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Abstract

This paper presents an algorithm for reconstructing a triangle mesh surface from a given point cloud. Starting with a seed triangle, the

algorithm grows a partially reconstructed triangle mesh by selecting a new point based on an intrinsic property of the point cloud, namely, the

sampling uniformity degree. The reconstructed mesh is essentially an approximate minimum-weight triangulation to the point cloud

constrained to be on a two-dimensional manifold. Thus, the reconstructed surface has only small topological difference from the surface of

the sampled object. Topological correct reconstruction can be guaranteed by adding a post-processing step.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Given a point cloud sampled from the surface of a three-

dimensional object, the objective of the reconstruction

problem is to recover the geometric shape from the point

cloud. The problem has found many important applications

in reverse engineering, virtual reality and computer vision.

To solve the problem, a reconstructed mesh approximating

or interpolating the point cloud must be computed. Many

mesh reconstruction methods have been proposed; compre-

hensive surveys of these methods can be found in Ref. [1,2].

The methods fall into three categories.

In sculpting-based approaches, the Delaunay triangu-

lation of the point cloud is first constructed, followed by the

extraction of triangles or triangular patches representing the

object shape. For example, Boissonnat’s method [3] applied

the 3D Delaunay triangulation to obtain the convex hull

of the point cloud. If not all the points in the point cloud

are on the boundary of the convex hull, then some

tetrahedron in the triangulation must be deleted in turns

until all points lie on the boundary P of the polyhedral shape

so obtained, while ensuring that P remains a polyhedron.

Other algorithms in this category are alpha-shape [4–6],

g-graphs [7], b-skeleton [8], crust algorithm [9–10], and

UmbrellaFilter algorithm [11].

In contour-tracing approaches, for which Hoppe’s [12]

is a typical example, the triangle mesh is obtained by

contouring the zero set of a signed distance function

determined by the point cloud. The contour-tracing

approaches, which produce approximating rather than

interpolating surfaces, inherently do some low-pass filtering

of the point cloud. This is desirable in the presence of noise,

but causes some loss of information [9]. Other examples of

methods in this category are presented in Ref. [13–15].

Region-growing approaches construct the mesh starting

with a seed triangle patch, and progressively adding new

triangles attached to the partially constructed mesh. The

boundary edges are considered active edges, to which new

triangles are added. The key problem of approaches in this

category is how to select a point to form a new triangle with

an active edge. In the BPA algorithm [16], a ball with user-

specified radius pivots around an active edge until it touches

another point in the point cloud; the point being touched is

selected. Huang and Menq [17] projected the k nearest

points of each endpoint of an active edge, respectively, onto

the plane defined by the triangle adjacent to the active edge.
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A point is chosen among the k points based on the minimal

length criterion to form a triangle with the active edge.

Petitjean and Boyer presented another method based on

regular interpolation [18].

To ensure the correct post-processing of the recon-

structed mesh surface in CAD applications, the topology of

the reconstructed mesh surface has to be correct, that is, the

reconstructed mesh surface is homeomorphic to the surface

of the sampled object. Amenta et al. [9] presented an

algorithm that guarantees topological correctness for point

clouds satisfying the condition of g-sample. Petitjean and

Boyer [18] proposed a condition based on regular set, which

is easier to verify. If the point cloud is a regular set, their

interpolation algorithm guarantees topological correctness.

The solution of Adamy, Giesen and John [11] involves two

stages: they first reconstructed the triangle mesh using the

UmbrellaFilter algorithm, and then achieve topology

correctness by solving a linear programming (LP) problem.

However, if the topology of the reconstructed surface differs

too much from that of the sampled surface, the compu-

tational complexity of the LP problem is very large, and its

solution may not exist [11].

