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ABSTRACT
Recently, we have proposed a set of buffering schemes to
preserve the semantics of a synchronous program when the
latter is implemented as a set of multiple tasks running un-
der preemptive scheduling. These schemes, however, are not
optimal in terms of memory (buffer usage). In this paper
we propose a new protocol which generalizes the previous
schemes. The new protocol is not only semantics-preserving
but also memory-optimal in two senses: first, in terms of the
number of buffers required to preserve semantics in the worst
case (i.e., for the “worst” possible arrival/execution pattern
of the tasks); second, in terms of the number of buffers re-
quired to preserve semantics for any arrival/execution pat-
tern and at any time, assuming no knowledge of future ar-
rivals.
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D2.2.2 [Software]: Software EngineeringDesign Tools and
Techniques; D2.2.3 [Software]: Software EngineeringCod-
ing Tools and Techniques

General Terms
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1. INTRODUCTION
The model-based design paradigm advocates the use of

models with formal or semi-formal semantics through-out
the entire development cycle, from design to implementa-
tion. One or more models of the system are built using
one or more modeling languages of choice (different mod-
els may be necessary to capture different parts or “views”
of the system). These models are subjected to simulation
or even exhaustive verification. This allows to find and cor-
rect bugs early enough, which is a crucial cost-savings factor.
“What-if” analysis can also be performed at the model level,
exploring different design choices.

At some point the implementation phase begins, during
which the system is actually built. By “system” we mean
hardware, software or both. In the hardware industry the
implementation phase is closely coupled with the modeling
and analysis phase. Powerful EDA tools, stemming from a
rich body of research on logic synthesis and similar topics,
are used for gate synthesis, circuit layout, routing, etc. Such
tools are largely responsible for the proliferation of electron-
ics and their constant increase in performance.

In the software industry the situation is not as clear. On
one hand, high-level models are not as widespread. After all,
the software itself is a model and simulation can be done by
executing the software. Testing and debugging are common-
place (in fact, very time-consuming) but they are done at
the implementation level, that is, on the target software.
Implementation is automated using the most classical tools
in computer science: compilers. The situation is changing,
however: languages such as Matlab/Simulink1, UML2 and
others, as well as corresponding software-synthesis facilities
are used more and more. Currently, software synthesis is
mostly restricted to separate code generation of parts of the
system. The integration of the different pieces of code is usu-
ally done “manually” and is source of many problems, since
the implementation often exhibits unexpected behavior:
deadlocks, missed data values, etc. These problems arise be-
cause the implementation method (in this case, code genera-
tion followed by manual integration) does not guarantee that
the original behavior (high-level semantics) is preserved.

In this context, our work aims at developing implemen-
tation methods that guarantee semantical preservation. We

1Matlab and Simulink are trademarks of the Mathworks
Inc.: http://www.mathworks.com.
2of the Object Management Group: http://www.uml.org/
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focus on embedded software, and in particular embedded
control software, used extensively in domains such as auto-
motive, avionics and others. Wide-spread high-level design
languages for embedded control applications are Simulink
and synchronous languages [3]. Both Simulink and syn-
chronous languages are based on a synchronous or zero-time
semantics, which means that the system is fast enough to
cope with changes in the environment. This semantics al-
lows the designer to abstract from implementation details
and focus on the design logic. It also ensures platform-
independence which is crucial for portability.

Naturally, the zero-time assumption breaks down upon
implementation. This often results in implementations
which do not preserve the synchronous semantics. In turn,
the results obtained by analyzing the model (e.g., model sat-
isfies a given property) may not hold at the implementation
level. Then, in order not to have to repeat the simulation
and verification effort at the implementation level, the fol-
lowing issue needs to be addressed: how can the semantics
of the high-level model be preserved while relaxing the ideal
semantical assumptions?

This question admits different answers depending on what
type of implementations are considered. By “implementa-
tion” we mean the entire executing system, including com-
puting hardware, network, operating system(s), middleware
and application software. “Classic” implementations of syn-
chronous languages are single-processor, single-task imple-
mentations [9]. Such implementations consist of a single
program of the form:

initialize state;

while (true) do {

await trigger;

read inputs;

compute outputs and next state;

write outputs and update state;

}

The trigger in the pseudo-code above can be the “tick”
of a periodic clock, an interrupt of some external device,
etc. In any case, in order to guarantee preservation of the
synchronous semantics it suffices to ensure that the worst-
case execution time (WCET) of body of the above loop is
smaller than the minimum inter-arrival time (MIT) of the
trigger.

In this paper we are interested in single-processor, multi-
task implementations, where the tasks are scheduled using a
real-time operating system (RTOS) that employs a preemp-
tive scheduling policy. Such implementations are useful in
the case of multi-rate synchronous programs, where different
parts of the program are executed at different rates. In such
a case, the single-task implementation method above forces
the generation of code which is triggered at the fastest rate:
this might result in an impossibility to meet the WCET <
MIT condition above. For example, consider a synchronous
program consisting of two blocks, A and B, such that A must
be executed every 10 ms and B every 50 ms. Suppose the
WCETs of A and B are 2 ms and 10 ms, respectively. The
MIT of trigger is 10 ms (the rate of A) while the WCET
of the loop is 12 ms, thus, the single-task implementation
method cannot be applied in this case.

On the other hand, a multi-task implementation could,
in-principle, be used: notice that the processor utilization
in the above example is low ( 2

10
+ 10

50
= 40%), thus, schedu-

lability under a preemptive scheduling policy such as rate-
monotonic is guaranteed [13]. There is, however, an issue
of semantical preservation: this is because a multi-task im-
plementation requires inter-task communication (data ex-
changed between tasks) and it is not obvious how this should
be implemented. As shown in [16, 19], “naive” inter-process
communication schemes do not preserve the synchronous se-
mantics (see also Section 3.2 for an example). In particular,
such schemes are not deterministic: depending on the execu-
tion time of the tasks, the data sent from a task to another
might be different.

One might say that strict preservation of the synchronous
semantics is not really necessary. After all, in control ap-
plications controllers are usually designed to be robust to
various types of data variability, including data loss, jitter,
sensor inaccuracies, etc. Two answers can be given to this
claim. First, controllers contain more and more “discrete
logic”, which is not robust (a single bit-flip may change the
course of an if-then-else statement). Second, echos from the
industry indicate that determinism is an important require-
ment. For instance, recent versions of the Simulink code-
generator Real Time Workshop provide options to “ensure
deterministic data transfer” (see the “Related work” section
for references). Our contacts with Esterel Technologies3 re-
veal similar concerns.

In [16, 19] we proposed a set of buffering schemes that per-
mit the preservation of the synchronous, zero-time semantics
of a set of tasks running under preemptive scheduling. These
schemes were developed for a single writer/reader pair of
tasks. Although they can also be applied to any number of
tasks by considering each writer/reader pair independently,
this generally results in a non-optimal usage of buffers. Ac-
cording to Esterel Technologies, this is a big concern. In
this paper, we address this problem. We propose a buffer-
ing protocol which generalizes those schemes to any number
of readers. This protocol is called dynamic buffering pro-
tocol, or DBP. We prove that DBP is optimal in terms of
buffer usage, in two senses.

