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The recent discovery of ferroelectricity in HfO2 has revived the interest into non-volatile memories based on ferro-

electric transistors (FeFETs). Among their advantages stand out the low power consumption and the compatibility

with existing CMOS process. On the other hand, issues related mainly to endurance still represent a challenge to the

development of the technology. In this letter, we propose to exploit an analytical expression for the Memory Window

(MW ) as a simple yet effective characterization tool to evaluate endurance in FeFETs. MW is defined as the difference

between threshold voltages occurring due to polarization switching. The analytical formulation of MW allows one to

quickly estimate the generated trap concentration as a function of number of writing cycles (or time) without recurring

to numerical simulations. With the aid of the analytical model, we find that for a specific set of program/erase pulse

amplitude and duration, endurance has weak dependence on writing conditions. The characterization technique based

on MW would allow the systematic comparison of the performance and endurance of next-generation FeFETs.

The first demonstration in the early 1960s of a thin-film

ferroelectric transistor (FeFET) by Moll and Tarui1 started

the quest for realizing low-power and efficient Non-Volatile

Memories (NVMs) based on this technology. After more than

fifty years, the discovery of ferroelectricity in binary oxides

such as HfO2 and ZrO2 revived the interest of the commu-

nity in the FeFET technology2–4. FeFETs in fact, offer a

wide range of improvements in terms of nonvolatility, scal-

ing potential, read-write speed, and power dissipation with

respect to DRAM, SRAM and Flash memory2. However,

issues at device level limiting retention, and - mostly - en-

durance still need to be solved. In fact, while HfO2-based

FeFETs have reduced trapping and lower depolarization over

coercive field ratio - leading to improved retention time with

respect to older device generations based on PZT or SBT

ferroelectrics5 - endurance is still a major issue. Indeed, recent

reports showed that endurance typical range is ∼ 104 − 106

writing cycles6,7; this is far from meeting the International

Roadmap for Devices and Systems (IRDS) requirements of

1012 cycles8. Nonetheless, the successful demonstration of

a ultra-scaled CMOS-compatible FeFET would advance a

broad range of applications, such as: i) Logic-In-Memory

(LiM) circuits9; ii) artificial neural networks10,11; and iii)

Ternary Content Addressable Memories (TCAMs)9,11.

Thus, deployment of characterization tools that quantify

and identify the limiting factors to endurance would facilitate

the development of next-generation FeFETs12. In this letter,

we propose to evaluate the endurance of FeFETs by using a

simple characterization tool based on an analytical expression

of the Memory Window (MW ). The MW expression allows

quantifying the impact of oxide and interface traps generated

over time. In addition, from the MW expression it is possible

to estimate the generated trap concentration during endurance
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tests without the need for numerical TCAD simulations. We

find also that under specific assumptions regarding the pro-

gram/erase pulse amplitude and duration endurance weakly

depends on writing conditions.

The MW is expressed as the difference between the on-

and off-threshold voltage (Vth,on, and Vth,o f f ) that corre-

spond to the right and left path of the FeFET ID − VGS

characteristics3, respectively. These path differ because of

polarization switching and represent the logic binary states

"0" and "1" of the memory. The expressions for Vth,on, and

Vth,o f f used in this work are a generalization of the ones

derived by Chen et al.13 for a Metal-Ferroelectric-Insulator-

Semiconductor (MFIS) stack. The MW is then simply written

as Vth,on −Vth,o f f . The derivation is based on the electrostatic

behavior of the FeFET described by the MOSFET surface po-

tential equation (SPE)13,14:

VGS −VFB =Vins +ψs (1)

where VGS is the applied gate-source bias, VFB is the flatband

voltage, Vins is the insulator voltage (including both ferroelec-

tric and oxide interface layer), and ψs is the surface potential.

Vins includes the contribution from the ferroelectric and oxide

interlayer and is expressed as follows:

Vins = Qs

(

1

CFE

+
1

Cox

)

, (2)

where Cox = εox/tox is the oxide capacitance (SiO2 in this

work) and CFE is the ferroelectric capacitance. The latter can

be written in a compact form by using the Landau-Devonshire

(LD) theory13,15:

CFE =
1

tFE(2α + 12β Q2
s)

+
εFE

tFE

(3)

where Qs is the semiconductor charge, α , β are the Lan-

dau parameters for the ferroelectric layer, εFE is the param-

eter accounting for the dielectric response of the ferroelectric

layer16,17, and tFE is the ferroelectric thickness. The two terms
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in Eq. (3) reflect the contributions to the displacement of the

electric field (D) obtained from the spontaneous polarization

and the applied electric field16, i.e., D = εFEE +P. Inciden-

tally, we mention that the LD formulation of CFE is commonly

employed to describe the operation of Negative Capacitance

transistors (NCFETs) for logic15 and other applications (such

as bio-sensing18). However, it can be used also to model the

operation of hysteretic FeFETs13. Thus, the approach based

on the LD theory followed in this work can serve as a bridge

between the NC- and Fe-FETs communities thanks to their

common theoretical framework.

