constructed with the set

of unique patterns, when only one pattern can be matched in an output state. In the bit-split

string matching, multiple finite-state machine (FSM) tiles with several input bit groups are

adopted in order to reduce the number of stored state transitions. However, the memory re-

quirements for storing the matching vectors can be large because each bit in the matching

vector is used to identify whether its own pattern is matched or not. In our research, the pro-

posed pattern grouping is applied to the multiple FSM tiles in the bit-split string matching.

For the set of unique patterns, the memory-based bit-split string matching engine stores

only the pattern match index for each state to indicate the match with its own unique pattern.

Therefore, the memory requirements are significantly decreased by not storing the match-

ing vectors in the string matchers for the set of unique patterns. The experimental results

show that the proposed string matching scheme can reduce the storage cost significantly

compared to the previous bit-split string matching methods.

Introduction

Nowadays, one of the most powerful methods of ensuring network security and quality of ser-

vice (QoS) is DPI, in which the payloads are analyzed to determine whether target patterns are
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matched or not in the application layer. In many cases, target patterns are composed of multi-

ple characters; therefore, the string matching engine is an essential component of modern DPI

[1]. With the advance of networking services, the number of target patterns increases and the

length of the pattern, which means the number of characters in it, can vary dramatically.

In order to overcome the problem of diverse pattern lengths, DFA-based string matching

approaches have been developed. Even though there have been several recent attempts to re-

duce the memory requirements in field programmable gate array (FPGA) devices in [2–4] and

ternary content-addressable memory (TCAM) in [5], DFA-based string matching using gener-

al or static memory blocks can provide several advantages; firstly, the deterministic transition

step is achieved between states, regardless of the input symbols. Secondly, the number of out-

put transitions from a state can be fixed. Therefore, both the regularity and scalability can be

guaranteed in DFA-based string matching. Memory-based string matching with distributed

block memory is simple to implement. As shown in [6], if a redundant memory block is pro-

vided, the updatability can be increased. Even though it has several advantages, as mentioned

above, sparse memory usage is one of main problems in DFA-based string matching.

In the Aho-Corasick algorithm described in [7], the number of state pointers in each state is

256 for ASCII (8 bits) input, which imposes a significant burden on the memory requirements

of the DFA-based string matching engine. Bit-split string matching reduces the number of

state pointers using multiple FSM tiles with several input bit groups [6]. In the bit-split string

matching engines described in [6], the output state should have a partial matching vector

(PMV); the full matching vector (FMV) is obtained by performing a bitwise AND operation

between the PMVs from the FSM tiles, where each bit in the FMV represents whether its own

pattern is matched or not. Because the memory requirements for storing PMVs are propor-

tional to the numbers of states and patterns to be mapped in a string matcher, several previous

string matching schemes reduce the memory requirements by sharing PMVs [8, 9]. In [8], a

separate PMV table is adopted for each FSM tile, where the memory requirements of the PMV

table is proportional to the square number of patterns in a string matcher. In [9], PMVs are

shared between FSM tiles in the bit-split string matcher. Therefore, only one PMV table is

adopted in a string matcher to reduce the memory requirements. In [10], considering pattern

lengths, heterogeneous string matchers with different maximum number of states and patterns

to be mapped are adopted. However, many memory blocks for storing PMVs are still required

in [8–10].

When multiple patterns are matched in a state of the bit-split DFA, the multiple patterns

are elements in the set with non-unique patterns. For example, let us assume that there are four

patterns {“abcd,”, “cd,”, “d,” “fg”} in a set of patterns. If a pattern “abcd” is matched, patterns

“cd” and “d” can be matched simultaneously in each FSM tile. Because these three patterns are

not unique, the four patterns can be elements of the set with non-unique patterns. For a set

with non-unique patterns, the bit-split string matching techniques with PMVs such as those

described in [6, 8] can be applied to recognize which patterns are matched simultaneously. For

a set of unique patterns, only the unique matching index for a matched pattern is stored for

each output state, which reduces the memory requirements by not storing the PMVs.

This paper proposes a memory-efficient DFA-based string matching scheme that reduces

the memory requirements by not storing the matching vectors. In the proposed scheme, the

proposed pattern grouping divides a set of all target patterns into the set with non-unique pat-

terns and set of unique patterns. For the set with non-unique patterns, the bit-split string

matching technique with PMVs is applied. On the other hand, in the DFA for the set of unique

patterns, only a single pattern is matched in each state. For the set of unique patterns, because

the bit-split string matchers store only the pattern matching index, the memory requirements

can be reduced by not storing the PMVs. The experimental results show that the proposed
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scheme can be effective in reducing the memory requirements. In the experiments, the Snort

[11] and ClamAV [12] rule sets are adopted. In addition, several statistically generated rule sets

are used to analyze the pattern uniqueness. The proposed scheme can be applied to other bit-

split DFA-based string matching architectures and pattern mapping approaches such as those

described in [13–15].

This paper is organized as follows: firstly, previous works are reviewed to show the effective-

ness of the bit-split string matching. Then, the background of this paper is explained in detail.

In the section of background, several definitions and lemmas are provided to clarify the pro-

posed scheme. In addition, the pattern uniqueness in the bit-split string matching is explained.

In the following section, the parallel memory-based bit-split string matching architecture for

the set of unique patterns and set with non-unique patterns is described. Then, the proposed

pattern grouping and mapping algorithms for obtaining the set of unique patterns and map-

ping target patterns are explained. Finally, the experimental environments and results are pro-

vided. In addition, the analysis of the pattern uniqueness and practical implementation issue

are discussed.

PreviousWorks

In the survey of [1], string matching schemes were classified into three types: automaton-

based, heuristic-based, and filtering-based string matching schemes. A heuristic-based string

matching scheme can accelerate the search by skipping characters not in a match. One of well-

known heuristic-based string matching schemes is the Boyer-Moore algorithm [16]. By per-

forming comparisons at different alignments of a pattern and text to be searched, occurrences

of the pattern can be searched. With the information obtained by preprocessing the pattern,

many alignments can be skipped. However, in the worst case, there are no skipped characters.