In this paper, we present an algorithm called Intrinsic

Property Driven (IPD) algorithm, which falls under the

category of region-growing approaches. As stated above,

the key problem is how to choose a point for forming a new

triangle with an active edge. In the BPA algorithm [16], the

point cloud must be scanned many times using balls of

different radii to reconstruct the whole surface. Clearly, the

surface reconstructed by the BPA algorithm relies on the

user-specified ball radii. Huang and Menq’s method [17]

leads to two unreasonable results. First, the distances among

the points are distorted after projection, so some errors may

occur in the reconstructed mesh for the distances are only

used to decide which point to choose right. Second, the

reconstructed mesh surface is dependent on the user-

specified parameter k nearest points. In short, the quality

of the mesh surfaces reconstructed by the BPA algorithm or

Huang and Menq’s method relies on user-specified

parameters. In order to overcome this limitation, we

introduce the concept of sampling uniformity degree.

We define the sampling uniformity degree at a point

as the ratio of the lengths of the longest edge and

shortest edge incident to the point. It is clearly an

intrinsic property of a point cloud. The IPD algorithm

searches for a new point based on the sampling

uniformity degree. Unlike algorithms requiring user-

specified parameters, the mesh surface reconstructed by

the IPD algorithm completely relies on this intrinsic

property of the point cloud. Furthermore, we minimize

the harmonic energy [19] in the reconstruction, so that

the reconstructed mesh is essentially the minimum-weight

triangulation to the point cloud restricted to be on the

surface of the sampled object. Experimental results show

that the difference in topology between the reconstructed

surface and the surface of the sampled object is small.

Thus, from the output of IPD algorithm, we can easily

obtain the topologically correct surface using the post-

processing method in Ref. [11].

This rest of the paper is organized as follows. In Section

2, we introduce some basic concepts and definitions for

presenting the IPD algorithm. The IPD algorithm is

discussed in detail in Section 3. Section 4 presents a new

criterion for evaluating the quality of a reconstructed mesh

surface in the topological sense. In Section 5, we present

some experimental results. We conclude the paper in

Section 6.

2. Basic concepts

Let P be an arbitrary point in a point cloud. The sampling

uniformity degree at P is defined as the length ratio between

the longest edge and the shortest edge incident to P (Fig. 1).

It reveals the distribution of the sampling points near P and

is an intrinsic property of the point cloud. Values close to 1

imply uniform sampling distribution, and larger values

imply more non-uniformity in the sampling distribution.

According to the definition, the exact sampling uniformity

degree at a point P can be calculated only when all the edges

incident to the point P are already reconstructed. Thus, in

the IPD algorithm, we only approximate the sampling

uniformity degree, by considering only the reconstructed

edges incident to P.

In the mesh reconstruction procedure, each newly

reconstructed edge is considered an active edge. To search

for a new point to form a new triangle with an active edge

PiPj; we must determine an influence region for each

active edge, which may or may not contain any new point.

This influence region is an extruded polyhedron containing

the edge PiPj: Since the distance between the new point

and the edge PiPj is related to the distribution of points

near Piand Pj; it is reasonable that the size of the influence

region should be dependent on sampling uniformity

Fig. 1. Some basic concepts. Specifically, the sampling uniformity degree at

P is the length ratio Lmax=Lmin:
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degrees of points near Pi and Pj: We shall explain in detail

how we construct the influence region of an active edge in

Section 3.2.

An edge is called an inner edge, if it has two adjacent

faces (see Fig. 1). A point is called a fixed point, if all its

incident edges are inner edges. Otherwise, if the influence

region of an active edge contains no point except for fixed

points, the edge is a boundary edge (i.e. it has only one face

adjacent to it. See Fig. 1 and Fig. 3c). Thus, a point is called

an active point if it has not been processed (that is, no edge

is incident to it), or if there is an active edge or boundary

edge incident to it.

3. IPD algorithm

Suppose the point cloud sampled from the surface of a

three-dimensional object is sufficiently dense. We present

the IPD algorithm for reconstructing a mesh surface from a

given point cloud.