• We provide a set of lower bounds on the number of
buffers required in order for the semantics to be pre-
served. We show that DBP never uses more buffers
than what is specified by these lower bounds. This
means that DBP is optimal in the worst-case, that is,
for the “worst” possible scenario.

• We also show that DBP satisfies a stronger optimality
property, namely, that for every task graph, for ev-
ery arrival/execution pattern of the tasks, and at any
time t, the values stored by DBP at time t are pre-
cisely those values necessary in order to preserve the
semantics, assuming a non-clairvoyant buffering pro-
tocol, that is, a protocol that is not aware of the future
arrival pattern of tasks.

DBP consists of a set of buffers shared by the writer and
reader tasks, a set of pointers pointing to these buffers and
the protocol to manipulate buffers and pointers. The essen-
tial idea behind the protocol is that the pointers must be
manipulated not during the execution of the tasks, but upon
the arrival of the events triggering these tasks. In that way,
the order of arrivals can be “memorized” and the original
semantics can be preserved. DBP is dynamic in the sense

3http://www.esterel-technologies.com/
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that it allocates buffers only when they are needed, upon
task arrivals. It thus tries to reuse those buffers that store
values that are no longer needed.

DBP can be applied when the tasks are scheduled us-
ing one of the following two preemptive scheduling policies:
static-priority (SP) or earliest-deadline first (EDF). For sim-
plicity, we only consider the SP case in the rest of the paper.
The extension to EDF can be done easily using the same idea
as in [19]. It should be emphasized that the protocol works
no matter what the arrival pattern of tasks is. In particular,
it works for both time-triggered (e.g., multi-periodic) and
event-triggered applications.

Related work
The Simulink documentation claims that the Real Time
Workshop code generator is able to provide implementations
that reproduce the deterministic behavior of the model, pro-
vided tasks are periodic and periods are multiples of each
other.4 The documentation does not describe how this is
achieved, however, evidence can be found in some restric-
tions imposed on multi-rate Simulink diagrams. For in-
stance, Simulink requires that a unit-delay block be inserted
between a “slow” (typically low-priority) writer and a “fast”
(typically high-priority) reader. Typically, the “slow” writer
will also have a lower priority than the reader, according
to the rate monotonic priority scheme [13]. In this case,
the above restriction avoids the problem where the reader
preempts the writer before the latter has time to write.
Simulink also requires that a zero-order-hold block be in-
serted between a “fast” writer and a “slow” reader. This
avoids the problem where the higher-priority writer pre-
empts the reader before the latter has time to read.

An approach similar to ours is followed in the indepen-
dent work by Baleani et al. [2]. We extensively comment
on this paper since, to our knowledge, it is the closest to
our work. There are several differences between [2] and our
work. Regarding the setting:

• We work with a known scheduling policy (static-
priority or EDF). In [2], no assumption is made about
the scheduling policy.

• DBP requires no knowledge of the minimum inter-
arrival time (MIT) or deadline of tasks. However, we
do require schedulability, namely, that each time a new
instance of a task arrives, its previous instance has fin-
ished execution. It is beyond the scope of our work to
ensure schedulability: the user of our framework must
guarantee this, using methods from real-time schedul-
ing theory (e.g., see [13, 10, 1, 18]), more recent meth-
ods based on timed automata model-checking (e.g.,
see [8]), etc. In [2], it is assumed that the MIT and
deadline of each task is known. Schedulability is also
assumed, in the sense that the deadline of each task is
respected. The deadline of a task can be greater than
its MIT, which means that the schedulability assump-
tion in [2] is weaker than ours.

• We assume that all tasks run on a single processor.
In [2], no a-priori assumption is made about the exe-
cution platform.

4See the section titled “Models with Multiple Sample
Rates” of the Real-Time Workshop user guide, available at
www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug/.

The main focus of [2] is to provide upper bounds on the
memory required so that the semantics are preserved. Less
emphasis is given on the development of communication
schemes that achieve these memory bounds. Regarding the
memory requirements:

• DBP uses buffers optimally.

• The bounds provided in [2] are generally not tight. For
example, in a SP setting with one writer and N = 2
readers, where both readers have lower priority than
the writer, where the periods are Tw = 2, T1 = 3, T2 =
5, and the deadlines are equal to the periods, we re-
quire 3 buffers whereas the upper bound calculated by
the formulas provided in [2] is 4.

Finally, regarding the communication schemes:

• DBP is lock-free, meaning that tasks do not block on
reads or writes: the only thing that can suspend execu-
tion of a task is preemption by another, higher-priority
task. DBP requires atomic manipulations of global
pointers upon task releases. These can be handled
by the operating system or by some special interrupt-
handling routine with the highest priority.

• [2] considers single-processor, “multi-processor” (many
processors with centralized pointer manipulations)
or “distributed” (many processors with decentralized
pointer manipulations) implementations. For single-
processor implementations, both lock-free and locking
methods are considered. In the lock-free methods, the
assumption is that scheduling ensures that the pro-
ducer has always higher priority than the consumer.
This implies that there can be no cycles in the graph
of producers/consumers and that this graph is topo-
logically ordered in order to assign the priorities. The
main impact of this assumption is that a consumer
task which comes after a long chain of producers will
have a very low priority, thus, it cannot handle “ur-
gent” events. In contrast, in our work we make no
assumption on the relative priorities of producer and
consumer, provided that a unit delay is present when
the producer has lower priority than the consumer.

In summary, one can say that the setting of [2] is more
general than ours, however, it also requires more knowledge
(minimum inter-arrival times, deadlines). Our protocol has
optimal memory requirements while the upper bounds pro-
vided in [2] are not tight (this is to be expected given that
their setting is more general). Our implementation is for
a single processor with SP scheduling and any assignment
of priorities. The single-processor implementation of [2] as-
sumes that producers have higher priority than consumers.
[2] considers also multi-processor implementations.

Related to our work is [12], which considers the syn-
chronous dataflow model (SDF) and provides methods for
static scheduling and code generation on single-processor
or multi-processor architectures. This work has been ex-
tended in a number of directions, including buffer optimiza-
tions (e.g., see [5, 14]). SDF can be viewed as a subclass
of the model we consider in this paper, in the sense that
only multi-periodic designs can be described in SDF. On the
other hand, SDF descriptions are more high-level and must
generally be unfolded into a more basic model such as ours.
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A major difference with our work, however, is that [12, 5, 14]
aim for static, cyclic schedules, whereas we aim for multi-
task applications that use dynamic, preemptive scheduling.

Another related paper is [15]. This paper considers the
problem of minimizing the cost of adding unit-delay or zero-
order-hold blocks in Simulink diagrams. The main difference
with our work is that the focus of [15] is cost minimization
and not preservation of semantics. Indeed, by adding or re-
moving blocks as the above, the semantics generally change.
In contrast, we start from a fixed set of such blocks and do
not attempt a modification. We only perform optimizations
at the implementation level and not at the design level.

