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ABSTRACT 
As CPU cores become building blocks, we see a great expansion 
in the types of on-chip memory systems proposed for CMPs. 
Unfortunately, designing the cache and protocol controllers to 
support these memory systems is complex, and their concurrency 
and latency characteristics significantly affect the performance of 
any CMP. To address this problem, this paper presents a 
microarchitecture framework for cache and protocol controllers, 
which can aid in generating the RTL for new memory systems. 
The framework consists of three pipelined engines—request-
tracking, state-manipulation, and data movement—which are 
programmed to implement a higher-level memory model. This 
approach simplifies the design and verification of CMP systems 
by decomposing the memory model into sequences of state and 
data manipulations. Moreover, implementing the framework itself 
produces a polymorphic memory system. 

To validate the approach, we implemented a scalable, flexible 
CMP in silicon. The memory system was then programmed to 
support three disparate memory models—cache coherent shared 
memory, streams and transactional memory. Measured overheads 
of this approach seem promising. Our system generates 
controllers with performance overheads of less than 20% 
compared to an ideal controller with zero internal latency. Even 
the overhead of directly implementing a fully programmable 
controller was modest. While it did double the controller’s area, 
the amortized effective area in the system grew by roughly 7%.   

Categories and Subject Descriptors 
B.3.m [Memory Structures]: Miscellaneous 

B.5.1 [RTL Implementation]: Design – Control design.  

General Terms 
Performance, Design, Verification 

Keywords 
Multi-core processors, Memory Systems, Reconfigurable 
Architecture, Memory Access Protocol, Protocol Controller, 
Cache Coherence, Stream Programming, Transactional Memory. 

1. INTRODUCTION 
With the advance to the multi-core era and replication of 
processor cores on a single die, the surrounding “un-core” logic, 
such as cache, memory controllers, and network interfaces, is 
growing in importance. In particular, implementing the necessary 
data sharing and communication protocols for multi-core 
processors involves handling a large amount of transient state that 
is not necessarily visible to the high-level protocol. As a result, 
the design of controllers that implement such protocols is usually 
complex, because they are part of the large distributed on-chip 
memory system and must provide global guarantees on 
consistency, ordering and forward progress. Moreover, since the 
system’s programming model defines the data sharing and 
communication semantics and the realization of this model is 
often tailored to a specific system, the implementation differs 
from one system to another, preventing controllers from being 
reused. 

To address these issues, this paper proposes a microarchitectural 
framework for the design of on-chip memory systems and, in 
particular, protocol controllers. This approach is based on 
breaking down the functionality of the on-chip memory system 
into a set of basic operations and providing the necessary means 
for combining and sequencing these operations. The system is 
programmed to perform protocol actions in the memories and 
controllers by appropriately combining these basic operations. 
Having such a framework in place provides multiple benefits: 
first, it reduces the design time for creating and implementing 
controllers for a specific protocol, by converting the hardware 
design problem into a software programming problem. 
Programmed values in the memory system are converted into 
constants and propagated into the logic at synthesis time, 
facilitating generation of controllers for multiple protocols. 
Second, it enables run-time alteration of the memory system 
behavior to fix or patch design errors after fabrication, even after 
deployment of the system, as well as enabling run-time tuning of 
the memory system performance. Third, a direct implementation 
of the RTL for the whole framework along with the “program 
storage” effectively creates a flexible, polymorphic memory 
system that can support a broad class of memory models. Last but 
not least, this framework provides a platform for developing 
future tools such as protocol checkers or optimizers for increasing 
the verification coverage and performance of the generated 
system. 
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To validate this approach, we directly implemented our 
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framework as a configurable controller along with eight Tensilica 
 [15] [16] processors to create a polymorphic CMP, which we 
fabricated using ST 90nm CMOS technology.  Before the chip 
was taped out, we validated the resulting RTL design (and 
associated memory system configurations) to ensure that the 
system would correctly implement three distinct memory models: 
cache-coherence shared memory, streaming and transactional 
memory.  The overhead for using this design approach was small. 
For all three memory systems, performance with the generated 
protocol controller is within 20% of the performance of an 
idealized controller, where internal protocol operations were 
assumed to take place at zero latency. The area overhead of 
directly implementing the flexible controller was modest, less 
than twice the area of a controller optimized at design time for a 
specific protocol. While this overhead might seem large, the 
resulting protocol controller area was only 14% of the core area. 

