
 A Memory System Design Framework:
Creating Smart Memories

Amin Firoozshahian*, Alex Solomatnikov*

Hicamp Systems, Inc.

{aminf13, solomatnikov}@gmail.com

Ofer Shacham, Zain Asgar, Stephen
Richardson, Christos Kozyrakis, Mark Horowitz

Stanford University

{shacham, zasgar, steveri, kozyraki,
horowitz}@stanford.edu

ABSTRACT
As CPU cores become building blocks, we see a great expansion
in the types of on-chip memory systems proposed for CMPs.
Unfortunately, designing the cache and protocol controllers to
support these memory systems is complex, and their concurrency
and latency characteristics significantly affect the performance of
any CMP. To address this problem, this paper presents a
microarchitecture framework for cache and protocol controllers,
which can aid in generating the RTL for new memory systems.
The framework consists of three pipelined engines—request-
tracking, state-manipulation, and data movement—which are
programmed to implement a higher-level memory model. This
approach simplifies the design and verification of CMP systems
by decomposing the memory model into sequences of state and
data manipulations. Moreover, implementing the framework itself
produces a polymorphic memory system.

To validate the approach, we implemented a scalable, flexible
CMP in silicon. The memory system was then programmed to
support three disparate memory models—cache coherent shared
memory, streams and transactional memory. Measured overheads
of this approach seem promising. Our system generates
controllers with performance overheads of less than 20%
compared to an ideal controller with zero internal latency. Even
the overhead of directly implementing a fully programmable
controller was modest. While it did double the controller’s area,
the amortized effective area in the system grew by roughly 7%.

Categories and Subject Descriptors
B.3.m [Memory Structures]: Miscellaneous

B.5.1 [RTL Implementation]: Design – Control design.

General Terms
Performance, Design, Verification

Keywords
Multi-core processors, Memory Systems, Reconfigurable
Architecture, Memory Access Protocol, Protocol Controller,
Cache Coherence, Stream Programming, Transactional Memory.

1. INTRODUCTION
With the advance to the multi-core era and replication of
processor cores on a single die, the surrounding “un-core” logic,
such as cache, memory controllers, and network interfaces, is
growing in importance. In particular, implementing the necessary
data sharing and communication protocols for multi-core
processors involves handling a large amount of transient state that
is not necessarily visible to the high-level protocol. As a result,
the design of controllers that implement such protocols is usually
complex, because they are part of the large distributed on-chip
memory system and must provide global guarantees on
consistency, ordering and forward progress. Moreover, since the
system’s programming model defines the data sharing and
communication semantics and the realization of this model is
often tailored to a specific system, the implementation differs
from one system to another, preventing controllers from being
reused.

To address these issues, this paper proposes a microarchitectural
framework for the design of on-chip memory systems and, in
particular, protocol controllers. This approach is based on
breaking down the functionality of the on-chip memory system
into a set of basic operations and providing the necessary means
for combining and sequencing these operations. The system is
programmed to perform protocol actions in the memories and
controllers by appropriately combining these basic operations.
Having such a framework in place provides multiple benefits:
first, it reduces the design time for creating and implementing
controllers for a specific protocol, by converting the hardware
design problem into a software programming problem.
Programmed values in the memory system are converted into
constants and propagated into the logic at synthesis time,
facilitating generation of controllers for multiple protocols.
Second, it enables run-time alteration of the memory system
behavior to fix or patch design errors after fabrication, even after
deployment of the system, as well as enabling run-time tuning of
the memory system performance. Third, a direct implementation
of the RTL for the whole framework along with the “program
storage” effectively creates a flexible, polymorphic memory
system that can support a broad class of memory models. Last but
not least, this framework provides a platform for developing
future tools such as protocol checkers or optimizers for increasing
the verification coverage and performance of the generated
system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-60558-256-0/09/06…$5.00.

To validate this approach, we directly implemented our

*This work was accomplished while the authors were attending
Stanford University

framework as a configurable controller along with eight Tensilica
 [15] [16] processors to create a polymorphic CMP, which we
fabricated using ST 90nm CMOS technology. Before the chip
was taped out, we validated the resulting RTL design (and
associated memory system configurations) to ensure that the
system would correctly implement three distinct memory models:
cache-coherence shared memory, streaming and transactional
memory. The overhead for using this design approach was small.
For all three memory systems, performance with the generated
protocol controller is within 20% of the performance of an
idealized controller, where internal protocol operations were
assumed to take place at zero latency. The area overhead of
directly implementing the flexible controller was modest, less
than twice the area of a controller optimized at design time for a
specific protocol. While this overhead might seem large, the
resulting protocol controller area was only 14% of the core area.

The next section reviews some of the previous work on memory
system design and programmable protocol controllers, focusing
on the work relevant to Smart Memories project [8] that we build
upon. Section 3 then presents our memory system architecture,
and Section 4 describes the overall organization and
microarchitecture of the protocol controller that makes everything
work. Section 5 then maps a number of distinct memory models
onto this architecture, and Section 6 evaluates the performance
and area overhead of this approach to controller design.

2. BACKGROUND
All memory access protocols at the hardware implementation
level perform a limited set of operations: they move data from one
physical location to another; they associate and update state
information with data that guides the data movement operations,
and they preserve necessary ordering between different operations
in order to conform to the high-level protocol properties.
Controllers, as the primary engines executing protocol actions in
the memory system, are responsible for completing these actions,
and have been extensively studied in the literature.