Our work is also related to a set of papers that propose
lock-free inter-task communication schemes, for instance [7,
11]. Although DBP is a lock-free protocol (only manipula-
tions of pointers are atomic, writes and reads need not be), it
is different from the protocols proposed in the above works.
The latter preserve the integrity and often also the “fresh-
ness” of data, meaning that the reader consumes the latest
complete value produced by the writer. This value does not
always correspond to the value defined by the zero-time se-
mantics. Another difference is that DBP is based on pointer
manipulations that happen upon task release, and not task
execution, as is the case of the above protocols.

We should also note that our work has different objectives
from the research done in the context of real-time schedul-
ing theory (e.g., see [13, 10, 1, 18]). Real-time scheduling
theory is concerned with checking schedulability of a set of
tasks in various settings. Our concern is not schedulability,
but preservation of semantics. We assume that the system
is schedulable (something that can be checked using exist-
ing scheduling techniques such as those in the works cited
above) and we develop preservation schemes that rely on
this assumption.

Organization of this paper
The rest of the paper is organized as follows. Section 2
presents the task model with ideal semantics. Section 3 dis-
cusses the execution under static-priority scheduling and is-
sues of semantical preservation during implementation. Sec-
tion 4 presents DBP (a correctness proof of the protocol is
provided the Appendix). In Section 5 we prove that DBP
is optimal in terms of buffer utilization. Section 6 presents
the conclusions and future work directions.

2. A SYNCHRONOUS INTER-TASK
COMMUNICATION MODEL

We consider a set of tasks, T = {τ1, τ2, ...}. The set need
not be finite, which allows the modelling of, for example, dy-
namic creation of tasks. In this paper, we do not consider the
problem of decomposing a Simulink design or synchronous
program to a set of tasks. One method to do this for multi-
periodic applications is to group all blocks with the same
period in a single task. Notice, however, that our protocol
is not restricted to multi-periodic applications: it can work
also under event-triggered applications.

To model inter-task communication, we consider a set of
data-flow links of the form (i, j, p), with i, j ∈ {1, 2, ...} and
p ∈ {−1, 0}. If p = 0 then we write τi → τj , otherwise, we

write τi
−1→ τj . The tasks and links result in what we shall

call a task graph. For each i, j pair, there can only be one

link, so we cannot have both τi → τj and τi
−1→ τj .

Intuitively, a link (i, j, p) means that task τj receives data
from task τi. If p = 0 then τj receives the last value produced
by τi, otherwise, it receives the one-before-last value (i.e.,
there is a “unit delay” in the link from τi to τj). In both
cases, it is possible that the first time that τj occurs5 there is
no value available from τi (either because τi has not occurred
yet, or because it has occurred only once and p = −1). To
cover such cases, we will assume that for each task τi there is
a default output value yi

0. Then, in cases such as the above,
τj uses this default value.

Notice that links model data-flow, and not precedences
between tasks.

We allow for cycles in the graph of links, provided these
cycles are not zero-delay, that is, provided there is at least
one link (i, j,−1) in every cycle. Notice that we could allow
zero-delay cycles if we made an assumption on the arrival
patterns of tasks, namely, that all tasks in a zero-delay cycle
cannot occur at the same time. However, it is often the case
that many tasks occur at the same time, for instance, in the
multi-periodic case where tasks have the same initial phase.

Synchronous, zero-time semantics
We associate with this model an “ideal”, zero-time seman-
tics. For each task τi we associate an increasing sequence of
occurrence times Ti = ti

1 < ti
2 < · · · , where ti

k ∈ R≥0. We
denote ti

k by Ti(k). Because of the zero-time assumption,
the occurrence time captures the release, start and finish
times of a task. In the next section, we will distinguish
these three times.

We make no assumption on the occurrence times of a task.
This allows us to capture all possible situations, namely,
where a task is periodic (i.e., released at multiples of a given
period) or event-triggered (i.e., released upon occurrence of
an external, generally unpredictable, event). Also note that
for two tasks i and j, we might have ti

k = tj
m, which means

that i and j may occur at the same time. The absence
of zero-delay cycles ensures that the semantics will still be
well-defined in such a case.

Given time t ≥ 0, we define ni(t) to be the number of
times that τi has occurred before t, that is:

ni(t) = sup{k|Ti(k) ≤ t}

where the sup of the empty set is taken to be 0, so that if
τi has not occurred before t then ni(t) = 0.

We denote inputs of tasks by x’s and outputs by y’s. Let
yi

k denote the output of the k-th occurrence of τi. Given a
link τi → τj , xi,j

k denotes the input that the k-th occurrence
of τj receives from τi. The ideal semantics specifies that
this input is equal to the output of the last occurrence of τi

before τj , that is:

xi,j
k = yi

�, where � = ni(t
j
k).

Notice that if τi has not occurred yet then � = 0 and the
default value yi

0 is used.

If the link has a unit delay, that is, τi
−1→ τj , then:

xi,j
k = yi

�, where � = max{0, ni(t
j
k) − 1}.

An example of the ideal semantics is provided in Figure 1,
discussed in the next section.

5As we shall see shortly, we define an “ideal” zero-time se-
mantics where a task executes and produces its result as the
same time it is released. We can thus say “task τi occurs”.
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3. PREEMPTIVE MULTI-TASK
IMPLEMENTATIONS

We consider the situation where tasks are implemented
as stand-alone processes executing on a single processor
equipped with a real-time operating system (RTOS). The
RTOS implements a scheduling policy to determine which
of the ready tasks (i.e., tasks released but not yet completed)
is to be executed at a given point in time. In this paper,
we consider a static-priority scheduling policy. According
to that, each task τi is assigned a unique priority pi. The
task with the highest (greatest) priority among the ready
tasks executes. We assume no two tasks have the same pri-
ority, that is, i �= j ⇒ pi �= pj . This implies that at any
given time, there is a unique task that may be executed.
In other words, the scheduling policy is deterministic, in the
sense that for a given pattern of release and execution times,
there is a unique behavior.

We should point out that our protocol can also be applied
to the case where the RTOS implements earliest-deadline
first (EDF) scheduling. This can be done using the same
idea as the one employed in [19]: instead of considering the
relative priorities of tasks, consider their relative deadlines.
For simplicity of the presentation, we restrict ourselves to
the static-priority case and leave the details on the extension
to EDF for the full version of this paper.

In the ideal semantics, task execution takes zero time. In
reality, this is not true. A task is released and becomes
ready. At some later point it is chosen by the scheduler to
execute. Until it completes execution, it may be preempted
a number of times by other tasks. To capture this, we dis-
tinguish the release time of a task τi from the time τi begins
execution and from the time τi ends execution. For the k-th
occurrence of τi, these three times will be denoted ri

k, bi
k

and ei
k, respectively.