The next section reviews some of the previous work on memory 
system design and programmable protocol controllers, focusing 
on the work relevant to Smart Memories project  [8] that we build 
upon. Section 3 then presents our memory system architecture, 
and Section 4 describes the overall organization and 
microarchitecture of the protocol controller that makes everything 
work. Section 5 then maps a number of distinct memory models 
onto this architecture, and Section 6 evaluates the performance 
and area overhead of this approach to controller design.  

2. BACKGROUND  
All memory access protocols at the hardware implementation 
level perform a limited set of operations: they move data from one 
physical location to another; they associate and update state 
information with data that guides the data movement operations, 
and they preserve necessary ordering between different operations 
in order to conform to the high-level protocol properties. 
Controllers, as the primary engines executing protocol actions in 
the memory system, are responsible for completing these actions, 
and have been extensively studied in the literature.  

2.1 Controller Design 
There have been many proposals for designing high-performance, 
low-latency protocol controllers, especially for coherence 
protocols, and several micro-architectural techniques for both 
hard-wired and programmable controllers have been developed 
 [24] [25] [26]. Particularly, programmable protocol controllers 
have been the subject of extensive research and have successfully 
been implemented in many academic and industrial projects: 
FLASH  [13], Typhoon  [12], Impulse  [18], S3.mp  [19] and 
Alewife  [20] are just a few examples. While our philosophy 
toward programmable controllers is similar to this previous work, 
and we leverage some of their approach (event driven execution, 
dispatch on message types, etc.), our goal is to create a 
programmable memory hierarchy all the way down to the 
processor’s first level cache interface. Hence protocol controllers 
in our system have to sustain a very high throughput and are very 
latency sensitive. Therefore using a general-purpose processor for 
executing protocol actions (the approach of the MAGIC chip in 
FLASH, or the NP in Typhoon) would not be adequate. 

It is not surprising that commercial multi-core processors 
primarily use hardwired solutions for control of their on-chip 
memory resources, although these solutions often include the 

same kind of message driven execution seen in the programmable 
machines. For instance, Niagara's memory controller uses one or 
two coded packets (a kind of microcode) sent across a crossbar to 
manage the transaction according the packet's code  [29]. 

In addition, in many controllers complex operations are broken 
into many smaller operations. In the controller for AMD's 
Opteron processor, a single read transaction generated du to a 
cache miss might result in thirteen messages from three different 
message classes: two Request messages, three Probe messages, 
and eight Response messages  [28]. Similarly, the IBM Cell 
processor's Memory Flow Controller (MFC) transfers data to and 
from each compute element by way of a set of primitive 
commands  [27]. 

Another old controller idea that we use is the notion of patchable 
microcode. The use of microcode for patching and detecting 
design errors in the processor and memory system has also been 
proposed both in industry and academia and is widely used in 
processors  [21] [22] [23]. Creating a hardware framework for the 
on-chip memory system that we can microcode, allows us to 
implement the protocols in software, which also allows to use 
software patches to fix memory system errors after deployment. 

2.2 Protocol Design 
There has also been a lot of work in the literature in creating 
novel cache/local memory systems. Discussions about message 
passing and shared memory protocols have given way to proposed 
new programming models such as streams and Transactional 
Memory (TM). Streaming systems such as Imagine  [3] and IBM 
Cell  [4] share some characteristics with message passing 
machines, in that all communication is explicit, and also share 
some traits of shared memory machines, in that they generally 
have a shared address space and use high performance, low 
latency networking to connect the processors to each other and to 
the memory.  However, the total local memory is often small, so 
these machines implement their entire local memory in fast on-
chip SRAM, and forgo building a cache hierarchy entirely. To fill 
and spill this local memory, implementations often contain 
sophisticated DMA engines that support gather/scatter operations 
as part of the memory hierarchy  [3] [4].  

On the cache coherent front, modern shared memory machines are 
moving to support a larger number of threads to help hide 
memory latency  [1] [2], which requires the memory system to 
sustain and track several memory requests from different threads 
in order to tolerate long memory access latencies. There has also 
been a lot of research in extending speculative execution 
techniques to the memory system. Thread Level Speculative 
(TLS) systems such as Hydra  [5] and Stampede  [6] extend 
conventional memory systems with mechanisms to track and 
buffer results of speculative computations and to detect logical 
data dependencies between speculative threads. Most recently 
Transactional Memory (TM) has generalized and formulated 
these systems into a transactional programming model 
 [7] [10] [14]. There have been many proposals for implementing 
transactional systems, in hardware. Since any implementation 
must either buffer the speculative values that are written, or the 
old values that have been overwritten by speculative data, the 
hardware must store a significant amount of information to track 
dependencies and it must also support inter-transaction 



communication (such as write-set broadcasting) to commit or 
flush data. We use all of these memory models to demonstrate the 
capabilities of our memory control framework. 

