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Abstract 

 

Memristor-based systems and their potential applications, in which memristor is both a nonlinear element and a memory 

element, have been received significant attention recently. A memristor-based hyperchaotic system with hidden attractor 

is studied in this paper. The dynamics properties of this hyperchaotic system are discovered through equilibria, 

Lyapunov exponents, bifurcation diagram, Poincaré map and limit cycles. In addition, its anti-synchronization scheme 

via adaptive control method is also designed and MATLAB simulations are shown. Finally, an electronic circuit 

emulating the memristor-based hyperchaotic system has been designed using off-the-shelf components. 
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1. Introduction 

 

Three attractive inventions of Professor Leon O. Chua: the 

Chua’s circuit [1], the Cellular Neural/Nonlinear Networks 

(CNNs) [2,3], and the memristor [4,5] are considered as the 

major breakthroughs in the literature of the nonlinear 

science. While Chua’s circuit and CNNs have studied and 

applied in various areas, such as secure communications, 

random generators, signal processing, pattern formation of 

modelling of complex systems [6-12], studies on memristor 

[13-21] have only received significant attention recently 

after the realization of a solid-state thin film two-terminal 

memristor at Hewlett-Packard Laboratories [22].  

Memristor was proposed by L.O. Chua as the fourth 

basic circuit element beside the three conventional ones (the 

resistor, the inductor and the capacitor) [4,23]. Memristor 

presents the relationship between two fundamental circuit 

variables, the charge (q) and the flux (φ). Hence, there are 

two kinds of memristor: charge-controlled memristor and 

flux-controlled memristor. A charge-controlled memristor is 

described by 

 

𝑣! = 𝑀(𝑞)𝑖!       (1) 
 

where vM is the voltage across the memristor and iM is the 

current through the memristor. Here the memristance (M) is 

defined by 
 

( )
( )d q

M q
dq

ϕ
=         (2) 

 

while the flux-controlled memristor is given by 
	
  

( )M M
i W vϕ=          (3) 

 

where W(φ) is the memductance, which is defined by 
 

( )
( )dq

W
d

ϕ
ϕ

ϕ
=                     (4) 

 

Moreover, by generalizing the original definition of a 

memristor [5,23], a memristive system is given as: 
 

   

!x = f x,u,t( )
y = g x,u,t( )u

⎧
⎨
⎪

⎩⎪
	
   	
        (5) 

 

where u, y, and x denote the input, output and state of the 

memristive system, respectively. The function f is a 

continuously differentiable (𝐶!), 𝑛-dimensional vector field 

and g is a continuous scalar function. 

The intrinsic nonlinear characteristic of memristor could 

be exploited in implementing chaotic systems with complex 
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dynamics as well as special features [24,25]. For example, a 

simple memristor-based chaotic system including only three 

elements (an inductor, a capacitor and a memristor) was 

introduced in [26]. Also, a system containing an HP 

memristor model and triangular wave sequence can generate 

multi-scroll chaotic attractors [27]. Moreover, a four-

dimensional hyperchaotic memristive system with a line 

equilibrium was also presented by Li [28]. It is worth noting 

that although a four-dimensional memristive system often 

only exhibit chaos, the presence of a memristor led Li’s 

system to a hyperchaotic system with hidden attractors.  

According to a new classification of chaotic dynamics 

[29,30], there are two kinds of attractors: self-excited 

attractors and hidden attractors. A self-excited attractor has 

a basin of attraction that is excited from unstable equilibria. 

As a result, most reported chaotic systems, viz. Lorenz 

system [31], Rössler system [32], Chen system [33], Sprott 

system [34], Sundarapandian systems [35-36], Vaidyanathan 

systems [37-44], Pehlivan system [45], etc., belong to the 

class of chaotic systems with self-excited attractors. In 

contrast, a hidden attractor cannot be discovered by using a 

numerical approach where a trajectory started from a point 

on the unstable manifold in the neighbourhood of an 

unstable equilibrium [30,46,47]. Studying systems with 

hidden attractors is a new research direction because of their 

practical and theoretical importance [48-53]. 