When the pattern length and number of characters in a text are assumed asm and n, the time

complexity can be O(nm) in the worst case. Therefore, as shown in [1], heuristic-based string

matching scheme is not suitable in DPI because algorithmic attacks can degrade overall perfor-

mance in the string matching engine. Even though the string matching with multiple patterns

can be possible in heuristic-based string matching [17], multiple processing elements or cores

should be equipped. Therefore, it is expected that heuristic-based scheme is not effective for a

large number of target patterns.

Due to the parallelized string matching with multiple patterns, automaton-based or filter-

ing-based string matching schemes are preferred. Filtering-based string matching scheme

adopts hashing [18] or bloom filter [19], which are memory-efficient in processing bit vectors.

The filtering-based string matching scheme can quickly exclude input data that do not contain

patterns to be matched. Because the efficiency of the filtering-based scheme is based on the as-

sumption that patterns are rarely matched in payloads, the filtering-based string matching

scheme might suffer from algorithmic attacks in the worst case scenario.

On the other hand, in automaton-based string matching scheme, multiple patterns are

mapped using states and state transitions between states. Especially, DFA-based string match-

ing scheme performs a fixed number of state transitions at a time. Therefore, linear worst-case

performance can be guaranteed. In addition, target patterns crossing multiple payloads can be

matched because each state contains the information of input sequence. However, the DFA-

based string matching scheme has large memory requirements to store the information of

states and state transitions for each state. The Aho-Corasick algorithm was proposed for biblio-

graphic string searches with compressed DFAs [7]. In the Aho-Corasick algorithm, a DFA

should contain failure pointers from each state to the longest suffix state or matched subpat-

terns. By sharing common prefixes, the number of states in a DFA is reduced; therefore, the
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information of states can be compressed. In the traditional Aho-Corasick algorithm, however,

due to the large number of state transitions (e.g. 256 for the input symbol of ASCII character

code), the memory requirements for storing state transitions in each state are great.

Automaton-based string matching scheme can be implemented using general memory. For

example, two-dimensional memory architecture is adopted in the implementation of the Aho-

Corasick algorithm. A memory-based string matching engine can have both updatability and

flexibility because memory contents are easily updated with a memory interface. Due to the

large memory requirements for storing state transitions, several researches have been studied

to reduce the number of stored state transitions. In [2, 20, 21], by adopting configurable logics

and distributed memory in an FPGA, only the state transitions towards non-initial states are

stored. However, compared to the memory-based string matching engine, the flexibility and

updatability in an FPGA cannot be sufficient. In [5, 22], TCAM is adopted for compressing the

information of state transitions in a DFA-based string matching. However, due to the high

price and power consumption of TCAM, the usage of TCAM in the DFA-based string match-

ing can be limited.

In order to reduce the memory requirements for storing state transitions, bit-split DFA-

based string matching was proposed in [6]. By splitting one or more than one ASCII character

code into several bit groups, multiple DFAs are constructed for each input bit group, so that

the total number of state transitions in each state could be reduced. In addition, multiple ho-

mogeneous string matchers are operated in parallel, where a small number of target patterns

are mapped onto each string matcher. Therefore, the regularity can be guaranteed in the imple-

mentation. In addition, by changing memory contents using a spare string matcher in real

time, high updatability can be achieved. In order to identify matched target patterns in a state,

each state should contain its own match vector with a set of bits or PMV, where the value of

each bit indicates whether the related target patterns are matched or not in the state. Therefore,

the memory requirements for storing match vectors might be significant.

Several bit-split string matching schemes were developed to reduce memory requirements.

However, several works are related only to the pattern sorting based on the original bit-split

string matching. The original bit-split string matching in [6] increases the number of shared

states in each string matcher using the lexicographical pattern sorting. The variety of target pat-

tern lengths, however, causes unbalanced memory usage between string matchers because the

number of mapped target patterns onto each string matcher could vary. In addition, our several

previous researches focus on only the pattern sorting that decides the order of patterns to be

mapped onto a string matcher [14, 15, 23]. In these researches, by balancing memory usage be-

tween string matchers, memory requirements are significantly reduced. However, the problem

of large memory requirements for storing match vectors is not considered.

In the previous works in [6, 13, 24, 25], several architectures based on the bit-split string

matching scheme were proposed. In [13, 24], the memory requirements for storing state transi-

tions towards initial states are reduced. In [6, 25], a multi-byte string matching is performed by

multiplying the number of memory blocks. Even though the previous works related to the pat-

tern grouping and architectures mentioned above have developed new bit-split string matching

schemes, a string matcher should have memory blocks for storing match vectors, which can be

the disadvantage in the new architectures based on the bit-split string matching scheme.

Several approaches to reduce the memory requirements for storing match vectors were pro-

posed. In [10], the architecture with heterogeneous string matchers is adopted to enhance the

efficiency of memory usage for mapping target patterns with various lengths. In [10], for the

patterns with short pattern lengths, the FSM tile with a small number of states and PMVs is

adopted. On the other hand, for the patterns with long pattern lengths, a large number of states

and PMVs is adopted. By increasing the number of patterns to be mapped in the string
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matchers for short target patterns, the number of bits in a PMV for long target patterns can be

reduced in the string matchers. However, if the number of patterns with short pattern lengths

is not large, the reduced memory requirements are not sufficient. In [8], the memory require-

ments for storing match vectors are reduced by relabeling states and eliminating the match vec-

tors of non-output states. However, each FSM tile has its own match vector table in order to

share match vectors between states, which can increase the number of memory block cells. In

[9], multiple FSM tiles share the same match vector table in order to minimize the memory re-

quirements. However, multiple memory accesses should be serially performed by obtaining

multiple match vectors in a match vector table, which degrades overall performance. In addi-

tion, the previous studies cannot eliminate the memory requirements for storing match vectors

in a string matcher.

Background

In this section, the description of the pattern uniqueness based on the ASCII character input is

shown. Then, the concept of the pattern uniqueness in the bit-split string matching is explained

with several examples.

Non-unique and unique patterns

In the DFA-based string matching technique, the information used for representing which pat-

terns are matched should be provided for each state. In this case, the memory requirements for

storing the information can depend on the uniqueness of the patterns in a set. A set of target

patterns can be divided into the set with non-unique patterns and set of unique patterns. A

non-unique pattern is defined as follows:

Definition 1. For the sequence of input symbols, the non-unique pattern can be the suffix of

other patterns, or other patterns can be the suffixes of the non-unique pattern in the set with

non-unique patterns.