2.1 Controller Design
There have been many proposals for designing high-performance,
low-latency protocol controllers, especially for coherence
protocols, and several micro-architectural techniques for both
hard-wired and programmable controllers have been developed
 [24] [25] [26]. Particularly, programmable protocol controllers
have been the subject of extensive research and have successfully
been implemented in many academic and industrial projects:
FLASH [13], Typhoon [12], Impulse [18], S3.mp [19] and
Alewife [20] are just a few examples. While our philosophy
toward programmable controllers is similar to this previous work,
and we leverage some of their approach (event driven execution,
dispatch on message types, etc.), our goal is to create a
programmable memory hierarchy all the way down to the
processor’s first level cache interface. Hence protocol controllers
in our system have to sustain a very high throughput and are very
latency sensitive. Therefore using a general-purpose processor for
executing protocol actions (the approach of the MAGIC chip in
FLASH, or the NP in Typhoon) would not be adequate.

It is not surprising that commercial multi-core processors
primarily use hardwired solutions for control of their on-chip
memory resources, although these solutions often include the

same kind of message driven execution seen in the programmable
machines. For instance, Niagara's memory controller uses one or
two coded packets (a kind of microcode) sent across a crossbar to
manage the transaction according the packet's code [29].

In addition, in many controllers complex operations are broken
into many smaller operations. In the controller for AMD's
Opteron processor, a single read transaction generated du to a
cache miss might result in thirteen messages from three different
message classes: two Request messages, three Probe messages,
and eight Response messages [28]. Similarly, the IBM Cell
processor's Memory Flow Controller (MFC) transfers data to and
from each compute element by way of a set of primitive
commands [27].

Another old controller idea that we use is the notion of patchable
microcode. The use of microcode for patching and detecting
design errors in the processor and memory system has also been
proposed both in industry and academia and is widely used in
processors [21] [22] [23]. Creating a hardware framework for the
on-chip memory system that we can microcode, allows us to
implement the protocols in software, which also allows to use
software patches to fix memory system errors after deployment.

2.2 Protocol Design
There has also been a lot of work in the literature in creating
novel cache/local memory systems. Discussions about message
passing and shared memory protocols have given way to proposed
new programming models such as streams and Transactional
Memory (TM). Streaming systems such as Imagine [3] and IBM
Cell [4] share some characteristics with message passing
machines, in that all communication is explicit, and also share
some traits of shared memory machines, in that they generally
have a shared address space and use high performance, low
latency networking to connect the processors to each other and to
the memory. However, the total local memory is often small, so
these machines implement their entire local memory in fast on-
chip SRAM, and forgo building a cache hierarchy entirely. To fill
and spill this local memory, implementations often contain
sophisticated DMA engines that support gather/scatter operations
as part of the memory hierarchy [3] [4].

On the cache coherent front, modern shared memory machines are
moving to support a larger number of threads to help hide
memory latency [1] [2], which requires the memory system to
sustain and track several memory requests from different threads
in order to tolerate long memory access latencies. There has also
been a lot of research in extending speculative execution
techniques to the memory system. Thread Level Speculative
(TLS) systems such as Hydra [5] and Stampede [6] extend
conventional memory systems with mechanisms to track and
buffer results of speculative computations and to detect logical
data dependencies between speculative threads. Most recently
Transactional Memory (TM) has generalized and formulated
these systems into a transactional programming model
 [7] [10] [14]. There have been many proposals for implementing
transactional systems, in hardware. Since any implementation
must either buffer the speculative values that are written, or the
old values that have been overwritten by speculative data, the
hardware must store a significant amount of information to track
dependencies and it must also support inter-transaction

communication (such as write-set broadcasting) to commit or
flush data. We use all of these memory models to demonstrate the
capabilities of our memory control framework.

2.3 Smart Memories
Our work on creating a protocol controller framework builds upon
ideas from polymorphic computing, which tries to map different
programming models to a malleable hardware substrate. For
example, the TRIPS polymorphic architecture can be configured
to better leverage instruction, data or thread level parallelism [9].
The Stanford Smart Memories (SM) project took a different
approach where they directly mapped a stream machine and a
thread-level speculative machine on a reconfigurable hardware
substrate [8]. We build on the SM work, which showed how
storing a small number of state / meta-data bits and updating them
on each access could maintain state information needed for a wide
variety of memory models. Unfortunately this work focused on
the processor “Tile” and did not explain how to flexibly
implement the different protocols that are needed for these
different memory models. The approach in this paper addresses
this limitation, providing a method of constructing the needed
protocol controllers. Since our controllers assume local memories
contain state similar to what was described in the Smart Memories
system, we review this information next.

As described in [8] the basic unit of the architecture is the Tile.
Each Tile contains two processor elements, 16 local memory
blocks and a crossbar interconnect to connect memories to
processors and the outside world (Figure 1). The memory mats
are the basic storage element in the system and are connected
through an Inter-Mat Communication Network (IMCN)—a fast
path for exchanging memory control and state information.

Memory mats are aggregated (using IMCN) to implement
composite storage structures such as instruction and data caches
(Figure 1c). Meta-data bits in the tag storage are used to encode

state information according to the protocol, such as cache line
state and LRU information in shared memory model, or a
transaction’s read and write sets in a TM model. When
implementing a streaming model, the memory mats are
aggregated into addressable scratchpads. Moreover, having
head/tail pointers in the memory mats allows them to efficiently
implement hardware FIFOs, which can be used to capture
producer-consumer locality between processors. It also can
simplify some protocol/runtime operations. For example,
hardware FIFOs are used to augment cache structures in order to
store addresses of a transaction’s write set, which is used at
transaction commit time for broadcasting address/data pairs [10].

The protocol controller described in the next section assumes that
local memories have the needed meta-data bits to store protocol
state and also have simple hardware that can modify the state, if
needed, on each access. We also assume that the local memory or
processor can create a small number of request types when it
needs help from the protocol controller.