In this paper, a memristor-based system without 

equilibrium is studied. The rest of the paper is organized as 

follows. In the next Section, the model of the memristor-

based system is described. The dynamics and qualitative 

properties of the memristor-based system are described in 

Section 3. In Section 4, an anti-synchronization  scheme for 

the identical memristor-based systems is derived via 

adaptive control theory. In Section 5, circuit implementation 

of the memristor-based system is studied detail. Finally, the 

conclusion remarks are drawn in Section 6. 

 
2. Model of Memristor-Based System 

 
In this work, a flux-controlled memristor is used. Similar to 

other published papers [54-56], its memductance is given as:  

 

( ) 2
1 6W ϕ ϕ= +                      (6) 

 
Based on this memristor, a four-dimensional system is 

introduced as follows: 

 

   

!x = −10x −5y −5yz

!y = −6x + 6xz + ayW ϕ( )+ b

!z = −z − 6xy

!ϕ = y

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                 (7) 

 
where a, b are real parameters, and W(φ) is the 

memductance as defined in (6). 

When b = 0, the memristor-based system (7) has the line 

equilibrium E(0, 0, 0, φ). Interestingly, system (7) is 

hyperchaotic for different values of the parameter a [28]. For 

instance, when a = 0.1, b = 0 and the selected initial 

conditions are (x(0), y(0), z(0), φ(0)) = (0, 0.01, 0.01, 0), 

hyperchaos is observed. In this case, memristor-based 

system (7) is similar to the reported system in [28], hence it 

will not be discussed in next sections. 

3. Dynamics of the Memristor-Based System 
 

We consider the memristor-based system (7) when b ≠ 0. It 

is easy to derive the equilibrium for system (7) by solving        

ẋ = 0, ẏ = 0, ż = 0, and 𝜑 = 0, that is 

 

10 5 5 0x y yz− − − =        (8) 

( )26 6 1 6 0x xz ay bϕ− + + + + =       (9) 

6 0z xy− − =                    (10) 

0y =                                  (11) 

 

Solving (8), (10) and (11), we get 𝑥 = 𝑦 = 𝑧 = 0.   Thus, Eq. 

(9) reduces to 𝑏 = 0  ,  which is a contradiction. Hence there 

is no equilibrium for the memristor-based system (7). 

When a = 0.1, b = –0.001 and the selected initial 

conditions are (x(0), y(0), z(0), φ(0))=(0, 0.01, 0.01, 0), the 

Lyapunov exponents of the system (7) are λ1 = 0.1244,         

λ2 = 0.0136, λ3 = 0 and λ4 = –10.8161. Thus, the memristor-

based system (7) is a hyperchaotic system because it has 

more than one positive Lyapunov exponents [57]. Moreover, 

this memristor-based system can be classified as a 

hyperchaotic system with hidden strange attractor, a basin of 

attraction of which does not contain neighbourhoods of 

equilibria [30,58]. To the best of our knowledge there are 

only few works reporting hyperchaotic hidden strange 

attractor [28,50,59]. It is noting that system (7) has been 

proposed briefly in [59], but the behavior of such a system 

has not been investigated. The projections of the 

hyperchaotic attractor without equilibrium for this set of 

parameters are shown in Fig. 1. 

The Kaplan-Yorke fractional dimension, that presents 

the complexity of attractor [60], is defined by 
 

KY

1 1

1
D

j

i

j i

j λ
λ

+ =

= + ∑                             (12) 

 

where j is the largest integer satisfying 

1

0

j

i

i

λ

=

≥∑  and 

1

1

0.

j

i

i

λ

+

=

<∑   

The calculated fractional dimension of  memristor-based 

system (7) when a = 0.1, b = –0.001 is 
KY
D 3.0128 3.= >  

Thus, it indicates a strange attractor. Moreover, as it can be 

seen from the Poincaré map (Fig. 2), memristor-based 

system (7) exhibits a rich dynamical behavior. 

It is worth mentioning that Lyapunov exponents measure 

the exponential rates of the divergence and convergence of 

nearby trajectories in the phase space of the chaotic system 

[6,33] and for a four-dimension hyperchaotic system there 

are two positive Lyapunov exponents, one zero, and one 

negative Lyapunov exponent. Thus Lyapunov exponents of 

memristor-based system (7) have been calculated using well-

known algorithm in [61] to verify its hyperchaos. 

