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Abstract
Implementing power-e�cient reservoir computing hardware systems is of great interest to the �eld of
neuromorphic computing. More and more studies attempt to use analog devices or components, such as
memristors and spintronic oscillators, to partially replace fully digital systems to boost the power
e�ciency. However, a reservoir computing system operating real-time in fully analog fashion has not
been demonstrated yet. In this work, a fully analog reservoir computing system was implemented using
two types of memristors, where dynamic memristors were used to construct the reservoir while non-
volatile memristor arrays were used as the readout layer. The key features, such as threshold and window,
extracted from the dynamic memristor-based physical nodes were found to have a signi�cant impact on
the system performance. By adjusting the features to the appropriate range, our system can e�ciently
process spatiotemporal signals in real time with extremely low power consumption, more than three
orders of magnitudes lower than digital counterparts. Both temporal task of arrhythm detection and
spatiotemporal task of dynamic gesture recognition were demonstrated, where high detection accuracy
of 96.6% and recognition accuracy 97.9% were achieved respectively. Our work demonstrates that such
memristor-based fully analog reservoir computing system could be attractive for spatial and temporal
edge computing with extremely low power and hardware cost.

Introduction
With the rapid development of arti�cial intelligence, arti�cial neural networks (ANNs) are getting
increasingly larger and deeper in scale, which imposes critical challenges to the computing power and
e�ciency of mainstream digital computers based on the von Neumann architecture1,2. To break the von
Neumann bottleneck, brain-inspired neuromorphic computing based on emerging devices, such as
memristors3,4, has attracted increasing attention in recent years5–7. For example, the computing-in-
memory architecture with emerging resistive switching devices, including nonvolatile memristors (NVM),
has exhibited orders of magnitudes higher energy e�ciency than traditional computing platforms like
central processing units (CPU) and graphics processing units (GPU)2. This is mainly because parallel
multiply-accumulate (MAC) computations can be implemented in a purely analog fashion via
fundamental physics laws on a memristor array by making use of its analog resistive switching
characteristics.

So far, most of the NVM-based ANNs implemented have been feed-forward networks, such as multilayer
perceptron (MLP) and convolutional neural network (CNN)8–11, which are di�cult to handle temporal
tasks. The other type of ANNs with recursive connections is usually called recurrent neural network (RNN),
which is designed for dealing with temporal inputs12–14. However, the training of RNN is challenging as it
usually faces the problem of exploding or vanishing gradients. Also, it is di�cult to be implemented with
NVM arrays especially in a fully analog fashion, because the inherent variation of NVM conductance and
the noise in analog circuits could cause error accumulation during the recursive computations, which
would eventually result in large output errors. Recently, an ingenious idea that replaces the recursive
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network with a dynamic physical system has attracted wide attention15–17. Because this approach can
not only circumvent the error accumulation problem in the recursive network, but also dramatically reduce
hardware cost. The most representative example that embodies this idea is the reservoir computing
(RC)18–20, which was initially proposed as a special variant of RNN. Unlike traditional RNN, the recursive
network in the reservoir is �xed and its weights do not need to be changed during the training process,
which enables the reservoir layer to be implemented with a speci�c physical system. In addition, the
training process of RC only involves the weights connecting to the �nal readout layer, where low-cost
training algorithms, such as linear regression, can be used.

