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Abstract

Cryptographic protection of memory is an essential in-

gredient for any technology that allows a closed comput-

ing system to run software in a trustworthy manner and

handle secrets, while its external memory is susceptible

to eavesdropping and tampering. An example for such

a technology is Intel’s emerging Software Guard Exten-

sions technology (Intel SGX) that appears in the latest

processor generation, Architecture Codename Skylake.

This technology operates under the assumption that the

security perimeter includes only the internals of the CPU

package, and in particular, leaves the DRAM untrusted.

It is supported by an autonomous hardware unit called

the Memory Encryption Engine (MEE), whose role is to

protect the confidentiality, integrity, and freshness of the

CPU-DRAM traffic over some memory range. To suc-

ceed in adding this unit to the micro architecture of a

general purpose processor product, it must be designed

under very strict engineering constraints. This requires

a careful combination of cryptographic primitives operat-

ing over a customized integrity tree that mostly resides on

the DRAM while relying only on a small internally stored

root. The purpose of this paper is to explain how this hard-

ware component of SGX works, and the rationale behind

some of its design choices. To this end, we formalize the

MEE threat model and security objectives, describe the

MEE design, cryptographic properties, security margins,

and report some concrete performance results.

1 Introduction

Attacks on the system memory (DRAM) of a computing

device are a serious threat. It has been shown that an at-

tacker with physical access to a platform and the right

tools, can read and/or modify memory contents. Such

capabilities can be used for reading secrets that reside

in memory, or for circumventing the platform’s security

or policies. These threats led to an intensive study of

the memory protection problem, for which various ele-

gant solutions have been proposed in the literature (e.g.,

[6, 8, 13, 14, 22, 17, 20, 21, 24, 25, 26, 10]).

In general, the goals of memory protection include data

confidentiality, data integrity, and data replay prevention,

but in some scenarios a subset of these goals suffices. For

example, a “cold boot attack” is a passive attack that har-

vests a (single) snapshot of the DRAM contents from a

locked device. It can be mitigated by encrypting the mem-

ory (for confidentiality). On the other hand, active attacks

that use memory modifications, may require a higher bar

protection of at least adding integrity checks. Intel’s new

Software Guard Extensions 1 (SGX hereafter) [3] is a

technology that requires full DRAM protection for con-

fidentiality, integrity, and anti-replay.

SGX is designed to allow a general purpose computer

platform to run software in a trustworthy manner and to

handle secrets. The assumed adversary has full control of

the system, and the software running on it at any privilege

level, and can read or modify the contents of the DRAM

1Formally: Intel R©Software Guard Extensions,
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(including copy-and-replay). The only components that

SGX trusts are the CPU internals. To illustrate why SGX

needs full protection for (part of) the DRAM, we provide

a brief outline of this technology (see [3], [4], [16], [12]

for details).

SGX consists of a set of CPU instructions, supported

by a hardware-based access control mechanism. They

provide a way to load application code and data from

memory, while incrementally locking it in a dedicated

DRAM region, and generating its cryptographic measure-

ment (SHA-256 digest). After the code is loaded, it can

run in a special mode as a secure “enclave”, remaining

isolated from all other processes on the system (isolation

is governed by the access control mechanism). Note that

any application code is merely a binary file (written in

some special format). As such, it cannot be shipped with

secrets that are already embedded in the file’s text. To this

end, SGX offers a mechanism for a secret owner to pro-

vision a secret to a trustworthy enclave. Its instructions

provide tools with which, together with an attestation pro-

tocol, an enclave can prove to an off-platform entity (or to

another enclave on the same platform) that:

a. It is running on a genuine processor under the SGX

restrictions.

b. The value it reports for its cryptographically mea-

sured identity is trustworthy.

A secret owner can therefore establish a trusted channel

with an identified enclave, and provision a secret. For

handling provisioned secrets, SGX offers instructions that

allow an enclave to encrypt any information with a se-

cret key that is unique to the platform and to its identity.

Thus, an enclave can safely store (and retrieve) secrets

on untrusted locations (e.g., a disk). Clearly, SGX re-

quires memory protection. Handling secrets requires that

the confidentiality of CPU-DRAM traffic (within the rel-

evant regions) is protected. In addition, in order to trust

an enclave’s cryptographic identity, its intended execution

flow, and the attestation protocol, the DRAM (at least part

of) must be tamper resistant, and replay protected. We

point out that replay prevention is critical. Otherwise,

an attacker can select a chunk of code (plus the integrity

tags) of a properly loaded enclave, and replace it with a

recorded image from a previously loaded forged enclave.

The forged enclave can therefore run while the CPU re-

ports the identity of the legitimate enclave.

This paper describes the hardware component of SGX,

called the Memory Encryption Engine (MEE), which de-

livers the required protection for the DRAM. Like similar

memory encryption technologies, its design is based on

the following pillars: an integrity tree, the cryptographic

primitives that realize the encryption, the Message Au-

thentication Code (MAC), and the anti-replay mechanism.

An integrity tree is necessary because internal (on-die)

storage is limited and expensive. This requires that the

system seizes a dedicated DRAM region where the tree

can be stored and maintained. Different integrity trees

use various combinations of counters and MAC tags (or

hashes), offering tradeoffs between the size of the inter-

nal storage and the “seized” DRAM region, the cost/com-

plexity of the “tree verify” and “tree update” flows, and

the resulting performance (good reviews comparing sev-

eral integrity trees are given in [7] and [11]). The choice

of the cryptographic primitives is critical for achieving the

adequate level of security while satisfying the engineer-

ing constraints. These call for a parallelizable encryption

mode, and a MAC algorithm that produces short MAC

tags with a cheap hardware implementation. The ability

to share hardware elements between the encryption and

the MAC generation is, of course, also desirable.