3.1 A “simple” implementation
Our purpose is to implement the set of tasks so that the

ideal semantics are preserved by the implementation. Ob-
viously, different implementation choices exist: simple ones
involving a single buffer between each pair of writer/reader
tasks, or more sophisticated ones involving, for instance, a
priority inheritance protocol to avoid the phenomenon of
priority inversion [17], or a lock-free inter-task communica-
tion scheme like the ones mentioned earlier [7, 11]. None
of these implementations, however, guarantees preservation
of the original synchronous semantics. This has been illus-
trated through a number of examples provided in [16, 19].
For the sake of understanding, we borrow one of these ex-
amples and repeat it here.

The example is based on a “simple” implementation.
What we call simple implementation is a buffering scheme
where, for each link τi → τj , there is a buffer Bi,j used to
store the data produced by τi and consumed by τj . This
buffer must ensure data integrity: a task writing on the
buffer might be preempted before it finishes writing, leaving
the buffer in an inconsistent state. To avoid this, we will
assume that the simple implementation scheme uses atomic
reads and writes, so that a task writing to or reading from
a buffer cannot be preempted before finishing.

For the purposes of this section, we assume that each task
is implemented in a way such that all reads happen right
after the beginning and all writes happen right before the
end of the execution of the task. Also, there is only one

read/write per pair of tasks, that is, if τi → τj then τi can-
not write twice to τj . These assumptions are not part of the
implementation scheme. They are a “programming style”.
Our aim is to show that, even when this programming style
is enforced, the ideal semantics are not generally preserved.
Note that these assumptions are not required in the case of
DBP: the latter works even when these assumptions do not
hold. However, we will assume that every writer task writes
at least once at each occurrence. This is not a restrictive
assumption since “skipping” a write amounts to memoriz-
ing the previously written value (or the default output) and
writing this value.

Also, we will assume that the set of tasks is schedulable.
This means that no task ever violates its absolute deadline,
where absolute deadline is the next release time of the task.
For example, the absolute deadline of the k-th occurrence of
τi is ri

k+1.
Obviously, schedulability depends on the assumptions

made on the release times and execution times of tasks.
Checking schedulability is beyond the scope of this paper. A
large amount of work exists on schedulability analysis tech-
niques for different sets of assumptions: see, for instance,
the seminar paper of Liu and Layland [13] or the books [10,
18]. Notice, however, that our assumption of schedulability
is not related to a specific schedulability analysis method: it
cannot be, since we make no assumptions on release times
and execution times of tasks.

a: ideal semantics

b: simple implementation

ri
k+1

yi
k+1

ri
k

yi
k

rq
l rj

m

xj
m = yi

k

τi
τq

rq
l rj

mri
k yi

k ri
k+1

τj

yi
k+1

xj
m = yi

k+1

τi

Figure 1: In the semantics, xj
m = yi

k, whereas in the
implementation, xj

m = yi
k+1.

3.2 Problems with the “simple”
implementation

Let us now borrow an example from [19] that shows that
the synchronous semantics are not always preserved. Con-
sider the case where the writer has higher priority than the
reader. In particular, we have τi → τj and pi > pj . There
is also a third task τq with higher priority than both τi and
τj , pq > pi > pj . Consider the scenario shown in Figure 1.
The top of the figure shows an arrival pattern of the three
tasks. At the bottom a possible execution pattern is shown.
We can see that, according to the semantics, the input of
the m-th occurrence of τj is equal to the output of the k-th
occurrence of τi. However, this is not true in the implemen-
tation. This is because τq “masks” the order of arrival of τj

and τi (rj
m < ri

k+1). As a result, the order of execution of
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τj and τi is reversed and the reader τj consumes a “future”
(according to the semantics) output of the writer τi.

4. THE DYNAMIC BUFFERING
PROTOCOL

In this section we present the dynamic buffering protocol,
or DBP. DBP generalizes the one-writer/one-reader proto-
cols proposed in [16, 19] to any number of readers (it can
also be used for any number of writers as explained in Sec-
tion 4.2). In particular, DBP is used for one writer commu-
nicating (the same) data to N lower-priority readers and M
higher-priority readers, as shown in Figure 2. In N1 among
the N lower-priority readers there is no unit-delay, while in
the rest N2 = N − N1 readers there is a unit-delay. Notice
that for all the higher-priority readers there is a unit-delay:
this is because, as shown in [16, 19], it is otherwise impossi-
ble to guarantee preservation of the synchronous semantics.
Unit-delays are denoted with “−1” in the figure.

N1 lower-priority readers

writer

M higher-priority readers with unit delay

−1

−1

N2 lower-priority readers with unit-delay

Figure 2: Setting of the DBP protocol.

4.1 The dynamic buffering protocol
The protocol DBP is shown in Figure 3. The figure shows

the protocol in the case where M �= 0 or N2 �= 0, that is, the
case where there are links with unit-delay. If M = N2 = 0
then the protocol is actually simpler: the pointer previous

is not needed and instead of N + 2 = N1 + 2, only N1 + 1
buffers are needed.

The operation of DBP is as follows. The writer τw main-
tains all buffers and pointers except the pointers of the
higher-priority readers P[i]. The current pointer points
to the position that the writer last wrote to. The previous

pointer points to the position that the writer wrote to before
that. R[i] points to the position that τi must read from.

The key point is that when the writer is released, a free
position in the buffer array must be found, and this is where
the writer must write to. By free we mean a position which is
not currently in use by any reader, as defined by the pred-
icate free(j). Finding a free j ∈ [1..N + 2] amounts to
finding some j which is different from previous (because
B[previous] may be used by the higher-priority reader or
a possible lower-priority with unit-delay reader may need
to copy its value) and also different from all R[i] (because
B[R[i]] is used by the lower-priority reader τi). Notice that
such a j always exists, by the pigeon-hole principle: there
are N + 2 possible values for j and up to N + 1 possible
values for previous and all R[i].

Finding a free position is done in the second instruction
executed upon the release of the writer. The first instruction
updates the previous pointer. This pointer is copied by
each higher-priority reader τ ′

i into its local variable P[i]. τ ′
i

then reads from B[P[i]].

When a lower-priority reader τi is released, we have two
cases: (i) either τi is one of the N1 readers that are linked
without a unit-delay, or (ii) τi is one of the N2 readers that
are linked with unit-delay. In case (i) τi needs the last value
written by the writer. In case (ii) τi needs the previous value.
Pointer R[i] is set to the needed value. Besides this pointer
assignment the rest of the procedure remains the same for
both kinds of lower-priority readers. While executing, τi

reads from B[R[i]]. When τi finishes execution, R[i] is set
to null. This is done for optimization purposes, so that
buffers can be re-used as early as possible. Notice that even
if this operation is removed, DBP will still be correct and
it will use at most N + 2 buffers. However, DBP will be
sub-optimal, in the sense that the buffer pointed to by R[i]

will not be freed until the next release of τi. With the above
operation present, the buffer is freed earlier, namely, when
the current release of τi finishes.

Notice that DBP relies on the fact that no more than one
instance of every task is active at any point in time. This
follows from the schedulability assumption which states that
when a task is released all previous instances of this task
have finished. Having at most one instance of every reader
means that each reader needs at most one buffer to read
data from.