In principle, the hardware implementations of RC system can be roughly divided into the following three
types. The �rst one is a fully digital RC system, where both the reservoir layer and the readout layer are
implemented by digital components (such as �eld-programmable gate array and digital signal
processor)21–23 as shown in Fig. 1a. While such fully digital system can minimize noise interference,
additional analog-to-digital converters (ADCs) are usually needed to convert the external analog signals
into digital inputs, which would incur extra energy consumption and system latency. Furthermore, a large
number of �oating-point calculations in such digital system that adopts the von Neumann architecture
with separated memory and computing units would also greatly increase the energy consumption and
hardware resources. To address these problems, hybrid RC systems which have an analog reservoir layer
and a digital readout layer are proposed as shown in Fig. 1b. In such hybrid systems, external analog
signals can be directly input and processed in the reservoir which can be implemented with analog
elements, such as spintronic oscillators24–26, photonic modules27–29, nanowire networks30–32, or
memristors33–35. These emerging devices can be treated as special physical systems36 (or physical
nodes) to equivalently realize the function of reservoir, which can reduce both energy consumption and
area. However, such hybrid RC system still has shortcomings as it also requires a large number of ADCs
to convert analog reservoir states into digital signals for the digital readout layer. In recent works, NVM
arrays have been used to implement the analog readout layer32,35. However, such systems reported so far
still need to add certain digital units (e.g., ADCs and registers) between the reservoir module and the
readout module for data conversion and buffering. A desired fully analog RC system, where both the
reservoir and the readout layer are implemented with analog elements and analog signals can be directly
transmitted and processed throughout the whole system without any conversion and buffering, is shown
in Fig. 1c. Compared with the above two types of RC systems, such fully analog RC system, which can
perform real-time spatiotemporal signal processing with extremely low power consumption and hardware
cost, has not been demonstrated yet.

In this study, a memristors-based fully analog RC system was successfully demonstrated using two
distinct types of memristors, where dynamic memristors (DMs) are used as the physical nodes to
construct parallel reservoirs and NVM arrays are used as the readout layer. The relationship between the
node features and the system performance was investigated through carefully adjusting
hyperparameters. Two key node features, that are threshold and window, were found to have a large
impact on the system performance. By engineering the DM-based reservoirs, the implemented RC system
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successfully demonstrated real-time spatiotemporal signal processing with more than three orders of
magnitudes lower power consumption than digital RC systems. Both arrhythm detection and dynamic
gesture recognition tasks were demonstrated, achieving high accuracies of 96.6% and 97.9% respectively.

Results
System Architecture and Device Characteristics. The hardware implementation of a fully integrated DM-
based RC (DM-RC) system is shown in Fig. 2a, which consists of power module, microcontroller unit
(MCU), reservoir module and readout module. The power module provides stable positive and negative
voltage sources, and the MCU generates control signals and handles data transfer. The reservoir module
maps the features of low-dimensional temporal input signals to a high-dimensional space. Such high-
dimensional features (that are reservoir states) are usually linearly separable, so that they can be
classi�ed using a simple fully connected readout layer. The core of the reservoir module is a set of DMs,
which are connected to the printed circuit board (PCB) through a probe card. The DM used in this work
has a cross-point structure with a material stack of Ti/TiOx/Pd (110 nm/80 nm/50 nm), and the cross-
sectional transmission electron microscope (TEM) image of the device is shown in the inset of the left
panel of Fig. 2a. Here, 24 DMs are used in our system to form parallel reservoirs, and the memristive I-V
curves along with the optical image of these devices are shown in the left panel of Fig. 2a. All the 24 DMs
show similar I-V curves with a strong recti�cation feature, which offers the desired nonlinearity for
designing the reservoir. To build a complete reservoir module, peripheral circuits, such as ampli�ers and
multiplexers (MUXs), are employed to realize the mask process33 and signal transmission. One DM along
with its peripheral circuits is treated as one nonlinear physical node, which we called a DM node in this
work, so the entire reservoir module is composed of 24 DM nodes. The details of signal processing in a
DM node are shown in Fig. 2b. First, the input signal is ampli�ed by a factor of Ai through an input
ampli�er. Then, the ampli�ed signal and its inverted counterpart are connected to a MUX which is
controlled by a special mask sequence with a pulse width of δ. The masked signal is added by an input
voltage bias Bi and then applied to the DM. After that, the output current signal of DM is �rst converted to
a voltage signal through a trans-impedance ampli�er (TIA) and then ampli�ed by a factor of Ao through
an output ampli�er. The �nal output signal and its inverted counterpart are fed to the readout module.