In the example of an ASCII input sequence, Let us assume that there are four patterns in the

set with non-unique patterns {“abcd,”, “cd,”, “d”, “fg”}. In the example, patterns “cd” and “d”

are suffixes of a pattern “abcd.” In the set with non-unique patterns, it is possible that not all of

patterns are non-unique. However, multiple patterns can be matched at the same time for the

set with non-unique patterns because a pattern and its suffix are matched simultaneously.

Lemma 1 is provided to show the characteristics of the pattern matching identification for the

set with non-unique patterns:

Lemma 1.When the number of patterns in the set with non-unique patterns is N, the number

of bits required for representing which patterns are matched is N.

Proof. Let us assume that its related pattern is matched when a bit for the pattern matching

identification is one. When N patterns are elements of the set with non-unique patterns, it is

possible that a pattern can be the suffix of the other N − 1 patterns in a state. For the state men-

tioned above, N bits are required for N patterns in order to identify that all patterns are

matched in the state. Therefore, N bits are required to represent which patterns are matched.

In the example of four patterns mentioned above, the number of required bits for the pat-

tern matching identification can be four. Considering Lemma 1, as the number of patterns in

the set with non-unique patterns increases, the memory requirements for the pattern matching

identification in a state increase proportionally to the number of patterns. On the other hand,

the unique pattern is defined as follows:

Definition 2. For the sequence of input symbols, the unique pattern is not the suffix of any

other pattern, and the other patterns are not suffixes of the unique pattern in the set of unique

patterns.
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Considering Definition 2 of the unique pattern, there is only one pattern matched in a state

for the set of unique patterns. Therefore, there is no need to adopt multiple bits to represent

which patterns are matched. For the set with non-unique patterns, each bit is used for its relat-

ed pattern matching identification. On the other hand, for the set of the unique patterns, only

the binary index is required to represent which pattern is matched for a state. If there are N

unique patterns in a set, the size of the binary index is log2 N.

Grouping for obtaining a set of unique patterns

Initially, a set of all target patterns could be the set of non-unique patterns, because a pattern

can be suffix of any other target pattern in the set of all target patterns. In order to obtain a set

of unique patterns, all of the target patterns can be grouped into two sets by considering the

uniqueness of patterns. Fig 1 shows an example of pattern grouping for six patterns.

Considering Definition 1, the original set of target patterns is for the non-unique patterns.

For example, patterns “fg” and “cd” are the suffixes of patterns “abfg” and “abcd,” respectively.

In this case, if patterns {“fg,” “cd,” “d”} are excluded from the original set, a set of patterns

{“abcd,” “abfg,” “cfg”} can be the set of the unique patterns. These excluded patterns can be the

elements of the set with non-unique patterns because “d” is the suffix of “cd.” In other words,

patterns “d” and “cd” are non-unique patterns.

Fig 2 shows an example of the DFA for the original six target patterns in Fig 1, where the

failing pointers are not shown for clarity. The arrow means the state transition according to the

input symbol shown on the arrow. State S0 is the initial state. In addition, the double-circled

states S4, S6, S9, S11, S12, and S13 are the output states, where their related patterns in the curly

brackets are matched in the output states, respectively. Multiple patterns are matched in S4, S6,

S9, and S12. Therefore, when the DFA is constructed with the six target patterns, the patterns

are the elements of the set with non-unique patterns.

Fig 1. Example of pattern grouping.

doi:10.1371/journal.pone.0126517.g001
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After grouping the target patterns, the set of non-unique patterns and set with non-unique

patterns are obtained. Fig 3 shows an example of the DFAs for the obtained two sets. Unlike

the DFA in Fig 2, only one pattern is matched in the output state in Fig 3(a), which means the

DFA for the set of unique patterns. On the other hand, multiple patterns can be matched in the

output state S4 for the set with non-unique patterns, as shown in Fig 3(b).

Bit-split string matching using pattern uniqueness

In order to reduce the hardware cost in the DFA-based string matching engine, the bit-split

string matching engine based on the Aho-Corasick algorithm [7] was proposed in [6]. Fig 4

shows the architecture of the bit-split string matching engine described in [6]. By splitting one

ASCII character code into several bit groups, multiple FSM tiles are constructed for each input

bit group in order to reduce the number of state transitions in each state. In Fig 4, two bits are

inputted for each FSM tile, where the number in parentheses refers to the bit position of an

input symbol from the LSB (least significant bit) in the ASCII code. In addition, the target pat-

terns are lexicographically grouped and then each set of the grouped target patterns is mapped

onto one homogeneous string matcher.

The pattern identification in the multiple FSM tiles of a string matcher requires that each

state contains the match vectors for the target patterns mapped on the string matcher. As

shown in Fig 4, by performing a bitwise AND operation between the PMVs from the FSM tiles,

the FMV is obtained. Each bit within it represents whether its related pattern is matched or

not. Because the number of bits in a PMV is proportional to the number of patterns, the mem-

ory requirements for storing the PMVs might be significant.

Fig 2. Example of DFA for all of target patterns in Fig 1.

doi:10.1371/journal.pone.0126517.g002
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Because the target patterns are mapped onto multiple FSM tiles, the pattern grouping for

the bit-split string matching considers all cases for the input bit groups. The unique pattern of

the bit-split string matching is defined in Definition 3.

Definition 3. In the set of unique patterns of the bit-split string matching, the unique pattern

is not the suffix of any other pattern, and the other patterns are not the suffixes of the unique pat-

tern for any of the DFAs with input bit groups.

Lemma 2 is provided in order to show the characteristics of the pattern uniqueness for the

bit-split string matching.

Lemma 2. For the DFAs for the unique patterns of the bit-split string matching, there is no

need to adopt the match vector.

Proof. In the DFA with each bit group, only one pattern is matched in an output state.

Therefore, for the unique patterns of the bit-split string matching, only one pattern can be

matched at a time, thus allowing the match vector for the unique patterns of the bit-split string

matching to be removed.