We assume that the bounding box of the point cloud is

represented as a voxel set for efficient lookup of the

neighboring points of a given point. All points in a voxel

are organized into a linked list. To begin, we choose a

seed triangle from the point cloud and add its three edges

to the active-edge queue. In each iteration, we de-queue

an edge and determine its influence region. If there exist

some active points in its influence region, we choose a

point from them for forming a new triangle (detail in

Section 3.3), and then add the newly reconstructed edges

to the active-edge queue. Otherwise, if there is no active

point in the influence region, the algorithm concludes that

it is a boundary edge. The procedure is repeated until the

active-edge queue is empty. Fig. 2 shows the outline of

the IPD algorithm. The parameters i; j and k denote the

indices of points, ei;j denotes the edge constructed

between the points i and j; AEQ denotes the active-edge

queue.

3.1. Seed triangle selection

In the IPD algorithm, we first construct the seed triangle

as follows:

1. Search for a point P whose z-coordinate is the largest in

the point cloud;

2. Search for point Q that is nearest to P and form a line

segment L between them;

3. Construct a cylinder with L as its axis, the midpoint of L

as its center, the length of L as its height and diameter.

Uniformly augment its radius and height (along opposite

directions of its axis) until the cylinder contains some

point in the point cloud.

4. Among the points within the cylinder, choose one

point R so that the sum of the lengths of the two

edges connecting R and the points P and Q,

respectively, is the minimum. Let the seed triangle

be DPQR:

We choose such a triangle as the seed for the

convenience of adjusting its normal vector to be outward:

if the inner product of the normal vector of the seed triangle

and the vector (0,0,1) is positive, we have the desired

normal vector; otherwise we reverse its direction. Once the

outward normal vector of a triangle A is known, we can

determine the direction of the normal vector of a newly

generated triangle B, which is adjacent to A. Specifically, if

the inner product of the two normal vectors is positive, then

normal vector of B is also in the outward direction.

3.2. Influence region of edge

As stated in Section 2, the size of the influence region of

an active edge ei;j connecting Pi and Pj should be dependent

on the sampling uniformity degrees at the points near Pi and

Pj: In fact, in order to ensure that the influence region is

suitably large, its size is determined from the product of the

maximum sampling uniformity degree at vertices Pi and Pj

and the average length of the minimum edges incident to Pi

and Pj; respectively. Let s be the result of this product, and

let Pm be the midpoint of the edge ei;j: For the triangle

adjacent to ei;j (there is only one adjacent triangle since ei;j is

active), let Pk be its third vertex, P be its barycenter, and N

its normal vector, which is in the direction of PkPi £ PkPj

We calculate the influence region of the active edge ei;j as

follows (see Fig. 3).

Fig. 3a shows the influence region of the active edge ei;j:

The dashed polygon is the projection of the influence region

onto the plane defined by the triangle adjacent to ei;j: Each

boundary face Bi of the influence region is defined by a

(Ni,Pi) pair, where Ni denotes the normal vector of the plane

containing the face and Pi is a point on the plane. The topFig. 2. The IPD Algorithm.
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boundary face B1 is defined by N1 ¼ N and P1 ¼ Pm þ sN:

The bottom boundary face B2 is defined by N2 ¼ 2N and

P2 ¼ Pm 2 sN: For the boundary face B3 containing edge

PPi; N3 is the normalized vector of N £ PPi; and P3 ¼ Pi:

For the boundary face B4 containing edge PPj; N4 is the

normalized vector of N £ PPj; and P4 ¼ Pj: The last

boundary face B5 has N5 in the direction of PiPj £ N and

P5 ¼ Pm þ sN5: In order to guarantee the geometry

integrity of the reconstructed mesh, we need to ensure that

the intersection between the newly generated triangular

patch and the existing triangular patches is either empty or

existing active or boundary edges. Thus, if there are edges

incident to Pi (respectively, Pj) lying on the same side of the

face B3 (resp. B4) as the edge PiPj (e.g. PiS2 and PiS1 in Fig.