Addressing the lean resources of real systems, and the

high complexity of integrating a fully autonomous hard-

ware unit in the processor, mandates aggressive optimiza-

tion of these design pillars. In this paper, we detail the

MEE design that turned out to be sufficiently practical to

be part of Intel’s latest processor generation, Architecture

Codename Skylake 2. The paper is organized as follows.

Section 2 details the security model, objectives, and the

adversary model. Section 3 describes the rationale and the

design of the MEE integrity tree. Section 4 discusses the

cryptographic functions and their properties. Some notes

on the implementation and optimizations techniques, are

brought in Section 5. We challenge the security margins

of the MEE design in Section 6, and report some perfor-

2The 6th Generation Intel R© CoreTM processor.
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mance results in Section 7.

2 The MEE security model and objectives

MEE system overview. A modern processor has an in-

ternal cache that accommodates a small amount of mem-

ory, and can be accessed much faster than the system

memory. During normal operation, memory transac-

tions are continuously issued by the processor’s Core,

and transactions that miss the cache are handled by the

Memory Controller (MC). The MEE operates as an exten-

sion of the MC, taking over the cache-DRAM traffic that

points to what is called the “Protected” data region. An

additional portion of the memory, called the “seized” re-

gion, accommodates the MEE’s integrity tree. The union

of these regions is called the “MEE region”. It forms a

range of physical addresses that is fixed to some size at

boot time (the default size is 128MB), in a trustworthy

way.

Read/write requests to the protected region are routed

by the MC to the MEE that encrypts (decrypts) the data

before sending (fetching) it to (from) the DRAM. The

MEE initiates autonomously additional transactions to

verify (update) the integrity tree, based on a construction

of counters and MAC tags. The self-initiated transactions

access the seized region on the DRAM, and also some on-

die SRAM array that serves as the root of the tree. Figure

1 shows a schematic illustration of the MEE operations.

Figure 1: A schematic illustration of the MEE operation.

Capturing the DRAM changes over time. In our ar-

chitecture, the MC (and MEE) read and write transac-

tions are at the granularity of 512-bit blocks, called Cache

Lines (CL hereafter). If the DRAM is viewed (logi-

cally) as an array of CL’s indexed by a per-CL address,

we can describe its changes over time by a discrete se-

quence of snapshots, where only one CL is modified be-

tween two consecutive snapshots, as follows. Suppose

that the DRAM has N CL’s at addresses x1, . . . ,xN . For

time steps y = 0,1, . . ., we use the notation CL(x,y) for

the contents of the CL at address x, at time y. A snap-

shot is a full DRAM contents at time y: Snapshot(y) =

{CL(xk,y),k = 1, . . . ,N}. The information on the DRAM

contents over time can be captured by a sequence of snap-

shots Snapshot(y), y = 0,1, . . ., where Snapshot(y + 1)

differs from Snapshot(y) in only one location (address).

2.1 The MEE adversarial model

The MEE has two security objectives:

Objective 1. Providing confidentiality for the data that is

written to the Protected region (on the DRAM).

Objective 2. Data integrity with replay prevention, as-

suring that data which is read back from the DRAM’s Pro-

tected region to the CPU, is the same data that was most

recently written from the CPU to the DRAM.

Remark 1. The MEE is not designed to be an Oblivi-

ous RAM. An adversary with the assumed ability to track

DRAM changes over time, can, by definition, carry out

traffic analysis. He can learn when CL’s are written, and

to which CL addresses (though the contents of this traffic

remains confidential). Preventing such analysis is not an

objective of the MEE.

The MEE encrypts and computes authentication tags

with the following properties.

Property 1. The MEE keys are generated uniformly at

random at boot time, and never leave the die.

Property 2. The encryption keys and the authentication

keys are separate.

Property 3 (Drop-and-lock policy). Tree verifications

(and updates) enforce the following “drop-and-lock” pol-

icy. The MEE computes the MAC tags of data that it reads,
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and compares them to expected values, fetched from the

integrity tree on the DRAM. If all comparisons match, the

operation continues. However, as soon as any mismatch is

detected, the MEE emits a failure signal, drops the trans-

action (i.e., no unverified data ever reaches the cache)

and immediately locks the MC (i.e., no further transac-

tions are serviced). This causes the system to hang, and it

needs to be re-booted. After re-boot, the MEE starts over

with newly generated keys.

The MEE adversaries. The MEE faces two types of

adversaries: a passive eavesdropping adversary, and an

active forging adversary. Both adversaries start from

observing DRAM snapshots over some period of time,

and recording a DRAM trace T = Snapshot(y), y =

0, . . . ,τend for some time τend (τend = 0 means that the

adversary chooses to collect no such information). T is

produced by either: a) enclaves that write their (known or

secret) data; b) a crafted attack enclave code that writes

chosen plaintext/messages to the Protected region; c) self

initiated MEE transactions. An astute adversary tries to

manipulate the system in order to generate the most fa-

vorable trace for his intended attack.

The passive adversary uses T to extract a list, T ′ of q′

plaintext-ciphertext (and associated nonces from the in-

tegrity tree) samples. Subsequently, he can apply any al-

gorithm to T ′, to obtain information on a targeted secret.

Here, a secret is ciphertext from an unknown plaintex, that

was written to the DRAM, at least once, by a “victim” en-

clave.