Fig 3. Example of DFAs after considering the pattern uniqueness. (a) DFA for the set of unique patterns;
(b) DFA for the set with non-unique patterns.

doi:10.1371/journal.pone.0126517.g003
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Considering Lemma 2, the uniqueness in the bit-split string matching is different from that

of the traditional DFA with the ASCII input sequence. The example of three patterns “abcd,”

“abfg,” and “cfg” in Fig 3 is based on ASCII or 8-bit input; therefore, the patterns are unique

when ASCII code input is assumed. However, the patterns are not unique in the bit-split archi-

tecture with several input bit groups. In order to explain the pattern uniqueness in the bit-split

string matching architecture, another example for the bit-split architecture with four FSM tiles

has been added. The ASCII binary codes of characters ‘a,’ ‘b,’ ‘c,’ ‘d,’ ‘f,’ ‘g,’ and ‘h’ are shown in

Table 1.

For the bit-split string matching architecture, two input bits are adopted for each FSM tile.

In the example, the i-th bit from the LSB is grouped with the (7 − i)-th bit in order to balance

the change in each bit position, as shown in [13]. Table 2 shows multiple bit-split patterns with

two-bit vectors for patterns “abcd,” “abfg,” and “cfg,” where patterni, j means that the i-th and

j-th bits are adopted in the pattern with two-bit vectors. In addition, the right arrow,!, means

the sequence of two-bit vectors. As shown in Table 2, pattern4,3 for patterns “abcd” and “abfg”

is the same. Therefore, for the bit-split string matching with two-bit input, patterns “abcd” and

“abfg” are not unique. In addition, pattern4,3 of pattern “cfg” is the suffix of pattern4,3 for pat-

terns “abcd” and “abfg.” Therefore, pattern “cfg” can also be not unique.

Fig 4. Bit-split stringmatching engine.

doi:10.1371/journal.pone.0126517.g004
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On the other hand, let us assume that there is a set of patterns “abfh” and “cfg” instead of

patterns “abcd,” “abfg,” and “cfg.” As shown in Table 3, no patterni, j of “cfg” is the suffix of

any patterni, j for “abfh.” Therefore, for the bit-split string matching with two-bit vectors,

“abfh” and “cfg” are unique patterns in the example.

Proposed Parallel String Matching Engine

Proposed architecture

Fig 5 shows the proposed parallel string matching architecture. For the set with non-unique

patterns, the traditional bit-split string matchers with PMVs in [8] are applied, where separate

Table 2. Bit-split patterns with two-bit vectors for patterns “abcd,” “abfg,” and “cfg”.

pattern bit-split pattern two-bit vectors

abcd pattern7,0 01! 00! 01! 00

pattern6,1 10! 11! 11! 10

pattern5,2 10! 10! 10! 11

pattern4,3 00! 00! 00! 00

abfg pattern7,0 01! 00! 00! 01

pattern6,1 10! 11! 11! 11

pattern5,2 10! 10! 11! 11

pattern4,3 00! 00! 00! 00

cfg pattern7,0 01! 00! 01

pattern6,1 11! 11! 11

pattern5,2 10! 11! 11

pattern4,3 00! 00! 00

doi:10.1371/journal.pone.0126517.t002

Table 3. Bit-split patterns with two-bit vectors for patterns “abfh” and “cfg”.

pattern bit-split pattern two-bit vectors

abfh pattern7,0 01! 00! 00! 00

pattern6,1 10! 11! 11! 10

pattern5,2 10! 10! 11! 10

pattern4,3 00! 00! 00! 01

cfg pattern7,0 01! 00! 01

pattern6,1 11! 11! 11

pattern5,2 10! 11! 11

pattern4,3 00! 00! 00

doi:10.1371/journal.pone.0126517.t003

Table 1. ASCII binary codes.

char. value char. value

a 011000012 b 011000102

c 011000112 d 011001002

e 011001012 f 011001102

g 011001112 h 011010002

doi:10.1371/journal.pone.0126517.t001
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PMV tables are adopted in each FSM tile. Considering the previous works in [6], the number

of state transitions can be minimized when four DFAs are adopted. Therefore, four FSM tiles

have two-bit inputs for each DFA. Considering the balanced inputs for each FSM tile, two bits

for an FSM tile input can be selected from both of the MSBs (most significant bits) and the

LSBs of the byte input alternately [13].

Fig 6 shows the FSM tile in a string matcher for the set with non-unique patterns. Each row

represents a state, where the state transitions and vector pointer for the state are stored. With

the partial input from the payloads, the next state transition is selected, where the next state

transition means the address of the next state in the FSM tile. Parameters S and P are the maxi-

mum numbers of states in an FSM tile and mapped patterns in a string matcher, respectively.

The vector pointer in each state indicates its own PMV in the separate PMV table. The num-

bers in the first row mean the sizes of the state transition, vector pointer, and

PMV, respectively.

Fig 7 shows the FSM tile in a string matcher for the set of unique patterns. For the set of

unique patterns, unlike previous works in [6, 8–10], the PMVs are not stored; instead, only the

unique partial matching index (PMI) for each state is stored in each FSM tile in order to show

which pattern is matched. The PMIs from the FSM tiles are compared in order to check wheth-

er all of the PMIs are equal or not; if all of the PMIs are the same, the generated matching

index indicates its own matched pattern.

Fig 5. Proposed stringmatching architecture.

doi:10.1371/journal.pone.0126517.g005
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Implementation of proposed string matching engine

Considering the architecture in Fig 5, the proposed string matching engine can be imple-

mented with multiple memory blocks. Therefore, in order to implement the proposed engine

with multiple embedded memory blocks, the application specific integrated circuit (ASIC) and

FPGA are preferable. Depending on string matcher types, an FSM tile can have different num-

ber of memory block cells. In an ASIC, multiple embedded memory macro cells are placed and

routed according to semiconductor process. On the other hand, an FPGA can have a fixed

number of block memory cells, which are configured into string matchers. In an FPGA such as

[26], because the unit size of one block memory cell is predetermined in an FPGA, more than

one unit block memory cell can be adopted in an FSM tile. Figs 5, 6 and 7 show that the over-

head of combinational logics in the proposed string matching is small. In an ASIC, the combi-

national logics are implemented using several standard cells. On the other hand, lookup tables

(LUTs) are adopted for configuring combinational logics in an FPGA.