2.3 Smart Memories 
Our work on creating a protocol controller framework builds upon 
ideas from polymorphic computing, which tries to map different 
programming models to a malleable hardware substrate. For 
example, the TRIPS polymorphic architecture can be configured 
to better leverage instruction, data or thread level parallelism  [9]. 
The Stanford Smart Memories (SM) project took a different 
approach where they directly mapped a stream machine and a 
thread-level speculative machine on a reconfigurable hardware 
substrate  [8]. We build on the SM work, which showed how 
storing a small number of state / meta-data bits and updating them 
on each access could maintain state information needed for a wide 
variety of memory models. Unfortunately this work focused on 
the processor “Tile” and did not explain how to flexibly 
implement the different protocols that are needed for these 
different memory models. The approach in this paper addresses 
this limitation, providing a method of constructing the needed 
protocol controllers. Since our controllers assume local memories 
contain state similar to what was described in the Smart Memories 
system, we review this information next. 

As described in  [8] the basic unit of the architecture is the Tile. 
Each Tile contains two processor elements, 16 local memory 
blocks and a crossbar interconnect to connect memories to 
processors and the outside world (Figure 1). The memory mats 
are the basic storage element in the system and are connected 
through an Inter-Mat Communication Network (IMCN)—a fast 
path for exchanging memory control and state information.  

Memory mats are aggregated (using IMCN) to implement 
composite storage structures such as instruction and data caches 
(Figure 1c). Meta-data bits in the tag storage are used to encode 

state information according to the protocol, such as cache line 
state and LRU information in shared memory model, or a 
transaction’s read and write sets in a TM model.  When 
implementing a streaming model, the memory mats are 
aggregated into addressable scratchpads. Moreover, having 
head/tail pointers in the memory mats allows them to efficiently 
implement hardware FIFOs, which can be used to capture 
producer-consumer locality between processors. It also can 
simplify some protocol/runtime operations. For example, 
hardware FIFOs are used to augment cache structures in order to 
store addresses of a transaction’s write set, which is used at 
transaction commit time for broadcasting address/data pairs  [10]. 

The protocol controller described in the next section assumes that 
local memories have the needed meta-data bits to store protocol 
state and also have simple hardware that can modify the state, if 
needed, on each access.  We also assume that the local memory or 
processor can create a small number of request types when it 
needs help from the protocol controller. 

3. PROTOCOL CONTROLLER 
FRAMEWORK 
In our attempt to create a design framework for memory systems, 
we associated meta-data with the local storage and decided to take 
a RISC-like approach for the protocol controller design: instead of 
providing complex pre-defined operations, we provided a small 
number of basic operations and implemented complex data and 
state manipulations by executing a set of these basic operations. 
As was mentioned earlier, a general-purpose RISC processor 
would be too slow, but fortunately only a small number of 
primitive operations are needed to support all the models that we 
investigated, and these could be accomplished in a small number 
of programmable FSM/pipelined engines.  

Figure 1. Memory organization of the SM Tile. (A) Block diagram of the memory mat. (B) Tile crossbar and IMCN. 
(C) Example cache configuration. 



Table 1. Similarities between actions taken by different memory protocols 

This approach works because across many different memory 
models the functions of all protocol controllers are very similar: at 
their core all protocol engines track and move data. One can 
recognize such similarity at two levels: at the high level, many 
protocol actions that implement a memory model have the same 
conceptual functionality. Table 1 lists a few of these actions, 
indicating which other protocol actions they resemble.  

# Model Protocol Action Similar to  

At a lower level, the hardware operations that are combined to 
form the protocol actions are also the same. These primitive 
operations can be categorized into five different classes: 

 Data/State read and write – Accessing data and state storages 
for performing data transfers, state inquiries and updates, 
according to the specific protocol action 

 Communication – Sending and receiving messages over 
available communication infrastructure 

 Ordering – Guaranteeing a specific order between requests 
from same processor or different processors, according to the 
specific protocol or memory consistency model 

 Tracking – Keeping track of the outstanding requests in the 
system so that each request can be completed after 
corresponding reply is received. This is also necessary for 
enforcing ordering between different requests 

 Association and interpretation of state information – This is 
the major differentiating factor among memory models; 
indicates how the state associated with data is interpreted and 
controls the flow of operation according to the specific 
protocol 

These operations are essentially the RISC instructions, the basic 
blocks, for composing protocol actions. One can describe the 
activities occurring in the memory system hardware upon 
receiving any protocol request/reply message as a composition of 
the above operations in an appropriate sequence.  We implement 
these operations in two structures, the local memory hardware 
which is associated with each processor, and the protocol 
controller that connects a number of local memory hardware units 
to the network.  Having described the local memory earlier, we 
describe the protocol controller next. 