The function of the readout module is to perform a weighted summation of all reservoir states to obtain
the �nal system output. The readout module includes 4 NVM chips, each one consisting of an array of
2048 one-transistor-one-resistor (1T1R) cells. The NVM used in this work has a memristor material stack
of TiN/TaOx/HfAlOy/TiN, where the HfAlOy acts as the resistive switching layer while the TaOx layer

serves as the thermal enhanced layer to improve the analog switching characteristics8,37. The cross-
sectional TEM image of the NVM device is shown in the inset of the right panel of Fig. 2a. The I-V curves
of NVM at different resistance states are shown in right panel of Fig. 2a, which exhibits good linearity.
Such linear I-V characteristics ensure that the device has the same resistance under different input
voltage levels, which allows us to directly use analog voltages as inputs. Circuit diagram of the complete
DM-RC system is shown in Fig. 2c. The analog input signals are directly fed into the reservoir module,
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which has multiple parallel DM nodes with different masks. The output signals of the reservoir module
are applied to the bit lines (BLs) of the NVM array in the form of differential pairs in order to realize both
positive and negative weights38,39. The current signal outputs from the source lines (SLs) are collected by
the integrators, whose output signals are sampled to yield the �nal result. In this way, the DM-RC system
completes the signal processing in a full analog fashion as illustrated in Fig. 1c.

Hyperparameter Analysis. In order to optimize the performance of the DM-RC system, four
hyperparameters, Ai, Bi, Ao and δ, in the reservoir module are set to be externally adjustable. Figure 3a
illustrates the experimental approach to explore the relationship between the DM node behavior and the
system performance. The DM node behavior is characterized by the Input-Output (I-O) curve measured
from voltage sweep, and the DM-RC system performance is measured by the normalized root mean
square error (NRMSE) on a waveform classi�cation task (see Supplementary Fig. 1 for more details).
Different sets of hyperparameters are used when optimizing both the DM node behaviors and the system
performance. Under each set of hyperparameters, the waveform classi�cation results of the DM-RC
system and the corresponding I-O curves of the DM nodes are recorded for subsequent analysis.
Figure 3b shows the normalized I-O curves of DM nodes, where the input and output voltages are
normalized to [-1, 1] and [0, 1], respectively. Typical experimental results are obtained when the
hyperparameters are set to be Ai = 1.0, Bi = 1.2 V, Ao = 2.2 and δ = 0.6 ms. In order to facilitate the analysis
of the impact of DM node’s behavior on the RC system performance, three key features, including
threshold (T), slope (S) and window (W), are extracted from the normalized I-O curve. A simpli�ed DM
node model is established using these three features (i.e., T, S and W), and the details of this model are
described in the Methods section. Figure 3c shows the simulated I-O curves of the established DM node
model under a set of simulation parameters, which are consistent with the experimental results. This
result con�rms that the established model can retain the key characteristics of the DM node. In the
following, we then use it to further build the reservoir model and explore the relationship between the
three node features and the system performance. Through analysis of both experimental and simulation
results, we can then clarify the relationship between the DM node features and the DM-RC system
performance.

Figures 3d and 3e show the experimental and simulation results of system performance as a function of
threshold and slope, respectively, where the value of the window remains constant (W = 0.15). The results
in Figs. 3d and 3e show the effect of node nonlinearity on the performance of the reservoir. From both the
experimental and simulation results we can �nd that the system always achieves the optimal
performance under certain threshold values. The experimental results in Fig. 3d show that the system
performs the best when the threshold is around 0.1. The simulation results in Fig. 3e show a similar
pattern, where the optimal performance region is around the threshold of 0.25. It is hence noted that there
is a slight deviation between the optimal threshold values in the experimental and simulation results,
which could be mainly attributed to the simpli�ed DM node model that has only three parameters. For
example, the output curve near the threshold changes gradually and also the I-O curve beyond the
threshold is not completely linear, which are not captured in the simpli�ed DM node model. A detailed



Page 7/21

analysis on the dependence of system performance on the node features T and S is presented in
Supplementary Figs. 2 and 3. In general, the nonlinearity of DM node (i.e. a hard sigmoid like function)
moves the feature points outside a high-dimensional cube to its edges or vertices, while the other points
inside the cube remain stationary. In order to make them linearly separable, points in different classes
would need to be moved to different vertices of the cube. By adjusting the node features T and S, the
feature points before nonlinear transformation can be panned and zoomed in the high-dimensional
space. Compared with S, the value of T directly controls the position of the feature points before
nonlinear transformation and determines whether they can be linearly separated after nonlinear
transformation. From the above analysis, we can see that the threshold T is a key feature of the DM node
that directly determines the DM-RC system performance.