Fig 7. FSM tile in a string matcher for the set of unique patterns.

doi:10.1371/journal.pone.0126517.g007

Fig 6. FSM tile in a string matcher for the set with non-unique patterns.

doi:10.1371/journal.pone.0126517.g006
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A prototype of the original bit-split string matching is shown in [6], where the FSM tile uses

block memory cells of an FPGA device. In the bit-split string matching engine in [6], where the

memory block of an FSM tile can be configured. In the memory block, both the PMV and next

states for a current state exists in a row. Therefore, the PMV and next states can be accessed at

the same time.

In the proposed string matching engine, the FSM tile in each non-unique string matcher

has a separate PMV table. Therefore, an FSM tile has two separate memory blocks for two ta-

bles of state transitions and PMVs. Unlike the original bit-split string matching in [6], the

PMV for a state is accessed using the vector pointer in the state transition table. Therefore, the

latency for accessing the PMV table is required. However, because the PMV table is separated,

the latency does not affect the state transition in a state transition table. In addition, because

the time to provide the PMV for a current state can be delayed by one or two cycles regularly, it

is expected that there is no critical effect caused by the delayed PMV in terms of performance

or throughput. On the other hand, hardware complexity increases due to the separation of

memory blocks for storing the PMV table. Considering the combinational logics for accessing

the next states and vector pointer, critical path can be related to the multiplexor for state transi-

tions. Because no specific combinational logics are required between vector pointers and PMV

table, the increased hardware complexity for the separate PMV table cannot be serious. In each

unique string matcher, only one memory block is adopted for implementing an FSM tile. Be-

cause separate PMV tables are not needed, there is no increased hardware complexity, com-

pared to the original bit-split string matching.

Pattern Grouping and Mapping

In the proposed string matching engine, memory contents of FSM tiles are generated by pat-

tern grouping and mapping. After introducing initialization of the string matching engine, de-

tails of pattern grouping and mapping are described.

Initialization of string matching engine

By mapping a rule set of target patterns, the proposed string matching engine is configured,

where memory contents for FSM tiles are required. The memory contents are obtained from

target patterns using pattern grouping and mapping. After grouping all of the target patterns

into the set of unique patterns and set with non-unique patterns, each set is mapped onto mul-

tiple string matchers. For the multiple string matchers, the patterns are partitioned into multi-

ple groups. Each partitioned group is mapped onto a string matcher by repeating the pattern

mapping for each string matcher. It is noted that the pattern grouping and mapping are not

performed in real time. Instead, a tool for the pattern grouping and mapping generates memo-

ry contents for target patterns, which are provided for the initialization of string matching en-

gine. The generated memory contents are stored in main memory or on disk. A host processor

or controller can manage the initialization with the stored memory contents. In the initializa-

tion, memory contents are uploaded in each FSM tile through an interface between host and

string matching engine. After uploading the memory contents, string matching can

be performed.

Pattern grouping

In order to map all of the target patterns onto two different types of string matchers, they are

grouped into the set of unique patterns and set with non-unique patterns. The pseudo code of

the pattern grouping algorithm used for obtaining the set of unique patterns and set with non-

unique patterns, Tunique and Tnon − unique, is described in the algorithm in Table 4. Because the
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probability of matching with multiple short patterns in a state can be high, patterns T are

sorted in ascending order of their lengths. Then, we check whether pattern t is unique among

the patterns in a set of patterns T using the Is_Unique(t, T) function in line 6 of the algorithm

in Table 4. In order to speed up the pattern grouping, the Is_Unique(t, T) function considers

several characteristics. It is assumed that the pattern length of pattern ti is shorter than or equal

to that of pattern tj. By evaluating the Is_Unique(ti, T) function, the uniqueness of pattern ti is

checked against any other patterns including pattern tj. Therefore, after evaluating the Is_Uni-

que(ti, T) function, there is no need to check the pattern uniqueness between ti and tj again,

which reduces the number of patterns to be checked in the Is_Unique(tj, T) function. The re-

duction of the number of patterns to be checked is described in line 5 of the algorithm in

Table 4. In addition, when applying the Is_Unique(t, T) function, if pattern t is turned out to be

the suffix of any other pattern, the Is_Unique(t, T) function does not continue to check the pat-

tern uniqueness against other patterns.

On the other hand, from Definition 3, the pattern uniqueness is considered for all sets with

the split input symbols. If it is unique, pattern t becomes an element in the set of unique pat-

terns Tunique; otherwise, pattern t becomes an element of the set with non-unique patterns Tnon

− unique. By repeating this process, all of the patterns are grouped. Using the obtained two sets,

the patterns are mapped onto string matchers.

Pattern partitioning and mapping

The pattern partitioning algorithm is represented in Table 5 as follows: the set of unique pat-

terns and set with non-unique patterns, Tunique and Tnon − unique, and their string matcher pa-

rameters,Munique andMnon − unique, are used as the input parameters in the pattern

partitioning. There are two main loops for partitioning the patterns in each set. For the set of

unique patterns, firstly, all of unique patterns are lexicographically sorted, which increases the

probability of there being shared common prefixes in each string matcher. Then, a procedure

called Pattern_Mapping, which denotes the pattern mapping process, is called to obtain the

contents of the FSM tiles for a string matcher, fsms. In addition, the unmapped patterns, Tu,

are returned. The FSM tile contents for the string matcher are stored in vec_fsmsunique. The

loop for the set of unique patterns is repeated until there are no more unmapped

unique patterns.

Table 4. Proposed pattern grouping algorithm.

1: Sort patterns T in ascending order of pattern lengths

2: Tunique ;

3: Tnon–unique ;

4: for each t in T do

5: T T − {t}

6: if (Is_Unique(t, T)) then

7: Tunique {Tunique, {t}}

8: else

9: Tnon − unique {Tnon − unique, {t}}

10: end if

11: end for

12: Return Tunique and Tnon − unique

doi:10.1371/journal.pone.0126517.t004
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The second loop is repeated in order to obtain the contents of the FSM tiles for the set with

non-unique patterns. The process for the next loop is similar to that of the first loop, as shown

in the algorithm of Table 5. Finally, the FSM tile contents, vec_fsmsunique and vec_fsmsnon −

unique are returned for the adopted multiple string matchers.