The closed-form expressions for Vth,on, Vth,o f f and MW

read as (see the Supplementary Material for the derivation):

Vth,on = VFB + 2Vt ln
(

2Vt

|a|Q0

)

− 2Vt (4)

Vth,o f f = VFB + 2Vt ln
(

Qsw

Q0

)

−Vsw (5)

MW =2Vt ln
(

2Vt

|a|Qsw

)

+(Vsw − 2Vt) (6)

where Vt = kBT /q is the thermal voltage, kB is the Boltz-

mann constant, T is the device temperature, q is the el-

ementary charge, a ≡ 2αtFE /(1 + 2αεFE) + 1/Cox, Q0 =
√

2εskBTn2
i /Na, εs is the semiconductor dielectric constant,

ni is the intrinsic carrier density, and Na is the substrate dop-

ing density (for a p-type substrate in a NMOS device). Vsw

is the Vins at which switching from off- to on- occurs (Qsw is

the corresponding charge). Vsw and Qsw are calculated follow-

ing the procedure described in the Supplementary Material.

Since Vsw ∝ tFE , and MW ∼ Vsw ∝ tFE , Eq. (6) correctly an-

ticipates the theoretical (and experimentally observed) linear

thickness-dependence of the MW 4,14,19. While the traditional

Preisach model could also be used to describe the hysteretic

polarization behavior14, it does not allow to de-couple VFE

(ferroelectric voltage) from P14,20 and thus requires a self-

consistent, numerical analysis to obtain the results. Instead,

relying on the LD theory allows to derive simple, closed-form

expressions as (4)-(6) (and subsequent ones). More details re-

garding the derivation and approximations introduced as well

as the applicability limits of the analytical model are given in

the Supplementary Material.

Endurance is defined as the time taken (or total number of

cycles) during repeated program/erase operations before the

"0" and "1" states become indistinguishable. The main limit-

ing factor to FeFETs endurance is the trap generation in the

oxide interlayer between the ferroelectric and the semicon-

ductor body22. This effect is the subject of investigation in

this work. Other limitations to endurance of these devices

are related to ferroelectric aging that might lead to additional

Vth’s shifts, premature breakdown due to formation of perco-

lation paths23,24 and remnant polarization degradation22. A

more detailed discussion on these effects is given in the Sup-

plementary Material. We do not explicitly take into account

the fast MW decay (due to depolarization fields and trap-

ping/detrapping) because it is expected to mainly influence

retention5,22.

During stress tests to probe endurance, the high elec-

tric field in the gate stack accelerates trap generation. The

electric field mainly concentrates on the oxide interlayer

rather than in the ferroelectric because of its lower dielectric

constant20. Thus, generation is assumed to only occur at the

oxide/semiconductor interface and in the oxide itself. The ef-

fect of generated defects is modeled by adding to the right-

hand side of Eq. (1) these additional terms25:

Vot ≡ −
q∆Not

Ceq

Vit ≡
q∆Dit

Ceq

(ψs −φb), (7)

where ∆Not is the generated trap concentration in the oxide

interface layer (cm−2), ∆Dit is the generated interface trap

density of states (cm−2 eV−1), and φb is the body potential

(C−1
eq = C−1

FE +C−1
ox ). We assume that the charge neutrality

level for the interface traps is located at Si mid-gap25. Stress

is induced by positive and negative pulses applied on the gate

to erase and program the FeFET, respectively. Hence, Vth,on

tends to decrease and Vth,o f f to increase21. The concentra-

tion of generated defects during writing of the memory is in

general different depending on the sign of the writing pulse,

therefore the shifts in Vth,on and Vth,o f f are not symmetric.

This is reflected in the different symbols used to indicate the

generated defects during program and erase cycles, namely,

∆Not,P⁄E and ∆Dit,P⁄E for oxide and interface traps, respec-

tively.

