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Abstract. This paper presents a novel topology optimization approach without calcula-
tion of sensitivity for the minimum compliance problems, based on the meshfree Radial
Point Interpolation Method (RPIM). Relying on the algorithm of Proportional Topology
Optimization (PTO), material is distributed using only information of the objective func-
tion (which is the elastic strain energy). Material properties are interpolated by the well-
known Solid Isotropic Material with Penalization (SIMP) technique; however the pseudo
density (design variables) are not defined on the element center as usually encountered
in finite element-based approaches, but on integration points. Since no element exists in
meshfree analysis, this would be a natural choice. More importantly, the number of inte-
gration points is in general larger than that of elements or that of nodes, resulting in higher
resolution of the density field. The feasibility and efficiency of the proposed approach are
demonstrated and discussed via several numerical examples.
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1. INTRODUCTION

Given a domain with pre-defined loads and boundary conditions, the task of topol-
ogy optimization is finding the distribution of material that leads to expected struc-
tural performance. Early work on this field can be traced back to that of Bendsoe and
Kikuchi [1]. Since then, various numerical approaches have been intensively investi-
gated such as the Solid Isotropic Material with Penalization (SIMP) [2, 3], the evolution-
ary structural optimization (ESO/BESO) [4, 5], the level set method [6], the phase field
method [7], etc. Among them, SIMP is currently the most popular approach due to the
ease of implementation.
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Commonly, the structural performance is analyzed by the Finite Element Method
(FEM) and the pseudo-density (the design variable) is defined element-wise [2, 8]. How-
ever, the approach is suffered from many limitations, such as checkerboards, mesh-
dependency, local minima [9] and mesh distortion [10]. FEM-based techniques with
nodal density (i.e. the pseudo-density is assigned to nodes) were also investigated in
Refs. [11, 12]. The advantage is that smoother representation of the density field can be
obtained, however computational complexity also increases. To overcome the difficulties
caused by standard FEM, the node-based topology optimization have been integrated
into meshfree methods such as EFG [10, 13, 14], and RKPM [15, 16]. It is well-known
that meshfree analyses offer flexibility in domain discretization as well as high accuracy
due to the usual higher-order shape functions. Furthermore, most of the meshfree shape
functions are lack of Kronecker delta property. As a result, extra techniques have to be
introduced for enforcement of boundary conditions [17].

Most of published works on topology optimization employ sensitivity analysis, i.e.
derivatives of objective function and derivatives of constraints with respect to the de-
sign variables have to be evaluated. Alternatively, non-sensitivity approaches do not
need sensitivity analysis during optimization. Luh et al. [18] proposed a binary Particle
Swarm Optimization method, in which the pseudo-density in every element may be ei-
ther zero or unity, representing voided and solid region. However, this method seems to
be much inferior to the sensitivity-based methods [19]. Later, the Proportional Topology
Optimization (PTO) was proposed by Biyikli and To [20]. The PTO relies on the idea
that the material is distributed into each element, proportionally to the contribution of
that element to the total strain energy. A 3D version of PTO with a modification of the
material interpolation scheme was recently presented in Ref. [21]. Loosely speaking, in
PTO, an element with low value of strain energy will receive less material while more
material will be assigned to an element with high value of strain energy. The algorithm
GOTICA [22] was introduced based on the concept of cellular automata, i.e., the inter-
action between a cell with its neighboring cells plays a key role in determination of its
pseudo-density value. A version of hybrid cellular automata for topology optimization
of multi-scale problems was lately proposed by Jia et al. [23]. Although the number of
works on non-sensitivity approaches has increased in the last decade, it is still limited,
especially in comparison with the majority of sensitivity-based methods.

In this paper, an incorporation of meshfree Radial Point Interpolation Method (RPIM)
[24] and the non-sensitivity PTO is presented for the first time, with the expectation to
fuse the advantages of the two. RPIM is one of the rare meshfree methods that possess
Kronecker delta property, allowing direct imposition of boundary conditions. It is shown
that the design variables can be conveniently defined on integration points, instead of
nodes like previous works [10, 13–16]. Furthermore, because PTO is a non-sensitivity
method, the complexity related to calculation of sensitivity can be avoided.