The active adversary uses T to extract a list, T ′′ of

q′′ message-tag (and nonce) samples. He can use T ′′

with any algorithm. Subsequently, he modifies the current

DRAM snapshot (on the Protected region) in any way he

chooses. The attack succeeds if the modified data passes

the integrity check when it is read back. From Property

3 it follows that the adversary has only one chance to try

a (failing) forgery against the MEE with the same set of

keys. A particular form of forgery is a replay attack. A re-

play is carried out by overwriting (part of) a current snap-

shot Snapshot(τ2) with (part of) a previous (recorded)

Snapshot(τ1), for some τ1 < τ2. In the presence of a valid

integrity tree with a trusted root, a replay attack is not dif-

ferent from any other DRAM modification, unless some

values (counters) at time τ2 repeat their values at time τ1.

This scenario needs to be prevented by the MEE design.

We can now translate the adversarial model to a cryp-

tographic scenario: the passive adversary views the MEE

as an encryption oracle, and the active adversary views it

as a tagging oracle (and a verification oracle when actu-

ally attempting the forgery). By Property 2, the oracles

are independent. We assess the MEE’s strength against its

adversaries by combining two criteria.

Criterion 1: Cryptographic bounds on:

1. The adversary’s advantage in distinguishing the out-

puts of the encryption oracle from a random output,

using information from q′ chosen oracle queries.

2. The adversary’s probability to succeed in the first

forgery attempt, using information gathered from q′′

chosen queries to a tagging oracle.

Criterion 2: Lower bounds on the time required for

1. Collecting q′ (q′′) samples.

2. The rate that successive “boot and forgery” attempts

can be executed (i.e., repeating forgery attempts until

(hopefully) the first success).

3. Exhausting the integrity tree by executing enough

tree writes and updates that propagate the counters,

until one of them repeats a value.

Our goal is to analyze the MEE properties even against

an idealized MEE adversary who is limited only by the

physical capacity of the hardware. Therefore, we inten-

tionally grant the adversary much more power than prac-

tically feasible. For example, Criterion 1 allows chosen

input queries (although self initiated transactions are con-

trolled by the MEE). Criterion 2 ignores the overhead of

extracting the relevant information T ′ / T ′′ from observ-

ing T (not every system operation translates directly to

a useful oracle query). It also ignores the time/cost/com-

plexity of storing at least T ′ and T ′′ (if not the full T )

to facilitate offline analysis.

3 The MEE integrity tree

An integrity tree is a standard method for using a small

amount of internal storage to protect a larger amount of
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data (see [7] for an overview). The classical method is the

Merkle Tree (MT): a binary tree where each node holds a

hash digest of its two children, and the lowest leaves hold

digests of the protected data units. Its obvious generaliza-

tion is the k-ary MT with k children for each node. For

a memory encryption technology that can use an internal

integrity key, using MAC tags is typically more efficient

than using hashes. Suppose that a stateful MAC algorithm

is used, where the nonce is the state, and the MAC covers

the nonce and the data units. In such cases, it suffices to

protect (only) the nonces by the integrity tree. Making the

tree tamper resistant is achieved by storing (only) its root

on-die.

The MEE integrity tree uses a stateful MAC with

nonces (see also [19]), and its construction is tailored to

optimally fit the architecture. We describe the concept by

a simplified model in Section 3.1, and the details of the

real implementation are given in Section 3.2.

Figure 2: A simplified two levels integrity tree with a 4-

ary layout.

3.1 A simplified tree model

Figure 2 shows a simplified integrity tree with two lev-

els (Level 0, Level 1) and a 4-ary layout. The region that

is “covered” by the tree consists of data blocks D0, D1,

D2, D3 which are stored in data units U0, U1, U2, U3,

together with their respective authentication tags Tag0,

Tag1, Tag2, Tag3. Tagj (j=0, 1, 2, 3) is computed by some

MAC algorithm, over Dj and the nonce n0j. At Level 0,

the data unit L00 includes the nonces n00, n01, n02, n03

and the associated authentication tag Tag00 that is com-

puted over (n00, n01, n02, n03) and the nonce n10. The

nonce n10 is part of the data unit L10 at Level 1, which is

the root of the tree.

In general, the data units are not necessarily of the same

size or internal layout, and the MAC algorithm(s) can be

applied in different ways. The nonces (not necessarily

with the same lengths) are stored as bit strings, viewed

as a realization of some counter, where each specific im-

plementation defines how a counter is incremented. Note

that the MAC tags are embedded in their respective data

unit. We use the following examples to illustrate the “read

and verify” and the ”write and update” flows.

Read and verify example. Consider reading data block

D0, and verifying that it was not modified from its value

since the last time it was written and the tree was updated.

This requires fetching the data units U0, L00, and L10,

and extracting D0, Tag0, n00 and n10 from them. By def-

inition, n10 is trusted. The nonces (n00, n01, n02, n03)

are verified (together, as one entity) by applying the MAC

algorithm over (n00, n01, n02, n03) and n10, and com-

paring to Tag00. Specifically, this verifies n00 (i.e., that

n00 was not changed since it was written with the proper

the tree update). D0 is verified by applying the MAC al-

gorithm over D0 and n00, and comparing it to Tag0. Note

that the implementation can choose the order by which

U0, L00 and L10 are fetched, the order by which D0,

Tag0, n00 and n10 are extracted, and the order by which

the expected tags are computed and compared. The only

requirement is that D0 is “approved” only if (and after) all

the tag comparisons pass.

Remark 2. Trusting only the internally stored root of the

tree, that cannot be modified by an adversary, is sufficient.

For example, an adversary can modify D0, Tag0 and n00

by replaying previous values, so that MAC over D0 and

n00 passes a comparison to Tag0. However, the forgery

would succeed only if the tag over the modified L00 with

the unmodified nonce n10 equals Tag00. This means that

successful forgery needs to pass the MAC tag check with

an unmodified nonce for at least one location on the tree.
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Write and update example. Suppose that D2 needs to

be written, with the proper update of the integrity tree.