3a), then we add a new boundary face B6; where P6 ¼ Pi;

N6 ¼ N £ PiPleft; with the vector PiPleft chosen such that it

forms the smallest angle with PiPj among all edges lying on

that side. For example, Pleft ¼ S1 in Fig. 3a. We illustrate

some examples of influence regions in Fig. 3a–c. However,

the smallest angle criterion is insufficient in guaranteeing

geometry integrity, and further test is performed as

described in Section 3.3.

We note that Ref. [17] also introduced the concept of

influence region of active edge, which was defined to be in

the plane containing the triangular patch adjacent to the

active edge. In c ontrast, we define the influence region of an

active edge in the three-dimensional space and its size is

determined by an intrinsic property of point clouds—the

sampling uniformity degree.

3.3. New vertex search

In each iteration, if the influence region of an active edge

ei;j contains some active points, the IPD algorithm chooses

one of them to form a new triangle with ei;j (e.g. There are

two active points in Fig. 3a, that is, S1 and another point).

Two common criteria are the minimal area criterion [20]

and the minimal length criterion [15]. We implemented and

tested these two criteria and found that the reconstructed

surface using the minimal length criterion is visually better

than that using the minimal area criterion. While the

reconstructed surfaces using the minimal length criterion

often have large difference in topology with the surfaces of

the sampled objects. Thus, we propose a new criterion

called weighted minimal length criterion for selecting a new

point.

Clearly, it is desirable to have the reconstructed surface

as close as possible to the surface of the sampled object. For

a given point cloud, suppose there are n different

topologically correct reconstructed triangle meshes with

straight edges. Each of these straight-edge triangle meshes

corresponds to a curved-edge triangle mesh embedded onto

the surface of the sampled object. Although the n curved-

edge triangle meshes have different connections among

the vertices, they represent the same surface. Hence, the

reconstructed mesh surface that is closest possible to

the sampled surface is the one with the minimum metric

distortion from the corresponding curved-edge mesh sur-

face. Examples of metrics are the aspect ratio of triangles,

and the length of mesh edges. From Ref. [19], the mesh S0

with minimum metric distortion to a mesh S minimizes the

following functional:

E ¼
1

2

X
ki;jkhðPiÞ2 hðPjÞk

2
: ð1Þ

where ki;j is a coefficient, Pi and Pj are the two vertices of an

edge in S; hðPiÞ and hðPjÞ are the two vertices of the

corresponding edge in S0; and hð·Þ is called a harmonic map.

Let the length of the edge ei;j in a curved-edge triangle mesh

be Li;j; and the area of a curved-edge triangle patch {i; j; k}

be Ai;j;k:

In Ref. [19], the connections among the vertices are

known, and the map hð·Þ is unknown. In our case, the map

hð·Þ is an identity map, and the connections among vertices

are unknown. Therefore, the problem becomes that of

solving the minimum-weight triangulation restricted to lie

on the surface of the sampled object. However, solving the

minimum-weight triangulation problem is very hard even

for planar point sets [21–22]. Hence, for simplification, we

Fig. 3. The influence region of the edge ei;j (the red polyhedron), and the blue dashed polygon is its projection onto the plane defined by the triangle adjacent to

ei;j: (The black dots represent the sampling points.).
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adopt a heuristic strategy to solve the approximate

minimum-weight triangulation, restricted to be on the

sampled surface. That is, suppose the triangle patch {i; j;

k} is adjacent to the active edge ei;j; we select the new vertex

Pm for ei;j such that the triangle patch {i; j; m} minimizes the

following sum:

ki;jkPi 2 Pjk
2
þ ki;mkPi 2 Pmk

2
þ kj;mkPj 2 Pmk

2
ð2Þ

Since ei;j is adjacent to two triangle patches {i; j; k} and {i; j;

m}, we calculate the coefficient ki;j as follows [19]:

ki;j ¼ ðL2
i;k þ L2

j;k 2 L2
i;jÞ=Ai;j;k þ ðL2

i;m þ L2
j;m 2 L2

i;jÞ=Ai;j;m: ð3Þ

For the newly generated edges ei;m and ej;m; which possess

only one adjacent triangle patch, respectively, we approxi-

mate ki;m and kj;m according to the following equation:

ki;m ¼ kj;m ¼ 2 £ ðL2
i;m þ L2

j;m 2 L2
i;jÞ=Ai;j;m: ð4Þ

As stated above, if the influence region of an active edge ei;j

contains some active points, the IPD algorithm firstly

chooses the point that minimizes Eq. (2) from them, and

then performs the following test for geometry integrity on

the chosen point. It checks whether the intersection between

the newly generated triangular patch (defined by the chosen

point and edge ei;j) and those existing triangular patches

adjacent to the points in the influence region of the edge ei;j

is empty or an existing active or boundary edge. If so, the

choice of point is confirmed. Otherwise, the IPD algorithm

chooses another point that minimizes Eq. (2) from the

remaining active points and performs the same geometry

integrity test. If all active points have been processed and

none satisfies the test for geometry integrity, IPD algorithm

considers the edge ei;j as a boundary edge.

3.4. New triangle construction

After selecting an active point Pm; the IPD algorithm

proceeds to construct a new triangle DPiPjPm as follows:

1. Generate DPiPjPm

1.1. If the edge PiPm does not exist, construct the edge

PiPm; and add it to the active edge queue.

1.2. If the edge PjPm does not exist, construct the edge

PjPm; and add it to the active edge queue.

2. Classify the edge PiPj as an inner edge, and classify each

of the edges PiPm and PjPm as an inner edge if it has two

adjacent faces, or as an active edge otherwise.

3. Classify the point Pi; Pj and Pm as fixed point or active

point, respectively.

4. Criterion for evaluating surface topological quality

If the surface of the sampled object is closed, and it is

homeomorphic to the reconstructed mesh surface, then the

number of the triangle patches (denoted t) and the number

of vertices (denoted v) in the mesh surface must satisfy

the following Euler formula [11]:

t ¼ 2 £ v þ 4 £ ðg 2 1Þ ð5Þ

where g is the genus of the sampled object. Most

reconstruction algorithms do not guarantee that the

reconstructed mesh surface is homeomorphic to the

sampled surface, and thus do not always satisfy formula

(5). The formula is a necessary condition for the home-

omorphism, and we can also derive the following

measurement e; which reveals the topological difference

between the two surfaces:

e ¼ lt 2 ð2 £ v þ 4 £ ðg 2 1ÞÞl ð6Þ

where l·l denotes absolute value. Thus, it can be used as a

criterion for evaluating the quality of the reconstructed

mesh surface in the topological sense.

Notably, the above formulae are applicable only to

closed surfaces. For objects with boundary, such as the U-

shape in Fig. 4, the formula must be modified. Suppose that

the sampled object has n open boundaries, then the

reconstructed mesh surface should have n corresponding

boundary loops. Suppose these boundary loops contain a

total of m boundary edges. To produce a closed recon-

structed surface, we introduce a vertex to each boundary

loop, and use each boundary edge in the boundary loop to

form a triangle with the new vertex (see Fig. 4); that is, we

transform the mesh surface into a closed object by adding m

triangles. The closed object now has ðt þ mÞ triangles and

ðv þ nÞ vertices. Hence, if the reconstructed mesh surface

with boundaries is topologically correct, it must satisfy the

following formula.

t þ m ¼ 2 £ ðv þ nÞ þ 4 £ ðg 2 1Þ; ð7Þ

where g is the genus of the sampled object after capping all

boundaries. Accordingly, the difference formula can be

modified to

e ¼ lðt þ mÞ2 ð2 £ ðv þ nÞ þ 4 £ ðg 2 1ÞÞl: ð8Þ

Fig. 4. Attaching a vertex to close up a boundary.
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Like other algorithms, the IPD algorithm cannot guarantee

the homeomorphism between the reconstructed surface and

the surface of the sampled object. However, experimental

results presented in the Section 5 show that mesh surfaces

reconstructed by the IPD algorithm have small topological

difference from the sampled surfaces. Consequently, topo-

logically correct reconstructed surfaces can be easily

obtained using a post-processing method such as that in

Ref. [11].