In our work, the parameter b is fixed as b = –0.001, 

while the parameter a indicating the strength of the 

memristor is varied.  The bifurcation diagram is presented in 

Fig. 3 by plotting the local maxima of the state variable z(t) 

when changing the value of the parameter a. The spectrum 

of the corresponding Lyapunov exponents is depicted in    

Fig. 4. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 1. The projection of the hyperchaotic attractor of memristor-based 

system (7) for a = 0.1, and b = –0.001 (a) in the  x-y phase plane, (b) in 

the  x-z phase plane and (c) in the  x-φ phase plane. 
 

 
Fig. 2. Poincaré map in the x-z-φ space plane when y = 0 for a = 0.1, 

and b = –0.001.   

 

 
Fig. 3. Bifurcation diagram of zmax with b = –0.001 and a as varying 

parameter. 

 

 
Fig. 4. Three largest Lyapunov exponents of memristor-based system 

(7) versus a for b = –0.001. 

 

Lyapunov exponents reported in Fig. 4  agree  well with 

the bifurcation diagram of  Fig. 3. As shown in Figs. 3 and 

4, there are some windows of  limits cycles, of chaotic 

behavior and of hyperchaotic behavior. For example, the 

periodic orbit of memristor-based system (7) for the 

parameter a = 0.07 is illustrated in Fig. 5.  
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(a) 

 
(b) 

 
(c) 

Fig. 5. The periodic orbit of memristor-based system (7), for a = 0.07, 

and b = –0.001 (a) in the x-y phase plane, (b) in the  x-z phase plane and 

(c) in the  x-φ phase plane. 
 

4. Adaptive Anti-Synchronization of Identical 

Memristor-Based Systems 

 

The study of anti-synchronization of chaotic systems is an 

important research problem in the chaos literature [62-65].  

The anti-synchronization of chaotic systems involves a 

pair of chaotic systems called the master or drive system and 

slave or response systems, and the design problem is to find 

an effective feedback control law so that the outputs of the 

master  and  slave  systems   are   equal   in   magnitude  and  

 

opposite in sign asymptotically. In other words, when anti-

synchronization is achieved between the master and slave 

chaotic systems, the sum of the outputs of the two systems 

will converge to zero asymptotically with time.  

This section will present the adaptive anti-

synchronization of identical memristor-based hyperchaotic 

systems with unknown parameters a and b. We use estimates 

A(t) and B(t) for the unknown parameters a and b, 

respectively.  

Adaptive control method is used to derive update laws 

for the parameter estimates and Lyapunov stability theory is 

used to establish the main anti-synchronization result of this 

section. Adaptive control method is known to be an effective 

method for the synchronization and anti-synchronization of 

chaotic systems [66-70]. 

As the master system, we consider the memristor-based 

system dynamics   

 

   

!x
1
= −10x

1
−5y

1
−5y

1
z
1

!y
1
= −6x

1
+ 6x

1
z
1
+ ay

1
W ϕ

1( )+ b

!z
1
= −z

1
− 6x

1
y

1

!ϕ
1
= y

1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                (13) 

 

In (13), W(φ) is the memductance as defined in (6). Also, 

x1, y1, z1, φ1 are the states of the master system (13). 

As the slave system, we consider the controlled 

memristor-based system dynamics 

 

   

!x
2
= −10x

2
−5y

2
−5y

2
z

2
+ u

x

!y
2
= −6x

2
+ 6x

2
z

2
+ ay

2
W ϕ

2( )+ b+ u
y

!z
2
= −z

2
− 6x

2
y

2
+ u

z

!ϕ
2
= y

2
+ uϕ

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                (14) 

  

Here x2, y2, z2, φ2 are the states of the slave system (14) 

and ux, uy, uz, uφ are the adaptive controls to be determined 

for the anti-synchronization of the systems (13) and (14). 

The system parameters 𝑎 and 𝑏 are unknown and hence, 

we use estimates A(t) and B(t) for a and b,  respectively.  