The procedure must start with a preemptive verification

of D2 (using n02 and comparing to Tag2). This requires

the preemptive verification of n02 (using (n00, n01, n02,

n03) and n10, and comparing to Tag00). Then, D2, is

modified to D2’, n02 is incremented to n02’ and n10 to

n10’. Tag2 and Tag00 are recomputed by applying the

MAC algorithm to D2’ and n02’, and to (n00, n01, n02’,

n03) and n10’. Finally, the tree is updated with their new

values Tag2’ and Tag00’.

Remark 3. . The preemptive check is crucial. Without

it, n03 can be modified to n03’, D3 to D3’, and Tag3 to

Tag3’, while D2 is modified to D2’. Then, Tag00’ will

be computed over (n00, n01, n02’, n03’). This allows a

successful replay of previous D3, Tag3, n03 values.

Self initialization. The preemptive checks cause an in-

evitable MAC mismatch in the first time that a data unit

is written. An exception is therefore needed. This is done

by: a) assigning a special nonce value (n init) as an indi-

cator to the fact that a data unit has not been written yet;

b) actively setting (only) the internal Level 1 nonces to

the value n init, at system initialization, in a trustworthy

way; c) configuring the integrity checker logic to ignore

a MAC mismatch when encountering n init at some un-

initialized data unit, and to assign the value n init to the

other nonces of its “children”. In our example, n10 is set

to n init at start time. When D2 is written for the fist time,

the failing preemptive check is ignored, a “regular” value

is assigned to n02, and n init is assigned to n00, n01, n03.

Non-repeating compound nonces. The tree updating

must assure that nonces do not repeat. One way to gener-

ate non-repeating nonces is to maintain one internal “cen-

tral” counter. When a fresh nonce is needed for some

data unit, the system uses the available counter value, and

immediately increments it. The MEE uses an alternative

“compound nonce” construction. It includes: a) a unique

“spatial coordinate” (address) of the data unit; b) a per-

unit counter which is a “temporal coordinate”. When a

data unit is written, the system uses the available tempo-

ral counter value, and then increments it. Here, the tem-

poral counters may repeat, but on different addresses, and

this guarantees that the compound nonces remain non-

repeating.

Exhausting the tree. A w-bit nonce can be incre-

mented (from n init) at most 2w−1 times without repeat-

ing a value. Thus, the integrity tree can remain “valid”

(i.e., providing protection) only up to the first time that a

counter will rollover by incrementing one more time. At

that point, we say that the tree is exhausted, and the sys-

tem should drop-and-lock in order to start over with new

keys.

Generalizing the construction to a larger number of

data units, levels, and different k-ary layouts is straight-

forward.

3.2 The MEE data structure

Version counters and PD Tags. Since an adversary

should not gain information on unknown plaintexts by ob-

serving ciphertext samples on the DRAM, equal plaintext

blocks that are encrypted to different addresses and/or at

different points in time, should not translate to equal ci-

phertext blocks. This requires the encryption scheme to

use a non repeating location-time tweak. The MEE uses

a compound nonce where the spatial coordinate of a unit

is its address, and its temporal coordinate is a dedicated

per-unit counter. These counters are called “versions” (to

distinguish from the counters of the integrity tree).

The integrity tree covers the versions. Each data unit

in the “Protected data” region has a MAC tag (PD Tag)

that is computed over the ciphertext and its tweak. The

PD Tags and the versions are stored in a DRAM region

called “Metadata”. It is enough to have the integrity tree

“cover” either the PD Tag’s or the versions. We chose to

cover the versions.

The MEE data structure. The specific instantiation of

the MEE data structure is defined by setting equal size

data units of 512 bits (CL’s), counters/versions with w

bits, and tags with t bits. Since the Protected data CL’s

have no architecturally visible redundancy, their PD Tags

and versions are accommodated in the dedicated Metadata

6



region. By contrast, we can leverage some redundancy for

the CL’s that hold the versions and the counters: a t-bit

tag can be embedded in a CL that accommodates nc w-bit

counters, if t+nc ·w≤ 512. The parameters choice nc = 8,

w= 56, t = 56 leads to a convenient implementation (Sec-

tion 6 explains why its security bounds are sufficient).

An 8-ary tree can be built over the version CL’s. With

nc · t < 512, the PD-Tags can also be placed in an 8-ary

layout. The parametrized design supports 32,64,128,256

MB, for the MEE region, 4 or 6 levels, and an 8-ary in-

tegrity tree layout. The specific instantiation we report

here uses 4 levels, with a root (Level 3) stored on-die (in-

ternal SRAM array). Fig. 3 illustrates this construction.

The top panel outlines the layout of the MEE region, and

the chain of dependencies. The bottom panel zooms into

a CL, showing how a 56-bit tag is embedded alongside

with 8 counters.

The CL’s in the MEE region are stacked in groups of

8, to leverage the 8-ary layout. To read and verify a CL

at address Addrs, the MEE derives sub-address (point-

ers) to the CL’s that hold the corresponding PD Tag, ver-

sion, and counters, and also pointers to the specific field

in these CL’s. For simplicity, the base address of the re-

gion is naturally aligned (to its total size). In addition,

“Reserved”gaps are introduced in order to naturally align

the sub-regions. This alignment leads to simple bit-level

expressions for the derived sub-addresses and sub-fields,

which are easily implemented in hardware. Table 1 shows

a detailed example of a 128 MB region, and the bit-level

expression for the derived pointers (from a 40 bits ad-

dress). This layout offers 96MB of user-available Pro-

tected data, supported with (only) 4KB of internal stor-

age. In general, our construction has ∼ 3/4 of the MEE

region available to the user, with a root (internally stored)

of size ∼ 1/215 the size of the user-available region.