4. PROTOCOL CONTROLLER DESIGN 
In our framework, processors and main memory controllers 
communicate with the protocol controller by sending and 
receiving request/reply messages. Each request message when 
received invokes a “subroutine” in the controller that executes a 
series of basic memory operations. One creates a memory model 
by defining the set of messages that the protocol controller needs 
to handle, and then composing the required actions for each 
message from the basic operations described above. 

4.1 Organization 
Figure 2 illustrates the internal organization of the protocol 
controller. The execution core of the controller consists of three 
major units: Tracking and Serialization (T-Unit) serves as the 
entry point to the execution core of the controller. It stores and 
retrieves tracking information of the outstanding memory requests 
in the appropriate tracking structures. The Miss Status Holding 
Registers (MSHR) provide storage for cache misses and memory 
operations that require some form of ordering. It supports a 
lookup operation based on a request’s address or source processor 

1 DMA block read (main memory to local memory) 5 Streaming  

2 DMA block write (local memory to main memory) 6 

3 DMA transfer from a local memory to another 7 

4 DMA indexed scatter 10 

5 Any Cache refill 1 

6 Writeback caches Write-back (cache spill) 2 

7 Invalidation based Cache to cache transfer 3 

Coherent 
Shared 
Memory 

8 Invalidation based Snoop, coherence degrade/invalidate 11, 12 

Update based Updating word in destination caches 10 9 

10 TCC  [10] Commit - updating data in other caches and main memory 4, 9 HTM 

11 TCC  Conflict detection (lazy) - checking for violation in destination cache upon commit 8 

12 LogTM  [11] Conflict detection (eager) - checking for violation upon receiving coherence 
request 

8 

DMADMA

T-Unit
(Tracking & Serialization)

S-Unit
(State update)

D-Unit
(Data movement)

MSHR USHR Line 
Buffers

Processor Interface Network Interface

DMA

INT-Unit
(Interrupt)

To/From Tile Memory Mats

To/From Tile 
Processors

To/From NetworkTo Tile
Interrupt interface

Figure 2. Organization of the protocol controller 



Coherence Request Message:

T-Unit: Read-Exclusive Routine 

S-Unit: Snoop Routine

D-Unit: Line Read Routine

N-Unit (TX): Coherence Reply Routine

Read Word 1

Read Word 2

...

Call (N-Unit :: Coherence Reply)

number, which is used to detect conflicting requests and enforce 
serialization. The Uncached-request Status Holding Registers 
(USHR), on the other hand, keep the tracking information of 
requests that do not require such serialization, for instance DMA 
transfers. Tracking resources are sized according to the expected 
occupancy of the controller. For example, one can determine 
appropriate sizes by simulating the controller with an infinite 
number of tracking registers and statistically determining the 
minimum required size for a given performance level.  

The State Update (S-Unit) performs read, write and manipulation 
of the state information associated with data blocks, such as cache 
tags and cache line states. It has a dedicated port to Tile memory 
mats in order to read and write data and meta-data bits. The Data 
Movement Engine (D-Unit) provides necessary functions for 
reading and writing data blocks from memory mats into an 
internal data buffer (Line Buffer). It also checks and updates 
meta-data bits that are associated with an individual data word. 

Communication primitives are implemented in processor and 
network interface units. The Processor interface unit (P-Unit) 
receives and decodes request messages from all processors 
sharing this controller and passes them to the execution core. The 
Network interface unit (N-Unit) consists of separate transmitter 
and receiver logic that composes and decodes messages that are 
communicated over the system network. It has necessary 
interfaces to the line buffer to read and write blocks of data that 
are transmitted or received over the network. 

The controller is also equipped with independent DMA channels, 
which are programmable request generator engines. Each channel 
is associated with a processor supported by the controller and is 
programmed by writes into control registers. A dedicated interrupt 
unit (INT-Unit) can send individual interrupt requests to any 
processor in the group when necessary. Processors can also 
generate interrupts for one another by writing into control 
registers in the INT-Unit. 