We should also note that in case of simultaneous release
of writer and one or more readers (e.g., in a multi-periodic
application) the release action for the writer (that is, the set
of statements corresponding to the writer’s release event)
is executed first. The release actions for the readers are
executed afterwards, in any order.

A proof of correctness of DBP is provided in Appendix A.

An example
To illustrate how DBP works, we provide an example. Con-
sider the task graph shown in Figure 4. There are four tasks:
one writer τw with period Tw = 2, one higher-priority reader
τ1 with period T1 = 1 and two lower-priority readers τ2 and
τ3 with periods T2 = 3 and T3 = 5 respectively. This means
that for the one writer of this task graph N = 2, where
N is the number of lower priority readers. Moreover there
is one task with higher priority. Suppose the priorities of
the tasks follow the rate-monotonic assignment policy (note
that DBP does not require this, as it can work with any
priority assignment):

Prio1 > Priow > Prio2 > Prio3.

−1

τ2

τ1

τ3

T1 = 1

T2 = 3

T3 = 5

Tw = 2

τw

Figure 4: A task graph with one writer and three
readers.
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Inter-task communication:
τw → τi, for i = 1, ..., N1, τw

−1→ τi, for i = N1+1, ..., N1+N2, and τw
−1→ τ ′

i , for i = 1, ..., M . Let N = N1+N2.

Task τw maintains a buffer array B[1..N+2], one pointer array R[1..N] and two pointers current

and previous.
Each task τ ′

i , for i = 1, ..., M , maintains a local pointer P[i].
All pointers are integers in [1..N+2]. A pointer can also be null.

Initially, current = previous = 1, all R[i] and P[i] are set to null, and all buffer elements are set
to yi

0.

During execution:
Writer:

• When τw is released:
previous := current

current := some j∈[1..N+2] such that free(j), where

free(j) ≡ (previous�=j ∧ ∀i∈[1..N].R[i]�=j)

• While τw executes it writes to B[current]

Lower-priority reader τi:

• When τi is released:
if i∈[1..N1] then R[i] := current (link τw → τi)

else R[i] := previous (link τw
−1→ τi)

• While τi executes it reads from B[R[i]]

• When τi finishes:
R[i] := null

Higher-priority reader τ ′
i :

• When τ ′
i is released:

P[i] := previous

• While τ ′
i executes it reads from B[P[i]]

In case of simultaneous release of writer and readers: the action for the writer is executed first. The actions
for the readers can be executed in any order.

Figure 3: The protocol DBP.

According to the algorithm, the writer will maintain a
buffer array B, a pointer array R of size 2, and two pointers
current and previous. Also, τ1 maintains a local pointer
P. Note that, since N = 2, B cannot grow larger than 4
buffers. The initial values are current=previous=1 and
R[2]=R[3]=P[1]=null.

A sample execution of DBP is shown in Figures 5 and 6.
Figure 6 shows the values of the pointers during execution.
Figure 5 shows the release, begin of execution and end of
execution events for each task. Task τ1 is released at times
0, 1, 2, 3, 4, 5, task τw is released at times 0, 2, 4, and so on.
We use the notation τ1, τ

′
1, ... to denote different instances

of the same task. Notice that a task instance may be “split”
because of preemption: this is, for instance, the case of τ2

which is split between the first and second cycle. The heights
of the task “boxes” in the figure denote the relative priorities
of the tasks.

Figure 5 also shows exactly where each task reads from
and writes to at any given time (dashed and solid arrows

respectively). The “boxes” at the bottom of the figure cor-
respond to the buffer array B and the values stored in each
buffer: y0 is the initial (default) value, y1 is the value writ-
ten by the first instance of τw, and so on. Notice that B

grows to 3 buffers in this example.
It can be verified that the synchronous semantics are pre-

served. For example, the first instance of reader 2, τ2, reads
the value produced by the first instance of the writer, which
was released at the same time. The third instance of reader
1, τ ′′

1 , reads the same value: this is because a unit delay
is present in this case. It is worth noting that the unique
instance of reader 3 shown in the figure, although it is pre-
empted multiple times, consistently reads the correct value,
namely y1. The fact that this instance has not terminated
execution when the writer is released at time 4 is what trig-
gers the allocation of a new buffer B[3].

4.2 Application of DBP to general task graphs
Applying DBP to a general task graph is easy: we con-

27



B0: B1: B2: B3: B4:y0 y1 y0 y1 y1y2 y2 y1 y1y2 y3

τ ′′
1τ ′

1τ1 τw τ2 τ3
τ ′
w τ3

τ2

τ ′′′
1 τ ′

2 τ3

τ ′′′′
1 τ ′′

w τ3

τw, τ1, τ2, τ3 τ1 τw, τ1 τw, τ1 τ1, τ3τ1, τ2

10 2 3 4 5

1 2 1 2 1 2 31 21 2

2nd cycle 3rd cycle 4th cycle 5th cycle1st cycle

Figure 5: The execution of the tasks.

init 0 1 2 3 4 5
current 1 2 2 1 1 3 3
previous 1 1 1 2 2 2 2

P[1] null 1 1 2 2 1 1
R[2] null 2 2 null 1 null null
R[3] null 2 2 2 2 2 3

Figure 6: The values of the DBP pointers during
execution.

sider each writer task in the graph and apply DBP to this
writer and all its readers. Of course, it is possible that a
given task is both a writer and a reader: this task will sub-
sequently appear in multiple instances of DBP in different
roles. Notice that the memory spaces of the different in-
stances of DBP (i.e., pointers, buffers, etc.) are completely
separate. Thus, there is one buffer array for the first writer
and its readers, another buffer array for the second writer
and its readers, and so on.6 In case of simultaneous release
of many tasks, it suffices to respect the order of execution of
the DBP release actions for each writer: the writer release
action must be executed before the reader release actions.
Notice that the writer or reader release actions associated
with a given task are totally independent, since they operate
on different memory spaces. Thus they can be executed in
any order.

As an example, let us consider the task graph shown in
Figure 7. There are three writers in this graph, namely, τ1,
τ3 and τ4. The buffer requirements for each of these tasks
are as follows:

• τ1 has only one lower-priority reader without unit-
delay. That is, we are in the case M = N2 = 0 and
N1 = 1. As said above, in this case DBP specializes
to the high-to-low protocol, which requires one double
buffer.

6The above apply to the case where the writer sends the
same data to all readers. If the writer sends different data to
different readers, then for each data and the corresponding
set of readers there will be a separate instance of DBP.

τ5
τ1

τ3
τ2

τ4

−1

−1

−1

−1

−1

Figure 7: A task graph.

• τ3 has two higher-priority readers τ1 and τ2 (with unit-
delay), one lower-priority reader τ4 without unit-delay
and one lower-priority reader τ5 with unit-delay. That
is, we are in the case N1 = N2 = 1 and M = 2. We
apply DBP and we need N + 2 = 4 buffers.

• τ4 has two higher-priority readers. That is, we are in
the case N = 0 and M = 2. We apply DBP and we
need 2 buffers.

Thus, in total, we have 8 single buffers.