5. Results

Figs. 5–11 show some mesh surfaces reconstructed using

the IPD algorithm. The dragon with closed surface is

reconstructed from dense point cloud. The knee is an

example with boundaries, and it is reconstructed from a

point cloud with scan line distribution. The cube with holes

is a topologically complex model of genus 5 and is

reconstructed from sparse point cloud. The Fan-disk,

Fig. 5. Dragon. Left: point cloud. Right: reconstructed mesh surface.

Fig. 6. Knee. Left: point cloud. Right: reconstructed mesh surface.

Fig. 7. Cube with holes. Left: point cloud. Middle: reconstructed rendered surface. Right: reconstructed mesh.
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Fig. 10. Rocker arm. Top left: point cloud. Top right: reconstructed mesh surface. Bottom: the reconstructed mesh from non-regular point cloud.

Fig. 8. Fan-disk. Left: point cloud. Right: reconstructed mesh surface.

Fig. 9. Screwdriver. Left: point cloud. Right: reconstructed mesh surface.
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Screwdriver, and Rocker arm are some CAD-like examples.

The Rocker arm and mannequin head are examples of point

clouds with non-uniform sampling density. The non-regular

point cloud distribution of Rocker arm can be seen from the

reconstructed mesh in Fig. 10. The point cloud for the

mannequin head is highly non-uniform with much higher

sampling density in the eyes, ears and mouth regions (see

Fig. 11). Table 1 lists the experimental results of

reconstructing these mesh surfaces using the IPD algorithm.

It can be observed that the topological differences between

the reconstructed surfaces and the sampled surfaces are

small. The experiments were done on a PC with 500M

Pentium and 128M memory.

6. Conclusion

In this paper, we present a new region-growing mesh

reconstruction algorithm, called the IPD algorithm. Most

existing region-growing algorithms depend on user-

specified parameter values to control the mesh recon-

structing procedure; thus the quality and the topological

error of the reconstructed meshes also depend on these

parameter values. We formulate an intrinsic quantity for

point clouds—the sampling uniformity degree at each

sampling point—and devise a reconstruction algorithm

driven by this measurement. Thus the algorithm is

dependent solely on the point cloud itself and is

independent of any user-specified parameters. Specifically,

we define an influence region for each active edge, whose

size is determined by the sampling uniformity degree at

the two vertices of the active edge. A point is chosen from

the active points within this influence region to form a

new triangle with the active edge. We introduce a

weighted minimal length criterion for selecting the new

vertex. The criterion, which is based on harmonic energy,

guarantees in theory that the constructed surface is closest

to the surface of the sampled object. By utilizing an

influence region that adapts to local sampling density and

the weighted minimal length criterion for choosing new

vertices, the IPD algorithm is able to reconstruct triangle

meshes with small topological errors. The resulting

meshes is therefore a good starting point to producing

Fig. 11. Mannequin. Top left: point cloud. Top middle: reconstructed mesh. Top right: reconstructed mesh surface with light. Bottom left: zoom of ear. Bottom

middle: zoom of eye. Bottom right: zoom of mouth.

Table 1

Evaluation of the IPD algorithm

Name Genus Times #Vertices #Triangles Difference (e)

Dragon 0 152s 56194 112387 3
aKnee 2 85s 37888 75264 0

Cube_hole 5 21s 7672 15360 0

Fan_disk 0 56s 25893 51782 0

Screwdriver 0 67s 27152 54321 21

Rocker arm 1 25s 10044 20092 4

Mannequin 0 29s 11703 23403 1

a The difference formula (8) was used for the knee because it has

boundaries. The knee possesses 2 pieces of boundaries and 512 boundary

edges. The genus of the closed surface obtained by adding two new vertices

to enclose the open ends is zero.
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topologically correct reconstructed surfaces using some

post-processing method, as in Ref. [11].
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