Furthermore, the experimental and simulation results of system performance as a function of window
size are shown in Figs. 3f and 3g, respectively, where the values of T and S remain constant. The results
re�ect the impact of the dynamic characteristics of DM node on the reservoir performance. Both results
show that the system could achieve the optimal performance when the window size W, which to some
extent represents the node memory capacity for the input signal, is neither too large nor too small. This
can be qualitatively explained as follows: too weak node memory makes the reservoir unable to retain
temporal characteristics of the input signal, resulting in a poor system performance; while too strong
memory could easily saturate the node state and make the reservoir lose the ability to process
subsequent signals, which can also lead to a poor system performance16,33. From a more intuitive point
of view, a proper node memory would increase the distance between the points from different classes in
the high-dimensional feature space, thereby improving the classi�cation performance of the reservoir. A
more detailed analysis on the dependence of system performance on the node features W is presented in
Supplementary Fig. 4. All these results suggest that the DM-RC system performance can be optimized by
carefully tuning the hyperparameters and node features.

Arrhythmia Detection. To evaluate the performance of the DM-RC system on analog signal processing, a
typical benchmark temporal task of arrhythmic heartbeat detection is carried out using MIT-BIH heart
arrhythmia database40, which contains 30-min electrocardiogram (ECG) recordings from 48 subjects. The
training and testing processes for the DM-RC system are shown in Fig. 4a. Firstly, the original ECG
waveform is re-sampled at a frequency of 72 Hz and split into single heartbeats of 700 ms (i.e., 50 time
steps). Each heartbeat, labelled as healthy or arrhythmic according to the health status, is normalized so
that its amplitude is in the interval of [-1, 1], as shown in Fig. 4b. In total 10,000 different heartbeats are
used as the dataset for this task, of which 5000 heartbeats are healthy and the rest 5000 are arrhythmic.
Then, those samples in the dataset are divided into two groups: 1000 randomly selected samples for
training and the rest 9000 samples for testing. The input signal is generated by a random combination of
single heartbeats in the dataset, and the target signal Ytarget is generated according to the corresponding
labels. Subsequently, the input signal is fed into the DM reservoir module, where one-dimensional
temporal signal is applied to 24 DM nodes in parallel after passing through different masks with a
sequence length of 5 as shown in Fig. 4c.
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For the training process, the outputs of 24 DM nodes are sampled as the reservoir states, as shown in
Fig. 4d. Since the mask sequence length is 5, each DM node can produce 5 reservoir states in one time
step, so that the number of �nal reservoir states reaches 120 per time step. In order to improve the system
robustness to noise, here a noise-aware linear regression method is used to train the output weight Wout.
We �rst combine the reservoir states at all time steps to generate the state matrix X. Then, a random
matrix Ntr with uniformly distributed values between -σ and σ is added to X, where σ is de�ned as the
noise level for training. Subsequently, the weight matrix Wout can be calculated by Wout = Ytarget(X + 

Ntr)T((X + Ntr) (X + Ntr)T)†, where the symbol † represents the Moore-Penrose pseudo-inverse33,41. In order
to verify the robustness of Wout, a simulated test process is carried out, where another random matrix Nte

with uniformly distributed values between − 0.04 and 0.04 is used to simulate the device noise. In such
simulated test process, the system output Y can be calculated by Y = (Wout + max(|Wout|)Nte)X. A more
detailed description of the noise-aware training method can be found in Supplementary Fig. 5. The
dependence of the training error and simulated test error on different σ values during the training process
is shown in Fig. 4e. It can be seen that as the noise level σ increases, the training error increases slowly
while the simulated test error (both mean and variance) decreases rapidly. The result shows that the
robustness of Wout to noise can be improved by adding a certain noise perturbation during the training
process. It is worth noting that as σ further increases, the training error continues to increase, which would
eventually lead to an increase in the test error as well. Thus, in our experiment, the optimal σ value is set
to be 0.06 to get the ideal Wout. The last step of the training process is to map the calculated Wout to the
device conductance of the NVM array. Here we use the differential conductance of two memristors to
represent one element in Wout, where the conductance of each device is programmed between 0 to 33 µS.
A closed-loop programming scheme is applied here to write the device conductance to the target value
(see Method section for more details). The result of weight mapping is shown in Fig. 4f, which displays
the distributions (120×2) of target conductance weights, mapped conductance weights and weight-
mapping errors compared with the target values. It can be seen that the trained weights are well mapped
with relatively small errors thanks to the excellent analog switching characteristics of our memristor
devices42.