The anti-synchronization error between the memristor-

based systems (13) and (14) is defined as follows: 

 

1 2

1 2

1 2

1 2

x

y

z

e x x

e y y

e z z

eϕ ϕ ϕ

= +⎧
⎪

= +⎪
⎨

= +⎪
⎪ = +⎩

     (15) 

 

Thus, the anti-synchronization error dynamics is got as: 
 

   

!e
x
= −10e

x
−5e

y
−5( y

1
z
1
+ y

2
z

2
)+ u

x

!e
y
= −6e

x
+ 6(x

1
z
1
+ x

2
z

2
)+

       +a y
1
W (ϕ

1
)+ y

2
W (ϕ

2
)⎡⎣ ⎤⎦ + 2b+ u

y

!e
z
= −e

z
− 6(x

1
y

1
+ x

2
y

2
)+ u

z

!eϕ = e
y
+ uϕ

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

          (16) 

 

As an adaptive feedback control law to stabilize the 

system (16), we take 
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u
x
= 10e

x
+5e

y
+5( y

1
z
1
+ y

2
z

2
)− k

x
e

x

u
y
= 6e

x
− 6(x

1
z
1
+ x

2
z

2
)+

       − A(t) y
1
W (ϕ

1
)+ y

2
W (ϕ

2
)⎡⎣ ⎤⎦ − 2B(t)− k

y
e

y

u
z
= e

z
+ 6(x

1
y

1
+ x

2
y

2
)− k

z
e

z

!eϕ = −e
y
− kϕeϕ

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

          (17) 

 
In (17), A(t) and B(t) are estimates for the unknown 

system parameters a and b, respectively. Also, kx, ky, kz and 

kφ are assumed to be positive gain constants. 

Substituting (17) into (16), we get the closed-loop error 

dynamics as: 

 

   

!e
x
= −k

x
e

x

!e
y
= a − A(t)( ) y

1
W (ϕ

1
)+ y

2
W (ϕ

2
)⎡⎣ ⎤⎦ +

       +2 b− B(t)( )− k
y
e

y

!e
z
= −k

z
e

z

!eϕ = −kϕeϕ

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

    (18) 

  
We define the parameter estimation errors as: 

 

( ) ( )

( ) ( )

a

b

e t a A t

e t b B t

= −⎧
⎨

= −⎩
                   (19) 

  
Differentiating (19) with respect to t, we get 

 

   

!e
a
(t) = − !A(t)

!e
b
(t) = − !B(t)

⎧
⎨
⎪

⎩⎪
      (20) 

  
Substituting (19) into (18), we get the error dynamics as: 

 

   

!e
x
= −k

x
e

x

!e
y
= e

a
y

1
W (ϕ

1
)+ y

2
W (ϕ

2
)⎡⎣ ⎤⎦ + 2e

b
− k

y
e

y

!e
z
= −k

z
e

z

!eϕ = −kϕeϕ

⎧

⎨

⎪
⎪

⎩

⎪
⎪

   (21) 

  
We consider the quadratic Lyapunov function 

 

( )2 2 2 2 21

2
x y z a bV e e e e e= + + + +                   (22) 

  
Clearly, V is a positive definite function on 𝑅!. 

Differentiating V along the trajectories of (18) and (20), 

we get  

 

   

!V = −k
x
e

x

2 − k
y
e

y

2 − k
z
e

z

2 − kϕeϕ
2
+

       +e
a

e
y

y
1
W (ϕ

1
)+ y

2
W (ϕ

2
)⎡⎣ ⎤⎦ − !Α⎡⎣ ⎤⎦ +

       +e
b

2e
y
− !B⎡⎣ ⎤⎦

                       (23) 

  
In view of (23), we define an update law for the 

parameter estimates as: 

 

 

   

!A = e
y

y
1
W (ϕ

1
)+ y

2
W (ϕ

2
)⎡⎣ ⎤⎦

!B = 2e
y

⎧
⎨
⎪

⎩⎪
   (24) 

 

Theorem 1. The identical memristor-based systems (13) 

and (14) with unknown parameters a and b are exponentially 

and globally anti-synchronized by the adaptive control law 

(17) and the parameter update law (24), where the gain 

constants kx, ky, kz,kφ are positive and A(t), B(t) are estimates 

for a and b, respectively. 
 