5. BUFFER REQUIREMENTS
In this section we study the buffer requirements of

semantics-preserving implementations. First, we provide
lower bounds on the number of buffers required in the worst
case, that is, the maximum number of buffers required for
any possible arrival/execution pattern. These lower bounds
are equal to the number of buffers used by DBP, thus, the
corresponding numbers of buffers are both necessary and
sufficient. Second, we show that DBP is using buffers opti-
mally not just in the worst case (i.e., worst arrival pattern)
but in any arrival pattern.
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5.1 Lower bounds on buffer requirements and
optimality of DBP in the worst case

We consider again the setting of Figure 2: one writer, N1

lower-priority readers without unit-delay, N2 lower-priority
readers with unit-delay, and M higher-priority readers (with
unit-delay). Again, we let N = N1 + N2.

First, consider the case M = N2 = 0 (i.e., there is no
unit-delay). We claim that N + 1 = N1 + 1 buffers are
required in the worst case. Consider the scenario shown in
Figure 8. There are N + 1 arrivals of the writer and one
arrival of each reader. We assume that when the (N +1)-th
arrival of the writer occurs, none of the readers has finished
execution. Note that this does not violate the schedulability
assumption: indeed, the readers have lower priority than
the writer and may be preempted with every new release
of it. In the figure we show the lifetime of each buffer: for
i= 1, ..., N , buffer B[i] is used from the moment of the i-th
arrival of the writer until the (N + 1)-th arrival. A buffer is
needed at the last arrival so that the writer does not corrupt
the data stored in one of the other buffers.

Next, consider the case M > 0 and N2 = 0 (i.e., there
is a unit-delay). Then, N1 + 2 buffers are required in the
worst case. This can be shown using a slight modification of
the previous scenario, by adding one more occurrence of the
writer at the end: this is shown in Figure 9. The last buffer
B[N + 2] is needed because none of the first N + 1 buffers
can be used: buffers B[1..N ] are used by the N lower-priority
readers and buffer B[N + 1] stores the previous value which
may be needed when a higher-priority reader with unit-delay
arrives (the latter is not shown in the figure).

Finally, consider the case M = 0 and N2 > 0 (i.e., there
is again a unit-delay). Then, N + 2 buffers are required in
the worst case, where N = N1 + N2. A worst-case scenario
is shown in Figure 10. In the first part of this scenario N1

lower-priority readers without unit-delay arrive, interlaced
with N1 occurrences of the writer. This requires N1 buffers.
Next, N2 lower-priority readers with unit-delay arrive, inter-
laced with N2 + 1 occurrences of the writer as shown in the
figure. This requires N2 +1 buffers since the previous values
are used by the readers: reader r′1 uses B[N1 + 1], ..., and
reader r′N2 uses B[N1 + N2]. The last writer cannot over-
write any of the first N1 +N2 buffers since they are used by
readers that have not yet finished. The last writer cannot
over-write buffer B[N1 +N2 +1] either, since this stores the
previous value which may be needed when a lower-priority
reader with unit-delay arrives (the latter is not shown in the
figure).

These lower bounds show that DBP is optimal in the worst
case, that is, in the “worst” arrival/execution pattern. In
Section 5.3 we show that DBP actually has a stronger op-
timality property, in particular, it uses buffers optimally in
any arrival/execution pattern.

5.2 Lower bounds in the multi-periodic case
The lower bounds provided above are for general arrival

patterns. In practice, the case of multi-periodic arrival pat-
terns is common, where each task is released with a fixed,
known period. The lower bounds for multi-periodic arrivals
are not much different from the bounds in the general case.
In particular, as already observed in [19], even when the
periods are powers of two, for N readers, N buffers are
needed in the worst case. For instance, consider the situa-
tion where the writer has period 1 and the readers have peri-

ods 2, 4, ..., 2N . Then, it can be seen that at time t = 2N −2
all N buffers are needed. In particular, reader N needs the
value written at time 0, reader N−1 needs the value written
at time 2N−1, reader N − 2 needs the value written at time
2N−1 + 2N−2, and so on, until reader 1 that needs the value
written at time 2N−1 + 2N−2 + · · · + 2 = 2N − 2. These are
N different values.

5.3 Optimality of DBP for every
arrival/execution pattern

The protocol DBP is in fact optimal not only in the worst
case, but for every arrival/execution pattern, in the follow-
ing sense:

for every task graph, for every arrival/execution
pattern of the tasks, and at any time t, the val-
ues memorized by DBP at time t are precisely
those values necessary in order to preserve the
semantics.

We proceed into formalizing and proving this result.
Let ρ be an arrival/execution pattern: ρ is a sequence of

release, begin and end events in real-time (i.e., we know the
times of occurrence of each event). We will assume that all
writer tasks occur at least once in ρ, at time 0, and output
their respective default values. This is simply a convention
which simplifies the proofs that follow.

For an arrival/execution pattern ρ and for some time t,
we define needed(ρ, t) to be the set of all outputs of writer
tasks occurring in ρ that are still needed at time t. Formally,
needed(ρ, t) is defined to be the set of all y such that y is
the output of some writer task τw occurring in ρ at some
time tw, and one of the following two conditions holds:

1. There exists a link τw → τi, task τi is released in ρ at
the same time or after tw and before the next occur-
rence of τw (if it exists), and τi finishes after t.

2. There exists a link τw
−1→ τi, there is a second occur-

rence of τw in ρ at time t′w, where tw < t′w, τi is released
at or after t′w and before the next occurrence of τw (if
it exists), and τi finishes after t.

We assume that outputs y are indexed by the writer iden-
tifier and occurrence number, so that no two outputs are
equal and needed(ρ, t) contains all values that have been
written. This is not a restricting assumption since in the
general case the domain of output values will be infinite,
thus, there is always a scenario where all outputs are differ-
ent.
needed(ρ, t) captures precisely the minimal set of values

that must be memorized by any protocol so that seman-
tics are preserved. Another way of looking at the definitions
above is that needed(ρ, t) contains all outputs whose lifetime
extends from some point before t to some point after t. No-
tice that needed(ρ, t) is clairvoyant in the sense that it can
“see” in the future, after time t. For instance, needed(ρ, t)
“knows” whether a reader τi will occur after time t or not,
and if so, whether this will be before the next occurrence of
τw.

Obviously, a real implementation cannot be clairvoyant,
unless it has some knowledge of the arrival/execution pat-
tern. This motivates us to define another set of outputs that
contains all outputs that may be needed, given the knowl-
edge up to time t. This set is denoted maybeneeded(ρ, t) and
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rw rwr1 r2 rw

...

rN rw

B[N]

B[2]

B[1]

B[N+1]

. . .

Figure 8: Worst-case scenario for N + 1 buffers: N lower-priority readers without unit-delay.

rw rwr1 r2 rw

...

rN rw

B[N]

B[2]

B[1]

B[N+1]

rw

B[N+2]

. . .

Figure 9: First worst-case scenario for N +2 buffers: N lower-priority readers without unit-delay and at least
one higher-priority reader (with unit-delay).

rw rw

. . .