3. PROTOCOL CONTROLLER
FRAMEWORK
In our attempt to create a design framework for memory systems,
we associated meta-data with the local storage and decided to take
a RISC-like approach for the protocol controller design: instead of
providing complex pre-defined operations, we provided a small
number of basic operations and implemented complex data and
state manipulations by executing a set of these basic operations.
As was mentioned earlier, a general-purpose RISC processor
would be too slow, but fortunately only a small number of
primitive operations are needed to support all the models that we
investigated, and these could be accomplished in a small number
of programmable FSM/pipelined engines.

Figure 1. Memory organization of the SM Tile. (A) Block diagram of the memory mat. (B) Tile crossbar and IMCN.
(C) Example cache configuration.

Table 1. Similarities between actions taken by different memory protocols

This approach works because across many different memory
models the functions of all protocol controllers are very similar: at
their core all protocol engines track and move data. One can
recognize such similarity at two levels: at the high level, many
protocol actions that implement a memory model have the same
conceptual functionality. Table 1 lists a few of these actions,
indicating which other protocol actions they resemble.

Model Protocol Action Similar to

At a lower level, the hardware operations that are combined to
form the protocol actions are also the same. These primitive
operations can be categorized into five different classes:

 Data/State read and write – Accessing data and state storages
for performing data transfers, state inquiries and updates,
according to the specific protocol action

 Communication – Sending and receiving messages over
available communication infrastructure

 Ordering – Guaranteeing a specific order between requests
from same processor or different processors, according to the
specific protocol or memory consistency model

 Tracking – Keeping track of the outstanding requests in the
system so that each request can be completed after
corresponding reply is received. This is also necessary for
enforcing ordering between different requests

 Association and interpretation of state information – This is
the major differentiating factor among memory models;
indicates how the state associated with data is interpreted and
controls the flow of operation according to the specific
protocol

These operations are essentially the RISC instructions, the basic
blocks, for composing protocol actions. One can describe the
activities occurring in the memory system hardware upon
receiving any protocol request/reply message as a composition of
the above operations in an appropriate sequence. We implement
these operations in two structures, the local memory hardware
which is associated with each processor, and the protocol
controller that connects a number of local memory hardware units
to the network. Having described the local memory earlier, we
describe the protocol controller next.

4. PROTOCOL CONTROLLER DESIGN
In our framework, processors and main memory controllers
communicate with the protocol controller by sending and
receiving request/reply messages. Each request message when
received invokes a “subroutine” in the controller that executes a
series of basic memory operations. One creates a memory model
by defining the set of messages that the protocol controller needs
to handle, and then composing the required actions for each
message from the basic operations described above.

4.1 Organization
Figure 2 illustrates the internal organization of the protocol
controller. The execution core of the controller consists of three
major units: Tracking and Serialization (T-Unit) serves as the
entry point to the execution core of the controller. It stores and
retrieves tracking information of the outstanding memory requests
in the appropriate tracking structures. The Miss Status Holding
Registers (MSHR) provide storage for cache misses and memory
operations that require some form of ordering. It supports a
lookup operation based on a request’s address or source processor

1 DMA block read (main memory to local memory) 5 Streaming

2 DMA block write (local memory to main memory) 6

3 DMA transfer from a local memory to another 7

4 DMA indexed scatter 10

5 Any Cache refill 1

6 Writeback caches Write-back (cache spill) 2

7 Invalidation based Cache to cache transfer 3

Coherent
Shared
Memory

8 Invalidation based Snoop, coherence degrade/invalidate 11, 12

Update based Updating word in destination caches 10 9

10 TCC [10] Commit - updating data in other caches and main memory 4, 9 HTM

11 TCC Conflict detection (lazy) - checking for violation in destination cache upon commit 8

12 LogTM [11] Conflict detection (eager) - checking for violation upon receiving coherence
request

8

DMADMA

T-Unit
(Tracking & Serialization)

S-Unit
(State update)

D-Unit
(Data movement)

MSHR USHR Line
Buffers

Processor Interface Network Interface

DMA

INT-Unit
(Interrupt)

To/From Tile Memory Mats

To/From Tile
Processors

To/From NetworkTo Tile
Interrupt interface

Figure 2. Organization of the protocol controller

Coherence Request Message:

T-Unit: Read-Exclusive Routine

S-Unit: Snoop Routine

D-Unit: Line Read Routine

N-Unit (TX): Coherence Reply Routine

Read Word 1

Read Word 2

...

Call (N-Unit :: Coherence Reply)

number, which is used to detect conflicting requests and enforce
serialization. The Uncached-request Status Holding Registers
(USHR), on the other hand, keep the tracking information of
requests that do not require such serialization, for instance DMA
transfers. Tracking resources are sized according to the expected
occupancy of the controller. For example, one can determine
appropriate sizes by simulating the controller with an infinite
number of tracking registers and statistically determining the
minimum required size for a given performance level.

The State Update (S-Unit) performs read, write and manipulation
of the state information associated with data blocks, such as cache
tags and cache line states. It has a dedicated port to Tile memory
mats in order to read and write data and meta-data bits. The Data
Movement Engine (D-Unit) provides necessary functions for
reading and writing data blocks from memory mats into an
internal data buffer (Line Buffer). It also checks and updates
meta-data bits that are associated with an individual data word.

Communication primitives are implemented in processor and
network interface units. The Processor interface unit (P-Unit)
receives and decodes request messages from all processors
sharing this controller and passes them to the execution core. The
Network interface unit (N-Unit) consists of separate transmitter
and receiver logic that composes and decodes messages that are
communicated over the system network. It has necessary
interfaces to the line buffer to read and write blocks of data that
are transmitted or received over the network.