The procedure of pattern mapping, Pattern_Mapping, can generate the contents of the FSM

tiles for a string matcher based on the lexicographical sorting in [6]. In the pattern mapping,

several hardware resource limitations such as the maximum numbers of patterns to be

mapped, P, and states, S, are considered in the pattern mapping. The pattern mapping maxi-

mizes the number of patterns mapped onto a string matcher as follows: Firstly, the list of the

sorted patterns is provided as the input of this procedure. The contents for the FSM tiles are

built with the front k patterns determined from the inputted list. In the first iteration, k is set to

P. If the required number of states among the obtained DFAs for the FSM tiles is greater than

that available in a homogeneous FSM tile, S, the patterns could not be mapped onto the string

matcher. In this case, after decreasing k by one, the process mentioned above is iterated until

the required number of states in each FSM tile is smaller than S. After the iteration is complet-

ed, the failing pointer addition is performed. Then, the unmapped target patterns and contents

of the FSM tiles for the string matcher are returned.

Algorithm complexity of pattern grouping and mapping

In the pattern grouping algorithm, the uniqueness of each pattern is checked against all of the

target patterns. Firstly, in the pattern grouping, all patterns are sorted in ascending order of

their lengths. In this case, the time complexity of pattern sorting with pattern lengths is O(N �

log2 N), where N is the number of all target patterns. After sorting N patterns, patterns are in-

dexed by t1, t2,. . ., tN − 1, tN. In the evaluation of the Is_Unique(t1, T) function for the shortest

pattern, the pattern uniqueness is evaluated with N − 1 pairs. On the other hand, the evaluation

of the Is_Unique(tN − 1, T) function checks the pattern uniqueness with one pair of tN − 1 and

tN. In addition, there is no pair to be checked in the evaluation of the Is_Unique(tN, T) function.

Therefore, the time complexity of this process is OðNðN�1Þ
2
Þ ¼ OðN2Þ. Considering the pattern

sorting and repeated evaluations of the Is_Unique(t, T) function, the time complexity of the

pattern grouping can be O(N2).

After grouping all of target patterns into the set of unique patterns and set with non-unique

patterns, these two sets are used as the input parameters for the pattern partitioning. Due to

the hardware resource parameters, the numbers of mapped patterns and states in each FSM tile

Table 5. Proposed pattern partitioning algorithm.

1: Tu Lexicographical_Sort(Tunique)

2: while Tu 6¼ ϕ do

3: fsms, Tu Pattern_Mapping(Tu, Munique)

4: vec_fsmsunique = vec_fsmsunique + fsms

5: end while

6: Tu Lexicographical_Sort(Tnon − unique)

7: while Tu 6¼ ϕ do

8: fsms, Tu Pattern_Mapping(Tu, Mnon − unique)

9: vec_fsmsnon − unique = vec_fsmsnon − unique + fsms

10: end while

11: Return vec_fsmsunique and vec_fsmsnon − unique

doi:10.1371/journal.pone.0126517.t005

AMemory-Efficient Bit-Split String Matching Using Pattern Uniqueness

PLOS ONE | DOI:10.1371/journal.pone.0126517 May 4, 2015 15 / 24



are limited. Therefore, the pattern mapping for a string matcher shows constant time complex-

ity, O(1). In addition, the complexity of the while loop in the pattern mapping can be O(N) be-

cause the entire set of patterns is mapped onto multiple string matchers. Therefore, when the

maximum length of patterns is limited, the time complexity for partitioning the entire set of

patterns can be O(N). On the other hand, the time complexity of lexicographical sorting in the

pattern partitioning algorithm can be O(N � log2 N). However, because there are large constant

factors in the pattern mapping, if the number of target patterns is not sufficiently large, the pat-

tern sorting will not be a dominant factor in the time complexity. Therefore, it can be conclud-

ed that the time consumed for obtaining the contents of FSM tiles is proportional to N.

Experimental Results and Discussion

Experimental environments

The proposed pattern matching scheme was evaluated using a C++ library. The pattern group-

ing and mapping were performed using a machine with Intel Xeon E31270 CPU, 8 Gbytes

main memory, and CentOS 6.5 Linux operating system [27]. Four sets of target patterns de-

noted as backdoor, deleted, spyware, and web-client were extracted from the Snort v2.8 rules

[11]. For the evaluation of the set with many patterns, a set of total patterns denoted as total

was extracted from all of the Snort v2.8 rules [11]. In addition, a rule set from the ClamAV

0.95.3 [12] denoted as clamAV was adopted.

Table 6 shows the characteristics of the target pattern rule sets, where num(patterns) and

num(bytes) mean the number of target patterns and total sum of characters of each rule set, re-

spectively. In addition, max(l) and avg(l) are the maximum pattern length and average pattern

length, respectively. The column in the rightmost (σ) describes the standard deviation of

pattern lengths.

For the apples-to-apples comparisons, the lexicographical pattern mapping in [6], which

has been used for other string matching schemes, was adopted. Based on the design analysis for

the bit-split string matching in [6], each FSM tile took a two-bit input. In order to ensure that

the implementation was realistic, the unit size of memory cells was considered. In the experi-

ments, 1-Kbit, 2-Kbit, 4-Kbit, and 8-Kbit unit sizes of block memory cells were assumed. These

assumed memory sizes can be found in commercial FPGA devices. For example, considering

the block memory in the Cyclone II of Altera [26], the unit size of each block memory cell was

assumed to be 4 Kbits. The memory requirements can be calculated using the number of re-

quired memory cells. Several parameters were swept to obtain the optimal parameter values

with the minimum number of memory blocks. For the Snort rule sets, the maximum number

of states in an FSM tile, S, was 128 or 256. The maximum number of mapped patterns in a

string matcher P was 16, 32, 48, or 64 when S was 128. When S was 256, P was 32, 64, 96, or

Table 6. Characteristics of target pattern rule sets.

rule name num(patterns) num(bytes) max(l) avg(l) σ

backdoor 955 8,875 94 9.3 7.5

deleted 615 7,399 72 12.0 11.0

spyware 2,299 26,103 94 11.4 8.1

web-client 1,657 67,527 92 40.8 22.8

total 7,784 144,958 122 18.6 18.0

clamAV 28,786 1,921,305 210 63.2 40.8

doi:10.1371/journal.pone.0126517.t006
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128. On the other hand, for the ClamAV rule set, considering the maximum target pattern

length of 210, only 256 was adopted for S.