For the testing process, the outputs of the 24 DM nodes are adjusted to a voltage range of 0 to 0.2 V
through ampli�ers and the corresponding negative voltage signals (0 ~ -0.2 V) are then generated by
analog inverters. The differential voltage signals are directly fed into the NVM array, on which the devices
have been programmed to the appropriate conductance. Subsequently, the output currents of each SL in
NVM array are collected by an integrator. The integrator is reset at the beginning of each time step, and its
output voltage is then sampled once at the end of each time step. The experimental results of the testing
process are shown in Fig. 4g, where the output of the integrator is normalized to [0, 1]. It can be seen that
the output signal can well �t the target signal and generates a peak when an arrhythmic heartbeat occurs.
Finally, a reference value Kref, labelled by the dashed line in Fig. 4g, is used to obtain the overall
classi�cation accuracy of the DM-RC system. The optimal system performance is achieved when the
hyperparameters are set to be Ai = 1.0, Bi = 2.4 V, Ao = 2.2 and δ = 0.2 ms. The average classi�cation
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accuracy we obtained in experiments is 96.6%, which is close to the software baseline of 98.2% achieved
by a full digital RC system, as shown in Fig. 4h. This result demonstrates the feasibility of using DM-RC
system to effectively process temporal signals with high accuracy.

Dynamic Gesture Recognition. Beyond arrhythmia detection, a more complex spatiotemporal task was
implemented to verify the analog computing ability of the DM-RC system. Here we demonstrate the real-
time processing of spatiotemporal signals from a three-axis acceleration sensor to classify different hand
gestures. The schematic of fully analog computing with DM-RC system for dynamic gesture recognition
is shown in Fig. 5a. When the hand performs a certain gesture, the three-dimensional analog signals from
the acceleration sensor are directly fed into the DM-based reservoir module, of which the generated
reservoir states are calculated in the NVM array-based readout module in a fully analog fashion to yield
the �nal recognition results. In our experiment, the sensor signals of four classes of dynamic gestures
(G1: equilateral triangle, G2: capital letter N, G3: inverted triangle, G4: capital letter Z) as shown in Fig. 5a
are recorded at a sample frequency of 10 Hz. Typical signals with normalized amplitude (-1 to 1) are
displayed in the Fig. 5b. Similar to the previous arrhythmia detection task, the recorded sensor signals are
split into single gestures of 3 s (i.e., 30 time steps) to generate the dataset. The gestures in the dataset
are then divided into two groups: 600 randomly selected samples for training and the rest 300 samples
for testing. Figure 5c shows the implemented network structure by recon�guring the DM-RC system,
where 24 DM nodes are equally divided into three groups to process the input signals from three channels
and 4 NVM arrays are used to classify four different types of gestures. The training and testing processes
are also similar to those in the previous task. The outputs of 24 DM nodes are sampled as the reservoir
states, as shown in Fig. 5d. Here, the mask sequence length is set to be 8, so each DM node can produce
8 reservoir states in one time step, and the �nal reservoir states reach 192 per time step. The result of
weight mapping is shown in Fig. 5e, which displays the distributions (192×8) of target conductance
weights, mapped conductance weights and weight-mapping errors compared with the target values.

The experimental results of the system output for the four classes of dynamic gestures are illustrated in
the Fig. 5f, where the outputs of four integrators are all normalized to [0, 1]. Here, we use two reference
values Kref and Nref to obtain the classi�cation accuracy of four independent outputs. During every 30
time steps, we �rst compare the output signal with value Kref and count the number of times (n) when the
output value is greater than Kref. Then, we further compare n with Nref to determine the �nal classi�cation
result. If n is greater than Nref, this segment of signal is detected as true, otherwise it is false. The �ow
chart of the above process is shown in Supplementary Fig. 6. In order to evaluate the advantages of our
system in terms of energy e�ciency, we compare both classi�cation accuracy and energy consumption
of our DM-RC system with a fully digital RC system as shown in Fig. 5g. It can be seen that, compared
with the digital RC system, our DM-RC system has an average accuracy loss of only 1.1% but saves more
than 99.9% of power consumption. The details of power estimation are described in Supplementary
Table 1. Such low power consumption can be attributed to two key factors in our system: one is the fully
analog signal transmission and processing realized in our system so that the large power consumption
overhead caused by ADCs in conventional RC systems can be eliminated; the other one is that the large
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recurrent neural network in traditional reservoirs is replaced by a small number of parallel DMs, which
largely reduces not only hardware cost but also power consumption.