The controller is also equipped with independent DMA channels,
which are programmable request generator engines. Each channel
is associated with a processor supported by the controller and is
programmed by writes into control registers. A dedicated interrupt
unit (INT-Unit) can send individual interrupt requests to any
processor in the group when necessary. Processors can also
generate interrupts for one another by writing into control
registers in the INT-Unit.

4.2 Programming
The conceptual programming model of the controller is the
execution of a set of subroutines triggered by an input message to
the controller. Each subroutine comprises a few basic operations
and is executed by one of the internal functional units. After
executing the subroutine, each functional unit invokes another
subroutine in the next functional unit(s) by passing an appropriate
request type to it. Subroutines are chained to one another until
processing of the input message is completed. Sequential
execution semantic is maintained within each subroutine.

Figure 3 depicts a conceptual execution model in the controller,
presenting the steps of processing a coherence request message.
The request message invokes a coherence request subroutine in

the network receive unit. This subroutine calls the Read-Exclusive
subroutine in the T-Unit. After performing necessary serialization
actions, this subroutine calls the Snoop subroutine in the S-Unit to
snoop cache tags. It is also possible for a functional unit to call
two or more subroutines in different units concurrently to
parallelize processing of different parts of the same request
message. Processing ends after the the N-Unit transmitter sends a
coherence reply message to the main memory controller.

4.3 Micro-architecture
The functional units form a macro-level pipeline to process
incoming messages. Requests are passed from one functional unit
to another after the executing subroutine completes its necessary
steps and invokes the next subroutine. Each of the functional units
is organized as a shallow pipeline. The pipelining allows the unit
to overlap processing steps of different requests internally and
further increases the throughput of the controller.

The first stage of each unit’s pipeline contains a configuration
memory that holds the controlling microcode for the pipeline.
This memory is indexed by the type of the request passed to the
unit and dictates all the operations that are performed in that unit.
At the output of the unit a shallow queue ensures that the pipeline
can be completely drained and all the in-flight operations can be
completed. An arbiter located in front of each unit decides what
request is passed into the unit at each clock cycle.

Figure 4 shows the S-Unit pipeline as an example. Configuration
memory is located at the first stage of the pipeline (Access
Generator). It generates necessary signals for accessing memory
mats in the Tiles. In addition to identifying mats that need to be
accessed, these access signals individually control operations on
the data and meta-data arrays, as well as the read-modify-write
logic that allows the mats to update their own state bits. Up to two
mat accesses can be generated in the AG stage. The S-Unit can
send a mat access to a single Tile, all Tiles simultaneously, or can
send one access to a specific Tile and another access to the
remaining Tiles. Two pipeline stages are used for accessing the
memory mats which include the roundtrip time over the Tile
crossbar. At the end of the pipeline a lookup table serves as the
decision-making logic. It analyzes the information retrieved from
memory mats and generates necessary requests for next functional
unit.

Figure 5 shows the micro-architecture of the data movement
engine. It consists of four parallel data pipes, one connected to
each Tile. Each data pipe has its own input and output queues. A
dispatch unit decodes an incoming request and uses a lookup table
to issue necessary operations to each data pipe. For example, a
block transfer request is converted into a block read operation on
the source pipe and a block write operation on the destination

Figure 3. Conceptual execution model of the protocol controller

N-Unit (RX): Coherence Request Routine

N-Unit (RX)
Coherence Req.

T-Unit
READ-EX

S-Unit
Snoop

D-Unit
Line Read

1 2 3 4 5

N-Unit
Coherence Reply

6

Coherence
Request

Coherence
Reply

pipe. All data pipes are connected to the line buffer and data is
staged through the line buffer between the two pipes. A small
FSM generates necessary replies for the processors if the data
transfer was due to a processor’s request.

Each data pipe has four stages and is very similar to the S-Unit:
the Access Generator has a configuration memory that generates
the necessary memory mat access signals. Condition Check logic
is a lookup table that compares the meta-data bits collected from
the mats with predefined patterns and generates necessary
subroutine calls for subsequent units. Data pipes supports 32-bit
(single mat) and 64-bit (double mat) accesses. 64-bit accesses use
two adjacent memory mats for faster data transfers.

4.4 Avoiding Deadlocks
Deadlocks are avoided in the system by carefully considering a
set of constraints. First, the controller provides some deadlock
avoidance guarantees in the hardware. The output queue at the
final stage of each functional unit guarantees that the in-flight
requests in that pipeline can be completed without needing to stall
the functional unit. The arbiter in front of each unit considers
necessary buffering space in the output queue and throttles the
input requests if there is no buffering space available.

The network interconnect supports multiple virtual channels.
Priorities for processing virtual channel messages are adjustable at
the network interfaces. However, it is the designer’s responsibility
to distinguish between protocol request and reply messages [17]
and assign them to different virtual channels. Since the
connection between the S-Unit and the D-Unit forms a loop inside
the controller, there is a potential that the controller can live-lock,
where subroutines in the S-Unit and D-Unit invoke each other
repeatedly. Once again it is the responsibility of the protocol

designer to ensure that the controller is programmed such that all
possible subroutine chains eventually terminate. Live-lock
avoidance can be guaranteed by simply forbidding subroutine foo
in, for example, the D-Unit from calling subroutine bar in the S-
Unit that might possibly invoke foo. In the controllers we have
implemented, this has not been a difficult constraint to satisfy.
An overview of these protocols is described in the next section.

5. MEMORY MODEL IMPLEMENTATION
When implementing a memory protocol, operations are divided
between different parts of memory system, namely processor
interface logic, local memory mats, protocol controller and main
memory controller. These components communicate by sending
and receiving messages. Table 2 lists and describes all the
messages exchanged between protocol controller and processors
as well as main memory controller for our three different memory
models. In this section we demonstrate how the protocol
controller is programmed to handle a few of these messages.