Experiments with Snort and ClamAV rule sets

The evaluations were performed taking into consideration the experimental environments

mentioned above. In the experiments with the Snort rule sets, the numbers of memory cells

were minimized when S was 128. For the ClamAV rule set, the experiments were performed

when S was 256. Therefore, Table 7 shows the required number of memory blocks obtained by

sweeping the parameters for a string matcher when S was 128 and 256. The data shown in

Table 7 proves that the string matcher for the set of unique patterns can reduce the memory re-

quirements, compared to that for the set with non-unique patterns. In addition, the memory

requirements did not increase proportionally to P, which proves that the memory requirements

of the unique PMIs were small.

According to the algorithm in Table 4, the set with non-unique patterns and set of unique

patterns were obtained. Table 8 shows the numbers of patterns in the two sets for the six rule

sets. The ratio of unique patterns to all of target patterns in a rule set was from 32.7% to 95.4%.

Due to the long average pattern lengths of web-client and clamAV, the ratio of unique patterns

was high. Considering the experimental results in Table 8, minimizing the memory require-

ments using the set of unique patterns could be an effective strategy. Compared to the previous

bit-split string matching, additional time was required in the pattern grouping. The pattern

grouping for all Snort rule sets was finished within 1 second. For the ClamAV rule set, due to

Table 7. Required numbers of memory cells according to hardware limitations and unit sizes of memory cells.

Pnon − unique Punique

S Mem 16 32 48 64 16 32 48 64

128 1 Kbits 20 24 32 36 16 20 20 20

2 Kbits 12 16 20 20 8 12 12 12

4 Kbits 8 12 12 12 4 8 8 8

8 Kbits 8 8 8 8 4 4 4 4

S Mem 32 64 96 128 32 64 96 128

256 1 Kbits 44 56 76 104 40 40 40 40

2 Kbits 24 28 40 52 20 20 20 20

4 Kbits 16 16 24 28 12 12 12 12

8 Kbits 12 12 16 16 8 8 8 8

doi:10.1371/journal.pone.0126517.t007

Table 8. Numbers of patterns in the set with non-unique patterns and set of unique patterns.

set #non-unique patterns #unique patterns ratio (unique/total) Tgrouping (sec)

backdoor 643 312 32.7% 0.01

deleted 334 281 45.7% 0.01

spyware 1,476 823 35.8% 0.02

web-client 370 1,287 77.7% 0.06

total 4,446 3,338 42.9% 0.28

clamAV 1,324 27,462 95.4% 15.7

doi:10.1371/journal.pone.0126517.t008
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the large number of target patterns, the time to be required in the pattern grouping was 15.7

seconds. Considering the large number of patterns in the ClamAV rule set, even though the

complexity of the pattern grouping algorithm was O(N2) for a set with N patterns, the required

time for processing the pattern grouping was not great.

Table 9 lists the minimized memory requirements with the maximum number of patterns

to be mapped, P, and number of string matchers for different unit sizes of memory cells. When

the unit size of a memory cell was 1 Kbits, the memory requirements were minimized because

unused memory bits were the smallest. For the set of unique patterns in the Snort and ClamAV

rule sets, the memory requirements were minimized when P was 16 and 32, respectively. Con-

sidering the process of DFA construction, as the length of a target pattern increased, the proba-

bility of its being the unique pattern decreased. Therefore, compared with the average pattern

length for the set with non-unique patterns, the average pattern length for the set of the unique

patterns was longer. For the set with non-unique patterns of web-client and clamAV, due to the

Table 9. Total memory requirements according to different unit sizes of memory cells.

1 Kbits non-unique unique total memory

#matchers P #matchers P

backdoor 21 32 35 16 136 KB

deleted 38 32 11 16 112 KB

spyware 51 32 106 16 374 KB

web-client 91 16 642 16 1,547 KB

total 228 32 928 16 2,601 KB

clamAV 160 32 8,671 32 45,297 KB

2 Kbits non-unique unique total memory

#matchers P #matchers P

backdoor 15 64 35 16 149 KB

deleted 8 64 38 16 119 KB

spyware 51 32 106 16 426 KB

web-client 91 16 642 16 1,594 KB

total 228 32 928 16 2,834 KB

clamAV 160 32 8,671 32 45,379 KB

4 Kbits non-unique unique total memory

#matchers P #matchers P

backdoor 15 64 35 16 164 KB

deleted 8 64 38 16 127 KB

spyware 42 64 106 16 475 KB

web-client 91 16 642 16 1,688 KB

total 208 64 928 16 3,179 KB

clamAV 160 32 8,671 32 54,585 KB

8 Kbits non-unique unique total memory

#matchers P #matchers P

backdoor 15 64 35 16 266 KB

deleted 8 64 38 16 221 KB

spyware 42 64 106 16 778 KB

web-client 91 16 642 16 3,326 KB

total 208 64 928 16 5,505 KB

clamAV 160 32 8,671 32 72,999 KB

doi:10.1371/journal.pone.0126517.t009
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long average pattern length, the memory requirements were minimized when P was 16 and 32,

respectively. On the other hand, a P value of 32 or 64 was adopted for the sets with the non-

unique patterns in the other Snort rule sets because of the short average pattern lengths.

Figs 8 and 9 provide a summary of the comparisons with the existing bit-split string match-

ing approaches in terms of the normalized memory requirements for the cases using 1-Kbit

and 4-Kbit memory cells, respectively. The normalized memory requirements of a rule set were

obtained after dividing the minimized memory requirements by the total sum of bytes in the

target patterns of a rule set. The unit of the normalized memory requirements, therefore, was

bytes/char.

For the six rule sets, the normalized memory requirements ranged from 14.3 to 23.6 (bytes/

char) with 1-Kbit memory cells. On the other hand, the normalized memory requirements ran-

ged from 17.2 to 28.4 (bytes/char) with 4-Kbit memory cells. Because unused memory bits

were increased with the unit size of memory cells, the normalized memory requirements with

4-Kbit memory cells increased. In the web-client and clamAV, because the average pattern

length was long, the numbers of mapped patterns in a string matcher were small, which in-

creased the total memory requirements.

