
RESEARCH ARTICLE

A Memristor SPICE Model Accounting for

Synaptic Activity Dependence

Qingjiang Li1, Alexander Serb2, Themistoklis Prodromakis2, Hui Xu1
*

1 College of Electronic Science and Engineering, National University of Defense Technology, Changsha,

Hunan, China, 2 Nano Group, Southampton Nanofabrication Centre, Department of Electronic and
Computer Science, University of Southampton, Southampton, Hampshire, United Kingdom

* xuhui@nudt.edu.cn

Abstract

In this work, we propose a new memristor SPICE model that accounts for the typical synap-

tic characteristics that have been previously demonstrated with practical memristive de-

vices. We show that this model could account for both volatile and non-volatile memristance

changes under distinct stimuli. We then demonstrate that our model is capable of supporting

typical STDP with simple non-overlapping digital pulse pairs. Finally, we investigate the ca-

pability of our model to simulate the activity dependence dynamics of synaptic modification

and present simulated results that are in excellent agreement with biological results.

Introduction

Recently, it has been demonstrated that the memristor is a promising candidate for implement-

ing single device based artificial synapses [1–4] as its memristance depends not only on instan-

taneous external inputs but also on its past history [5]. Furthermore, the capability of single

memristors to exhibit key ‘synapse-like’ behaviors such as long-term potentiation (LTP), long-

term depression (LTD), and even spike-timing-dependent plasticity (STDP) have been experi-

mentally demonstrated in solid-state memristive devices [1–4].

What is missing is an empirical model that is capable of capturing the experimentally ob-

served synaptic behaviors. The availability of such model would greatly facilitate the develop-

ment of memristor-based neuromorphic applications [6], [7]. Current established memristor

models [8], [9] only feature non-volatile internal state variables [3], [10]. As a result, they can

only partially capture the rich variety of observed ‘synapse-like’ characteristics when biased

with specifically designed overlapping spike-like waveforms [11], which requires additional

complex circuits to generate.

We have previously proposed a memristor model to account for the volatile memristance

dynamics [3]. Here, we further improve this model by incorporating a synaptic activity depen-

dence module. Moreover, it is worth highlighting that our new model can simulate both typical

STDP [12], [13] and LTD/LTP dependence on spike-pair frequency [14] within the context of

simple, non-overlapping digital pulse pair stimulation. This has significant ramifications for
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memristor-based neuromorphic applications as it enables a reduction in circuitry complexity

and power dissipation.

In this paper, we first show that our model, with all extra features, can still produce the

memristor signature I-V pinched-hysteresis loop. We then show that the model could account

for both volatile and non-volatile memristance changes in response to stimuli with appropri-

ately defined amplitude and width. Then, we exploit the model for simulating pair-based STDP

behavior and exploring its dependence on the input pulse width, amplitude and model parame-

ters. Finally, we monitored the overall memristance change after the application of a bipolar

pulse-pair train as a function of the pulse-pair frequency, with simulation results correlating

well with synaptic activity dependence (i.e. the phenomenon of synaptic modification depen-

dence on overall pre/post spike frequency) as observed in biological synapses [14].

Activity Dependence Model

The model examined in this work consists of five modules (Fig. 1), which are easy to imple-

ment in a SPICE environment.

Module I

Interface: In module I, the memristance of the modelled device as seen by external circuitry is

generated by a series combination of the fixed Ron resistor and a voltage-controlled voltage

source Emem, whose terminal voltage is controlled by node potential vx ∊ [0,1] of the module II

as:

RmemðvxÞ ¼ Ron þ DRvx; DR ¼ Roff � Ron ð1Þ

Module II

Instantaneous memristance: The purpose of modules II-V is only to solve differential equations

and thus have no physical equivalent in the system. In contrast to Biolek’s memristor model

[8], module II features a leak path to account for volatile dynamics and specified by the values

of Cx and Rx. In the absence of external stimuli, the instantaneous memristance decays expo-

nentially to the resting memristance (defined by vy in module V) as:

Cx

dvx
dt

¼ �
vx � vy

Rx

þ ix; ix ¼ �imemf ðvxÞ ð2Þ

where f(vx) is a rectangular window function defined in [9] that confines the instantaneous

memristance Rmem within the [Mmin,Mmax] interval. The window function takes the value f

(M) = 1 in the interval M ∊ (0,1), but for M ∊ {0,1}, vx is restricted to changing towards the in-

side of the allowed memristance interval. � is a constant that is inherited from Biolek's μv/(2D
2)

constant parameter [8] and is effectively a `lumped constant' that introduces the effects of

device geometry and fabrication into the system of equations.
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Module III

Driving effort: Cz and Rz form a leaky integrator with state variable vz integrating all external

driving efforts, in this case the external driving voltage across the memristor vmem as:

Cz

dvz
dt

¼ iz �
vz
Rz

¼
vmem

0:5 � ðRon þ RRoff Þ
�

vz
Rz

ð3Þ

Module IV

Activity dependence: In practical memristors, Joule heating is expected to significantly affect

memristor dynamics as it would determine the annihilation of conductive percolation channels

within active cores [15], [16]. Thus, we included within our model a new, activity dependence

module to account for the influence of activity-dependent thermal accumulation on memristor

dynamics [16]. This is implemented by introducing state variable vw, which integrates the

Fig 1. Schematic of the proposedmemristor SPICEmodel. Parameters utilized in simulations are: Ron = 1Ω, Roff = 100kΩ, Rinit = 5kΩ, ε = 106, Cx = 5mF,
Rx = 1Ω, Cy = 0.15F,Cz = 1F, Rz = 3mΩ, Cw = 1F, Rw = 0.35Ω, B+ = −B−

= 0.35nV, k = 0.33e10, α = 0.706, β = 1e8, γ = 2, p = 0.5, j = 2 andm = 0.62. The initial
condition of four internal variables are set as x0 = y0 = (Roff − Rinit) / (Roff − Ron), and z0 =w0 = 0.

doi:10.1371/journal.pone.0120506.g001
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absolute power dissipation via a leaky progress defined by Cw and Rw as:

Cw

dvw
dt

¼ iw �
vw
Rw

¼ jimem � vmemj �
vw
Rw

ð4Þ

Module V

Resting memristance: Purpose-built functions allow the driving variable vz and activity depen-

dence variable vw plug into the system and influence the resting memristance as:

Cy

dvy

dt
¼ iy ¼ f ðvyÞ�ðvz;Bþ;B�ÞhðvwÞ ð5Þ

Function f(vy) is the rectangular window function that restricts vy within the maximum/

minimummemristance limits and is also used in module II.

Function ϕ determines the dependence of resting memristance on the driving effort being

applied to the device. In this manuscript, we modified Pershin’s threshold window function [9]

to allow the definition of two distinct operating regions. Specifically, when the effort variable vz
lies in within the positive and negative bipolar thresholds B+ and B−, the memristor would be

operated in ‘sub-threshold mode’ and the resting memristance would not change at all. In con-

trast, when vz is above B+ or below B
−
, the memristor would operate in bipolar mode where the

values of ϕ would be in proportion to the amount by which the effort exceeds the bipolar

threshold in both directions. Function ϕ is given by:

�ðvz;Bþ;B�Þ ¼

(

kðvz � B�Þ
m

if vz 2 f½�1;B�Þ; ðBþ;þ1�g

0 if vz 2 ½B�;Bþ�
ð6Þ

Where k is a scaling constant andm is the factor that determines the specific curve shape.

Function h determines the influence of the activity dependence variable (vw) on resting

memristance. In this manuscript, the specific form of function h is set up based on activity de-

pendence data of biological synapses as per [14]. We constructed a two-valued function that

depends on the sign of the driving effort variable vz, as:

hðvwÞ ¼

(

a � ððbvwÞ
p
þ 1Þ vz > 0

1� gðbvwÞ
j

vz � 0

ð7Þ

Where a, β, γ are the scaling constants, while p and j set up the specific curve shape.

Finally, it is worth stressing that in our model, windowing, drivability and activity depen-

dence operate on vy in a multiplicative fashion in order to render the system less complicated

whilst still allowing the exhibition of important biomimetic behavior.

Results and Discussion

3.1. Memristive I-V response

To verify the memristive characteristics of our proposed model, we employed a sinusoid stimu-

lus at two different frequencies. The attained pinched hysteresis I-V curves shown in Fig. 2A

are the typical fingerprint of bipolar resistive switching [5], with the loop area shrinking at

higher frequency (10ω0). The corresponding resistance response is illustrated in Fig. 2B with
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results demonstrating that the prominence of resistive switching is significantly reduced at

higher frequencies, which correlates with memristor theory.

3.2. Volatile and non-volatile memristance dynamics

One of the typical characteristics of memristive devices is the non-volatile resistance change

under external stimuli [5], [17]. However, this may not always apply for practical devices. Re-

cently, it has been experimentally demonstrated that under weak stimulus, memristance could

be driven into a temporary state and then decay back to the original level [3], [18]. Thus, in our

proposed model, both volatile and non-volatile resistance dynamics have been taken

into consideration.

Initially, we explore the volatile response of the model by applying relatively weak stimuli.

Fig. 3A illustrates the normalized volatile conductance change in response to three positive

pulses (4V, 10μs) and its dependence on pulse intervals. Conductance initially increases (dur-

ing each pulse stimulus) and subsequently decays towards its original value (between stimuli).