The rest of the paper is organized as follows. Right after the Introduction is a brief
review on the RPIM in Section 2. Section 3 is reserved for the RPIM-based Proportional
Topology Optimization. Numerical examples are discussed in Section 4, demonstrating
the feasibility and efficiency of the proposed approach. Finally, concluding remarks are
given in Section 5.
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2. THE RADIAL POINT INTERPOLATION METHOD (RPIM)

2.1. RPIM shape function
Since its introduction [24], the meshfree RPIM has been intensively investigated for

nearly two decades. Let us consider a two-dimensional (2D) elastic domain Ω. An arbi-
trary function u(x) (e.g. displacement of point x) defined in a sub-domain Ωx ⊆ Ω can
be approximated by RPIM as follows

u(x) ≈ uh(x) = [p (x)M + R (x)N] û (x) = Φ (x) û (x) , (1)

where Φ(x) =
[
ϕ1(x) ϕ2(x) ... ϕn(x)

]
is the vector of RPIM shape function and û(x) =[

u(x1) u(x2) ... u(xn)
]T is the vector of nodal values of function u(x). Here, n is the

number of nodes located within subset Ωx, which is also known as the support domain
of point x (see Fig. 1). R(x) =

[
R1(x) R2(x) ... Rn(x))

]
is the vector of n radial basis

functions (RBFs), while p(x) =
[
p1(x) p1(x) ... pm(x)

]
is the vector of m augmented

polynomial terms. The existence of augmented polynomial terms is required to avoid
singularity [17], however the number of m terms can be chosen by users. In fact, it is rec-
ommended that the polynomial terms should be selected to form complete polynomials.
In the current work, the six terms for complete second order polynomials in 2D domain
are used, i.e. p(x) =

[
1 x y x2 xy y2)

]
. The calculation of matrices M and N was

presented in details in the Ref. [17] and thus it is not repeated here.

Fig. 1. Illustration of support domain of a point of interest x

There are many types of RBFs such as the multiquadrics, the thin plate splines, the
gaussian kernel, etc. [17]. In this paper, the quartic RBF [25] is employed as follows

Ri (x) = 1 − 6
(

1
ls

)2

r2
i + 8

(
1
ls

)3

r3
i − 3

(
1
ls

)4

r4
i , (2)

in which ri = ||x − xi|| is the distance from node i to the point of interest x. In order
to remove the common issue of RBF that accuracy may depend on the choice of shape
parameter [25,26], here an adaptive scheme is used. The shape parameter ls is not set as a
pre-defined value but taken as the largest distance between nodes in the support domain
of point x. The quartic RBF is thus free from user-defined parameter. The application of
this strategy to some other types of RBF can be referred to [25].
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2.2. Weak formulation of 2D linear elastic problems
The Galerkin weak formulation of equilibrium equation for a 2D linear elastic body

Ω bounded by Γ is given as follow [17]∫
Ω

δε : σdΩ −
∫
Ω

δu · b̄dV −
∫
Γ

δu · t̄dΓ = 0, (3)

where δu is an arbitrary test function of the displacement u, while δε is the strain compo-
nents computed from δu. Vector b̄ and t̄ denote the body force and surface force acting
on the domain Ω, respectively. The Cauchy stress tensor σ is calculated from the Hooke’s
law by

σ = C : ε, (4)
where C is the fourth order tensor of material properties.

Application of the RPIM method into both the displacement u and the test function
δu read

u(x) ≈ Φû, ε = B(x)û, (5)

δu(x) ≈ Φδû, δε = B(x)δû, (6)

where Φ is the vector of RPIM shape function as mentioned above, while matrix B stores
the derivative of shape functions

B(x) =
[
B1 B2 ... Bn] , Bk =


∂ϕk

∂x
0

0
∂ϕk

∂y
∂ϕk

∂y
∂ϕk

∂x

 , (7)

in which n is the number of nodes in the support domain of point x. Substitution of
Eqs. (4), (5) and (7) into Eq. (3), the following discrete equation is obtained

Ku = F, (8)

where

K =
∫
Ω

BTCBdΩ, (9)

F =
∫
Ω

ΦTb̄dΩ +
∫
Ω

ΦT t̄dΓ. (10)

The above integrals can be conveniently evaluated using numerical integration scheme,
e.g.

K ≈
ng

∑
i=1

BT(xi)CB(xi)wi|Ji| =
ng

∑
i=1

Ki, (11)

where xi denotes the coordinates of integration point i; wi and |Ji| are the corresponding
weights and Jacobian, respectively; and ng is the number of integration points.
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3. THE RPIM-BASED PROPORTIONAL TOPOLOGY OPTIMIZATION
(RPIM-PTO)

The topology optimization problem for minimum compliance of structures is math-
ematically stated by

minimize c = uTK(ρ)u. (12)

The above objective function is subject to the following constraints

K(ρ)u = F, (13)∫
Ω

ρdΩ ≤ v̄
∫
Ω

1 · dΩ = v̄|Ω|, ρ ∈ [0, 1]. (14)

In fact, the compliance c in Eq. (12) is simply the strain energy being multiplied by
two, which can be obtained after solving the equilibrium (see Eq. (13)) for displacement
u. The pseudo density field ρ(x) ∈ [0, 1] is introduced to represent the material distri-
bution, where ρ = 1 implies fully solid region and ρ = 0 indicates voided region. The
constraint in Eq. (14) requires that the volume of the optimized structure should not ex-
ceed a pre-defined volume fraction v̄ of the design domain. Shortly, the optimization task
is to find a layout leading to minimum strain energy, within a certain limited amount of
material.