The string matching schemes in [6, 8–10], were denoted as bit_split, ex_bit_split, shared,

and hetero, respectively. With 1-Kbit memory cells, the total memory requirements were de-

creased on average by 31.8%, 14.7%, 8.0%, and 12.4%, compared with bit_split, ex_bit_split,

Fig 8. Summary of comparisons for 1-Kbit memory cells.

doi:10.1371/journal.pone.0126517.g008
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shared, and hetero, respectively, On the other hand, with 4-Kbit memory cells, the total memo-

ry requirements were decreased on average by 29.8%, 36.0%, 19.1%, and 30.1%. Therefore, the

proposed string matching approach was more efficient when a large unit size of memory cells

was adopted. Considering the summary in Figs 8 and 9, it was concluded that the proposed

scheme can significantly reduce the memory requirements for the bit-split string

matching architecture.

Analysis of pattern uniqueness

For more structural and statistical analysis, several rule sets with random patterns were gener-

ated. In this case, evaluations were performed by sweeping several parameters of the average

pattern length, standard deviation, and number of target patterns. In the evaluations of the av-

erage pattern lengths and numbers of target patterns, considering the characteristics of real pat-

terns shown in Table 6, it was assumed that the average pattern length was the same as the

standard deviation of pattern lengths. Considering experimental data for the realistic rule sets

mentioned above, it was concluded that the memory requirements for the set of unique pat-

terns were smaller than those of the set with non-unique patterns in a string matcher. There-

fore, after several rule sets were generated, the ratio of unique patterns in each rule set was

evaluated in order to analyze the pattern uniqueness in a rule set.

Firstly, the average pattern length was swept from 10 to 60 with several generated rule sets,

where each rule set had 10,000 different patterns. Fig 10 shows the ratio of unique patterns by

sweeping the average pattern length, where the average pattern length was denoted asmean.

Fig 9. Summary of comparisons for 4-Kbit memory cells.

doi:10.1371/journal.pone.0126517.g009
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As shown in Fig 10, the ratio of unique patterns was 70.6% whenmean was 10. Whenmean

was 60, the ratio of unique patterns reached up to 96.3%. Therefore, asmean increased, the

ratio of unique patterns increased. In addition, even though the average pattern length was

short, the ratio of unique patterns was over 70%, which means that the proposed string match-

ing scheme can utilize the pattern uniqueness to reduce the memory requirements without the

PMV table. Fig 11 shows the ratio of unique patterns by sweeping the number of generated pat-

terns from 1,000 to 32,000. In this case, it was assumed that the average pattern length was 20.

As the number of patterns in a rule set increased, the ratio of unique patterns decreased slight-

ly. In addition, 86% percent of patterns were in the set of unique patterns when the number of

patterns was 32,000. Fig 12 shows the ratio of unique patterns by sweeping the standard devia-

tion from 2 to 20, where the average pattern length was 20. When the standard deviation was

Fig 10. Ratio of unique patterns by sweeping the average pattern length.

doi:10.1371/journal.pone.0126517.g010

Fig 11. Ratio of unique patterns by sweeping the number of generated patterns.

doi:10.1371/journal.pone.0126517.g011
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small, the ratio of unique patterns was high. As the standard deviation increased, the ratio of

unique patterns decreased slightly. However, the ratio of unique patterns was over 86% when

the standard deviation was 20. Considering the experimental data for the pattern uniqueness, it

was expected that the ratio of unique patterns can be high in a general rule set, which can re-

duce the memory requirements with the proposed scheme.

Practical implementation

In order to know the hardware overhead of the proposed string matching engine, the string

matcher was coded using Verilog hardware description language (HDL). Then, the code was

compiled using Altera’s Quartus II, where Cyclone II EP2C70F89618 [26] was selected for the

target device. Even though there were several high-performance FPGA device families, the

overall price was too high. Therefore, the Cyclone II FPGA family was selected for the general

string matching engine. In the target device, there were 68,416 logic elements and registers. In

addition, 250 M4K memory cells can be configured. In a M4K memory cell, 4,096 memory bits

were contained. In the implementations, several pairs of the maximum numbers of states and

patterns to be mapped, which was denoted as (S, P), were adopted.

Table 10 shows the implementation results of the unique and non-unique string matchers,

where four sets of (S, P) were evaluated. The separation of memory blocks in each FSM tile of

the non-unique string matcher increased the routing complexity. Therefore, in Table 10, the

maximum operating frequency, Fmax, of the unique string matcher was higher than that of the

non-unique string matcher. In each clock cycle, one ASCII character can be inputted. Consid-

ering the critical path in the non-unique string matcher, the throughput can reach up to 1.127

Gbps (Giga bits per second) when (S, P) was (128, 16) in Table 10. As S increased, Fmax de-

creased gradually due to the increasing complexity in memory blocks. However, the decreased

value of Fmax was not proportional to S. Compared to the memory resource usage, the ratio of

used logic elements and registers was very low. Therefore, it was concluded that the memory

resource was more critical in the implementation of the string matching engine. In addition,

Fig 12. Ratio of unique patterns by sweeping the standard deviation.

doi:10.1371/journal.pone.0126517.g012
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small S can be better for efficient hardware resource usage and high throughput. In order to up-

date the memory contents in memory blocks, several logic elements and registers were required

in each memory block. In the non-unique string matcher, because there were two separate

memory blocks, more logic elements and registers were required compared to those of the

unique string matcher. Considering the implementation results mentioned above, by adopting

the unique string matchers, it was expected that the hardware overhead can be reduced.

Conclusions

The proposed string matching scheme can be applied to memory-based bit-split string match-

ing, where the memory requirements can be reduced by eliminating the matching vectors for

the set of unique patterns. The proposed pattern grouping is used in order to obtain the set of

unique patterns. In addition, the pattern partitioning and mapping algorithms are adopted for

the parallel string matching engine. Considering the experimental results with various rule sets,

the proposed string matching scheme is greatly helpful for reducing the storage cost with the

regularity and scalability of the bit-split parallel string matching engine.
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