Figure 6 shows an example of an indexed DMA scatter operation
to main memory. First, the DMA channel issues an index read
operation that returns the address of the destination memory to it.
After identifying the destination, the DMA channel generates
line-size requests for transferring a single data element (source
address, element size and number of elements are programmed by
writing DMA control registers). The T-Unit allocates a tracking
register and stores tracking information for the operation and
passes it to the D-Unit. The D-Unit extracts the appropriate
memory block from the source memory into the line buffer entry
and requests the N-Unit to send scatter message to main memory.
The N-Unit reads the data from the line buffer entry and sends it
over the network to the main memory controller. After data is

DispatchArb
From
Other
Units

Data Pipe 1

Data Pipe 2

Data Pipe 3

Processor
Reply FSM

F
F

To Other
Units

F
F

Access
Generator

F
F

F
F

Condition
Check

To/From Tile Memory Mats

To Line Buffer
(Read port)

From
Line Buffer

To Line Buffer
(Write port)

Data Pipe 0

Figure 5. Data movement engine (D-Unit)

A c c e s s
G e n e ra to r

F ro m o th e r
u n its

A rb
D e c is io n
M a k in g

T o o th e r
u n its

T o /F ro m T ile s
(M e m o ry M a ts)

A G M 1 M 2 D M

Figure 4. S-Unit pipeline

written to the destination address, a scatter reply message
confirms completion of the operation. This message is decoded by
the network interface unit and is passed to the T-Unit. The T-Unit
retrieves the tracking information, releases the tracking register
and sends an acknowledgement to the originating DMA channel.

Figure 7 shows another example of servicing a cache miss request

from processor. A cache miss is received and decoded by the
processor interface unit and is then passed to the tracking unit.
The T-Unit looks up the tracking information of outstanding
cache misses to serialize the cache miss properly against prior
requests. If no collision is found, it allocates an MSHR entry and
saves the tracking information of the cache miss. The cache miss
is then passed to the S-Unit, which evicts a cache line in the

Model Source Message Description

Cache Miss Read/Write miss request from a processor

Upgrade Miss Upgrade miss request (request for ownership)

Prefetch Prefetch for read or write from a processor

Processor

Cache Control Invalidate/Writeback a specific cache line

Coherence Request Read, Read-Exclusive or Invalidate request for specific cache line

Refill Returns cache line data to be refilled

Shared Memory

(MESI coherence)

MC

Upgrade Returns cache line ownership (no data)

Processor Un-cached Access Direct access of a memory in another Tile or Quad

Index Read Read of index memory (indexed transfers)

DMA Gather Request for gathering data from another Quad or main memory

DMA Channel

DMA Scatter Request for scattering data to another Quad or main memory

Gather Reply Reply for a gather request, contains actual data

Scatter Reply Acknowledgement for a previous scatter

Un-cached Reply Reply for direct memory access from processor

Net Gather Gather request from another Quad’s DMA

Streaming

MC / Another
Quad

Net Scatter Scatter request from another Quad’s DMA

Cache Miss Read/Write miss request from a processor Processor

FIFO Full Address FIFO full indicator, overflow occurred

FIFO Read Read store address from FIFO

Commit Read Read committed data from source cache

DMA Channel

Commit Write Write committed data to other caches

Refill Returns cache line data to be refilled

Transactions

(TCC [10]])

MC

Net Commit Committed data word from another Quad’s transaction

Table 2. Request/Reply messages handled by protocol controller (MC=Main Memory Controller)

T-Unit:
Scatter

N-Unit:
Scatter

S-Unit:
Index Read

D-Unit:
Line Read &

Scatter

DMA Scatter
(DMA channel)

Scatter Request
(Main mem controller)

N-Unit:
Scatter Reply

T-Unit:
Scatter Reply

Scatter Reply
(Main mem controller)

Ack.
(DMA channel)

T-Unit
Index Read:
1-Call S-Unit::Index Read

Scatter:
1-Allocate USHR
2-Write tracking info
3-Call S-Unit::Index Read

Scatter Reply:
1-Retrieve tracking info
2-Send Ack to DMA

S-Unit
Index Read:
1-Read next index from
index memory
2-Call D-Unit::Line Read &
Scatter

D-Unit
Line Read & Scatter:
1-Read line from memory
to LB
2-Call N-Unit::Scatter

N-Unit
Scatter:
1-Send scatter request on
network
2-Read data from LB and
send on network

Scatter Reply:
1-Decode
2-Call T-Unit::Scatter Reply

T-Unit:
Index Read

Address
(DMA channel)

Index Read
(DMA channel)

Figure 6. Steps for processing and indexed DMA operation

source cache to open up space for the cache refill. The S-Unit
simultaneously snoops the tags of caches in other Tiles to enforce
coherence properties and to consider the possibility of a cache-to-
cache transfer. The Data movement engine performs the
necessary writeback or cache-to-cache transfer based on the
decision made in the S-Unit. The Network interface sends the
write back request to main memory controller as well as the cache
miss request. Refills are handled similarly.

6. EVALUATION
We evaluated the performance overhead of our protocol controller
framework by simulating our reconfigurable CMP, which directly
implemented it. The processor simulator and software tool chain
were supplied by Tensilica [15] [16] while the memory system and
interconnect simulator was developed using the Xtensa Modeling

Protocol (XTMP). In order to evaluate the performance impact of
the framework, we back-annotated the memory system simulator
with latency numbers extracted from the actual system RTL, and
compared the results to simulations where all internal controller
operations took zero cycles, but external operation timing (e.g.
mat read) remained unchanged. For correctness checking, the
RTL was extensively checked using both applications and random
stress cases as part of the tape-out flow.