Counters definition. Counters (and versions) are 56-bit

strings that we view as elements of F256 = F(256)/(x56 +

x55 + x35 + x34 +1). We define n init to be the the field’s

multiplicative unit (0551). The root (Level 3 in Figure 3)

is initialized to n init by the hardware, as part of the MEE

initialization. Incrementing A ∈ F256 is the field operation

INCREMENT (A) = A× x (where x is represented by the

string 05410). Since x is a primitive element in F256 , n init

can be incremented successively 256−2 times without re-

peating a value (i.e., exhausting the counter).

Property 4. Let T be a DRAM trace where no counter

or version is exhausted, and consider the collection of all

address-version and address-counter pairs in T . Then,

all of these pairs are unique.

Figure 3: Top panel: the MEE data structure. Bottom

panel: embedding a 56-bit tag in a CL that accommodates

8 56-bit counters. The tag is split to 8 7-bit chunks that are

distributed (together with one unused bit) in 8 positions

adjacent to the counters, across the CL.

4 The MEE cryptographic functions and

properties

4.1 Preliminaries

Approximating AES as a random permutation. Let

AESK(P) denote the ciphertext that AES128 generates by

encrypting P with the key K. For an integer q, let εAES(q)

denote the chance of an adversary to distinguish AES ci-

phertexts from the outputs of a random permutation, af-

ter observing q samples from chosen plaintexts (with the
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Table 1: Top table: the detailed layout of a 128MB MEE

region. Bottom table: The bit-level addressing scheme for

the sub-regions and field in a CL.

Start

offset

End

offset
Region size

Protected data 000 0000 5ff ffff 96MB

Version + PD Tag 600 0000 77f ffff 24MB

Reserved 780 0000 7df ffff 6MB

L0 7e0 0000 7f7 ffff 1.5MB

Reserved 7f8 0000 7fb ffff 256KB

L1 7fc 0000 7fe ffff 192K

Reserved 7ff 0000 7ff 7fff 32KB

L2 7ff 8000 7ff dfff 24K

Reserved 7ff e000 7ff efff 4KB

L3 (On-die root) 7ff f000 7ff ffff 4KB

Total MEE region 128MB

Region Address Format and Mapping Field in CL

Data Addrs[39:6]

PD Tag Addrs[39:27] & ’11 & Addrs[26:9] & ‘0 !Addrs[8:6]

Version Addrs[39:27] & ’11 & Addrs[26:9] & ‘1 Addrs[8:6]

L0 Addrs[39:27] & ’111111 & Addrs[26:12] Addrs[11:9]

L1 Addrs[39:27] & ’111111111 & Addrs[26:15] Addrs[14:12]

L2 Addrs[39:27] & ’111111111111 & Addrs[26:18] Addrs[17:15]

L3 Addrs[39:27] & ’111111111111111 & Addrs[26:21] Addrs[20:18]

secret key selected uniformly at random). A standard as-

sumption (AES design goals and analysis [15] [18]) is that

εAES(q) is very small, even for q = 264 (i.e., beyond the

birthday bound). We adopt this assumption in order to

approximate AES as a random permutation.

The MEE keys. The MEE initialization generates 768

uniform random bits which are distributed to three (inde-

pendent) keys:

1. A 128-bit confidentiality key, KENC (used for data

encryption).

2. A 128-bit masking key, KMAC (used for a the MAC

algorithm).

3. A 512-bit hash key, viewed as the concatenation

K7,K6, . . . ,K0, of 8 64-bit strings (used for selecting

a function from a universal family of hash functions).

4.2 Carter-Wegman MAC’s in the context

of the MEE attack scenario

Denote D1 = {0,1}
d1 , R = {0,1}t (d1 > t), K1 = {0,1}

s1 ,

D2 = {0,1}d2 , K2 = {0,1}s2 . Let H = {hk1
: D1 →

R, k1 ∈ K1} be a family of functions indexed by a key

k1 ∈ K1. H is called ε Almost XOR Universal (ε-AXU)

if Prk1←K1

(

hk1
(µ)⊕hk1

(ν) = ξ
)

≤ ε for every ξ ∈ R and

µ 6= ν ∈ D1, where k1 is selected uniformly at random

from the key domain K1. In case ε = 2−t , H is called

XOR-universal. Let fk2
: D2 → R be a secure PRF se-

lected with a secret key k2 ∈ K2. The maximum q-

interpolation probability of fk2
is the maximum probabil-

ity that ( fk2
(b1), fk2

(b2), . . ., fk2
(bq)) = (a1,a2, . . . ,aq),

for all a1,a2, . . .aq ∈ R and distinct b1,b2, . . .bq ∈ D2,

where k2 is selected uniformly at random from K2.

The Carter-Wegman MAC [23] uses an ε-AXU family

H and a PRF fk2
with maximum q-interpolation probabil-

ity less or equal δ . It is instantiated by selecting uniform

random secret keys k1 ∈ K1 and k2 ∈ K2, and operates on

a message M ∈D1 and a nonce b ∈D2. The MAC tag is

T = hk1
(M)⊕ fk2

(b) (T ∈ R). (1)

An adversary submits to a tagging oracle, q ≤ 2t − 2

queries, each one with a message Mi with nonce bi, such

that all the nonces are distinct. The oracle replies with the

respective tags Ti, i = 1, . . . ,q. In the MEE context, the

adversary attempts a forgery of the following form:

Choosing some location 1 ≤ j ≤ q, and guessing a

message-tag pair pair M∗,T∗ such that (M∗,T∗) 6=

(M j,Tj). The forgery attempt is considered success-

ful if hk1
(M∗)⊕ fk2

(b j) = T∗.

Using a result from [5], it follows that the adversary’s suc-

cess probability is at most 2tqεδ .