4.2 Programming 
The conceptual programming model of the controller is the 
execution of a set of subroutines triggered by an input message to 
the controller. Each subroutine comprises a few basic operations 
and is executed by one of the internal functional units. After 
executing the subroutine, each functional unit invokes another 
subroutine in the next functional unit(s) by passing an appropriate 
request type to it. Subroutines are chained to one another until 
processing of the input message is completed. Sequential 
execution semantic is maintained within each subroutine. 

Figure 3 depicts a conceptual execution model in the controller, 
presenting the steps of processing a coherence request message. 
The request message invokes a coherence request subroutine in 

the network receive unit. This subroutine calls the Read-Exclusive 
subroutine in the T-Unit. After performing necessary serialization 
actions, this subroutine calls the Snoop subroutine in the S-Unit to 
snoop cache tags. It is also possible for a functional unit to call 
two or more subroutines in different units concurrently to 
parallelize processing of different parts of the same request 
message. Processing ends after the the N-Unit transmitter sends a 
coherence reply message to the main memory controller.  

4.3 Micro-architecture 
The functional units form a macro-level pipeline to process 
incoming messages. Requests are passed from one functional unit 
to another after the executing subroutine completes its necessary 
steps and invokes the next subroutine. Each of the functional units 
is organized as a shallow pipeline. The pipelining allows the unit 
to overlap processing steps of different requests internally and 
further increases the throughput of the controller. 

The first stage of each unit’s pipeline contains a configuration 
memory that holds the controlling microcode for the pipeline. 
This memory is indexed by the type of the request passed to the 
unit and dictates all the operations that are performed in that unit. 
At the output of the unit a shallow queue ensures that the pipeline 
can be completely drained and all the in-flight operations can be 
completed. An arbiter located in front of each unit decides what 
request is passed into the unit at each clock cycle.   

Figure 4 shows the S-Unit pipeline as an example. Configuration 
memory is located at the first stage of the pipeline (Access 
Generator). It generates necessary signals for accessing memory 
mats in the Tiles. In addition to identifying mats that need to be 
accessed, these access signals individually control operations on 
the data and meta-data arrays, as well as the read-modify-write 
logic that allows the mats to update their own state bits. Up to two 
mat accesses can be generated in the AG stage. The S-Unit can 
send a mat access to a single Tile, all Tiles simultaneously, or can 
send one access to a specific Tile and another access to the 
remaining Tiles. Two pipeline stages are used for accessing the 
memory mats which include the roundtrip time over the Tile 
crossbar. At the end of the pipeline a lookup table serves as the 
decision-making logic. It analyzes the information retrieved from 
memory mats and generates necessary requests for next functional 
unit. 

Figure 5 shows the micro-architecture of the data movement 
engine. It consists of four parallel data pipes, one connected to 
each Tile. Each data pipe has its own input and output queues. A 
dispatch unit decodes an incoming request and uses a lookup table 
to issue necessary operations to each data pipe. For example, a 
block transfer request is converted into a block read operation on 
the source pipe and a block write operation on the destination 

Figure 3. Conceptual execution model of the protocol controller 
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pipe. All data pipes are connected to the line buffer and data is 
staged through the line buffer between the two pipes. A small 
FSM generates necessary replies for the processors if the data 
transfer was due to a processor’s request. 

Each data pipe has four stages and is very similar to the S-Unit: 
the Access Generator has a configuration memory that generates 
the necessary memory mat access signals. Condition Check logic 
is a lookup table that compares the meta-data bits collected from 
the mats with predefined patterns and generates necessary 
subroutine calls for subsequent units. Data pipes supports 32-bit 
(single mat) and 64-bit (double mat) accesses. 64-bit accesses use 
two adjacent memory mats for faster data transfers.  

4.4 Avoiding Deadlocks 
Deadlocks are avoided in the system by carefully considering a 
set of constraints. First, the controller provides some deadlock 
avoidance guarantees in the hardware. The output queue at the 
final stage of each functional unit guarantees that the in-flight 
requests in that pipeline can be completed without needing to stall 
the functional unit. The arbiter in front of each unit considers 
necessary buffering space in the output queue and throttles the 
input requests if there is no buffering space available. 

The network interconnect supports multiple virtual channels. 
Priorities for processing virtual channel messages are adjustable at 
the network interfaces. However, it is the designer’s responsibility 
to distinguish between protocol request and reply messages  [17] 
and assign them to different virtual channels. Since the 
connection between the S-Unit and the D-Unit forms a loop inside 
the controller, there is a potential that the controller can live-lock, 
where subroutines in the S-Unit and D-Unit invoke each other 
repeatedly. Once again it is the responsibility of the protocol 

designer to ensure that the controller is programmed such that all 
possible subroutine chains eventually terminate. Live-lock 
avoidance can be guaranteed by simply forbidding subroutine foo 
in, for example, the D-Unit from calling subroutine bar in the S-
Unit that might possibly invoke foo. In the controllers we have 
implemented, this has not been a difficult constraint to satisfy.  
An overview of these protocols is described in the next section. 