Table 3 lists the benchmark applications for three different
models that we used to evaluate system performance. Table 4
describes system parameters used for performance simulations.

Figure 8 shows speedups for three different memory models. For
almost all benchmarks, our system shows good performance
scaling, achieving at least 50% parallel efficiency. In cache

P-Unit:
Cache Miss

T-Unit:
Read Miss

T-Unit:
Write Miss

S-Unit:
Read Miss

S-Unit:
Write Miss

N-Unit:
Write-back

N-Unit:
Cache Miss

P-Unit:
Reply

D-Unit:
$-to-$ Transfer

D-Unit:
Write-back

D-Unit:
Write-back &

$-to-$ Transfer

Cache Miss
(Processor)

Cache Miss
(Main mem controller)

Write-back
(Main mem controller)

All arcs are taken

Only one arc is taken

Reply
(Processor)

S-Unit:
Tag Write

T-Unit
Read/Write Miss:
1-MHSR Lookup
2-Enforce ordering
3-Allocate MSHR
4-Write tracking info
5-Call appropriate
subroutine in S-Unit

Refill:
1-Retrieve tracking info
2-Call D-Unit::Line Write

P-Unit
Cache Miss:
1-Decode
2-Call T-Unit::Read or T-
Unit::Write

Reply:
1-Send reply to processor

S-Unit
Read Miss, Write Miss:
1-Probe requesting cache,
evict and set R bit
2-Snoop other caches
3-Check collected state info
4-Call appropriate
subroutine in other units

Tag Write
1-Write tags to tag mat

D-Unit
Writeback:
1-Read evicted line into LB
2-Call N-Unit::writeback

$-to-$ transfer:
1-Read line from src cache to LB
2-Write line from LB do dst cache
3-Call S-Unit::Tag Write
4-Call P-Unit::Reply

Line Write:
1-Write line from LB to dst cache
2-Call S-Unit::Tag Write
3-Call P-Unit::Reply

N-Unit
Cache Miss:
1-Send cache miss request
on network

Writeback:
1-Send writeback request on
network
2-Read data from LB and
send on the network

Refill:
1-Decode
2-Write line into LB
3-Call T-Unit::Refill

N-Unit:
Refill

Refill
(Main mem controller)

T-Unit:
Refill

D-Unit:
Line Write

S-Unit:
Tag Write

Reply
(Processor)

P-Unit:
Reply

Figure 7. Steps for processing a cache miss request

Table 3. Benchmark applications

Model App. Problem Size Description

barnes 16K particles Barnes-Hut hierarchical N-body method Cache coherence

mp3d 30K particles Rarefied fluid flow simulation

fmm 16K particles N-body adaptive fast multi-pole method

216 data points fft Complex 1-D Fast Fourier Transform

mpeg2enc 352x288 CIF image MPEG2 video encoder

179.art SPEC reference data set Image recognition Streaming

mpeg2enc 352x288 CIF image MPEG2 video encoder

219 32-bit keys bitonic Bitonic sort

depth 352x288 CIF image Stereo depth extraction

barnes 8K particles Barnes-Hut hierarchical N-body method Transactions

mp3d 30K particles Rarefied fluid flow simulation

Table 4. System parameters used for simulation

coherent mode, speedups range from 18 to 27 for a 32-processor
configuration; in streaming mode, speedups range from 18 to 26.
The exception is mp3d in transactional mode, which does not
scale beyond 8 parallel processors. The reason for this is frequent
accesses to shared data structures, which cause transaction
dependency violations and transaction re-execution. On the other
hand, in a cache-coherent version of mp3d, these accesses are not
protected by locks and as a result they cause data races. Since
mp3d performs randomized computation and reports results only
after statistical averaging of many steps of computation, the data
races should not alter the results significantly. The reason for this
uncommon programming decision is performance: in
conventional cache-coherent architectures, fine-grain locking is
expensive.

To estimate the performance overhead of reconfigurability, we
repeated the same set of simulations on a "zero latency" model,
where internal protocol operations take zero cycles, and
calculated the difference with the real case. Note that this
difference is an upper bound for the overhead estimate, because in
any realistic

fixed function design the protocol controller latency cannot be
zero. Figure 9 illustrates the performance scaling of benchmark
applications for both real and “idealized” controllers, with Table 5

summarizing this information. For each benchmark the overhead
is averaged for system configurations ranging from 1 to 32
processors. In most cases the difference is less than 20%. The
exception is the cache-coherent version of mp3d. The reason for
this is once again frequent accesses to shared data structures
without locks which cause frequent data races and put significant
stress on the memory system. On the other hand, as one might
expect, streaming applications are least sensitive to the controller
latencies because of their latency tolerant nature.

The 8-processor polymorphic CMP test chip parameters are
summarized in Table 6. The test chip contains 4 Tiles, each with 2
Tensilica processors, and a shared protocol controller. The total
chip area is 60.5 mm2, and the core area, which includes tiles and
protocol controller, is 51.7 mm2 (Table 7).