Discussion
In summary, a fully analog RC system has been realized using a set of parallel DMs for reservoir and
NVM arrays for readout. The relationship between the electrical characteristics of DM nodes and DM-RC
system performance has been studied in depth by analyzing the I-O curves and system performance
under different hyperparameters. We �nd two key features, threshold and window, that have a signi�cant
impact on the quality of DM-based reservoir. The optimal system performance occurs at a speci�c
threshold when the window is in a suitable range. By adjusting the hyperparameters, the implemented
DM-RC system can perform different spatiotemporal signal processing tasks real-time with extremely low
power consumption. Both temporal task, arrhythmia detection, and more complex spatiotemporal task,
dynamic gesture recognition, have been demonstrated using our DM-RC system, where high detection
accuracy of 96.6% and recognition accuracy 97.9% have been achieved respectively. Compared with
traditional digital RC system, our memristor-based fully analog RC system has achieved more than three
orders of magnitudes lower power consumption. Compared with previous works21,32,34,35,43,44, the power
consumption of our DM-RC system is also the lowest reported so far (see Supplementary Table 2 for
detailed comparison) owing to the fully analog signal transmission and the advantage of using parallel
DMs equivalent to a large recursive network. To further reduce the power consumption and computing
latency of our system, the entire DM-RC system can be miniaturized and monolithically integrated on chip
in the future, thanks to the excellent CMOS compatibility and scalability of memristors. In addition, a
deeper and more sophisticated RC system can be constructed using DM-RC system as a basic unit, which
would further enhance the system performance because of richer reservoir states and stronger memory
capacity. Our work demonstrates that such fully analog DM-RC system is a promising platform for edge
computing with extremely low power consumption, and hence it has tremendous potential in applications
such as smart wearable devices and micro robots.

Methods
Measurement setup. The entire test system mainly consists of three parts, i.e., a host personal computer
(PC), a STM32 (MCU) development board and a user customized PCB as test board. The host PC
operates as the upper computer for data loading, command sending and user interface which is coded in
Python. The STM32 operates as the lower computer to communicate with the upper computer and
generate the speci�c control signals which are transmitted to the test board through the general-purpose
input/output (GPIO) ports. In addition, the STM32 is also responsible for generating and reading voltage
signals through the integrated 12-bit digital-to-analog converters (DACs) and ADCs, respectively. It needs
to be pointed out here, in addition to collecting the output of the integrators, the ADCs are only used in the
steps of sampling states and mapping weights during the training process. The test board integrates 4
NVM chips, 24 DMs (connected by a probe card) and several commercial chips such as low-dropout
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regulators (LDOs), MUXs, ampli�ers and digital potentiometers (DPs). LDOs are used to provide stable
positive and negative DC voltage sources for other chips in test board. MUXs are used to control the
signal �ow in the system and realize the mask process. Ampli�ers are used to adjust the voltage signals
and realize TIAs and integrators. DPs are used to adjust the gain of the ampli�ers and adjust the bias
voltage (Bi).

Simpli�ed DM node model. The simpli�ed DM node model is de�ned as:

1

where Vi(k), Vo(k) and Vt(k) are the input voltage, output voltage and threshold voltage at k-th time step,
respectively, while S and f are the slope of I-O curve and nonlinear function, respectively. Here, f is de�ned
as:

2

In Eq. (1), Vt changes dynamically with the input signal Vi. We consider the simplest case where the
dynamic process is linear and time-invariant. In other words, Vt is the result of a linear �ltering on Vi. The
differential function of such linear �ltering process is de�ned as:

3

where α is the �lter weight which determines the time scale of the system memory, and T is the initial
value of Vt which also corresponds to the threshold extracted from the I-O curve. The other feature
extracted from the I-O curve is the window (W) which can be calculated as follows:

W = max(Vt) - min(Vt), where the sequence of Vt is obtained by Eq. (3) with a dual sweep sequence of Vi.
The simulation of such simpli�ed DM node model is performed in Python with Numpy package by
solving Equations (1)-(3).