The degraded Vth,on, Vtho f f , and MW expressions are modi-

fied by taking into account the additional potential drops due

to defects expressed in Eq. (7) (see the Supplementary Ma-

terial for the derivation). The Vth’s and MW variation is ex-

pressed as follows:

∆Vth,on =2Vt ln

(

1+
q∆Dit,P

Ceq

)

×

(

1+
q∆Dit,P

Ceq

)

−
q

Ceq

×

{

∆Not,P −∆Dit,P

[

2Vt ln

(

2Vt

|a|Q0

)

− 2Vt −φb

]}

(8a)

∆Vth,o f f =−
q

Ceq

{

∆Not,E −∆Dit,E

[

2Vt ln

(

Qsw

Q0

)

−φb

]}

(8b)

∆MW =2Vt ln

(

1+
q∆Dit,P

Ceq

)

×

(

1+
q∆Dit,P

Ceq

)

−
q

Ceq

{

(∆Not,P −∆Not,E)− 2Vt∆Dit,P

[

ln

(

2Vt

|a|Q0

)

− 1

]

+2Vt∆Dit,E ln

(

Qsw

Q0

)

+(∆Dit,P −∆Dit,E)φb

}

.

(8c)

To assess the accuracy of the above expressions, we compared

the analytical results with experimental data of endurance

tests from Ref. 21. The results in terms of ∆Vth,on and ∆Vth,o f f

for three different values of program/erase pulse amplitude,

|VP/E | are shown in Fig. 1 [|VP/E|= 4.2 V (a), 4.85 V (b), and

5.5 V (c)]. The α = −3× 109 m/F, β = 2× 1011 m5/F/C2,

εFE = 8ε0 were set to match the experimental data trends.

tFE = 10nm and tox = 3nm. The duration of both program

and erase pulse for each |VP/E | is tP/E = 100ns, thus the time
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|V
P/E

|= 4.2 V

V
th,on

V
th,off

(a)

Symbols: Exp. Data
Lines: Analytical

|V
P/E

|= 4.85 V

V
th,on

V
th,off

(b)

Symbols: Exp. Data
Lines: Analytical

|V
P/E

|= 5.5 V

V
th,on

V
th,off

(c)

FIG. 1. Calculated (dashed lines) and experimental data (symbols, taken from Ref.21) ∆Vth,on and ∆Vth,o f f vs program/erase cycle number.

The different panels show different program/erase pulse amplitude: (a) |VP/E |= 4.2V, (b) |VP/E |= 4.85V, and (c) |VP/E |= 5.5V, respectively.

100 101 102 103 104

Number of Cycles

-1.5

-1
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0

M
W

 (
V

)

4.2 V
4.85 V
5.5 V Symbols: Exp. Data

Lines: Analytical

|V
P/E

| =

FIG. 2. Calculated (dashed lines) and experimental data (symbols,

taken from Ref.21) ∆MW vs program/erase cycle number.

it takes for a single writing cycle is tcycle = 200ns21. The vari-

ation in Vth,on and Vth,o f f is in turn reflected to the MW , as

shown in Fig. 2 for the same |VP/E | values of Fig. 1. Because

degradation primarily occurs in the insulator layer, the trend

of the degraded Vth’s and MW is fully captured by Vot and Vit

only. From this observation, simplified ∆Vth,on, ∆Vth,o f f and

∆MW expressions can be obtained, as reported in the Sup-

plementary Material. The good agreement between analytical

and experimental results in Figs. 1 and 2 was obtained by ex-

tracting the generated oxide and interface trap concentrations

from ∆Vth,on and ∆Vth,o f f data in21 following the approach de-

scribed in26. That is, Not and Dit were extracted by separating

the threshold voltage shifts due to oxide (∆Vmg) and interface

traps (∆Vit) separately. The former is obtained from the mid-

gap voltage, Vmg, that correlates with Not -induced Vth drifts as

at VG = Vmg ⇒ ψs = φb and ∆Vit = 0, see Eq. (7); the latter

is obtained by letting ∆Vit = ∆Vth −∆Vot
21,26. To summarize,

Eq. (8a)-Eq. (8c) directly connect the FeFET parameters to

the stress-dependent oxide and interface trap generation. As

such, Eq. (8c) represents the proposed MW -based character-

ization tool for extracting oxide and interface defects. This

could serve either as an alternative to traditional techniques, or

as a stand-alone method to characterize defect densities under

a variety of stress conditions. For instance, notice that when

only Not generation affects MW degradation then it is possible

to estimate the net generated traps from the simplified ∆MW ′
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 c
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 c
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Program (V
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)

|V
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|

(a)

Erase (V
th,off

)

(b)

FIG. 3. Generated oxide traps, ∆Not , vs program/erase time for dif-

ferent |VP/E | (see legend) determining (a) Vth,on and (b) Vth,o f f degra-

dation. Black dashed lines are the fitting of experimental data (sym-

bols, from Ref. 21) with Eq. (10).

expression found in the Supplementary Material:

∆Not,net ≡ ∆Not,P −∆Not,E ≈−∆MW ′Ceq

q
(9)

This expression allows to simply and directly correlate MW

measurements with generated traps. In the following we show

that the endurance extrapolated from the equations derived

previously is weakly influenced by the writing conditions (in

terms of |VP/E | and tP/E ). With the Not and Dit data extracted

from Fig. 2, it is possible to extrapolate the generated trap

concentration for an arbitrary number of writing cycles. For

simplicity and clarity of presentation, we assume that the MW

degradation is induced by oxide traps only (as supported by

the experimental data from 21) and neglect the generation of

interface traps. The generated oxide trap density, Not is shown

in Fig. 3(a), (b) for both program and erase operation that set

Vth,on and Vth,o f f , respectively. By fitting the experimental

data in Fig. 3 it is found that generated oxide trap concen-

tration follows a power law with respect to writing time (with

tcycle = 200ns):

∆Not ∼ N0 × (tcycle)
βs . (10)

The values of N0 and βs coefficients are collected in Table I

for different writing conditions. Exponent βs is in the range
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FIG. 4. Normalized MW degradation calculated from ∆MW ′ with

only the contribution of ∆Not extrapolated from Fig. 3. (a) and (b)

show the dependence for different |VP/E | and tP/E values, respec-

tively. An arbitrary minimum MW threshold defines endurance.

of 0.3− 0.5, which might be a signature of enhanced TDDB

due to repeated cycling27.

The extrapolated MW degradation obtained by using the

predicted ∆Not from the generation model is shown in

Fig. 4(a), (b) for different VP/E and tP/E values, respectively.

Note that MW values are normalized to the respective initial

value for a fair comparison with different writing conditions.

The FeFET is considered to fail to retain its memory opera-

tion after reaching the arbitrary threshold set as the 20% of

the initial MW , see Fig. 4. That is, endurance is defined as

the number of cycles at which MW reaches 20% of its initial

value. Interestingly, notice from Fig. 4(a) that |VP/E | incre-

ment does not degrade endurance significantly (at least for the

range of values as in Ref. 21). This is because higher |VP/E |
leads to higher initial MW 4 but also higher ∆Not , see Fig. 3.

Similarly, Fig. 4(b) shows that increasing the pulse duration

negligibly influences endurance. Note that in this case it was

assumed that tP/E increase leads to the same increase in MW

and initial Not to that caused by VP/E . This was done for the

specific purpose of illustrating that if both MW and initial Not

increase with program conditions, then the combined effect

leads to negligible variation in endurance. However, if the as-

sumption regarding MW and Not increase with VP/E (or tP/E ) is

not satisfied, then the endurance limit will be affected by the

writing conditions.

The model can also predict the endurance improvement ob-

tained if the generated trap are decreased, either by improv-

ing the SiO2/Si interface quality or by reducing the field in

the oxide layer. For instance, if N0 is decreased by one order

of magnitude (and assuming every other parameter constant)

then endurance can be extended to 106 cycles.

Endurance improvements where observed also in experi-

ments employing either: i) unipolar stress pulses instead of

conventional, bipolar ones22; or ii) large-area samples with

improved interface quality and low gate leakage28. These

results can be predicted by the developed analytical model,

provided that adequate degradation model (i.e., by choosing

proper N0 and βs in Table I) is employed.

In this letter, we evaluated the endurance of FeFETs by us-

ing an analytical expression of the Memory Window, MW ,

for the conventional MFIS structure. The MW expression

takes into account the contribution from generated interface

TABLE I. Coefficients of the power law in Eq. (10).

Program (Vth,on) Erase (Vth,off)

VP/E (V) N0 (cm−2) βs N0 (cm−2) βs

4.2 9.6×1013 0.45 4.6×1012 0.25

4.85 3.28×1014 0.54 3.1×1013 0.41

5.5 9.5×1014 0.54 1.7×1014 0.41

and oxide traps and was validated against experimental data.

We find that: (i) MW can be used to extract oxide and inter-

face traps being generated during endurance tests, see Eq. (9);

(ii) the generation trend follows a power-law with time ex-

ponent ∼ 0.3− 0.5, see Eq. (10); and (iii) under specific as-

sumptions, the endurance limit is essentially independent of

writing conditions, see Fig. 4. The considerations drawn from

the simple analytical formulation can be helpful to develop

next-generation FeFET with improved endurance.

SUPPLEMENTARY MATERIAL

See supplementary material for: (i) the detailed derivation

of the analytical expressions; (ii) the design constraints to en-

sure hysteretic operation; (iii) the applicability limits of the

analytical approach; and (iv) the limiting factors to endurance

related to ferroelectric aging.
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