5. MEMORY MODEL IMPLEMENTATION 
When implementing a memory protocol, operations are divided 
between different parts of memory system, namely processor 
interface logic, local memory mats, protocol controller and main 
memory controller. These components communicate by sending 
and receiving messages. Table 2 lists and describes all the 
messages exchanged between protocol controller and processors 
as well as main memory controller for our three different memory 
models. In this section we demonstrate how the protocol 
controller is programmed to handle a few of these messages. 

Figure 6 shows an example of an indexed DMA scatter operation 
to main memory. First, the DMA channel issues an index read 
operation that returns the address of the destination memory to it. 
After identifying the destination, the DMA channel generates 
line-size requests for transferring a single data element (source 
address, element size and number of elements are programmed by 
writing DMA control registers). The T-Unit allocates a tracking 
register and stores tracking information for the operation and 
passes it to the D-Unit. The D-Unit extracts the appropriate 
memory block from the source memory into the line buffer entry 
and requests the N-Unit to send scatter message to main memory. 
The N-Unit reads the data from the line buffer entry and sends it 
over the network to the main memory controller. After data is 

DispatchArb
From 
Other 
Units

Data Pipe 1

Data Pipe 2

Data Pipe 3

Processor 
Reply FSM

F
F

To Other 
Units

F
F

Access 
Generator

F
F

F
F

Condition 
Check

To/From Tile Memory Mats

To Line Buffer 
(Read port)

From
Line Buffer 

To Line Buffer 
(Write port)

Data Pipe 0

Figure 5. Data movement engine (D-Unit) 

A c c e s s  
G e n e ra to r

F ro m  o th e r  
u n its

A rb
D e c is io n  
M a k in g

T o  o th e r  
u n its

T o /F ro m  T ile s
(M e m o ry  M a ts )

A G M 1 M 2 D M

Figure 4. S-Unit pipeline 



written to the destination address, a scatter reply message 
confirms completion of the operation. This message is decoded by 
the network interface unit and is passed to the T-Unit. The T-Unit 
retrieves the tracking information, releases the tracking register 
and sends an acknowledgement to the originating DMA channel. 

Figure 7 shows another example of servicing a cache miss request 

from processor. A cache miss is received and decoded by the 
processor interface unit and is then passed to the tracking unit. 
The T-Unit looks up the tracking information of outstanding 
cache misses to serialize the cache miss properly against prior 
requests. If no collision is found, it allocates an MSHR entry and 
saves the tracking information of the cache miss. The cache miss 
is then passed to the S-Unit, which evicts a cache line in the 

Model Source Message Description 

Cache Miss Read/Write miss request from a processor 

Upgrade Miss Upgrade miss request (request for ownership) 

Prefetch Prefetch for read or write from a processor 

Processor 

Cache Control Invalidate/Writeback a specific cache line 

Coherence Request Read, Read-Exclusive or Invalidate request for specific cache line 

Refill Returns cache line data to be refilled 

Shared Memory 

(MESI coherence) 

MC 

Upgrade Returns cache line ownership (no data) 

Processor Un-cached Access Direct access of a memory in another Tile or Quad 

Index Read Read of index memory (indexed transfers) 

DMA Gather Request for gathering data from another Quad or main memory 

DMA Channel 

DMA Scatter Request for scattering data to another Quad or main memory 

Gather Reply Reply for a gather request, contains actual data 

Scatter Reply Acknowledgement for a previous scatter 

Un-cached Reply Reply for direct memory access from processor 

Net Gather Gather request from another Quad’s DMA 

Streaming 

MC / Another 
Quad 

Net Scatter Scatter request from another Quad’s DMA 

Cache Miss Read/Write miss request from a processor Processor 

FIFO Full Address FIFO full indicator, overflow occurred 

FIFO Read Read store address from FIFO 

Commit Read Read committed data from source cache 

DMA Channel 

Commit Write Write committed data to other caches 

Refill Returns cache line data to be refilled 

Transactions 

(TCC  [10]]) 

MC 

Net Commit Committed data word from another Quad’s transaction 

Table 2. Request/Reply messages handled by protocol controller (MC=Main Memory Controller) 