Moreover, the volatile dynamics are sensitive to the employed pulse interval, as we have experi-

mentally demonstrated previously [3].

We further explore the model to evaluate non-volatile memristance dynamics under stron-

ger driving efforts. In specific, the stronger driving efforts were implemented via increasing ei-

ther pulse width (10 μs to 20μs) or amplitude (4V to 6V) with results demonstrated in Fig. 3B

and 3C, respectively. In both cases, the volatile dynamics now transfer to non-volatile change

at the 3rd pulse event. This phenomenon stems from the different mechanisms that produce

the rates of change of volatile variable vx and non-volatile variable vy. In case of weak stimuli,

the rate of change of vx is relatively larger and that accentuates the volatile dynamics. In con-

trast, when biased with stronger stimuli, the elevated rate of change of non-volatile variable vy
would outweigh that of vx and the contribution of the volatile decay circuit (Cx and Rx) would

thus become insignificant. In this case, the model resembles a Biolek-type, fully non-volatile

SPICE model more closely.

Fig 2. Memristor model behaviour. (a) Simulated pinched hysteresis I-V responses at frequencies ofω0 and 10ω0. (b) Corresponding memristance as a
function of applied voltage.

doi:10.1371/journal.pone.0120506.g002
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3.3. Spike-timing-dependent plasticity

We also employed bipolar digital pulse pairs to represent spike pairs, as depicted in Fig. 4A. In

each specific pair, the ‘Pre’- and ‘Post’- spikes were represented by a positive and a negative

pulse respectively with magnitude A and width twidth, while the inter-pulse interval (IPI) was

set to tgap. Initially, we employed single pulse pairs whilst sweeping IPI between −50ms and

50ms in steps of 0.5ms to demonstrate the capability of our model in capturing STDP, and the

dependence of STDP on pulse width and magnitude. The STDP curves shown in Fig. 4B were

attained by varying pulse widths (8μs, 9μs and 10μs) at fixed a amplitude of 2V, while the

Fig 3. (a) Modelled normalized volatile conductance (G(t) = 1 / Rmem(t)) dynamics in response to three consecutive pulses possessing varying
inter-pulse intervals: 2.5ms (red line) and 5ms (blue line), respectively. For both cases, pulse amplitude and width were fixed at 4V, 10μs and the system
remains fully volatile. (b) Transition from volatile to non-volatile dynamics due to a change in pulse width (10 μs to 20μs). (c) Transition from volatile to non-
volatile dynamics due to a change in pulse amplitude (4V to 6V).

doi:10.1371/journal.pone.0120506.g003
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results of Fig. 4C were attained by varying pulse potentials (1.5V, 2.0V and 2.5V) at a fixed

pulse width of 10μs. In both cases, the conductance changes were calculated based on the initial

and final values of non-volatile memristance (vy) in each simulation cycle. Clearly, both pulse

width and magnitude significantly affect the pair-based STDP, which are attributed to the

threshold switching characteristics of our model. In specific, when relatively ‘weak’ (in both

pulse width and magnitude) stimuli are employed, the drive effort variable vz cannot exceed

the bipolar switching thresholds (B+ and B−) and thus no significant potentiation or depression

is observed for all IPI values. In contrast, when the pulsing width or magnitude was increased

to values where vz could exceed these thresholds, good quality STDP curves could be attained

to resemble the biological ones presented by Bi and Poo [12], [13]. This set of results is in

agreement with experimental data captured from TiO2-based solid-state memristors that we

Fig 4. (a) Pulse pair stimulation paradigm. A, twidth, and tgap represent pulse magnitude, width, and inter-pulse interval. For all bipolar pulse pair-based
simulations, we usem = 1 in function ϕ of module V. All other parameters were kept same as previously stated values. (b) and (c) Simulated STDP results for
varying stimulus width and amplitude. (d) STDP results for varying Rz values indicating different decay constants of the STDP curve with increasing inter-
pulse interval.

doi:10.1371/journal.pone.0120506.g004
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have published previously in [19]. It should be noted that the peaks of the STDP curve in

Fig. 4B and 4C are rather flat indicating that at short intervals, the influence of the second

pulse in the pair on drive effort variable vz is completely counteracted by the still-present effects

of the first pulse.

We further explored the impact of driving effort module circuit parameters on STDP. Nota-

bly, the time constant of the Rz / Cz leaky integrator is given by:

t ¼ RzCz ð8Þ

Fig. 4D illustrates simulated STDP curves with varying Rz in the driving effort module at

pulse amplitude and width of 2V, 10μs respectively. It is clear that distinct Rz values can signifi-

cantly affect both the peak amplitudes and the decay constants of the STDP curve. In case of

larger Rz (5mΩ), drive effort leakage is limited, thus the corresponding STDP curve will attain

higher STDP peak amplitude and decay more slowly as absolute IPI increases. In contrast, a

smaller Rz (5mΩ) would accelerate leakage and result in low STDP peak amplitude and faster

decay with IPI.