Remark 4. Note that the forgerer is allowed to choose

the message and the tag (M∗,T∗) but not to change the

nonce (b j). This corresponds to the forgery that the MEE

adversary is required to carry out at some level of the

integrity tree (see Remark 2). The bound 2tqεδ follows

from adapting the proof of the main theorem of [5] to the

limited forgery case. This is why we do not use here the

maximum (q+ 1)-interpolation probability of fk2
, as in

[5] (where the forgery can also modify the nonce).
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4.3 The MEE encryption scheme and its

confidentiality bound

The MEE encryption scheme is a “tweaked” AES Counter

Mode, operating on the message space Ω = {0,1}512×

{0,1}α × {0,1}β , for parameters α,β > 0 that satisfy

α +β ≤ 126. A CL in the Protected data region is viewed

as a triplets (M,x,y) ∈ Ω, where M ∈ {0,1}512 is the

plaintext/ciphertex and x ∈ {0,1}α and y ∈ {0,1}β are its

spatial and temporal coordinates, respectively.

Definition 1 (MEE encryption scheme). Let (M,x,y)∈Ω

be a triplet. View M = M[511 : 0] as the concatenation

U3‖U2‖U1‖U0 of 4 128-bit blocks U j = M[128 · j+ 127 :

128 · j], j = 0,1,2,3. For j = 0,1,2,3, write j in base

2 as a 2-bit string j[2] ∈ {0,1}
2. Define the 4 compound

nonces CT R j ∈ {0,1}
128 by

CT R j = 0126−α−β ‖x ‖ j[2] ‖y (2)

and let

Vj =U j⊕AESKENC
(CT R j) (3)

The encryption of (M,x,y) is E(M,x,y) =V3‖V2‖V1‖V0 ∈

{0,1}512.

Decryption is analogous. In our implementation, x =

Addrs >> 6, where Addrs is the address of the first byte

of the CL. The architecture has a 40 bits address space,

implying α = 34. The temporal coordinate y is the asso-

ciated version and we choose β = 56. These parameters

satisfy α +β ≤ 126. An illustration is shown in Figure 4

(left panel).

Suppose that an adversary submits q′ queries to col-

lect a valid trace T
′ of ciphertexts E(Mi,xi,yi), i = 1, . . .q′,

from chosen triplets (Mi,xi,yi). Suppose that q′ ≤ 256−2

(by Property 4, the pairs (xi,yi) in T
′ are distinct). Then,

we have the following confidentiality bound.

Proposition 1 (Confidentiality bound). Let Adv be the

advantage of a probabilistic polynomial time algorithm in

distinguishing the ciphertexts in T
′

from a set of random

strings. Then,

Adv≤ εAES(q
′)+

(q′)2

2125
(4)

Figure 4: The MEE cryptographic primitives, imple-

mented with the choice α = 34, β = 56, t = 56. Left

panel: the encryption. Right panel: the MAC algorithm.

Proof. With distinct pairs (xi,yi) i = 1, . . . ,q′, the CT R j

values in Eq. (2) are also distinct. A CL includes 4

blocks, so each query translates to observing 4 ciphertext

blocks. The bound in (4) follows from the standard birth-

day bound (
(4q′)2

2129 in our case) for distinguishing a random

permutation from a random function, and from the defini-

tion of εAES(q
′).
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4.4 The MAC algorithm and its integrity

bound

The MEE Carter-Wegman MAC instantiation. Figure

4 (right panel) shows a schematic illustration of the MAC

algorithm. We choose the parameters d1 = s1 = 512, t =

56, and d2 = s2 = 128, and specify H and f as follows.

fk2
(b) = Truncatet (AES(k2,b)) (5)

with k2 = KMAC, and where “Truncatet” denotes trunca-

tion of a sting to its t least significant bits. The MAC

algorithm takes an input triplet (M,x,y) and defines b as

the compound nonce

b = 0128−α−β ‖x ‖y (6)

(recall that α = 34, β = 56; α +β ≤ 128). To define the

family H for X ∈D1, we view D1 as (F264)
8
, and set

hk1
(X) = Truncatet

(

7

∑
j=0

X [64 · j+63 : 64 · j]⊗ k1[64 · j+63 : 64 · j]

)

(7)

Here, ⊗ is the multiplication in F264 = F(264)/(x64 +

x4 + x3 + x+1), and X = X [511 : 0] is viewed as the con-

catenation X7‖X6‖X5‖X4‖X3‖X2‖X1‖X0 of the 8 field el-

ements X [64 · j + 63 : 64 · j] ∈ F264 , j = 0, . . . ,7. The

hash key k1 is (K7,K6, . . . ,K0). This (truncated) multilin-

ear hash function is XOR-universal (i.e., ε = 2−t = 2−56).

Applying the MAC algorithm function to different

CL types. The MEE uses (M,x,y) in different ways,

according to the type of the CL. For Protected data

CL’s, x is its address, y is its version, and Eq. (7)

is applied to M[511 : 0]. For a CL that holds ver-

sions or counters, x is the address and y is the asso-

ciated counter on the integrity tree. To capture only

the 8 versions/counters and skip the embedded MAC

tags of such CL’s (Section 3.2), Eq. (7) is applied to

X [511 : 0] = M[511 : 0]&
(

Q‖Q‖Q‖Q‖Q‖Q‖Q‖Q
)

where

Q = 08||156 ∈ {0,1}64. Note that with this definition, the

compound nonces (Eq. (6)) do not repeat in an adversary-

collected trace that has at most 256−2 samples.