T-Unit:
Scatter

N-Unit:
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N-Unit:
Scatter Reply

T-Unit:
Scatter Reply
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(Main mem controller)
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T-Unit
Index Read:
1-Call S-Unit::Index Read
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1-Allocate USHR
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1-Retrieve tracking info
2-Send Ack to DMA
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Figure 6. Steps for processing and indexed DMA operation 



source cache to open up space for the cache refill. The S-Unit 
simultaneously snoops the tags of caches in other Tiles to enforce 
coherence properties and to consider the possibility of a cache-to-
cache transfer. The Data movement engine performs the 
necessary writeback or cache-to-cache transfer based on the 
decision made in the S-Unit. The Network interface sends the 
write back request to main memory controller as well as the cache 
miss request. Refills are handled similarly. 

6. EVALUATION 
We evaluated the performance overhead of our protocol controller 
framework by simulating our reconfigurable CMP, which directly 
implemented it. The processor simulator and software tool chain 
were supplied by Tensilica  [15] [16] while the memory system and 
interconnect simulator was developed using the Xtensa Modeling 

Protocol (XTMP). In order to evaluate the performance impact of 
the framework, we back-annotated the memory system simulator 
with latency numbers extracted from the actual system RTL, and 
compared the results to simulations where all internal controller 
operations took zero cycles, but external operation timing (e.g. 
mat read) remained unchanged.  For correctness checking, the 
RTL was extensively checked using both applications and random 
stress cases as part of the tape-out flow. 

Table 3 lists the benchmark applications for three different 
models that we used to evaluate system performance. Table 4 
describes system parameters used for performance simulations. 

Figure 8 shows speedups for three different memory models. For 
almost all benchmarks, our system shows good performance 
scaling, achieving at least 50% parallel efficiency. In cache 
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Figure 7. Steps for processing a cache miss request 

Table 3. Benchmark applications 

Model App. Problem Size Description 

barnes 16K particles Barnes-Hut hierarchical N-body method Cache coherence 

mp3d 30K particles Rarefied fluid flow simulation 

fmm 16K particles  N-body adaptive fast multi-pole method 

216 data points fft Complex 1-D Fast Fourier Transform 

mpeg2enc 352x288 CIF image MPEG2 video encoder 

179.art SPEC reference data set Image recognition Streaming 

mpeg2enc 352x288 CIF image MPEG2 video encoder 

219 32-bit keys bitonic Bitonic sort  

depth 352x288 CIF image Stereo depth extraction 

barnes 8K particles Barnes-Hut hierarchical N-body method Transactions 

mp3d 30K particles Rarefied fluid flow simulation 



Table 4. System parameters used for simulation 

coherent mode, speedups range from 18 to 27 for a 32-processor 
configuration; in streaming mode, speedups range from 18 to 26. 
The exception is mp3d in transactional mode, which does not 
scale beyond 8 parallel processors. The reason for this is frequent 
accesses to shared data structures, which cause transaction 
dependency violations and transaction re-execution. On the other 
hand, in a cache-coherent version of mp3d, these accesses are not 
protected by locks and as a result they cause data races. Since 
mp3d performs randomized computation and reports results only 
after statistical averaging of many steps of computation, the data 
races should not alter the results significantly. The reason for this 
uncommon programming decision is performance: in 
conventional cache-coherent architectures, fine-grain locking is 
expensive. 

To estimate the performance overhead of reconfigurability, we 
repeated the same set of simulations on a "zero latency" model, 
where internal protocol operations take zero cycles, and 
calculated the difference with the real case. Note that this 
difference is an upper bound for the overhead estimate, because in 
any realistic  

fixed function design the protocol controller latency cannot be 
zero. Figure 9 illustrates the performance scaling of benchmark 
applications for both real and “idealized” controllers, with Table 5 

summarizing this information. For each benchmark the overhead 
is averaged for system configurations ranging from 1 to 32 
processors. In most cases the difference is less than 20%. The 
exception is the cache-coherent version of mp3d. The reason for 
this is once again frequent accesses to shared data structures 
without locks which cause frequent data races and put significant 
stress on the memory system. On the other hand, as one might 
expect, streaming applications are least sensitive to the controller 
latencies because of their latency tolerant nature. 

The 8-processor polymorphic CMP test chip parameters are 
summarized in Table 6. The test chip contains 4 Tiles, each with 2 
Tensilica processors, and a shared protocol controller. The total 
chip area is 60.5 mm2, and the core area, which includes tiles and 
protocol controller, is 51.7 mm2 (Table 7). 