Proof.  The result is proved via Lyapunov stability 

theory. For this purpose, we consider the quadratic 

Lyapunov function V defined by (22), which is positive 

definite on 𝑅!.  

Substituting the parameter update law (24) into (23), we 

obtain 𝑉 as: 

 

   
!V = −k

x
e

x

2
− k

y
e

y

2
− k

z
e

z

2
− k

ϕ
e
ϕ

2
    (25) 

 

Clearly, 𝑉 is a negative semi-definite function on 𝑅!. 

Thus, we can conclude that the anti-synchronization error 

e(t) and the parameter estimation error [ea(t) eb(t)]
T
 are 

globally bounded.  

We define k = min{kx, ky, kz, kφ}. 

Then it is clear from (25) that  

 

   
!V ≤ −k e

2

 or k e
2

≤ − !V .                             (26) 

  

Integrating the inequality (26) from 0 to t, we get 

 

   
k e(τ )

0

t

∫
2

dτ ≤ − !V
0

t

∫ (τ )dτ =V (0)−V (t)                        (27) 

  

Therefore, we can conclude that 𝑒 𝑡 ∈ 𝐿!.  

Using (21), we can conclude that 𝑒 𝑡 ∈ 𝐿!. 

Using Barbalat’s lemma [71], 𝑒(𝑡) → 0 exponentially as 

𝑡 → ∞  for all initial conditions 𝑒 0 ∈ 𝑅
!
. n 

 

For numerical simulations, the classical fourth-order 

Runge-Kutta method with step size h = 10
-8

 is used to solve 

the systems of differential equations (13), (14) and (24), 

when the adaptive control law (17) is applied.  

The parameter values of the memristor system are taken 

as in the hyperchaotic case, viz. a = 0.07 and b = –0.001. 

The gain constants are taken as: kx = ky = kz = kφ = 5. As 

initial conditions of the master system (13), we take x1(0) = 

7.4, y1(0) = –3.5, z1(0) = 3.4, φ1(0) = –1.7, while as initial 

conditions of the slave system (14), we take x2(0) = 4.3, y2(0) 

= –1.2, z2(0) = 2.8, φ2(0) = –2.4. Furthermore, as initial 

conditions of the estimates A(t) and B(t), we take A(0) = 1.2 

and B(0) = 2.5. 

In Figs. 6-9, the anti-synchronization of the states of the 

master system (13) and the slave system (14) is depicted. 

Fig. 6 depicts the anti-synchronization of the states x1 and x2 

of the systems (13) and (14). Fig. 7 depicts the anti-

synchronization of the states y1 and y2 of the systems (13) 

and (14). Fig. 8 depicts the anti-synchronization of the states 

z1 and z2 of the systems (13) and (14). Fig. 8 depicts the anti-

synchronization of the states φ1 and φ2 of the systems (13) 

and (14). In Fig. 10, the time-history of the anti-

synchronization errors ex(t), ey(t), ez(t), eφ(t) is depicted. 
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Fig. 6.  Anti-synchronization of the states x1 and x2. 

  

 
 

Fig. 7. Anti-synchronization of the states y1 and y2. 

 

  

 
 

 

Fig. 8. Anti-synchronization of the states z1 and z2. 

 

  

 
 

Fig. 9. Anti-synchronization of the states φ1 and φ2. 

 

 
 Fig 10. Time-history of the anti-synchronization errors. 

 

 

5. Circuital Design of the Memristor-Based System 

 

Using electronic circuits emulating chaotic/hyperchaotic 

systems is an effective approach for investigating dynamics 

of such systems [6,7,72]. Some advantages of this physical 

approach can be listed as avoiding the uncertainties arising 

from systematic and statistical errors in numerical 

simulations, reducing long simulation time or displaying 

attractors on the oscilloscope easily [7,73]. From the point of 

view of practical applications, the realization of chaotic 

electronic circuits based on theoretical models is a vital 

topic. Such circuits are main parts in diverse chaos-based 

applications such as image encryption scheme, path planning 

generator for autonomous mobile robots, or random bit 

generator [74-80]. 