To evaluate the hardware overhead of building a reconfigurable
protocol controller rather than using it to generate the desired
controller, we performed a series of simple experiments, in which
we tailored the protocol controller to a specific memory protocol
by converting all the internal configuration memories into
constant values. Our synthesis tool then removed the memories
and propagated the constant values into the logic, eliminating
unnecessary parts and creating an “instance” of the controller
tailored to that specific memory protocol. Figure 10 compares the

I-cache 8KB, 2-way associative, 32B line size, 1 port (per processor) Shared
Memory

D-cache 16KB, 2-way associative, 32B line size, 1 port (per processor)

I-cache 8KB, 1-way associative, 32B line size, 1 port (per processor) Streaming

D-cache 4KB, 1-way associative, 32B line size, 1 port (per processor)

Local Memory 20KB per processor, 4KB shared between all processors

I-Cache 16KB, 2-way associative, 32B line size, 1 port (shared between two processors) TCC

D-Cache 32KB, 4-way associative, 32B line size, 1K entry Store Address FIFO, 1 port (shared)

Local Memory 4KB, shared between all processors

Protocol controller 28 MSHRs (24 for processor requests, 4 for coherence requests) Common

L2-cache (unified) 4MB, 4-way, 32B line size, 10 cycle latency, banked among main memory controllers

Switch latency 5 cycles

Memory controller 2 controllers per Quad, 32 MSHRs each

Main memory 100 cycle access latency

0

2

4

6

8

10

12

14

16

0 5 10 15

Number of processors

linear speedup

barnes

mp3d

0

5

10

15

20

25

30

0 10 20 30

Number of processors

linear speedup

0

5

10

15

20

25

30

0 10 20 30

Num s

linear speedup
barnes 179.art
mp3d mpeg2enc
fmm

bitonic sort
fft

depthmpeg2enc

ber of processor

a) Cache coherence b) Transactions c) Streaming

Figure 8. Performance scaling

area of the baseline controller with the specialized instances. The
average reduction is around 50%. As illustrated, almost half the
area savings is achieved by removing the configuration memories
(flip-flops in Figure 10). This large area overhead was mainly
caused by using flops to store the controller microcode. Future
designs could reduce this overhead by 3x, which would greatly
reduce the area cost of programmability. Even with the 50%

(c) Streaming

(a) Coherent
shared memory

(b) Transactions

Figure 9. Performance comparison between real (dark) and idealized controllers (light).

Model App. Overhead % Average %

barnes 24.29

mp3d 48.59

fmm 6.93

fft 10.64

Cache
coherence

mpeg2enc 14.51

20.99

179.art 7.58

mpeg2enc 14.14

bitonic 1.88

Streaming

depth 0.06

5.91

barnes 8.33 Transactions

mp3d 20.03

14.18

Table 5. Performance overhead

Technology ST 90nm-GP (General Purpose)

Table 6. Test chip parameters

Supply voltage 1.0 V

I/O voltage 2.5 V

Dimensions 7.77mm × 7.77mm

Clock cycle time 5.5 ns (181 MHz)

Transistors 55 M

Gates 2.9 M (500K in protocol controller, 600K in
each Tile)

Memory macros 128 (32 per Tile)

Pins 202 signal and 187 power/ground pins

Unit mm2 %

Tile 10.0 16.5

CC 7.2 11.9

All Tiles 40.0 66.1

Routing channels 4.5 7.5

Pad ring 8.8 14.6

Core 51.7 85.4

Chip 60.5 100.0

Table 7. Test chip area breakdown

overhead, the percentage of the area consumed by the protocol
controller is relatively small: around 12% of the test chip area and
less than 14% of the core area (Table 7). Thus, protocol
programability area overhead is less than 7% of the total system
area.

7. CONCLUSIONS
As we move towards CMPs with many replicated cores, designing
the memory system and the associated communication interfaces
and protocols becomes one of the most important and difficult
microarchitecture tasks. We provide a framework that helps
address this problem. By creating a standard set of hardware units
with simple operations, we convert this hardware design problem
to a software programming problem. By defining the messages
that each hardware unit must handle and the sequence of steps,
the “subroutine,” that needs to be run for each message, one
completely defines the protocol’s operation down to the RTL
level. If we are correct in that this framework allows one to create
any memory model, its greatest strength will be moving memory
design and verification conceptually up a level. Instead of
worrying about gates, a designer would only need to worry about
the state that needs to be stored, and the operations that need to be
executed. The overhead of using this method appears modest.
Compared with a customized protocol controller with no internal
delay the performance difference for most applications was less
than 20%. Somewhat surprisingly, our results indicate it is
feasible to directly implement the programmable framework on
silicon. While that doubles the controller area, the controller
consumes only 14% of the core area.

ACKNOWLEDGMENTS

This work would have not been possible without support from
DARPA, Tensilica and ST Microelectronics. The authors also
would like to thank Megan Wachs, Han Chen, Wajahat Qadeer,
Rehan Hameed, Kyle Kelley, Francois Labonte, Jacob Chang and
Don Stark for their help and support.

8. REFERENCES
[1] P. Kongetira, K. Aingaran, K. Olukotun, "Niagara: A 32-

Way Multithreaded Sparc Processor," IEEE Micro
Magazine, Vol. 25, No. 2, pp. 21-29, March/April 2005.

[2] G. Grohoski, "Niagara-2: A Highly Threaded Server-on-a-
Chip," 18th Hot Chips Symposium, August 2006.

[3] B. Khailany, W.J. Dally, U.J. Kapasi, P. Mattson, J.
Namkoong, J.D. Owens, B. Towels, A. Chang, S. Rixner,
"Imagine: Media Processing with Streams," IEEE Micro
Magazine, Vol. 21, No. 2, pp. 35-46, April/March 2001.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

A
re

a
,
m

m
2

Flip-flops
Combinational

[4] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee,
C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi,
M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J.
Warnock, S. Weitzel, D. Wendel, T. Yamazaki, K. Yazawa,
“The Design and Implementation of a First-Generation
CELL Processor,” Digest of Technical Papers, ISSCC, Vol.
1, pp. 184-185, February 2005.

[5] L. Hammond, B. Hubbert , M. Siu, M. Prabhu , M. Chen ,
and K. Olukotun, “The Stanford Hydra CMP,” IEEE Micro
Magazine, Vol. 20, Issue 2., pp. 71-84, March/April 2000.