The forgery resistance of the MAC algorithm. To

bound the maximum interpolation probability of f , de-

fined in Eq. (5), we approximate AES as a random per-

mutation (of {0,1}128) and find a bound on the maximum

q-interpolation probability, denoted MaxIntProbt(q), of

a truncated permutation to t bits. For any choice of

q (≤ 264) values a j ∈ {0,1}
t , j = 1,2, . . . ,q (not neces-

sarily distinct), the number of permutations P of {0,1}128

such that the condition P(b j)[t−1 : 0] = a j, j = 1,2, . . . ,q

(for some distinct b j), is at most 2(128−t)q · (2128 − q)!

(equality holds only if all the a j are distinct). It follows

that

MaxIntProbt(q)≤
2(128−t)q · (2128−q)!

(2128)!
=

= 2−tq ·
2128q

(2128) · (2128−1) · (2128−2) · . . . · (2128−q+1)
=

= 2−tq ·
1

(1) · (1− 1
2128 ) · (1−

2
2128 ) · . . . · (1−

q−1

2128 )

(8)

We use the Bernoulli inequality

(1−a1) · (1−a2) · . . . · (1−ak)≥ 1− (a1 +a2 + . . .+ak)

(9)

for any a j ≥ 0, j = 1,2, . . . ,k such that ∑
k
k=1 a j ≤ 1. Apply

(9) to a j =
j−1

2128 . Note that 1
1−w
≤ 1+ 2w for 0 < w ≤ 1

2
,

and recall that q≤ 2t−2 < 264 by assumption. This gives

MaxIntProb(q)≤ 2−tq ·
1

1− (q−1)q
2129

≤

≤ 2−tq ·
1

1− q2

2129

≤ 2−tq ·

(

1+
q2

2128

)

(10)

We can now apply the result of [5], and conclude the

following.

Proposition 2 (The MEE forgery resistance). An active

adversary who collects a trace of q≤ 256−2 message-tag

samples that the MEE produces, and attempts a forgery,

has success probability at most

Psuccess(q) = εAES(q)+ ε ·

(

1+
q2

2128

)

≤

≤ εAES(2
56)+

1

256
·

(

1+
1

216

)

(11)
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Remark 5. The bound in (11) shows that the forgery suc-

cess probability can be (theoretically) improved by only

a marginal amount even if the adversary is able to col-

lect the longest allowed trace. From the viewpoint of an

attack strategy, it turns out that the trace collection time

invested to increase the forgery success probability, has

insignificant contribution. Therefore, a repeated “blind

guessing”, with success probability 1
256 , is the more effi-

cient attack strategy in our context.

5 Notes on MEE implementation and opti-

mizations

Incrementing the counters. The hardware cost of im-

plementing INCREMENT (A) is lower than the cost of

implementing a 56-bit adder (or counter). It requires

only a 56-bit Galois Shift Register with taps in posi-

tions 34, 35, 55, where INCREMENT (A) = (A << 1)⊕

(0x180000C00000001&(−A[55])) (A[55] is bit 55 of the

string A).

The MAC tag computations in F264 : Implementing

the F264 = F(264)/(x64 + x4 + x3 + x+ 1) multiplication

requires only one 64-bit (binary) polynomial multiplier.

To compute the hash of a CL, the hardware accumulates

(XOR’s) 8 polynomial products into a 128-bit container,

and then reduces modulo (x64 + x4 + x3 + x + 1). The

reduction re-uses (twice) the same polynomial multiplier

circuitry.

Truncating the MAC to 56 bits. It is possible to choose

tags with t = 64 bit without changing the layout of the

MEE data structure (i.e., a CL with 8 56-bit counters can

embed a 64-bit tag). However, by truncating to t = 56 bits,

the hardware can use the same data bus for counters, ver-

sions, and tags. This presents a useful area optimization.

It is possible to view a CL as the concatenation of 10 el-

ements in F256and apply a multilinear hash function over

F256 without truncation. Our study showed that the area

saving from this implementation is marginal, and does not

justify the added complication that is involved is such de-

sign.

Efficient AES hardware implementation. A high-

bandwidth low latency AES hardware unit is a critical

component for supporting the multiple AES computations

that are carried out during the MEE operations. On the

other hand, integrating hardware units into the micropro-

cessor die, where resources are very scarce, requires a low

area solution. To address these conflicting requirements,

the MEE uses an optimized AES design that is based on

the most efficient representation of GF(28) as GF(24)2

[9].

The MEE cache A full walk over the MEE integrity

tree involves multiple memory accesses. For example

(see Figure 3), reading and verifying a CL requires the

MEE to access six CL’s from the DRAM (plus one ac-

cess to the SRAM array). Writing (with tree update) re-

quires more accesses. To alleviate the resulting perfor-

mance loss, the MEE is equipped with an internal dedi-

cated “MEE cache” that stores versions and counters from

the tree (not data CL’s or PD TAG’s). The hardware is

configured to stop the tree walk when an access to such

a value hits the internal cache. For example, a read op-

eration with an MEE cache hit at the (Metadata) version

level, requires the MEE to access only two CL’s (the data

and the PD Tag) on the DRAM.

6 Real world analysis: challenging the

cryptographic bounds

We challenge the cryptographic bounds of the 56-bit

MAC tags and 56-bit counters, under an idealized ad-

versary assumption (see Section 2). This adversary can

harvest chosen input memory traces at absolute accuracy,

with no time spent on copying and storing them for anal-

ysis. He is limited only by the throughput of the underly-

ing hardware. For this adversary, we calculate whether (or

not) it is practical to a) gain information on the plaintext

from observing enough ciphertext samples; b) rollover a

counter; c) make a successful forgery attempt.

Data collection and counter propagation rates. Col-

lecting a trace T’ (of ciphertexts) or T” (of message-tag

pairs) with q samples, requires the MEE to write q Pro-

tected data CL’s and update the integrity tree accordingly.