In this work, the design variables (pseudo-density) are defined at integration points.
Elastic modulus at an arbitrary integration point i can be interpolated using the solid
isotropic material with penalization (SIMP) (see [2, 8]) by

Ei = Evoid + ρ
p
i (Es − Evoid) , (15)

where Es is the elastic modulus of the solid material, while Evoid is a small value (e.g.
Evoid = 10−9) to avoid zero-stiffness if ρi = 0. The penalty factor p = 3 is chosen in this
paper. The stiffness matrix in Eq. (11) is then rewritten by

K ≈
ng

∑
i=1

Ki, Ki = BT(xi)C(Ei)B(xi)wi|Ji|. (16)

In a point-based design variable, there exist issues namely “islanding” and “lay-
ering” [11], which is similar to the well-known “checkerboards” in element-based ap-
proach. Therefore, a density filter is introduced as follows

ρi =
∑ wijρ̂j

∑ wij
, (17)

where ρ̂ is the non-filtered density. The weights wij of the filter can be determined by

wij =


r0 − rij

r0
, for rij ≤ r0

0, otherwise.
(18)

Here rij is simply the Euclidean distance between point i and point j, while r0 is a pre-
defined filter radius.
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Based on the Proportional Topology Optimization (PTO) [20,21], no sensitivity anal-
ysis is required. Using the evaluation of compliance at every integration point, the
pseudo densities are distributed via an inner loop as follows

ρi = k
ci

ng
∑

j=1
cj

RM, (19)

where RM is the remaining material. The speed of the material distribution process is
controlled by coefficient k. It is similar to the “move” parameter in the OC scheme usually
used in gradient-based approaches (see [2, 8]). Increasing the value of k may increase
the speed of PTO inner loop. However, too large k would lead to non-convergence and
violation of the volume constraint. By default, k = 1 is selected. At the beginning of
the inner loop, RM is set as the target amount of material (see Eq. (14)). The inner loop
stops when RM is less than a tolerance, e.g. RM ≤ 10−4. The evaluation of compliance
at integration point is simply calculated by

c(xi) = uT
SiKiuSi, (20)

where uSi is the vector of nodal displacement of the nodes belong to the support domain
Si of integration point i. At the end of the inner loop, the pseudo densities are finally
updated by

ρt+1 = αρt + (1 − α)ρnew, (21)
where ρt is the density at the last iteration, and ρnew is the newly value obtained after the
PTO inner loop. α is a coefficient selected from 0 to 1, exhibiting the weights of history
value ρt and the calculated value ρnew in ρt+1. It is obvious that if α = 1, there is no
update at all; while if α = 0, ρt+1 = ρnew. In this paper, α = 0.5 is chosen.

For meshfree approaches that employ nodal densities [10,13,14], the stiffness matrix
is also evaluated using numerical integration (see Eq. (16), in which the value of pseudo
density at integration points is interpolated from the nodal values. Since one node may
exist in the support domain of many integration points, the calculation of sensitivity is
complicated. A nodal integration is then used by [13] to boost computational efficiency,
in which the nodes are also integration points. Therefore, it would be straightforward to
define the pseudo density on integration points.

It is noted that due to the higher number of integration points, in comparison with
that of nodes or that of elements, the RPIM-PTO can be considered as a high-resolution
approach. There exist multi-resolution schemes for FEM-based topology optimization,
e.g. see Refs. [27, 28]. Nevertheless, in those schemes, multi-levels of discretization and
extra projection algorithms have to be defined, which are not needed by the RPIM-PTO.

4. NUMERICAL EXAMPLES

4.1. MBB beam
The classical problem of MBB beam is studied in this example to demonstrate the

proposed RPIM-PTO. Due to symmetry, half of the design domain is modelled to reduce
computational effort. A uniform distribution of 61 × 31 nodes is employed to discretize
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the domain. For numerical integration, 7200 integration points are used. This also means
that the pseudo-density field is represented by 7200 design variables. It is noted that for
an element-based design scheme using FEM, given the same nodal distribution, there are
only 1800 design variables being defined at the center points of 1800 elements. The value
of compliance obtained by RPIM is smaller than that of FEM, which is as expected due to
the higher number of design variables being used in RPIM.