To evaluate the hardware overhead of building a reconfigurable 
protocol controller rather than using it to generate the desired 
controller, we performed a series of simple experiments, in which 
we tailored the protocol controller to a specific memory protocol 
by converting all the internal configuration memories into 
constant values. Our synthesis tool then removed the memories 
and propagated the constant values into the logic, eliminating 
unnecessary parts and creating an “instance” of the controller 
tailored to that specific memory protocol. Figure 10 compares the 

I-cache 8KB, 2-way associative, 32B line size, 1 port (per processor) Shared 
Memory 

D-cache 16KB, 2-way associative, 32B line size, 1 port (per processor) 

I-cache 8KB, 1-way associative, 32B line size, 1 port (per processor) Streaming 

D-cache 4KB, 1-way associative, 32B line size, 1 port (per processor) 

Local Memory 20KB per processor, 4KB shared between all processors 

I-Cache 16KB, 2-way associative, 32B line size, 1 port (shared between two processors)  TCC 

D-Cache 32KB, 4-way associative, 32B line size, 1K entry Store Address FIFO, 1 port (shared) 

Local Memory  4KB, shared between all processors 

Protocol controller  28 MSHRs (24 for processor requests, 4 for coherence requests) Common 

L2-cache (unified) 4MB, 4-way, 32B line size, 10 cycle latency, banked among main memory controllers 

Switch latency 5 cycles 

Memory controller 2 controllers per Quad, 32 MSHRs each 

Main memory 100 cycle access latency 
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area of the baseline controller with the specialized instances. The 
average reduction is around 50%. As illustrated, almost half the 
area savings is achieved by removing the configuration memories 
(flip-flops in Figure 10). This large area overhead was mainly 
caused by using flops to store the controller microcode. Future 
designs could reduce this overhead by 3x, which would greatly 
reduce the area cost of programmability. Even with the 50% 

(c) Streaming 

(a) Coherent 
shared memory 

 

(b) Transactions 

Figure 9. Performance comparison between real (dark) and idealized controllers (light).  

Model App. Overhead % Average % 

barnes 24.29 

mp3d 48.59 

fmm 6.93 

fft 10.64 

Cache 
coherence 

mpeg2enc 14.51 

20.99 

179.art 7.58 

mpeg2enc 14.14 

bitonic 1.88 

Streaming 

depth 0.06 

5.91 

barnes 8.33 Transactions 

mp3d 20.03 

14.18 

 

Table 5. Performance overhead 

Technology ST 90nm-GP (General Purpose) 

Table 6. Test chip parameters 

Supply voltage 1.0 V 

I/O voltage 2.5 V 

Dimensions 7.77mm × 7.77mm 

Clock cycle time 5.5 ns (181 MHz) 

Transistors  55 M 

Gates 2.9 M (500K in protocol controller, 600K in 
each Tile) 

Memory macros 128 (32 per Tile) 

Pins 202 signal and 187 power/ground pins 

 

Unit mm2 % 

Tile  10.0 16.5 

CC 7.2 11.9 

All Tiles 40.0 66.1 

Routing channels 4.5 7.5 

Pad ring 8.8 14.6 

Core 51.7 85.4 

Chip 60.5 100.0 

Table 7. Test chip area breakdown 



overhead, the percentage of the area consumed by the protocol 
controller is relatively small: around 12% of the test chip area and 
less than 14% of the core area (Table 7). Thus, protocol 
programability area overhead is less than 7% of the total system 
area. 

7. CONCLUSIONS 
As we move towards CMPs with many replicated cores, designing 
the memory system and the associated communication interfaces 
and protocols becomes one of the most important and difficult 
microarchitecture tasks. We provide a framework that helps 
address this problem. By creating a standard set of hardware units 
with simple operations, we convert this hardware design problem 
to a software programming problem. By defining the messages 
that each hardware unit must handle and the sequence of steps, 
the “subroutine,” that needs to be run for each message, one 
completely defines the protocol’s operation down to the RTL 
level. If we are correct in that this framework allows one to create 
any memory model, its greatest strength will be moving memory 
design and verification conceptually up a level. Instead of 
worrying about gates, a designer would only need to worry about 
the state that needs to be stored, and the operations that need to be 
executed. The overhead of using this method appears modest. 
Compared with a customized protocol controller with no internal 
delay the performance difference for  most applications was less 
than 20%. Somewhat surprisingly, our results indicate it is 
feasible to directly implement the programmable framework on 
silicon. While that doubles the controller area, the controller 
consumes only 14% of the core area. 
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