In this Section, an electronic circuit is designed to 

implement memristor-based system (7). The circuit in Fig. 

11 has been designed following a general approach based on 

operational amplifiers [7]. The variables x, y, z, φ of system 

(7) are the voltages across the capacitor C1, C2, C3, and C4, 

respectively. As shown in Fig. 11 the memristor is realized 

by common electronic components. Indeed the sub-circuit of 

memristor in Fig. 11 only emulates the memristor because 

there are not any commercial off-the-shelf memristors in the 

market yet. By applying Kirchhoff’s circuit laws, the 

corresponding circuital equations of circuit can be written 

as: 
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1

1 2 2 3

2

1 1 3

2 4

3

3 1 2

4

2

1 1 2 1 3 1

4 2 5 2 7 2

211 11

6 2 12 13

8 3 9 3

10 4

1 1 1

10

1 1 1

10

1
             +

100

1 1

10

1

⎧
= − − −⎪

⎪
⎪
⎪ = − + − +

⎪
⎪

⎛ ⎞⎪
+⎨ ⎜ ⎟

⎝ ⎠⎪
⎪
⎪ = − −
⎪
⎪
⎪

=⎪
⎩

C

C C C C

C

C C C b

C C

C

C C C

C

C

dv
v v v v

dt R C R C R C

dv
v v v V

dt R C R C R C

R R
v v

R C R R

dv
v v v
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where, 
6 2

1
a

R C
=  and 

7 2

1

bb V
R C

= .  

The operational amplifiers in this paper’s circuit are 

TL084 ones, of which power supplies are ±15 Volts. We set 

the values of components as follows: R1 = R3 = 1.8 kΩ,       

R2 = 3.6 kΩ, R4 = 3 kΩ, R5 = R9 = 1.5 kΩ, R6 = 180 kΩ,      

R7 = 90 kΩ, R8 = R10 = R11 = R12 = R = 18 kΩ, R13 = 0.75 kΩ, 

C1 = C2 = C3 = C4 = 10 nF, and Vb = 1 mVDC.  

The design circuit is implemented in the electronic 

simulation package Multisim. Obtained results are presented 

in Figs. 12 & 13. Obviously, theoretical attractors (see Fig. 

1) look similar with the circuital ones shown in Fig. 12. In 

order to investigate the dynamics of the designed memristor-

based circuit in Fig.11 with respect to the strength of the 

memristor, the value of resistor R6 can be varied by using a 

trimmer. For instance, when R6 = 257.14 kΩ the behavior of 

the circuit is a periodic limit cycle (see Fig. 13) 

corresponding to an implemented value of a = 0.07, which 

can be compared to the model behavior reported in Fig. 5

 

 

 

 
 

Fig 11. Schematic of the circuit which emulating memristor-based system (7). 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 12. Hyperchaotic attractor of the designed circuit obtained from 

Multisim (a) in the  vC1-vC2 phase plane, (b) in the  vC1-vC3 phase plane 

and (c) in the  vC1-vC4 phase plane. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 13. Periodic orbit of the designed circuit obtained from Multisim, 

for a = 0.07 and b = -0.001, (a) in the  vC1-vC2 phase plane, (b) in the    

vC1-vC3 phase plane and (c) in the vC1-vC4 phase plane.
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6. Conclusion 

 

In this paper, a memristor-based system has been studied. 

This memristor-based system displays  rich dynamical 

behavior as confirmed by numerical simulations and 

circuital implementation. Moreover, the possibility of anti-

synchronization scheme of memristor-based systems has 

been designed via adaptive control method and MATLAB 

simulations are shown to illustrate the anti-synchronization 

results. It is worth noting that the presence of the memristor 

creates some special and unusual features. For example, 

such memristor-based systems can exhibit chaos although it 

possesses no equilibrium points. We have shown that our 

memristor-based system can exhibit hyperchaotic attractors. 

It is well known that hyperchaotic system, which is 

characterized by more than one positive Lyapunov exponent, 

presents a higher level of complexity with respect to a 

conventional chaotic system. Hence, we can apply this 

memristor-based hyperchaotic system in practical 

applications like cryptosystems, encryption, neural networks 

and secure communications.  
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