Weight mapping process. We use a closed-loop programming scheme to map the target weight (Wtarget)

onto the device conductance of the NVM array9. The basic loop of such programming scheme is run in
the PC and coded in Python. In the PC program, there are three core functions: fread, fset, freset and fcomp.
First, the function fread is executed and a command is sent from the PC to the MCU to read the
conductance state (Wreal) of the NVM, where the read voltage is set to be 0.2 V. Then, the function fcomp is

Vo (k) = f (S( Vi (k) − Vt (k) ))

f (x) =

⎧⎪
⎨
⎪⎩

0, x < 0

x, 0 ≤ x ≤ 1

1, x > 1

Vt (k + 1) = (1 + α) Vt (k) − α (Vi( k) − 2T)
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executed, where the difference between Wreal and Wtarget is calculated as ΔW = Wreal - Wtarget and a
maximum error weight ΔWmax is used to compare with ΔW to determine the next step of programming: 1)
if |ΔW| is smaller than ΔWmax, then Wtarget is considered to be successfully mapped and the
programming step is �nished; 2) if ΔW is smaller than -ΔWmax, the function fset is executed and a SET
operation is performed, where two voltage pulses with amplitudes of 5 V and Vwl (varying from 0.5 to 2.8
V) are applied to the BL and word line (WL) of the 1T1R cell, respectively; 3) if ΔW is larger than ΔWmax,
the function freset is executed and a RESET operation is performed, where two voltage pulses with
amplitudes of Vsl (varying from 1.5 to 3.0 V) and 5 V are applied to the SL and WL of the 1T1R cell,
respectively. Steps 2) and 3) are repeated until the target weight Wtarget is successfully mapped.
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Figure 1

Different types of RC systems. (a) Fully digital RC system, where the analog input signals are �rst
converted into digital signals by ADCs, and then fed into the reservoir and the readout layer based on
digital cells. (b) Hybrid RC system, where the analog signals are directly input to the reservoir based on
analog cells, and the analog reservoir states are converted into digital signals which are then fed into the
readout layer based on digital cells. (c) Fully analog RC system, where the analog input signals are
directly fed into the reservoir and the readout layer based on analog cells. 
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Figure 2

Device characteristics of memristors and the architecture of DM-RC hardware system. (a) Left panel,
optical image and I-V hysteresis curves of 24 dynamic memristors (DM) and cross-sectional transmission
electron microscope (TEM) image of the fabricated dynamic memristor, consisting of a vertically stacked
structure of Ti/TiOx/Pd (110 nm/80 nm/50 nm). Middle panel, photograph of the integrated PCB system,
which consists of a power module, a reservoir module, a readout module (including 4 NVM chips
consisting of a 2,048-memristor array) and an MCU. Right panel, I-V curves of non-volatile memristors
(NVM) with different resistance states and cross-sectional TEM image of the fabricated non-volatile
memristor, consisting of a material stack of TiN/TaOx/HfAlOy/TiN (30 nm/45 nm/8 nm/30 nm). (b) The
details of signal processing in a DM node. First, the input signal is ampli�ed by a factor of Ai through the
input ampli�er. Then, the ampli�ed signal and its inverted signal are connected to a MUX which is
controlled by a special mask sequence with a pulse width of δ. The masked signal is added by an input
voltage bias Bi and then applied to the DM. The output current of DM is �rst converted to voltage signal
by a trans-impedance ampli�er (TIA) and then ampli�ed by a factor of Ao through the output ampli�er.
The �nal output signal and its inverted signal are fed to the readout module. (c) Circuit diagram of the
hardware RC system. The analog input signals are directly fed into multiple parallel DM nodes with
different masks. The output signals of the reservoir module are applied to the BLs of the NVM array in the
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form of differential pairs, in order to realize both positive and negative weights. The current signals
output from the SLs are collected by the integrators and the �nal output signals are sampled from the
output of these integrators.