As a result of the construction of the driving effort module, our model tends to respond

symmetrically to positive and negative pulses, which results in the symmetric STDP curves in

Fig. 4. Nonetheless, it has been demonstrated that synapses possess temporally asymmetric

STDP, i.e. respond distinctly to pre-post and post-pre spiking patterns [12], [13]. Moreover,

the STDP curves attained from practical memristive devices are also asymmetric [20]. There-

fore, we further expand this model to break the STDP symmetry by dividing the driving effort

module into two individual sub-modules responding differently to opposite pulse polarities. As

illustrated in Fig. 5A, two individual driving modules were set up to process positive and nega-

tive inputs separately. The overall driving effort variable vz is now given by:

vz ¼ vzþ þ vz� ð9Þ

The STDP asymmetry arises by using different Rz values in the two sub-modules. Nonethe-

less, it should be noted that changing Rz values results in STDP curve drift. For example, a de-

crease in Rz+ tends to shift the entire STDP curve downwards whilst a decrease in Rz− has the

opposite effect as depicted in the inset of Fig. 5B and 5C. In our model, we compensate for

STDP curve drift by optimizing the threshold for each set of Rz± components and input pulse

specifications. Specifically, we balanced the STDP curve back to zero in Fig. 5B by setting B+
to 0.31nV, while B

−
was changed to −0.27 nV in Fig. 5C. Clearly, in the former case the smaller

Rz+ (1mΩ) intensifies leakage for positive pulses only and eventually results a symmetry break

of the STDP curve. A similar response is attained for smaller Rz− (1mΩ) in the latter case.

3.4. Activity dependence

We further verified the capability of our model to capture the dependence of synaptic modifi-

cation on the repetition frequency of spike pair stimuli as observed in biology [14]. As depicted

in Fig. 6A, 60 biphasic pulse pairs were emitted at intervals of T = 1 / f, where f is the frequency

in Hz. Each pulse pair consisted of two pulses of 2V magnitude and 10μs duration, while IPI

was fixed at 3ms for both post-pre- and pre-post-type stimuli. Frequency f was swept from

0.5Hz to 50Hz in steps of 0.5Hz with results illustrated in Fig. 6B. The degree of potentiation

observed after the application of the stimulus is correlated to the increase of pulse pair repeti-

tion frequency for the pre-post case. In contrast, post-pre pairs result in depression at low fre-

quencies up to 21.5Hz (for the case of Rw = 0.45O), beyond which point we obtain

Memristor Model for Synaptic Activity Dependence
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potentiation. The simulation results are in great agreement with the experimental data from

real synapses [14]. It is worth pointing that circuit parameters Rw and Cw in the activity depen-

dence module can be conceived as factors determining the rate of heat dispersion inside the

memristor and could thus accentuate or blunt the observed frequency dependence, as demon-

strated in Fig. 6B.

Conclusion

In conclusion, we have established a new memristor SPICE model that is capable of capturing

volatile and non-volatile memristance dynamics, pair-based STDP, and synaptic activity de-

pendence. It is worth stressing that all simulations were implemented by employing simple,

non-overlapping voltage pulses, which allows this model to emulate the aforementioned bio-

logical synaptic protocols on systems that use electronically convenient non-overlapping bias

Fig 5. (a) Two individual driving effort sub-modules responding for only positive and only negative inputs respectively. The overall drive effort
variable vz equals the sum of vz+ and vz−. (b) and (c) Asymmetric STDP curves attained by employing different resistance values in the two driving sub-
modules and modifying bipolar threshold values (B+ = 0.31nV, B

−
= −0.27nV) to compensate for STDP curve drift. Inset: Corresponding STDP curves with

original bipolar threshold values (B+ = −B−
= 0.35nV).

doi:10.1371/journal.pone.0120506.g005
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Fig 6. (a) Scheme of 60 repeated pulse pairs. In each pulse pair, the pulse parameters were set as A = 2V, twidth = 10μs, and tgap = ±3ms for pre-post and
post-pre pairs respectively. (b) Dependence of overall conductance modification after application of the input pulse pair train on pulse pair frequency.

doi:10.1371/journal.pone.0120506.g006
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signals. This indicates that there is no need to build complex circuitry for generating tailor-

made spike waveforms, and thus make it possible to investigate memristor based synaptic emu-

lators and neuromorphic applications with standard digital circuitry.
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