Flip-flops 2.01 1.07 1.19 1.12

Combinational 2.18 0.87 1.10 0.99

Baseline CC STR TCC

Figure 10. Protocol controller area after synthesis [6] JG Steffan, C Colohan, A Zhai, TC Mowry, "The
STAMPede Approach to Thread-Level Speculation," ACM
Transactions on Computer Systems (TOCS), Vol. 23, Issue
3, pp. 253-300, August 2005.

[7] M. Herlihy and J.E.B. Moss, “Transactional Memory:
Architectural Support for Lock-Free Data Structures,”
ISCA-20, pp. 289-300, 1993.

[8] K. Mai, T. Paaske, N. Jayasena, R. Ho, W.J. Dally, M.
Horowitz, "Smart Memories: A Modular Reconfigurable
Architecture," ISCA-27, pp. 161- 171, 2000.

[9] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D.
Burger, S. W. Keckler, C.R. Moore, “Exploiting ILP, TLP,
and DLP with the polymorphous TRIPS architecture,”
ISCA-30, pp. 422-433, June 2003.

[10] L. Hammond et al., “Transactional Memory Coherence and
Consistency,” ISCA-31, p. 102, June 2004.

[11] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, D.A.
Wood, ‘‘LogTM: Log-Based Transactional Memory,’’
HPCA-12, pp. 254-265, 2006.

[12] S. K. Reinhardt, J. R. Larus, D. A. Wood, "Tempest and
typhoon: user-level shared memory," ISCA-21, pp. 325-
336, 1994.

[13] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chaplin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosenblum, J. Hennessy, “The
Stanford FLASH multiprocessor,” ISCA-21, pp. 302-313,
1994.

[14] J.R. Larus, R. Rajwar, "Transactional Memory," Synthesis
Lectures On Computer Architecture, Morgan & Claypool
Publishers, 2007.

[15] R.E. Gonzalez, "Xtensa: a configurable and extensible
processor," Micro, IEEE Magazine, Vol.20, Issue 2., pp. 60-
70, Mar/Apr 2000.

[16] Tensilica, Webpage: http://www.tensilica.com/
[17] D. Culler, J.P. Singh, A. Gupta, “Parallel Computer

Architecture, A Hardware/Software Approach,” Morgan-
Kaufman Publishers Inc, 1999.

[18] J.B. Carter, W.C. Hsieh, L.B. Stoller, M.R. Swanson, L.
Zhang, E.L. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote,
M.A. Parker, L. Schaelicke, and T. Tateyama, “Impulse:
Building a Smarter Memory Controller,” HPCA-5, pp 70-
79, 1999.

[19] F. Pong, M. Browne, A. Nowatzyk, M., Dubois, “Design
and Verification of the S3.mp Cache-Coherent Shared-
Memory System,” IEEE Transactions On Computers, Vol.
47, No. 1, pp. 135-140, January 1998.

http://www.tensilica.com/

[20] A. Agarwal, R., Bianchini, D. Chaiken, K.L. Johnson, D.
Kranz, J. Kubiatowicz, B-H., Lim, K., Mackenzie, D.
Yeung, “The MIT Alewife Machine: Architecture and
Performance,” ISCA-22, pp 2-13, June 1995.

[21] S. Narayanasamy, B. Carneal, B. Calder, “Patching
Processor Design Errors,” ICCD, pp. 491-498, October
2006.

[22] S.R. Sarangi, A. Tiwari, J., Torrellas, “Phoenix: Detecting
and Recovering from Permanent Processor Design Bugs
with Programmable Hardware,” MICRO-39, pp. 26-37,
2006.

[23] I. Wagner, V. Bertacco, T. Austin, “Using Field-Repairable
Control Logic to Correct Design Errors in
Microprocessors”, IEEE Transactions on Computer-Aided
Design (TCAD), Vol. 27, Issue 2, pp. 380-393, February
2008.

[24] A.K. Nanda, A.-T. Nguyen, M.M. Michael, D.J. Joseph,
“High-Throughput Coherence Controllers,” HPCA-6, pp.
145-155, 2000.

[25] A.-T. Nguyen, J. Torrellas, “Design Trade-Offs in High-
Throughput Coherence Controllers,” PACT-12, p. 194,
2003.

[26] M.M. Michael, A.K. Nanda, B.-H. Lim, M.L. Scott,
“Coherence Controller Architectures for SMP-Based CC-
NUMA Multiprocessors,” ISCA-24, pp. 219-228, 1997.

[27] IBM tutorial, "Cell Broadband Engine solution, Software
Development Kit v3.1: SPE configuration."
http://publib.boulder.ibm.com/infocenter/systems/scope/sys
sw/index.jsp?topic=/eiccj/tutorial/cbet_3memfc.html

[28] P. Conway, B. Hughes, "The AMD Opteron Northbridge
Architecture," IEEE Micro, vol.27, no.2, pp.10-21, March-
April 2007. http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=4287392&isnumber=4287384

[29] Sun Microsystems, Inc., "OpenSPARC(tm) T1
Microarchitecture Specification," Part No. 819-6650-10,
August 2006, Revision A. http://opensparc-
t1.sunsource.net/ specs/OpenSPARCT1_Micro_Arch.pdf

	1. INTRODUCTION
	2. BACKGROUND
	2.1 Controller Design
	2.2 Protocol Design
	2.3 Smart Memories

	3. PROTOCOL CONTROLLER FRAMEWORK
	4. PROTOCOL CONTROLLER DESIGN
	4.1 Organization
	4.2 Programming
	4.3 Micro-architecture
	4.4 Avoiding Deadlocks

	5. MEMORY MODEL IMPLEMENTATION
	EVALUATION
	7. CONCLUSIONS
	8. REFERENCES