In the fastest scenario, where all these writes enjoy a full
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MEE cache hit, producing one sample involves writing

two CL’s (the data and the MAC tag CL’s). Similarly,

propagating a counter (version) requires the MEE to write

two CL’s. For each “write + tag computation”, we have

the following operations count: 5 AES operations (4 for

encrypting the CL, and 1 for the MAC tag) and 10 polyno-

mial multiplications (8 for the multilinear hash function

and 2 for the reduction). Consequently, trace collection

and counter propagation rates are bounded by the mini-

mum between: a) 1
5

the throughput of the AES engine; b)
1
10

the throughput of the polynomial multiplier hardware;

c) 1
2

the throughput of the MC.

Bounding the rate of active attacks. Recall (Per Re-

mark 5) that collecting information from a trace has such

a marginal contribution that there is no benefit in investing

the data collection time. Therefore, we assume that adver-

sary’s strategy is “blind guessing”: resetting the system,

loading the “victim” enclave, and attempting some (ar-

bitrary) memory modification on a targeted memory lo-

cation. A failure forces a reset with new keys and the

attempt is repeated. With success probability p0 = 1
2t =

2−56, the expected number of attempts until the first suc-

cess is ∑
∞
k=0 k(1− p0)

k−1 = 1
p0

= 256. Let us assume that

the attack is performed on a custom OS that bypasses all

the BIOS overheads, and ignore the time to setup SGX,

load (and run) the attacked code. Suppose also that the

attack is automated, and some hardware unit physically

resets the system when a MAC mismatch is identified,

and leads to immediate power-off without waiting for the

system to hang due to the drop-and-lock chain of events.

Ignoring all these (and more), we estimate that pure setup

time is still bounded by, say, 1ms.

System capabilities. The throughput of the AES unit

in the MEE is 1 AES block per cycle, and the through-

put of the polynomial multiplier is 1 multiplication per

cycle. The throughput of the MC is 32 · 230 bytes/sec

(32GB/sec). All these units operate at a frequency that

is limited to 3.2GHz (under overclocking).

Translating to lower bounds on the attack time.

1. Collecting 256 ciphertext samples (to get distinguish-

ing advantage at most 2−13), or, equivalently, rolling

over a counter, is a serial process that takes at least

∼ 8 years of continuous processing on a dedicated

platform.

2. The expected time to make a successful forgery is

∼ 2M years on a customized platform (note that this

task can be distributed over multiple platforms).

We conclude that the cryptographic security margins

of the MEE design are sufficient even under adversarial

assumptions that are way beyond what can be considered

practical capabilities.

7 Performance study

Estimating the performance cost of the MEE is a delicate

task, because the results depend heavily on the application

that is measured, and on isolating the MEE effect from

other SGX overheads. We report here some preliminary

performance results from a repeatable experiment that we

carried out.

The experiment used the 445.gobmk component of

SPECINT2006 v01 [2], selecting 10 input files (namely:

arb.tst, arend.tst, blunder.tst, trevorc.tst, nicklas4.tst, nick-

las2.tst, nngs.tst, buzco.tst, atari atari.tst, score2.tst). We

compiled the 445.gobmk test with Graphene (library OS

[1]), after adapting it to run inside an Intel SGX enclave.

This test was subsequently measured with the 10 input

files, under two conditions: a) without SGX (and hence

no MEE involved); b) inside an enclave (i.e., while the

MEE is active).

Our goal was to try to isolate, as much as possible, the

effect of the MEE. To this end, we selected a test/enclave

that would incur almost no other SGX overhead, aside

from the MEE overhead itself. The enclave was entirely

loaded into the MEE memory region, had no page swap-

ping across the protected region and the general purpose

DRAM, had only a few transition to/from enclave mode,

and no I/O. We believe that the results of this experiment

provide a good approximation of the MEE overhead. The

measurements were taken on an engineering sample of

the processor (Architecture Codename Skylake). The re-

sults are shown in Figure 5. We see that the MEE imposes

performance degradation that varies from 2.2% to 14%,

with an average of 5.5%.
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Note that we expect to see variations in the performance

results, that depend on the intensiveness of the memory

usage of an application. Indeed, in our test, the differ-

ent input files induce different memory utilization patterns

that change the number of CPU cache misses (thus also

the internal MEE cache misses when running from an en-

clave). To illustrate, we give one extreme example. Our

profiling shows that gobmk test with score2.tst input has

979M cache misses, whereas the same test with nngs.tst

has only 549M cache misses. Indeed (See Fig. 5), the

overall performance reflects this different behavior. We

also point out that different input files (e.g., blunder.tst)

may trigger different code flows of the test.

Figure 5: Performance comparison of the 445.gobmk

component of SPECINT 2006, with 10 input files (see

explanations in the text). The bars show that the perfor-

mance degradation (in %) incurred by enabling the MEE,

varies from 2.2% to 14%, with an average of 5.5%.

8 Conclusion

This paper detailed the design of an MEE instantiation

that is implementable under the strict engineering con-

strains of a general purpose microprocessor. It enjoys

proven cryptographic properties which we analyzed un-

der an idealized adversarial model, and challenged in a

real-world context.

The efficiency of this design is demonstrated by its be-

ing part of the latest 6th Generation Intel Core processor3

as a critical hardware component that supports the SGX

technology.

The design is flexible and can be tweaked to accom-

modate different targets. We give two possible tradeoff

examples: a) The data units of the Protected data re-

gion can be extended to cover several CL’s, thus asso-

ciating a PR Tag to more than 512 bits. This will trade

a smaller seized region on the DRAM with some perfor-

mance degradation; b) The MEE can be built to use mul-

tiple encryption (and MAC) keys in order to extend the

effective length of the counters.
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