... ...

B[1]

B[N1]

r′N2
r′N2−1rwrwrwrN1rwr1rw rwr′1 r′2

B[N1 + 1]

B[N1 + 2]

B[N1 + 3]

B[N1 + N2]

B[N1 + N2 + 1]

B[N1 + N2 + 2]

. . .

Figure 10: Second worst-case scenario for N + 2 buffers: N = N1 + N2, N1 lower-priority readers without
unit-delay and N2 lower-priority readers with unit-delay.
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it is formally defined to be the set of all y such that y is the
output of some writer task τw occurring in ρ at some time
tw, and one of the following two conditions holds:

1. There exists a link τw → τi, such that, if there is a
second occurrence of τw in ρ at time t′w, with tw <
t′w < t, then there is an occurrence of τi at time ti,
with tw ≤ ti < t′w, and τi finishes after t.

2. There exists a link τw
−1→ τi, such that, if there is a

second and a third occurrence of τw in ρ at times t′w
and t′′w, with tw < t′w < t′′w < t, then there is an
occurrence of τi at time ti, with t′w ≤ ti < t′′w, and τi

finishes after t.

The intuition is that y may be needed because the reader
task τi may perform a read operation, say, right after time
t. It should be clear that for any ρ and t, needed(ρ, t) ⊆
maybeneeded(ρ, t).

We want to compare the values stored by DBP to the
above sets. To this end, we define DBPused(ρ, t) as the set
of all values stored in some buffer B[i] of DBP at time t,
when DBP is executed on the arrival/execution pattern ρ,
such that free(i) is false7 (recall that the predicate free is
defined in Figure 3).

We then have the following result.

Theorem 1. For any arrival/execution pattern ρ and
any time t,

DBPused(ρ, t) ⊆ maybeneeded(ρ, t).

Proof. Consider some y in DBPused(ρ, t). There must
be some position j such that free(j) is false and the value
of B[j] at time t is y. This value was written by the writer
τw at time tw < t. We reason by cases:

1. free(j) is false because previous=j. This means that
there is a reader task τi communicating with τw with

a unit-delay link τw
−1→ τi. We must show that Condi-

tion 2 in the definition of maybeneeded(ρ, t) holds. We
consider the following cases, depending on how many
times τw was released before t:

• τw is not released before t. This means that
previous = j = 1 and B[j] holds the default
value y0.

• τw is released only once before t. When this hap-
pens, previous is set to current which is equal
to 1, since this is the first release of τw. Thus,
again B[j] holds the default value y0.

• τw is released at least twice before t, and the last
two times where at tw < t′w < t. At t′w, previous
is set to current which equals j at that point.
Thus, B[j] holds the value y written by the in-
stance of τw released at tw.

7When implementing DBP, there is the option of pre-
allocating the worst-case number of buffers or allocating
buffers on-the-fly, that is, during execution, as necessary.
This is a usual time vs. space trade-off. To avoid such im-
plementation considerations, we have included in the above
definition of DBPused(ρ, t) the requirement that free(i) be
false, which means that, even if B[i] has been pre-allocated,
its contents are not needed anymore.

In none of the three cases above there is more than
one occurrence of τw after tw, thus Condition 2 in the
definition of maybeneeded(ρ, t) holds.

2. free(j) is false because there is some i ∈ [1..N1] such
that R[i]=j. This means that the reader τi commu-
nicates with τw via a link without unit-delay, τw → τi.
Since R[i]�=null, τi is released at least once before t
and it has not finished at time t. Suppose τi is released
last at time ti < t. When this happens, R[i] is set to
current which equals j at that point. Condition 1 in
the definition of maybeneeded(ρ, t) holds since tw is the
last occurrence (if any) of the writer before time ti and
τi finishes after time t.

3. free(j) is false because there is some i∈ [N1+1..N1+
N2] such that R[i]=j. This means that the reader
τi communicates with τw via a link with unit-delay,

τw
−1→ τi. This case is similar to Case 1 above.

The above result shows that DBP never stores redundant
data, only data that may be needed. In the absence of
any knowledge about the future (which is unknown if ar-
rival/execution patterns are not known), this is the best
that can be achieved, if we are to preserve semantics.

6. CONCLUSIONS AND PERSPECTIVES
We have studied the problem of semantics-preserving im-

plementations of synchronous (zero-time) semantics. We
have proposed a general protocol called DBP, that imple-
ments a non-blocking, buffer-based, inter-task communica-
tion scheme that preserves semantics for any arrival pattern
of the tasks. We have also shown that DBP is optimal in
terms of buffer usage, both in the worst case but also for ev-
ery arrival/execution pattern, assuming no knowledge about
future arrivals.

In the case where the arrival pattern of tasks is known
a-priori, for instance, when tasks are multi-periodic, DBP
can be easily turned into a static protocol. This can be
done by simulating the behavior of DBP on the given ar-
rival pattern and determining the buffers in advance. In the
multi-periodic case this simulation must be performed up
to the hyper-period of the tasks, that is, the least common
multiple of all periods. Although DBP, as presented above,
will not be optimal in this case, simple modifications suffice
to regain optimality. In particular, it suffices to check, upon
arrival of the writer, whether this output will be needed in
the future. Since future arrivals of readers are known, this
test is feasible. If the output is not needed, then no buffer
needs to be used. The details are left for the full version of
this paper.

Future objectives include relaxing the schedulability as-
sumption, for instance, to cases where the deadline of a task
is allowed to be greater than its minimum inter-arrival time.
This implies that when a new instance of a task arrives the
previous instance may not have necessarily finished. We sus-
pect that a protocol similar to DBP can be devised in this
case, at the expense of additional buffers.

We also plan to extend this work to distributed, multi-
processor execution platforms. This has been partly done
in [6] for synchronous distributed architectures and multi-
periodic tasks, where static, non-preemptive scheduling was
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assumed. We still need to cover “loosely” synchronous [4] or
asynchronous architectures with preemptive scheduling and
more general task arrival patterns.
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APPENDIX

A. PROOF OF CORRECTNESS OF THE
DYNAMIC BUFFERING PROTOCOL

What we want to prove is semantical preservation, that
is, that for any possible arrival pattern and values written
by the writer, the values read by the readers in the ideal
semantics are equal to the values read by the readers in
the implementation, assuming DBP is used. More formally,
consider a reader τi and let ti be the time when an arbitrary
instance of τi is released. We denote this instance by τ ti

i .
Let t′i ≥ ti be the time when τ ti

i reads. Let τw be the writer
task. For the moment, let us assume that τw is released at
least twice before time ti. We relax this assumption later in
this section.

Let t ≤ ti be the last time before ti that an instance of τw

was released. We denote this instance by τ t
w. Let te > t be

the time that τ t
w produces its output and finishes. Let y(t)

be the output of τ t
w. Let t′ < t be the last time before t that

an instance of the writer τw was released. This instance
is denoted τ t′

w . It finishes execution at time t′e > t′. Let

y(t′) be the output of τ t′
w . Figure 11 illustrates the notation

defined above. Notice that the order of events shown in the
figure is just one of the possible orders.

t′e

τ t′
w writes

ti

rm
i

t′i

τm
i reads

t′

rt′
w

t

rt
w

τ t
w writes

te

Figure 11: Illustration used in the proof of DBP.