Figure 3

Hyperparameter adjustment for improving the reservoir performance. (a) The experimental approach of
exploring the relationship between the DM node behavior and the system performance, where the DM
node behavior is characterized by I-O curve and the system performance is measured by the normalized
root mean square error (NRMSE) on a waveform classi�cation task. Different hyperparameters (Ai, Bi, Ao

and δ) are used when obtaining waveform classi�cation results and the corresponding I-O curves. (b) The
experimental results of the normalized I-O curves under a set of hyperparameters (Ai = 1.0, Bi = 1.2 V, Ao =
2.2 and δ = 0.6 ms), where the input voltage is normalized to [-1, 1] and the output voltage is normalized
to [0, 1]. (c) The simulated results of the normalized I-O curves under a set of simulation parameters,
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where three features (threshold T, slope S and window W) are extracted for subsequent analysis. (d) The
experimental results of system performance changing with the threshold and slope (extracted from
normalized I-O curve). (e) The simulation results of system performance changing with the threshold and
slope (simulation parameters). (f-g) The experimental (f) and simulated (g) results of system
performance changing with the window size, respectively. 

Figure 4

Demonstration of arrhythm detection with the DM-RC system. (a) Schematic of the training and testing
processes in the DM-RC system. (b) Two classes (healthy and arrhythm) of heartbeat signals selected
from MIT-BIH arrhythmia database. (c) Network structure used for the arrhythm detection task, where one-
dimensional heartbeat signals are simultaneously fed into 24 independent DM nodes with different
masks and the output signals of reservoir module are input to a NVM array for readout. (d) The
normalized reservoir states corresponding to the input signal. (e) Weight training process using a linear
regression as a function of noise, where the train error and simulated test error vary with the noise level.
(f) Distributions (120×2) of target conductance weight, mapped conductance weight and weight-mapping
error compared with the target values. (g) The input (combination of healthy and arrhythm heartbeats)
and output signals of the DM-RC system, where the system output is normalized to [0, 1]. A reference
value Kref, shown in the �gure as a dashed line, is used to obtain the overall classi�cation accuracy of the



Page 20/21

DM-RC system. The optimal system performance is achieved when the hyperparameters are set to be Ai =
1.0, Bi = 2.4 V, Ao = 2.2 and δ = 0.2 ms. (h) The comparison of the classi�cation accuracy between digital
and fully analog RC systems, where the accuracy loss of our fully analog DM-RC system is only 1.6%.

Figure 5

Demonstration of dynamic gesture recognition with the DM-RC system. (a) A conceptual schematic of
fully analog computing with DM-RC system in a dynamic gesture recognition task. Arrows indicate the
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direction of hand movement. (b) Four classes (G1: equilateral triangle, G2: capital letter N, G3: inverted
triangle, G4: capital letter Z) of dynamic gesture signals collected from a 3-axis acceleration sensor. The
signal amplitude is normalized to [-1, 1]. (c) Network structure used for the dynamic gesture recognition
task, where the three-dimensional gesture signals are parallelly fed into 3 groups of DM nodes (each
group has 8 DM nodes) and the output signals of reservoir module are simultaneously input to 4 NVM
arrays. (d) The normalized reservoir states corresponding to a gesture signal. (e) Distributions (192×8) of
target conductance weight, mapped conductance weight and weight-mapping error compared with the
target values. (f) The input (combination of 4 classes of gesture signals) and output signals of DM-RC
system, where the sampled outputs of 4 integrators are all normalized to [0, 1]. Two reference values Kref

and Nref, shown in the �gure as dashed lines, are used to obtain the overall classi�cation accuracy of DM-
RC system. The optimal system performance is achieved when the hyperparameters are set to be Ai = 1.0,
Bi = 2.4 V, Ao = 2.2 and δ = 0.2 ms, same as the previous arrhythm detection task. (g) Comparison of the
classi�cation accuracy and power consumption between digital and fully analog RC systems, where the
overall reduced accuracy and power consumption for our DM-RC system are 1.1% and 99.9 %
respectively.
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