Fig. 2. Design domain of MBB beam problem: a) Full domain and b) Right-half domain

Fig. 3 presents the optimized structure obtained by RPIM-PTO with a volume frac-
tion of 32%. For comparison, the optimized result achieved by FEM-PTO is depicted in
Fig. 4. A magnified observation clearly exhibits the higher resolution of the RPIM result,
due to the higher number of design variables. The bar graph of elapsed time in Fig. 5 indi-
cates that in order to achieve the same resolution with RPIM-PTO, the FEM-PTO requires

Fig. 3. The optimized result of MBB beam obtained by RPIM-PTO. The pseudo densities are de-
fined at integration points. Value of compliance: c = 133.43

Fig. 4. The optimized result of MBB beam obtained by FEM-PTO, wit. The pseudo densities are
defined at element centers. Value of compliance: c = 140.17
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very high computational cost. Optimized structures with respect to the increasing vol-
ume fraction (24%, 32%, 48% and 64%) are portrayed in Fig. 6. The compliance decreases
when more materials are retained, as expected. The convergence curves of compliance
corresponding to the four cases are depicted in Figs. 7–10.

Fig. 5. Comparison of elapsed time between various schemes

Fig. 6. Optimized structures with respect to volume fraction
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Fig. 7. The convergence history of compliance
obtained by RPIM-PTO with volume fraction

24%

Fig. 8. The convergence history of compliance
obtained by RPIM-PTO with volume fraction

32%

Fig. 9. The convergence history of compliance
obtained by RPIM-PTO with volume fraction

48%

Fig. 10. The convergence history of compli-
ance obtained by RPIM-PTO with volume frac-

tion 64%

4.2. Annular disc being loaded by tangential loads
In this example, an annular disc being loaded by multiple tangential loads is consid-

ered, see Fig. 11. In order to save computational effort, a quarter of the design domain
is modelled with anti-symmetric boundary conditions. For numerical analysis, the do-
main is uniformly discretized by 1681 nodes, while 6400 points are used for numerical
integration. Elastic modulus is assumed to vary spatially and thus Eq. (15) is rewritten
by

Ei = Evoid + ρ
p
i

(
Es exp

(
a

x2
i + y2

i
R2

2

)
− Evoid

)
. (22)

The optimized structures obtained for three cases: a = 0, a = −4 and a = 4 are
depicted in Fig. 12, Fig. 13 and Fig. 14, respectively. The effect of spatially varying elastic
modulus is clearly reflected in the outcomes of topology optimization. In case a = −4, the
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Fig. 11. Geometry of the annular disc being loaded by tangentially loads:
a) Full model and b) A quarter model

Fig. 12. Optimized structure in case a = 0 (isotropic material)

Fig. 13. a) Distribution of elastic modulus Es in case a = −4, b) The optimized structure by
RPIM-PTO and c) The optimized structure by FEM-PTO
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Fig. 14. a) Distribution of elastic modulus Es in case a = 4, b) The optimized structure by
RPIM-PTO and c) The optimized structure by FEM-PTO

Fig. 15. The convergence history of compli-
ance obtained by RPIM-PTO for the case a = 0

(isotropic material)

Fig. 16. The convergence history of compli-
ance obtained by RPIM-PTO for the

case a = −4

Fig. 17. The convergence history of compliance obtained by RPIM-PTO for the case a = 4
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material stiffness decreases from inner radius to outer radius. As a result, the structure
tends to be thicker near the outer radius. In contrast, in case a = 4, the structure is thicker
near the inner radius, which is also the region of soft material. Due to lower resolution,
the results by FEM-PTO are blurred. The curves showing the convergence of compliance
obtained by RPIM-PTO corresponding to the three cases (a = 0, a = −4, a = 4) are
exhibited in Figs. 15–17.

5. CONCLUSIONS

The non-sensitivity PTO algorithm has been successfully integrated into meshfree
RPIM analysis, namely the RPIM-PTO. The design variables (pseudo-density) are defined
at integration points, resulting in a high-resolution scheme with relatively low compu-
tational cost. It is emphasized that this is a natural choice by two reasons. Firstly, no
element exists in meshfree analysis, hence a point-based density is necessary. Secondly,
the evaluation of domain integral (e.g. the structural stiffness) can be conveniently ex-
pressed as a sum of values computed at integration points. The part of structural compli-
ance (objective function) associated with each design variable, which is essential in PTO
algorithm, is thus straightforwardly calculated.

It is also noted that due to the employment of filter, there exist grey regions, espe-
cially near the boundaries. These grey regions cannot be avoided by high-resolution de-
sign. In practice, some further treatments [29, 30] should be applied to the design before
transferring to the stage of prototype making, e.g. by additive manufacturing.

As a non-sensitivity approach, RPIM-PTO requires no sensitivity analysis. Only the
information of the objective function (here is the so-called compliance) is required to
update the design variables. Possible extension of the RPIM-PTO would be the problems
of compliant mechanism type, and/or structures with large deformation.
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