A.1 Lower-priority reader without unit-delay
Suppose, as a first case, that the reader τi has a lower

priority than the writer τw and we have τw → τi. Let x(ti)
be the value read by τ ti

i . The ideal semantics states that
x(ti) = y(t). We want to show that this equality holds in
the implementation as well.

Let us first handle the case where the writer is never re-
leased before time ti. In this case, y(t) is equal to the default
output of τw. Also, when τ ti

i is released, R[i] is set to 1,
which is the initial value of current (Figure 3). R[i] is not
modified in the interval [ti, t

′
i]. Thus, at time t′i, τi reads the

value stored in buffer B[1]. This is the default output of τw,
since no buffer has been written by the writer yet.

Let us now turn to the case where the writer is released at
t ≤ ti. Recall that the writer chooses upon release a “free”
position in the buffer array where it will write to (Figure 3).
Such a free position always exists by the pigeon-hole prin-
ciple, as already mentioned. Let jt be the position that τ t

w

chooses. Let Rt, pt and ct be the values of R, previous and
current at time t, right after the execution of the assign-
ments previous := current and current := .... Then,
by definition of DBP, the following hold:

pt �= jt and ∀i ∈ [1..n].Rt[i] �= jt and ct = jt.

te ≥ t is the time when τ t
w finishes writing: let Bte be the

value of B after this write operation.8 Then, since current

8Notice that in Figure 11 we have te < ti but this need not
be the case. We could also have te > ti.
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is not modified between t and te and ct = jt (this is because
current can only be changed by a newer release of the same
writer), we also have:

Bte [jt] = y(t).

Now consider the reader τ ti
i . Again, current is not mod-

ified between t and ti, thus, we have:

Rti [i] = ct = jt.

τ ti
i reads the value

Bt′i [Rt′i [i]] = Bt′i [Rti [i]] = Bt′i [jt].

This is because R[i] is not modified between ti and t′i.
To show that τ ti

i read the correct value y(t), we must

show that Bt′i [jt] = Bte [jt], that is, that the position jt is
not over-written between te and t′i. This is because only the
writer can write into B[jt] and in order to do so it must
choose jt as a free position. Since the writer does not arrive
in the interval [te, ti], it suffices to show that free(jt) is
false in the interval [ti, t

′
i]. This is because R[i] equals jt in

all this interval.

A.2 Lower-priority reader with unit-delay
Suppose, next, that the reader τi has a lower priority than

the writer τw and we have a link with a unit-delay: τw
−1→ τi.

Again, let x(ti) be the value read by τ ti
i . The ideal semantics

states that x(ti) = y(t′). We want to show that this equality
holds in the implementation as well.

Let us first handle the case where the writer is released
not more than once before time ti. In this case, y(t′) is equal
to the default output of τw. Also, when τ ti

i is released, R[i]
is set to 1, which is the value of previous at this point.
Indeed, either the writer has never been released yet and
previous is equal to its initial value 1, or the writer has
been released once and previous is set to the initial value
of current, which is also 1. R[i] is not modified in the
interval [ti, t

′
i]. Thus, at time t′i, τi reads the value stored

in buffer B[1]. If the writer has not been released before
ti then B[1] holds the default output of τw. If the writer
has been released once before ti then it has not written to
B[1]: to do so, it must choose 1 as a free position to assign
to current, however, 1 is not free because previous=1.

Let us now turn to the case where the writer is released
twice before ti. Upon arrival of the writer at time t′, a free
position in the buffer array is chosen to write to: let this

position be jt′ . Let also Rt′ , pt′ and ct′ be the values of R,
previous and current at time t′, right after the execution
of the assignments to previous and current. Then, by
definition of DBP, the following hold:

pt′ �= jt′ and ∀i ∈ [1..n].Rt′ [i] �= jt′ and ct′ = jt′ .

t′e ≥ t′ is the time when τ t′
w finishes writing: let Bt′e be the

value of B after this write operation. Then, since current is

not modified between t′ and t′e and ct′ = jt′ , we also have:

Bt′e [jt′ ] = y(t′).

On the next arrival of the writer at time t, new assign-
ments will be made to the pointers previous and current.
Let jt be the new free position chosen. Let Rt, pt and ct

be the values of R, previous and current at time t, right

after the assignments to previous and current. Then, the
following hold:

pt = ct′ and pt �= jt and ∀i ∈ [1..n].Rt[i] �= jt and ct = jt

When the reader arrives at time ti, R[i] is set to
previous. previous is not modified between t and ti, thus,
the value of R[i] at time ti is equal to pt:

Rti [i] = pt = ct′ = jt′ .

R[i] is not modified between ti and t′i. Thus, τ ti
i reads

the value

Bt′i [Rt′i [i]] = Bt′i [Rti [i]] = Bt′i [jt′ ].

To show that τ ti
i reads the correct value y(t′), we must

show that Bt′i [jt′ ] = Bt′e [jt′ ], that is, that the position jt′

is not over-written between t′e and t′i. This is because only

the writer can write into B[jt′] and in order to do so it

must choose jt′ as a free position. Since the writer does not

arrive in the interval [t′e, t], it suffices to show that free(jt′)

is false in the interval [t, t′i]. In the interval [t, ti], free(j
t′)

is false because previous equals jt′ . In the interval [ti, t
′
i],

free(jt′) is false because R[i] equals jt′ .

A.3 Higher-priority reader (with unit-delay)
Now consider the case where τ ti

i is a higher-priority task.

Thus, the link is τw
−1→ τi. Let again x(ti) be the value read

by τ ti
i . We must show that x(ti) = y(t′).

The case where the writer is released not more than once
before time ti is identical to the corresponding case in Sec-
tion A.2. We thus omit it and turn directly to the case where

the writer is released twice before ti. Let ct′ be the value
of current that is chosen at time t′. Since current is not
modified between t′ and t, we have:

pt = ct′ .

The value y(t′) is written in buffer position ct′ and this is
not modified until t, when the writer is released next. At

this point, pt �= jt, or ct′ �= jt, thus, this position is not
over-written by the instance τ t

w.
previous is not modified between t and ti, thus, we have:

P ti [i] = pt = ct′ .

P[i] is not modified between ti and t′i, thus, at time t′i, τ ti
i

reads the value

Bt′i [P t′i [i]] = Bt′i [P ti [i]] = Bt′i [pt] = Bt′i [ct′ ].

To show that τ ti
i reads the correct value y(t′), we must show

that the position ct′ is not over-written by any instance of
the writer until time t′i. This is true because in order for

the writer to write in position ct′ , it must choose it as a free
position. Note that no instance of the writer is released be-
tween t and ti, by definition of t and ti. Also, if an instance
of the writer is released between ti and t′i, this instance can-
not execute before τ ti

i finishes, because it has lower priority
than τ ti

i .
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